ArticlePDF AvailableLiterature Review

Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview

MDPI
Microorganisms
Authors:

Abstract and Figures

Plants, including cannabis (Cannabis sativa subsp. sativa), host distinct beneficial microbial communities on and inside their tissues and organs, including seeds. They contribute to plant growth, facilitating mineral nutrient uptake, inducing defence resistance against pathogens, and modulating the production of plant secondary metabolites. Understanding the microbial partnerships with cannabis has the potential to affect the agricultural practices by improving plant fitness and the yield of cannabinoids. Little is known about this beneficial cannabis-microbe partnership, and the complex relationship between the endogenous microbes associated with various tissues of the plant, and the role that cannabis may play in supporting or enhancing them. This review will consider cannabis microbiota studies and the effects of endophytes on the elicitation of secondary metabolite production in cannabis plants. The review aims to shed light on the importance of the cannabis microbiome and how cannabinoid compound concentrations can be stimulated through symbiotic and/or mutualistic relationships with endophytes.
Content may be subject to copyright.
Microorganisms2020,8,355;doi:10.3390/microorganisms8030355www.mdpi.com/journal/microorganisms
Review
CannabisMicrobiomeandtheRoleofEndophytesin
ModulatingtheProductionofSecondary
Metabolites:AnOverview
MeysamTaghinasabandSuhaJabaji*
PlantScienceDepartment,FacultyofAgriculturalandEnvironmentalSciences,MacDonaldCampusof
McGillUniversity,QCH9X3V9,Canada;meysam.taghinasab@mcgill.ca
*Correspondence:suha.jabaji@mcgill.ca
Received:13January2020;Accepted:28February2020;Published:2March2020
Abstract:Plants,includingcannabis(Cannabissativasubsp.sativa),hostdistinctbeneficialmicrobial
communitiesonandinsidetheirtissuesandorgans,includingseeds.Theycontributetoplant
growth,facilitatingmineralnutrientuptake,inducingdefenceresistanceagainstpathogens,and
modulatingtheproductionofplantsecondarymetabolites.Understandingthemicrobial
partnershipswithcannabishasthepotentialtoaffecttheagriculturalpracticesbyimprovingplant
fitnessandtheyieldofcannabinoids.Littleisknownaboutthisbeneficialcannabismicrobe
partnership,andthecomplexrelationshipbetweentheendogenousmicrobesassociatedwith
varioustissuesoftheplant,andtherolethatcannabismayplayinsupportingorenhancingthem.
Thisreviewwillconsidercannabismicrobiotastudiesandtheeffectsofendophytesonthe
elicitationofsecondarymetaboliteproductionincannabisplants.Thereviewaimstoshedlighton
theimportanceofthecannabismicrobiomeandhowcannabinoidcompoundconcentrationscanbe
stimulatedthroughsymbioticand/ormutualisticrelationshipswithendophytes.
Keywords:Cannabissativa;marijuana;hemp;microbiome;endophytes;secondarymetabolites;
Cannabinoids;gutmicrobiota;rootmicrobiota
1.Introduction
Cannabis(CannabissativaL.)referstogeneticallydifferentbiotypesofboth(nonintoxicant)
industrialhempandmarijuana[1].Differentiatingstrainsofhempfrommarijuanaisbasedonan
arbitrarythresholdpointofthepsychoactivecompound,Δ9tetrahydrocannabinol(THC)at0.3%,a
criterionestablishedbySmallandCronquist[2].
OriginatingfromtheHimalayas,industrialhemp(C.sativaL.)isthemostancientdomesticated
crop.Itistypicallybredforseedandfiber,andalsoformultipurposeindustrialusessuchasoilsand
topicalointments,aswellasfiberforclothing,andconstructionmaterialforhomesandforbuilding
electriccarcomponents[3,4].BothhempandherbalmarijuanavarietiesaremembersoftheC.sativa
species;however,industrialhempcultivarsarecultivatedforfiberproducts,edibleseeds,andoilseed
andnonpsychoactivemedicinaldrugs[1].
