Content uploaded by Ali Kosar
Author content
All content in this area was uploaded by Ali Kosar on Mar 03, 2020
Content may be subject to copyright.
Energies2020,13,1126;doi:10.3390/en13051126www.mdpi.com/journal/energies
Article
NumericalandExperimentalStudiesontheEffectof
SurfaceRoughnessandUltrasonicFrequencyon
BubbleDynamicsinAcousticCavitation
RanaAltay
1
,AbdolaliK.Sadaghiani
1,2
,M.IlkerSevgen
1
,AlperŞişman
2,3
andAliKoşar
1,2,4,
*
1
FacultyofEngineeringandNaturalSciences,SabanciUniversity,Tuzla,Istanbul34956,Turkey;
raltay@sabanciuniv.edu(R.A.);ilkersevgen@sabanciuniv.edu(M.I.S)
2
SabanciUniversityNanotechnologyandApplicationCenter(SUNUM),SabanciUniversity,Tuzla,Istanbul
34956,Turkey;a.sadaghiani@sabanciuniv.edu(A.K.S)
3
FacultyofElectricalandElectronicsEngineering,MarmaraUniversity,Kadikoy,Istanbul34722,Turkey;
alper.sisman@marmara.edu.tr
4
CenterofExcellenceforFunctionalSurfacesandInterfacesforNano‐Diagnostics(EFSUN),Sabanci
University,Tuzla,Istanbul34956,Turkey
*Correspondence:kosara@sabanciuniv.edu
Received:31January2020;Accepted:28February2020;Published:3March2020
Abstract:Withmanyemergingapplicationssuchaschemicalreactionsandultrasoundtherapy,
acousticcavitationplaysavitalroleinhavingimprovedenergyefficiency.Forexample,acoustic
cavitationresultsinsubstantialenhancementintheratesofvariouschemicalreactions.Inthis
regard,anappliedacousticfieldwithinamediumgeneratesacousticstreaming,wherecavitation
bubblesappearduetopreexistingdissolvedgasintheworkingfluid.Uponcavitationinception,
bubblescanundergosubsequentgrowthandcollapse.Duringthelastdecade,thestudiesonthe
effectsofdifferentparametersonacousticcavitationsuchasappliedultrasoundfrequencyand
powerhavebeenconducted.Thebubblegrowthandcollapsemechanismsandtheirdistribution
withinthemediumhavebeenclassified.Yet,moreresearchisnecessarytounderstandthecomplex
mechanismofmulti‐bubblebehaviorunderanappliedacousticfield.Variousparametersaffecting
acousticcavitationsuchassurfaceroughnessoftheacousticgeneratorshouldbeinvestigatedin
moredetailinthisregard.Inthisstudy,singlebubblelifetime,bubblesizeandmulti‐bubble
dynamicswereinvestigatedbychangingtheappliedultrasonicfield.Theeffectofsurface
roughnessonbubbledynamicswaspresented.Intheanalysis,imagesfromahigh‐speedcamera
andfastvideorecordingtechniqueswereused.Numericalsimulationswerealsodonetoinvestigate
theeffectofacousticfieldfrequencyonbubbledynamics.Bubbleclusterbehaviorandrequired
minimumbubblesizetobeaffectedbytheacousticfieldwereobtained.Numericalresults
suggestedthatbubbleswithsizesof50μmormorecouldbealignedaccordingtotheradiation
potentialmap,whereasbubbleswithsizessmallerthan10μmwerenotaffectedbytheacoustic
field.Furthermore,itwasempiricallyproventhatsurfaceroughnesshasasignificanteffecton
acousticcavitationphenomena.
Keywords:acousticcavitation;surfaceroughness;cavitationbubble;bubbledynamics;bubblesize;
bubblegrowth
1.Introduction
Acousticcavitationisaliquidtovaporphasechangephenomenonandtakesplacewithina
mediumduetotheeffectofultrasonicpressurefluctuations.Theseultrasonicpressurefluctuations
resultintheformationofbubblesfrompreexistingdissolvedgases,whichisfollowedbythe
subsequentgrowthandviolentcollapseofbubbles.Theoccurrenceofbubblecollapsesgeneratelocal
Energies2020,13,11262of15
highpressuresandatemperatureriseupto105K[1],whichleadtoseverephysicalimpact,shock
waveradiation[2,3],turbulence,microjetsandchemicalreactions[4]andcouldbeexploitedinmany
applicationssuchascancertreatment[5–7],ultrasoniccleaning[8–10],wastewatertreatment[11–
13],nanomaterialssynthesis[14,15],biomedicalapplications[16]andemulsification[17–19].
Althoughthegrowthandcollapseofbubblesinacousticcavitationarewidelyusedinmany
differentapplications,therearesomedisadvantagesofacousticcavitation.Theconsequencesof
bubblecollapseasshockwaves,temperaturechange,oraformationofaliquidjetmightleadto
cavitationerosion.Duetotheerosion,crevicesonsurfacesmightformorstressfatiguemightoccur.
Moreover,theformationofbubblesmightcauseadecreaseinthedeviceefficiency[20].To
understandtheeffectofacousticcavitationanditsdamageondifferentmaterials,somestudieswere
recentlyperformed.Forexample,Abedinietal.[21]investigatedcorrosionandmaterialalterations
ofCuZn38Pb3brassunderacousticcavitationduringdifferentsonicationdurations(maximum
durationof5h).Theyreportedthatthecorrosionrate,plasticdeformationandsurfaceroughness
werelargerforlongersonicationperiods.Also,thedamageduetothecavitationvariedaccordingto
theα‐β′phasesofbrassalloy.