Herbalmarijuana,atermdesignatedfortheformofcannabisthatisusedformedicaland
recreationalpurposes,producessomeprincipalcomponentsofphytocannabinoidssuchasthe
intoxicatingcompoundΔ9tetrahydrocannabinol(THC),andwithatherapeuticeffectsuchas
cannabinol(CBN),cannabidiol(CBD),cannabidiolcarboxylicacid,cannabigerol(CBG),
cannabichromene(CBC),allofwhicharecurrentlyundergoingpromisingresearch[1].Incannabis
plants,cannabinoidsaccumulateascannabinoidacidsandnonenzymaticallydecarboxylizedinto
theirneutralformsduringstorage.Thebiosyntheticpathwaysofthemajorphytocannabinoids(CBC,
Microorganisms2020,8,3552of15
CBD,CBGTHC)withpentylsidechainsC5H11beginswiththeproductionofCBGwhichisproduced
bycondensationofaphenolderivedolivetolicacid,aprecursorofthepolyketidebiosynthetic
pathway,andaterpenebasedgeranylpyrophosphate,aprecursoroftheplastidalbiosynthetic
pathway.FromCBG,Δ‐THC,CBD,andCBCaresynthesizedeachbyaspecificenzyme[1].Formore
completeanalysesofphytocannabinoidbiosynthesis,seeAndreetal.[5]andHanusetal.[6].
Additionally,thenoncannabinoidcompounds,includingterpenoidsandflavonoids,deserve
attentionastheymayprovideantiinflammatoryactivity[7].
Phytocannabinoidsaccumulateinallpartsoftheplant;however,theyaremoreconcentratedin
specializedsecretorystructures,thetrichomesofthefemaleflowerbuds[5,8].Inadditionto
phytocannabinoids,cannabisproducesaplethoraofsecondarymetabolitesthatareproducedasan
adaptationforspecificfunctionsinplantsmostlytoimproveplantgrowthordefenceagainstbiotic
andabioticstress[9].Thesemetabolitesprovidediversebiologicalactivitiesforuseinhuman
medicineandthepharmaceuticalindustry[10,11].Theuseofmetabolicengineeringapproachesis
promisingasitopensupthepossibilityofincreasingtheproductionlevelsofdesiredtargeted
phytocannabinoidderivedcompounds[10,11].Interestingly,CBDexhibitsstrongantimicrobial
propertiesagainstclinicallyrelevantmultidrugresistantbacteria(MDR)suchasthemethicillin
resistantStaphylococcusaureus(MRSA)strains,andthedrugresistantMycobacteriumtuberculosis
XDRTBwithminimuminhibitoryconcentration(MIC)rangingfrom0.5–2μg/mL.Theseactivities
comparefavourablywithstandardantibioticsforthesestrains[12].Essentialoilsofcannabisshowed
moderatepotencywithanIC50of33μg/mLagainstseveralyeasts,includingCryptococcusneoformans,
Candidaglabrata,andC.krusei[13].
BeforethelegalizeduseofC.sativaindifferentcountries,cultivationwasrestrictedtohemp
varietiesofhighyieldingfiberwithsignificantlylowlevelsofthepsychoactiveΔ9THC.Therecent
legalizationofcannabisinvariouscountries,includingCanada,Uruguay,andelevenstatesinthe
UnitedStatesfortheproductionofmedicaland/orrecreationalpurposes,havegenerateddemand
notonlyforhighyieldingvarietiesofΔ9THCand/orcannabinoidsbutfirmandreliablecannabinoid
profiles.However,thelegalityofcannabisformedicalandrecreationalusesvariesbycountry,in
termsofitspossession,distributionandcultivation,consumptionandusesformedicalconditionsit
canbeusedfor[14,15].