Theaimofunderstandingtheunderlyingmechanismsmakesfundamentalstudiesattractive
startingfromthe1940s(Blake,[22]).In1949,Blakereportedbubblegrowthinanappliedacoustic
fieldandcoveredrectifieddiffusionandbubble‐bubblecoalescence[22].Later,Noltingkand
Neppiras[23]performedastudy,whereequationsofcavitationbubblegrowth,pressureandvelocity
distributionwerederivedforacousticcavitation.Ayearlaterin1951,theyreportedthatsome
parameterslimitedacousticcavitation[24],whichwerelistedaspressureamplitude,pressurewave
frequency,bubblecoreradius,andhydrostaticpressure.In1960,Leith[25]explainedthenegative
effectsofcavitationonmetalsandliquidcharacteristicsduetobubblecollapseandcavitationerosion.
Withtheadvancesinrelatedtechnology,thenumberofstudiesinthisfieldincreased.In1996,
Tianet.al.capturedtheoscillationsduetomicrobubblegenerationunderanacousticfield,usinga
Charge‐coupleddevice(CCD)camera[26].Ananalysisonthebubblesizebasedonthelevitationin
waterwasmade.Similarly,Mettin[27]implementedhigh‐speedimagingtechniquesfor
visualizationofdifferentbubbleshapes/structuressuchasconicalshape,clusteranddoublelayer,
whichformedatlowappliedfrequencies.Recently,Reuteretal.[28]studiedbubblesizeandits
distributioninvariousacousticstructures.Ahigh‐speedcamerawasusedfortheanalysisofbubbles
duringtheoscillationatalowappliedfrequency.Thereareotherdifferenttechniquesforbubble
dynamicsanalysisatanappliedultrasonicfrequencysuchaslightscattering[29]andstroboscopy
[30].
Manyrecenteffortshavefocusedonchangingthebubbledistributionbyapplyingdifferent
powersandfrequencies.Thedynamicresponsesofbubblesaccordingtothechangeofthese
parameterswereincludedintheliterature[8,31–36].Forexample,Brotchieetal.[31]obtainedbubble
distributionatdifferentappliedfrequenciesandpowersintheirexperimentalstudy.Theyobserved
thatbubblesizeandultrasoundfrequencyhadaninverserelationship,andthebubblesizewas
proportionaltotheacousticpower.InthestudyofSunartioet.al.[37],theeffectsofvaryingfrequency
andpoweronacousticbubblecoalescencewererevealedinthepresenceofsurface‐activesolutesby
calculatingthevolumechangeofthedispersionaftereachsonicationperiod.Theyreportedsurface
assimilationinthebubblesduetotheusageofsurface‐activesolutes,whichcausedadelayinbubble
coalescence.Furthermore,thealterationofpowerdidnothaveanyeffectonthedynamicsofbubble
coalescence.Yet,frequencyvariationcausedachangeinbubblecoalescence,whereshortrangesteric
revulsionwasdominant.Ashokkumaralsoreportedtheeffectofsurface‐activesolutespresentinthe
experimentalmedium,andbubblegrowthandcoalescencewerein‐depthdiscussedinthisstudy
[38].Toprovideadifferentperspective,Zhou[39]usedacousticcavitationinpoolboiling
experimentstoanalyzeitseffectonboilingheattransferenhancement.Itwasreportedthattheuse
ofacousticcavitationinpoolboilingexperimentsdecreasedthesuperheat,andemergingbubbles
increasedheatandmasstransfer,whichledtoenhancedboilingheattransfer.ThestudybyFanget
al.[13]focusedonwastewatertreatmentwithacousticcavitation.Acousticcavitationinthisstudy
servedforpropagationoftheplasmainwaterbytheformationofmicrobubbles.Cuietal.[40]used
Energies2020,13,11263of15
acousticcavitationtotreatcrudeoil.Accordingly,shorterbranchedchainandrelativelyshortalkanes
comparedtotheinitialversioncouldbeachieved.Meanwhile,asphaltenemoleculeswere
polymerized.
Whilemanystudiesdisplayedtheeffectofmajorparametersonacousticcavitationandbubble
dynamics,thesurfaceroughnesseffectonacousticcavitationbubbleshasnotbeenstudiedinthe
literaturetothebestknowledgeoftheauthors.Inthisstudy,bubbledynamicswasinvestigatedfor
differentsurfaceroughnessandappliedfrequencyvalues.Forvisualization,ahigh‐speedcamera
wasusedforrecordingvideos/images.Thus,growthandcollapseofcavitationbubblescouldbe
capturedfordifferentsurfaceroughnessandfrequencyvalues.Tovalidatetheobtainedresults,
numericalsimulationsofacousticstreamingandparticletrajectoryanalysisofairbubblesina
mediumwerealsoperformed.
2.MaterialsandMethods
2.1.ExperimentalSetup
TheschematicoftheexperimentalsetupisshowninFigure1.Acubicpoolmadeoftheglass
withdimensionsof15×15×15cm
3
wasusedforvisualizationofthecavitationexperiments.The
workingfluidwaschosenaswater.ALangevintypepiezoelectrictransducer,whichgenerates
mechanicalmovementsfromelectricalsignals,wasoperatedatfrequenciesof28kHzand40kHz.
Mountablediscsurfaceswithadiameterof40mmanddifferentsurfaceroughnessvalues(of100nm
and1μm)wereutilizedtoinvestigatetheeffectofsurfaceroughnessattheappliedfrequencyof40
kHz(showninFigure1b).Roughnessonthesurfacewasachievedwithasandpaper.Thetransducer
wasfixedatthetopofthepool.Ahigh‐speedcamera,whichallowsforfastrecordingofthevideos
andsnapshotsofthebubblesduringacousticcavitationphenomenawithexposuretimeof2μs,frame
rateof10,000,wasusedforvisualization.ThevisualizationwasachievedusingtheShadowgraph
ImagingTechnique.