Althoughbeyondthescopeofthisreview,itisworthmentioningtheimportanceofthe
productionmethodsandenvironmentalconditions,allofwhichinfluencetheproductionof
commercialandhighgrademedicaland/orrecreationalmarijuanaunderindoorcultivation[16].The
criticalconditionsforoptimalcannabisgrowth,includelightintensity,qualityandphotoperiod[17],
storagetemperaturesandhumidity[18],fertilization[19,20],abioticelicitorsincluding
phytohormones[21,22],andthemicrobiome[23].Forcannabis,smallerquantitiesoftheinvisible
ultraviolet(UVB)lightreportedlyelicitsΔ9THCaccumulationinleavesandbuds[24,25],however,
theeffectofspectralcompositiononcannabinoidconcentrationremainstenuous.Thestressresponse
isoneofthemajorfactorsthatalterplantchemicalcomposition[26].Droughtstressisknownto
reduceplantgrowthsignificantlybutcanalsoincreasesecondarymetabolitecontent[27].For
cannabisandhempplants,thereisinconclusiveevidencelinkingdroughtordecreasedhumidityto
increasedcannabinoidandΔ9THCproduction[28,29].Moreworkisneededtounderstandbetter
theroleofwaterstressincannabinoidandTHCproduction.
Thisreviewaimstocharacterizethemicrobialdiversityassociatedwithhempandmarijuana,
showwithrecentexamplesthediversityofmicrobialcommunities(endophytes)thatinternalizetheir
tissues,andlistthebenefitsthattheyconfertotheirhosts.Wealsohighlightthevaluesofthe
biologicallyactivecompoundsproducedbyendophytesthatcontributetoincreasedplantfitnessand
toleranceagainstbioticandbioticstress.Moreover,weprovidesomeevidencethatthemicrobial
bioactivecompoundsproducedbysomeendophytesarederivativesand/oranalogsoftheir
associatedhostplants.
Microorganisms2020,8,3553of15
2.TheMicrobiome
Themicrobiomeisatermthatdescribesthecollectivegenomeofmicrobialcommunities,theso
calledmicrobiota,whichisassociatedwithhumans,animals,andplants.Duringrecentyears,the
impactofmicrobialcommunitiesonshapingthehostimmunesystemandfitnessoftheirhosthas
gainedattention[30].Thecompositionofmicrobiotaresidinginahostisaffectedbyenvironmental
conditionssuchastemperature,pH,andnutrientavailability[31].Theoveruseofxenobioticsin
agriculture,alongwiththeemergenceofantibioticandpesticideresistancestrainsinagricultureand
humanmedicine,canaffectthehostcapacitytointeractproperlywiththemicrobiota[30].Compared
tothenumberofstudiesonthemicrobiotaofhumansubjects,thereisaminimalnumberofstudies
focusingoneconomicallyagriculturalcrops.Itisbecausethemicrobiotaofagriculturalorganismsis
affectedbyplantspeciesandgenotypes,developmentalstages,rootexudation,soiltype,and
environmentalconditions.
Nevertheless,gutandrootmicrobiotasharecommonalitiesconcerningtheregulationofhost
geneexpression[32,33],enhancementofmetaboliccapacitiesoftheirhoststhroughcatabolicgenes
[34,35],andsuppressionofharmfulpathogens[36].Thesearefewillustrationsofthecommonalities
betweenrootandgutmicrobiota.Theliteratureonthistopicisfoundinrecentreviews[37,38].
Strategicandappliedresearchontheimpactofmicrobialcompositionconcerninghumanhealth
recognizestheroleofprebioticsthatincludeschangesinthestructureanddiversityofthemicrobiota
andstimulationoftheactivityofhealthpromotingbacteriasuchasLactobacillusandBifidobacteria
[39,40].Oneofthehottopicsingutmicrobiotaisthenutritionalstrategyofaddingdietary
phytochemicalcompoundssuchasthesecondarymetabolites,flavonols,andquercetin,whichcan
influencetheimmunefunctionofthehostphysiology[41,42].Itisworthwhilementioningthat
flavonoidsandquercetinareimportantphytochemicalsincannabis,andtheircombinationmakes
thempotentantioxidants[7].Dataontheantioxidantpotentialofnoncannabinoidsarebasedonin
vitrostudies.Undoubtedly,theireffectsinvolvingclinicaltrialsdeserveattention.