Theshadowgraphimagesofacousticcavitationwerecapturedbyahigh‐speedcamera.Inthis
study,parallel‐lightdirectshadowgraphwasused.Accordingly,whenthelightbeampassesthrough
thebubble,thelightisfocused.Thestrongestlightrefractionisattheboundarybetweenthebubble
andsurroundingwater.Norefractionoccursoutsidethebubbleorexactlyatitscenter.Adark
circularshadowmarkstheperipheryofthebubble.Insideit,thereisabrighterilluminancering,
whichisthelightdisplacedfromthedarkcircularshadow.
Thecamerawasconnectedtotheworkstationtoanalyzebubbledynamics.Thedirectionofthe
ultrasoundapplication(fromthetransducer)wasfromtoptothebottomofthepool.Toensurethe
repeatabilityandreliabilityoftheexperiments,everyexperimentwasperformedforthreetimes.The
high‐speedcamerawaslocatedonthesideofthepoolsuchthatthesurfaceofthetransducerand500
μmaboveofthesurfacecouldberecordedforacousticcavitation.
(a) (b)
Figure1.
Descriptionofexperimentalsetupandmountablesurfaces:(a)Schematicrepresentationof
theexperimentalsetup;(b)Mountablesurfaceswithdifferentsurfaceroughnessvalues.
Energies2020,13,11264of15
2.2.AcousticCharacterizationandControlCircuit
Cavitationbubblesweregeneratedusingasandwich‐typeultrasonictransducer.Theelectronics
todrivethistypeoftransducermostlyusesadigitallycontrolledpush‐pulltransistorstage.To
preventanyshortcircuit,thetransistorexcitationtimingiscrucialforthistypeofdesign[41–45].In
thisstudy,anewdrivercircuit,whichusesasimplefunctiongenerator,wasdesigned.Thenew
designsimplifieselectronicsandreducessystemcomplexity.
Thesandwich‐typetransducersareusedinsidemanyindustrialdevicesandarewell
characterized[46,47].Thetransducerusuallyhasasingleoperatingband,whichhasafractional
bandwidthofaround5%.Theoperationfrequencybandwasinvestigatedusingtheexperimental
setupdepictedinFigure2a.Apulsegenerator(5072PR,OlympusCO.Waltham,MA,02453,USA)
excitedthetransducerusingawidebandpulse,andthereceivedechowasmeasuredbyaspectrum
analyzer(DSA875,Rigol,Beaverton,OR97008,USA).Themeasureresponseshowedanarrowband
characteristicwithanoperatingfrequencyof39.85kHz(Figure2b).Thesetupwasusedtodetermine
theexactoperatingfrequencysothatthe
transducercouldbedriveneffectively.
Figure2.Characterizationandmeasurementoftransducer:(a)Transducercharacterizationsetup;
(b)Themeasuredfrequencycharacteristicsofa40kHztransducer.
Thenarrowbandbehaviorofthetransducerincreasedthedependencyofefficiencyonthe
excitationfrequency(e.g.:0.3%ofthechangeinfrequencywouldresultin20%ofthechangeinthe
powertransmittedtothesystem).Hencethefrequencystabilityhadasignificanteffectonproviding
constantpower.
Thedesigneddrivercircuitrywasabletosetthedesiredfrequencyandpowerlevel.Thecircuit
wascontrolledbyadigitalsignalinordertoprovidefrequencystability.Unliketheusualdesign,a
singleswitchwasemployedinthedesign.Thehighvoltageswitchpumpedtheelectricalpowerto
thetransducerbyapredefinedfrequency.Theswitchwasametal‐oxidesemiconductor(MOS)
transistorconnectedtoahighvoltagedirectcurrent(HV‐DC)supply,whichwasprovidedfrom
rectifiedalternatingcurrent(AC)voltage(220VRMS).Inthedesign,onlyasingleswitchwasused.
Itchargedthepiezoelectrictransducerduringon‐time,andtheaccumulatedchargewasdischarged
inoff‐time.Themaincomponentwasinverselypositionedfastdiodesinthedischargingcircuitry.
Hence,onlyoneswitchwasusedtosimplifytheexcitationcircuitoftheMOStransistor.Asimple
functiongeneratorappliedthepulsewidthmodulated(PWM)signaltooperatethesystem.Theduty
cycleofthePWMsignaldefinedthepower(dutycyclemustbeunder40%),andthePWMfrequency
determinedthetransducer’soperationpoint.Theblockschematicexplainingthecircuitdesignis
giveninFigure3a.ThevoltageacrosstransducernodescanbeseeninFigure3b,andthefrequency
domainrepresentationofthevoltageshowsthatthetransducerisactuatedbyaprettynarrowband
signalaroundtherequiredfrequency(Figure3c).
Energies2020,13,11265of15
(a)
(b)(c)
Figure3.Schematicandcharacterizationofutilizedelectroniccircuit:(a)Theblockschematicofthe
designedcircuit;(b)Measuredvoltagewhentransducerisactuatedby26.7kHz;(c)Thefrequency
domainrepresentationofthevoltagewaveformgivenin(b).
2.3.NumericalAnalysis
TheCOMSOL5.4softwarewasusedforsolvingthegoverningequations.Acousticandparticle
trackingmoduleswereusedtoinvestigatetheeffectofacousticfieldonairbubbles.Airbubbleswere
consideredassphericalparticleswithdiametersrangingfrom10μmto50μm.Acoustophoretic
radiation,gravityanddragforceswereimplementedinthenumericaldomain.Openboundary
conditionswereconsideredforsidewalls,whileplanewaveradiationwasdefinedasthetransducer
surface.Theconservationequationsforanacousticwavepropagationintoafluidaregivenas:
2
22
11
.0
P
Pct
(1)
Here,P,ρ,c,andtarepressure,density,soundvelocityinmedium(water),andtime,
respectively.Fora(,) () it
P
rt Pr e
solution,where
,,rrxyzisthepositionvector,
2
f
isangularfrequency,and
f
isthefrequency.Substitutingthepressuredistributioninto
Equation(1),theacousticpressure()Pr isobtainedas:
2
2
10PP
c
(2)
Theintensitydistributionisexpressedas:
Energies2020,13,11266of15
2
()
() 2
pr
Ir c
(3)
Aftermeshdependencyanalysis,thehomogeneouspressureequationwassolvedas:
()
(,)
itkr
Prt Ae
(4)
3.ResultsandDiscussion
3.1.SingleBubbleDynamicsinanAcousticField
Whenappropriateultrasonicradiationisapplied,“multi‐bubbles”appearinaliquidmedium.
Thegeneratedbubblescanbeformedduetoeithertheexistenceofthedissolvedgasnucleiorthe
cagedgasesinthesolidparticles.Anotherreasonfortheformationofbubblescanbeattributedto
theseparationoflargerbubblesintheliquidmedium.Theoretically,ifthebubbleovercomesthe
pressurethreshold,whichiscalledtheBlakethreshold,P
B
,(Equation(5)),nucleationtakesplace[1]:
03
0
83
922
B
BB
PP PRR
(5)
whereP
0,
R
B
andσaretheambientpressure,Blakeradiusandsurfacetension,respectively.Upon
nucleation,thebubblecanstarttogrowandgothroughstablecavitationforalargedrivingacoustic
pressure.Ontheotherhand,ifthedrivingacousticpressureislow,thebubblesdissolveinthe
medium.Formuchhigheracousticpressures,whichexceedthecavitationthreshold,thebubbles
becomeunstableortransient.Inanotherscenario,largerbubblescanbeaffectedbythebuoyancy
forceandmoveuptothesurfaceoftheliquidmedium,whichisreferredas“degassing”.
Thebubblegrowthprocessatanappliedultrasonicfrequencyismainlyseparatedintotwo
differentmechanisms:rectifieddiffusionandcoalescence.Thecoalescenceoccursduetothe
secondaryBjerknesforce[48]betweentwooscillatingbubblesinthesameoscillationphase.They
mergeandformabiggerbubble.Thegrowthofthebubblesviathecoalescencemechanismisfaster
thantherectifieddiffusion.Figure4representstherectifieddiffusion,inwhichthesinusoidal
acousticstreamingaffectsthebubbledynamicsandcausesperiodicalgrowthandwane.Duringthe
growth,theexpansiontakesplace,theinnerpressureofthebubbleislow,andthediffusionofgas
intothebubbleoccurs.Inversely,thediffusionofthegasoutofthebubbleappearsatthetimeof
compression.Afterthebubblereachesthecriticalmaximumsize,thebubblecollapseoccurswhich
leadstopressureshockwaves.
Figure4.
Rectifieddiffusionmechanismundertheeffectofsinusoidalacousticstreaming.
Energies2020,13,11267of15
Anexampleofasinglebubblelifetimeattheapplied40kHzacousticfieldfrequencyisshown
inFigure5a.Theexperimentisconductedwithasmoothtransducersurface.Byusingfastvideo
recording,therectifieddiffusionofthesinglebubblewasrecordedinevery150μs,asshownin
Figure5b.Thebubblegoesthroughtherectifieddiffusion,anditssizealtersaccordingtotheinside
pressure.Thepressuredifferencebetweentheliquidmediumandtheinnerbubbleallowsforthe
periodicgrowth,expansionandcompressionofthebubbleoverseveralcycles.After750μs,the
bubblereachesthemaximumsize,whichisfoundasapproximately35μm,whichisfollowedbythe
violentcollapseofthebubble.
(a) (b)
Figure5.
Sizevariationofasinglebubbleinanacousticfield:(a)Schematicrepresentationofthe
singlebubblelifetimeatanappliedfrequencyof40kHz;(b)Capturedimagesofrectifieddiffusionof
thesinglebubble
3.2.BubbleBehaviorinAcousticField
Acousticstreamingisofsinusoidalnature,whichcausespressurefluctuationsintheliquid
medium.Asaresultofanappliedacousticfield,theformationofmulti‐bubblecloudsoccurs.To
analyzethemulti‐bubblebehaviorunderacousticfield,thehigh‐speedcamerawasusedfor
visualization.Theshootingrangewassetto100μs.Thefrequencyofappliedultrasoundwaschosen
as40kHz,andthetransducersurfacewithsurfaceroughnessvalueof100nmwasused.Figure6
showsasnapshotofmulti‐bubblecloudswithin100μstimeintervals.Itcanbeobservedthatthe
compressionandrarefactionofthebubblecloudscanbeseenaccordingtothepressurenodesinthe
appliedultrasoundwave.
Energies2020,13,11268of15
Figure6.Cont.
Figure6.Themulti‐bubblecloud’sbehaviorduring300μsattheappliedacousticfieldof40kHz:(a)
and(c)compressioncycle,(b)and(d)rarefactioncycle.