ThePlantMicrobiome
Plants,includingcannabishostdistinctbeneficialmicrobialcommunitiesonandinsidetheir
tissues,designatedtheplantmicrobiotafromthemomentthattheyareplantedintothesoilasseed.
Theplantmicrobiomeiscomposedofspecificmicrobialcommunitiesassociatedwiththerootsand
thesoilsurroundingtheroots(i.e.,therhizosphere),theairplantinterface(i.e.,thephyllosphere),
andtheinternaltissuesoftheplant,thesocalledtheendosphere[43,44].Seedsharbourdiverse
groupsofmicrobiotathatareasourceofbioinoculumforjuvenileplantspromotingprotection
againstbioticandabioticstressatseedgerminationandlaterstages[45,46].Verticaltransmissionof
endophytesfromseedstoseedlingsoccursinrice,wheat,andbioenergycrops[47,48].Eachofthese
microhabitatsprovidessuitableconditionsformicrobiallife,whichalsohasarespectivefunctionfor
thehost.Plantmicrobiomeisacontributingfactortoplanthealthandproductivity[49].Anincreasing
bodyofevidencehighlightstheimportanceofplantmicrobiomeasasystemicboosteroftheplant
immunesystembyprimingacceleratedactivationofthedefencesystem[50].Manystudiesfocused
ontherhizospheremicrobiomeduetothesoilderivedmicrobialdiversitysurroundingtheroot,and
apotentialsourceforselectingbeneficialmicrobesthatpositivelyaffectplanthealth[49,51,52].
Severalreviewsaddressedtheroleoftherhizospheremicrobiomeinconferringdisease
suppressivenessandimprovingdroughtresistance[49,53,54];othersstudiedcontributingchemical
componentstoselectiveenrichmentofmicroorganismsintherhizosphere[55,56].Generally,above
groundplantmicrobiotamostlyoriginatedfromthesoil,seed,andairadaptanendophyticlifestyle
inhabitingtissuesoftheplantinternallyandplayvitalrolesinplantdevelopmentandfitness.These
microbialcommunitiesthatinternallyinhabitplanttissues,arereferredtoasendophytes,andplaya
crucialroleinplantdevelopmentandgrowth[57].Inthisreview,weusethetermendophytebased
onthedefinitionofPetrinitosignify‘allorganismsinhabitingplantorgansthatatsometimeintheir
lifecancolonizeinternaltissueswithoutcausingharmtotheirhosts[58].
Microorganisms2020,8,3554of15
3.TheFunctionsofPlantMicrobiomeareEssentialfortheHost
Thereisaconsiderableamountofinformationonthefunctionalroleofmicrobialcommunities
associatedwithplantsandtheirinternaltissues.Plantgrowthpromotingrhizobacteria(PGPR)and
endophytesstimulateplantgrowthbyproducingphytohormonessuchasauxins[50]gibberellins
(GAs)abscisicacid(ABA),andethylene(ET),orbymodulatingtheplant’sendogenous
phytohormonelevels[59,60].Undergreenhouseconditions,PGPRfavouredplantgrowthand
development,aswellasplantsecondarymetabolitesaccumulationand,consequently,antioxidant
capacity.Seedandrootexudatedflavonoidsareinducersforthenodulationgenesinrhizobia
legumeinteractions,andinmycorrhizationofhostplants[61,62]whichremarkablyiscomparableto
themodulationofgutmicrobiotabydietaryflavonoids.
Ingeneral,Proteobacteria,andespeciallyγ‐Proteobacteria,suchasPseudomonasandPantoeaare
thedominantendophyticbacteriaisolatedfromavarietyofplantspecies[63].Moreover,Gram–
positiveandGramnegativebacteria,includingPseudomonas,Azospirillum,Azotobacter,Streptomyces,
Enterobacter,Alcaligenes,Arthrobacter,Burkholderia,andBacilluscouldenhancetheplantgrowthand
suppressphytopathogens[64].DiversestrainsofPseudomonas,Bacillus,Arthrobacter,andPantoea
speciesassociatedwithsoybeanandwheatrootsexhibitedgrowthpromotionpropertiessuchas
phytohormoneproduction,mineralsolubilization,andtheproductionoftheenzyme1amino
cyclopropnae1carbixylate(ACC)deaminase[65,66].ACCdeaminasereducestheendogenouslevel
ofthestresshormoneETbylimitingtheamountofplantACCdeaminase,andpreventsETinduced
rootgrowthinhibition.Inreturn,itpromotesplantgrowthandloweringstresssusceptibility,in
return,resultinginmorenitrogensupplyforbacteria[67].
Aswithbacterialendophytes,fungalendophytescanfacilitatemineralnutrientuptake,promote
plantgrowthanddevelopment,andinducedefenceresistanceagainstpathogens[68,69].
Furthermore,theyenhanceabioticstresstolerance,notably,thedarkseptateendophyticfungus,
Curvulariasp.providedthermalprotectionforhostplantathightemperature[69].Indeed,bacteria
andnonmycorrhizalfungihavetheadvantageofaxenicpropagationthatplacesthemasanideal
modeloftheagrihorticultureapplication.
Oneofthetoolstocontrolplantpathogenswiththeleastimpactontheenvironmentis
biocontrol.Therearenumerousexamplesofbiocontrolactivitiesofbacterialandfungalendophytes
againstpathogeninvasionanddiseases[43,70,71].Variousmechanismsunderliethebeneficialeffects
ofbacterialendophytesontheirhosts.Theseincludeantibioticproduction,inductionofhost
defences,andimmunityviainducedsystemicresistance(ISR),parasitism,competition,andquorum
sensing[72].Equally,endophyticfungicanprotectplantsagainstpathogensbytriggeringhost
resistanceviasystemicacquiredresistanceandISR[73,74],orbyantibiosisandmycoparasitism[71].
4.TheMicrobiomeofHempandMarijuana
Understandingmicrobialpartnershipswithindustrialhempandmedicalandrecreational
marijuanacaninfluenceagriculturalpracticesbyimprovingplantfitnessandproductionyield.
Furthermore,marijuanaandhempareattractivemodelstoexploreplant–microbiomeinteractionsas
theyproducenumeroussecondarymetaboliccompounds[75].Together,theplantgenomeandthe
microbialgenomeinsideplanttissues(i.e.,theendorhiza)thatformstheholobiontisnowconsidered
asoneunitofselectioninplantbreeding,andalsoacontributortoecologicalservicesofnutrient
mineralizationanddelivery,protectionfrompestsanddiseases,andtolerancetoabioticstress[76].
Increasingevidencesuggeststhatthehostgenotypeinfluencesthecompositionandfunctionof
certaincriticalmicrobialgroupsintheendorhiza,which,inturn,affectshowtheplantreactsto
environmentalstresses[45]withplanttraitsessentialforhostingandsupportingbeneficialmicrobes.
Particularly,populationsofrhizosphericbacteriaindiseasesuppressivesoilsareenrichedandactas
thefirstlineofdefenceinthehostplantagainstrootpathogens,therebyactivatingsecondary
metabolitebiosyntheticgeneclustersthatencodeNRPSsandPKSstoenhancethelevelofdefence
metabolites[77].Agrowingbodyofevidencesignalsthatatwostepselectionmodelwhereplant
typeandsoiltypearethemaindriversofdefiningsoilmicrobialcommunitystructure[78,79].The
soiltypedefinesthecompositionoftherhizosphereandrootinhabitingbacterialcommunities,
Microorganisms2020,8,3555of15
whereasmigrationfromtherhizosphereintotheendorhizatissueisdependentonplantgenotype
[80].Accordingly,theinfluenceofsoiltypeandplantgenotypeonthemicrobialcommunitystructure
ofmarijuanaofferssupportofthetwotiersystemmodelwherebysoiltypeisadeterminantof
microbialcommunitiesintherhizosphere,andcannabiscultivarsareafactorofcommunitystructure
intheendorhiza[23].Thisviewthattherhizosphericmicrobiomeinfluencestheselectionofthenext
generationcannabiscultivarsthatareresilienttobioticandabiotictypesofstressopensupanew
approachofbreeding.Ofparticularinterest,thecommunitystructureofendorhizacorrelates
significantlywithcannabinoidconcentrationandcomposition[23].Futurestudiesonusingmicrobial
communitiesofcannabisnotonlyincreasefitnessbutaugmentderivedmetaboliteproductionthat
areworthpursuing.