Duringthecompressioncycle,thecloudshrinks,whichisfollowedbytheirexpansion,where
theamplitudeoftheacousticpressureswitchesintothelowernode.Asaresult,similarbehaviorto
thesinglebubblecasecanbeobservedformulti‐bubblesatthesameappliedacousticfrequency.
Toprovidefurtherunderstandingabouttheeffectofacousticfieldonbubbledynamics,
numericalmodelingwasperformedusingtheCOMSOL®software(Burlington,MA01803USA)[49].
AccordingtotheexperimentalresultsshowninFigure7a,locallygroupedbubblecloudsintheliquid
arevisible.ThisbehaviorcanbealsorecognizedinsimulatedairparticletrajectoriesshowninFigure
7b.Accordingtothecomparisonbetweenexperimentalandnumericalresults,almostthesame
bubbledistributioncanbeachieved.
100
Energies2020,13,11269of15
(a) (b)
Figure7.
Bubblecloudformation(a)experimentalresults(b)numericalresultsfortheresponseof
airparticlestotheappliedacousticfield.
Anoscillatingflowfieldcanbedescribedasanacousticwavewithinfinitewavelength.Theflow
velocityisexpressedas
ˆ
() sin
ccf
ut u t
,where
ˆ
c
u
istheamplitudeofthevelocitywaveand
2
fr
f
istheangularfrequency.Resonancesize,Stokesnumber,
tr
Sfc
,anddensityratio,
pl
,aremajorparametersaffectingtheresponseofairparticlestotheacousticfield.
Theactingradiationforceonthebubblesinsidethemediumisduepressuregradientexpressed
as
PDu
xDt
.Inadditiontotheprimaryradiationforce,whichactsinthedirectionofacoustic
wavepropagation,asecondaryradiationforcemanipulatestheagentstoattractorrepeleachother.
Thetime‐dependentradiationforceonthebubblecanbecalculatedfromthedrivingpressurewave
andtime‐dependentvolumeofthebubble.Furthermore,thetranslationalmotionofthebubblein
responsetotheradiationforcecanbecalculatedbysolvingtheequationsofairparticletrajectory.
Foranairparticlewithmassof 𝑚
𝜌𝑉
,theparticletrajectoryequationisgivenas 𝑚
𝐹
𝑡
𝐹
𝑡.Theradiationforce(𝐹
𝑡andquasi‐staticdragforce(𝐹
𝑡areexpressedas:
𝐹
𝑡𝑉
𝑑𝑃
𝑑𝑥
(6)
𝐹
𝑡1
2𝜌
𝑢
𝑢
𝐴24
2𝑅𝑢
𝑢

𝜐10.197 2𝑅𝑢
𝑢

.
𝜐(7)
Here,𝑚
istheairparticlemass,𝑢
istheairparticlevelocity,𝑑𝑃
isthedrivingpressure
difference,𝑢isthevelocity,𝑢
𝑢
𝑢
istherelativevelocity,and𝜐istheviscosity.Toexamine
theeffectofradiationforce,themotionofbubbleswithdifferentdiameterswassimulatedatthe40
kHzultrasonicfrequency.TheobtainedresultsareshowninFigure8.Accordingly,thebubbleswith
diameterssmallerthan10μmarenotaffectedbytheacousticfield,whilebubbleswithdiameters
largerthan50μmcanbesortedaccordingtotheradiationpotentialmap.Theobtainedresults
indicatethattheresponseofairparticlestotheradiationforceisproportionaltotheirsize,whichis
alsodisplayedbythevisualimagesshowninFigure7a.
(a) (b)
Figure8.
Simulationresultsofbubbletrajectorieswiththebubbleshavingdifferentsizesatthe
appliedfrequencyof40kHz(a)Airbubblehaving50μmdiameter;(b)Airbubblehaving10μm
diameter.
3.3.EffectofSurfaceRoughnessandUltrasonicFrequency
Figure9showstheacousticcavitationinducedbubblesattheappliedultrasonicfrequencyof40
kHzwhendifferentsurfacesaremountedonthetransducer.Theimagesweretakenwiththehigh‐
Energies2020,13,112610of15
speedcameraand100μstimeslots.Figure9adisplaysthemulti‐bubbleformationwhenthesmooth
surface(with100nmsurfaceroughness)istested.Thebubblesappearandformacloud.Meantime,
thebubblesontheroughsurfaceexhibitmoredisorganizedbehavior.Asaresult,thecavitylength
diminutionisevidentwiththeincreaseintheroughness.
Whenasingleacousticcavitationbubblecollapsesintheliquidmedium,thetemperaturecan
belocallyincreasedupto10,000K[1].Thepooltemperaturesweremeasuredatfourdifferent
locations.Theaveragetemperatureoffourthermocoupleswererecordedforanalysispurposes.The
experimentswereconductedunderthe40kHzappliedultrasonicfield.
(a) (b)
Figure9.
Thecavitationbubblesat40kHz.(a)Multi‐bubblecloudformationonasmoothsurface
with100nmroughness;(b)Disorganizedbubbleswithdiminutionofcavitylengthonaroughsurface
with1μmroughness.
ThetemperaturevariationsofthepoolwithtimeareshowninFigure10.Accordingly,for
surfaceroughnessof100nm,thetemperatureincreasesfrom299K(roomtemperature)to340Kafter
35minutesofexperimentation.Thereasonforthetemperaturerisecanbetheenergyreleasedduring
thebubblecollapse.Ontheotherhand,forthesurfacewithsurfaceroughnessparameterRa=1μm,
thepooltemperatureisstabilizedwithinashortertime(almost25minutes).Here,Here,Raisthe
arithmeticalmeandeviationoftheassessedprofileandiscalculatedas 𝑅𝑎
∑𝑦

,where,y
i
is
theverticaldistancefromthemeanlinetothei
th
datapoint.Moreover,thepooltemperatureis10K
colderthanthepreviouscase(smoothsurface),whichisduetolowerintensityofcavitationinside
thepoolforthecaseofroughsurface.
Figure10.
Thetemperatureriseduringtheacousticcavitationexperimentsattheappliedfrequency
of40kHz.
Energies2020,13,112611of15
Toobservetheeffectofappliedultrasonicfrequencyonacousticcavitation,28kHzand40kHz
areapplied.Foralltheexperiments,thesmoothsurfacetransducersurfaceistested.Atthe40kHz
appliedfrequency,morefrequentfluctuationscausemanybutsmallerbubblesthanthecaseof28
kHz.
Whilemoredetailedandextensivestudiesarerequiredforaccurateassessmentofenergy
efficiencyinenergyconversionprocessesinvolvingcavitation,thereportedresultsclearlyprovethat
thesurfaceroughnesshasasignificanteffectonacousticcavitationphenomena.Thisisevidentfrom
themaximumpooltemperature(Figure10)andbubblesize(Figure11).Althoughthemotivation
behindacousticcavitationstronglydependsontheapplications(sonoporation,ultrasoniccleaning,
andchemicalreactor),controlofacousticcavitationusingsurfaceroughnesscouldbeaneffective
passiveapproachforenergyefficiencyapplications.
(a)(b)
(c)(d)
Figure11.
ThebubbleswithdifferentshapeandquantityonthesurfacewithRa=1μmundertheeffect
ofdifferentappliedfrequencies(a)Bubblesoccurrenceat28kHz;(b)Bubblesoccurrenceat40kHz.
(c)Averagebubblediametersatdifferentacousticfieldfrequenciesandsurfaceroughnessparameters
(d)distributionofthenucleatedbubblesatdifferentacousticfieldfrequencyandsurfaceroughness
parameter.
Energies2020,13,112612of15
AsseeninFigure11a,thereareapproximately20bubbles,whereas50bubblesarevisibleonthe
samescaleinFigure11b.Theaveragesizeofgeneratedbubblesunderthe40kHzacousticfieldis
almosttwiceasmuchasthesizeofgeneratedbubblesunderthe28kHzacousticfield.Asthesizeof
bubblesincreases,thegeneratedenergyduetobubblecollapseremarkablydecreases.Furthermore,
ascanbeseeninFigure11c,surfaceroughnessreducesthebubblesize.Themainreasonisthe
propagationangleofsurfaceacousticwavepropagation.Assurfaceroughnessincreases,surface
wavepropagationoccurswithlowervelocity,andscatteringincreases,therebyweakeningthewave.
4.Conclusions
Thisstudywasperformedtoprovidemoreinformationabouttheeffectofsurfaceonacoustic
cavitationattwowidelyusedappliedultrasonicfrequenciesbelow50kHz.Theinvestigationofthe
effectofsurfacewithinthisrangeiscriticalformanyapplicationssuchasultrasoniccleaningand
drugdelivery.Theeffectofsurfaceroughnessonbubbledynamicsinacousticcavitationwas
experimentallyandnumericallyinvestigated.Surfaceswithroughnessvaluesof100nmand1μm
wereexaminedinthe28kHzand48kHzacousticfields.DI‐waterwasusedastheworkingfluid.A
high‐speedcamerawasusedtocapturebubbledynamicsinsidethepool.Singlebubblelifetimewas
investigatedbasedonvisualresults.Theaveragebubblesizesfordifferentconditionswereobtained
andtabulated.Itwasfoundthatsurfaceroughnessreducedthebubblesize.Thenumericalanalysis
indicatedthatthebubbleswithdiameterssmallerthan10μmwerenotaffectedbytheacousticfield,
whilebubbleswithadiameterof50μmcouldbesortedaccordingtotheradiationpotentialmap.
Theobtainedresultsshowedthattheresponseofairbubblestotheradiationforcewasproportional
totheirsize.Therecordedpooltemperaturesrevealedthatthepooltemperaturewasstabilized
withinashortertime(almost10minutesshorter)forthesurfacewithRa=1μm.Moreover,thepool
temperaturewas10Kcolderthanthepreviouscase(smoothsurface),whichwasduetolower
intensityofcavitationinsidethepoolforthecaseofroughsurface.Morestudiesarerequiredinthis
fieldtodeepentheunderstandingabouttheeffectofsurfaceonplanewavepropagationand
subsequentacousticcavitationwithinthemedium.
Nomenclature
ParameterDescription
cSoundvelocity(m/s)
fFrequency(1/s)
FRRadiationforce(N)
FQSQuasi‐staticdragforce(N)
kWavenumber(1/m)
PPressure(kPa)
P0Ambientpressure(kPa)
RBubbleradius(m)
StStokesnumber(‐)
tTime(s)
u(t)Velocity(m/s)
urRelativevelocity(m/s)
VVelocity(m/s)
Greekletters
ρ Density(kg/m3)
ω Angularfrequency(1/s)
Energies2020,13,112613of15
σ Surfacetension(N/m)
γ Densityration(‐)
ν Kinematicviscosity(m2/s)
Abbreviations
CCDCharge‐coupleddevice
MOStransistor Metal–oxide–semiconductortransistor
HV‐DCHigh‐voltagedirectcurrent
ACAlternatingcurrent
PWMsignalPulse‐widthmodulationsignal
AuthorContributions:Conceptualization,Methodology,Validation:R.A.andA.K.S.;Software,Setup
preparation:M.I.S;AcousticCircuitDesign:A.S;Supervision:A.K.Allauthorshavereadandagreedtothe
publishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding
Acknowledgments:TheequipmentandcharacterizationsupportprovidedbytheSabanciUniversity
NanotechnologyResearchandApplicationsCenter(SUNUM)anditsstaffmembersareappreciated.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest
References
1. Leong,T.;Ashokkumar,M.;Kentish,S.Thegrowthofbubblesinanacousticfieldbyrectifieddiffusion.
Handb.Ultrason.Sonochemistry2016,10,978–981.
2. Holzfuss,J.;Rüggeberg,M.;Billo,A.Shockwaveemissionsofasonoluminescingbubble.Phys.Rev.Lett.
1998,81,5434.
3. Peshkovsky,S.L.;Peshkovsky,A.S.Shock‐wavemodelofacousticcavitation.Ultrason.Sonochemistry2008,
15,618–628.
4. Suslick,K.S.;Didenko,Y.;Fang,M.M.;Hyeon,T.;Kolbeck,K.J.;McNamaraIII,W.B.;Mdleleni,M.M.;
Wong,M.Acousticcavitationanditschemicalconsequences.Philos.Trans.R.Soc.Lond.Ser.AMath.Phys.
Eng.Sci.1999,357,335–353.
5. Sazgarnia,A.;Shanei,A.;Taheri,A.R.;Meibodi,N.T.;Eshghi,H.;Attaran,N.;Shanei,M.M.Therapeutic
effectsofacousticcavitationinthepresenceofgoldnanoparticlesonacolontumormodel.J.Ultrasound
Med.2013,32,475–483.
6. Coussios,C.;Farny,C.;TerHaar,G.;Roy,R.Roleofacousticcavitationinthedeliveryandmonitoringof
cancertreatmentbyhigh‐intensityfocusedultrasound(HIFU).Int.J.Hyperth.2007,23,105–120.
7. Aw,M.S.;Paniwnyk,L.;Losic,D.Theprogressiveroleofacousticcavitationfornon‐invasivetherapies,
contrastimagingandblood‐tumorpermeabilityenhancement.ExpertOpin.DrugDeliv.2016,13,1383–1396.
8. Yusof,N.S.M.;Babgi,B.;Alghamdi,Y.;Aksu,M.;Madhavan,J.;Ashokkumar,M.Physicalandchemical
effectsofacousticcavitationinselectedultrasoniccleaningapplications.Ultrason.Sonochemistry2016,29,
568–576.
9. Muthukumaran,S.;Yang,K.;Seuren,A.;Kentish,S.;Ashokkumar,M.;Stevens,G.W.;Grieser,F.Theuse
ofultrasoniccleaningforultrafiltrationmembranesinthedairyindustry.Sep.Purif.Technol.2004,39,99–
107.
10. Bryson,L.;FernandezRivas,D.;Boutsioukis,C.Cleaningofusedrotarynickel‐titaniumfilesinan
ultrasonicbathbylocallyintensifiedacousticcavitation.Int.Endod.J.2018,51,457–468.
11. Pradhan,A.A.;Gogate,P.R.Degradationofp‐nitrophenolusingacousticcavitationandFentonchemistry.
J.Hazard.Mater.2010,173,517–522.
12. Pétrier,C.;Francony,A.Ultrasonicwaste‐watertreatment:Incidenceofultrasonicfrequencyontherateof
phenolandcarbontetrachloridedegradation.Ultrason.Sonochemistry1997,4,295–300.
13. Fang,Y.;Hariu,D.;Yamamoto,T.;Komarov,S.Acousticcavitationassistedplasmaforwastewater
treatment:DegradationofRhodamineBinaqueoussolution.Ultrason.Sonochemistry2019,52,318–325.
Energies2020,13,112614of15
14. Xu,H.;Zeiger,B.W.;Suslick,K.S.Sonochemicalsynthesisofnanomaterials.Chem.Soc.Rev.2013,42,2555–
2567.
15. Han,J.T.;Jang,J.I.;Kim,H.;Hwang,J.Y.;Yoo,H.K.;Woo,J.S.;Choi,S.;Kim,H.Y.;Jeong,H.J.;Jeong,S.Y.
Extremelyefficientliquidexfoliationanddispersionoflayeredmaterialsbyunusualacousticcavitation.
Sci.Rep.2014,4,5133.
16. Hockham,N.;Coussios,C.C.;Arora,M.Areal‐timecontrollerforsustainingthermallyrelevantacoustic
cavitationduringultrasoundtherapy.IEEETrans.Ultrason.Ferroelectr.Freq.Control.2010,57,2685–2694.
17. Leong,T.;Wooster,T.;Kentish,S.;Ashokkumar,M.Minimisingoildropletsizeusingultrasonic
emulsification.Ultrason.Sonochemistry2009,16,721–727.
18. Lad,V.N.;Murthy,Z.V.P.Enhancingthestabilityofoil‐in‐wateremulsionsemulsifiedbycoconutmilk
proteinwiththeapplicationofacousticcavitation.Ind.Eng.Chem.Res.2012,51,4222–4229.
19. Canselier,J.;Delmas,H.;Wilhelm,A.;Abismail,B.Ultrasoundemulsification‐anoverview.J.Dispers.Sci.
Technol.2002,23,333–349.
20. Ganz,S.;Gutierrez,E.Cavitation:Causes,Effects,MitigationandApplication.RensselaerPolytech.Inst:
Hartford,CT,USA2012.
21. Abedini,M.;Reuter,F.;Hanke,S.CorrosionandmaterialalterationsofaCuZn38Pb3brassunderacoustic
cavitation.Ultrason.Sonochemistry2019,58,104628.
22. Blake,F.,Jr.ThePropertiesofGaseousSolutionsasRevealedbyAcousticCavitationMeasurements.J.
Acoust.Soc.Am.1949,21,464–464.
23. Noltingk,B.E.;Neppiras,E.A.Cavitationproducedbyultrasonics.Proc.Phys.Soc.Sect.B1950,63,674.
24. Neppiras,E.;Noltingk,B.Cavitationproducedbyultrasonics:Theoreticalconditionsfortheonsetof
cavitation.Proc.Phys.Soc.Sect.B1951,64,1032.
25. Leith,W.C.CavitationDamageofMetals.Ph.D.Thesis,McGillUniversity,Montréal,QC,Canada,1960.
26. Tian,Y.;Ketterling,J.A.;Apfel,R.E.Directobservationofmicrobubbleoscillations.J.Acoust.Soc.Am.1996,
100,3976–3978.
27. Mettin,R.Bubblestructuresinacousticcavitation.BubbleandParticleDynamicsinAcousticFields:Modern
TrendsandApplications,ResearchSignpost,İndia,2005.
28. Reuter,F.;Lesnik,S.;Ayaz‐Bustami,K.;Brenner,G.;Mettin,R.Bubblesizemeasurementsindifferent
acousticcavitationstructures:Filaments,clusters,andtheacousticallycavitatedjet.Ultrasonics
Sonochemistry2019,55,383–394.
29. Tuziuti,T.;Yasui,K.;Iida,Y.;Sivakumar,M.;Koda,S.Laser‐lightscatteringfromamultibubblesystemfor
sonochemistry.J.Phys.Chem.A2004,108,9011–9013.
30. Harba,N.;Hayashi,S.Dustparticlescounteracttheboostingofsingle‐bubblesonoluminescenceby
glyceroldroplets.Jpn.J.Appl.Phys.2003,42,2971.
31. Brotchie,A.;Grieser,F.;Ashokkumar,M.Effectofpowerandfrequencyonbubble‐sizedistributionsin
acousticcavitation.Phys.Rev.Lett.2009,102,084302.
32. Frohly,J.;Labouret,S.;Bruneel,C.;Looten‐Baquet,I.;Torguet,R.Ultrasoniccavitationmonitoringby
acousticnoisepowermeasurement.J.Acoust.Soc.Am.2000,108,2012–2020.
33. Vichare,N.P.;Senthilkumar,P.;Moholkar,V.S.;Gogate,P.R.;Pandit,A.B.Energyanalysisinacoustic
cavitation.Ind.Eng.Chem.Res.2000,39,1480–1486.
34. Laborde,J.L.;Bouyer,C.;Caltagirone,J.‐P.;Gérard,A.Acousticbubblecavitationatlowfrequencies.
Ultrasonics1998,36,589–594.
35. Apfel,R.Acousticcavitation:Apossibleconsequenceofbiomedicalusesofultrasound.Br.J.Cancer.Suppl.
1982,5,140.
36. Son,Y.;Lim,M.;Khim,J.Investigationofacousticcavitationenergyinalarge‐scalesonoreactor.Ultrason.
Sonochemistry2009,16,552–556.
37. Sunartio,D.;Ashokkumar,M.;Grieser,F.Studyofthecoalescenceofacousticbubblesasafunctionof
frequency,power,andwater‐solubleadditives.J.Am.Chem.Soc.2007,129,6031–6036.
38. Ashokkumar,M.Thecharacterizationofacousticcavitationbubbles‐anoverview.Ultrason.Sonochemistry
2011,18,864–872.
39. Zhou,D.Anovelconceptforboilingheattransferenhancement.JournalofMechanicalEngineering2005,51,
366‐373.
40. Cui,J.;Zhang,Z.;Liu,X.;Liu,L.;Peng,J.Studiesonviscosityreductionandstructuralchangeofcrudeoil
treatedwithacousticcavitation.Fuel2020,263,116638.
Energies2020,13,112615of15
41. Yakut,M.;Tangel,A.;Tangel,C.Amicrocontrollerbasedgeneratordesignforultrasoniccleaning
machines.Istanb.Univ.J.Electr.Electron.Eng.2009,9,853–860.
42. Mason,T.J.Ultrasoniccleaning:Anhistoricalperspective.Ultrason.Sonochemistry2016,29,519–523.
43. Peng,Q.;Wang,H.;Su,X.;Lu,M.Anewdesignofthehigh‐powerultrasonicgenerator.InProceedingsof
2008ChineseControlandDecisionConference,Yantai,China,2–4July2008;pp.3800–3803.
44. Lin,S.StudyonthemultifrequencyLangevinultrasonictransducer.Ultrasonics1995,33,445–448.
45. Fabijański,P.;Łagoda,R.IntelligentControlUnitforUltrasonicCleaningSystem.PrzeglądElektrotechniczny
2012,88,115–119.
46. Shuyu,L.Loadcharacteristicsofhighpowersandwichpiezoelectricultrasonictransducers.Ultrasonics
2005,43,365–373.
47. Fabijanski,P.;Lagoda,R.ModelingandIdentificationofParametersthePiezoelectricTransducersin
UltrasonicSystemsinAdvancesinCeramics‐ElectricandMagneticCeramics,Bioceramics,Ceramicsand
Environment,
IntechOpenLondon,UK,2011,154–176.
48. Leighton,T.TheAcousticBubble;Academicpress:Cambridge,MA,USA,2012.
49. COMSOLMultiphysics.IntroductiontoCOMSOLmultiphysics
®
.COMSOLMultiphysics1998,9,2018.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).