4.1.FungalEndophytesAssociatedwithDifferentOrgansofHempandMarijuana
Thediversityoffungalandbacterialendophytesassociatedwithdifferenttissuesofhempand
marijuanasampledfromvariousgeographicandecologicalregionsislistedinFigure1.Almostall
ofthenonsymbioticfungalendophytesreportedbyseveralstudiesbelongedtotheAscomycetes,
exceptfortwostudiesthatreportedthepresenceofstrainsbelongingtotheBasidiomycetes,suchas
Irpex,Cryptococcus[81]andSchizophyllumcommune[82].Dependingonthegeographicalregion,the
abundanceoffungalendophytesassociatedwithcannabistissuesvaried.Forexample,the
abundancenumberoffungalstrainsbelongingtoAspergillus,Penicillium,Phoma,Rhizopus,
Colletotrichum,Cladosporium,andCurvulariainleafsamplesfromHimachalPradesh,India[83]was
higherascomparedtothoseinstemsandpetioles[83].Similarly,thefungalstrainsCochliobolusand
AureobasidiumisolatedfromCanadianhempsampleswereabundantinleaftissue[81].Leaf,twig,
andbudtissuesofBedrocanBVMedicinalmarijuanafromtheNetherlandswereassociatedwith
endophyticcommunitiesbelongingtothePenicilliumspecies(predominantly,Penicilliumcopticola),
Eupenicilliumrubidurum,Chaetomiumglobosum,andPaecilomyceslilacinus[84].Differentspeciesof
Aspergillus(A.niger,A.flavus,andA.nidulans),Penicillium(P.chrysogenumandP.citrinum),andsome
pathogens,suchasRhizopusstolonifer,Alternariaalternata,andCladosporiumsp.werefoundin
marijuanastemtissues[83].Moreover,strainsbelongingtoAlternaria,Cryptococcus,Aspergillus,
Cladosporium,andPenicillium[81,83,85]wereisolatedfrommarijuanaandhemppetioles,whereas
AureobasidiumandCladosporiumwereisolatedfromhempseeds[81].Intensivemycorrhizationof
hemprootsbythearbuscularmycorrhizal(AM)fungi,Diversisporasp.,Funneliformismosseae,
Funneliformisgeosporum,Glomuscaledonium,andGlomusoccultumenabledtheplanttotoleratesoils
contaminatedwithphosphogypsumandsewagesludge,andrespondedpositivelyregarding
biomassproduction[86].Itishighlyprobablethathempselectivelyestablishedrelationshipswith
mycorrhizalfungitocounteractabioticstressthroughsymbiosis.
Microorganisms2020,8,3556of15
Figure1.ThemostcommonendophytesharbouredindifferenttissuesofCannabissativaplants
obtainedfromdifferentgeographicallocations.
4.2.BacterialEndophytesCompositioninDifferentOrgansofC.sativa
ThemicrobialcommunityofbacterialendophytesassociatedwithdifferentcultivarsofC.sativa
belongtoϒproteobacteriaandαproteobacteria,includingPseudomonadaceae,Oxalobacteraceae,
Xanthomonadaceae,andSphingobacteriales,andallarewellknownendophyticbacteriawhich
substantiateobservationsfromotherplantsystems(Figure1)[87].Themostabundantstrainsisolated
fromleavesbelongtoPseudomonasandBacillus.Namely,Bacilluslicheniformis,Bacillussubtilis,Bacillus
pumilus,andBacillusmegateriumformedthemostabundantGrampositivebacterialendophytes
populationintheleaf[81,88].StrainsofPantoeaandStaphylococcuswereassociatedexclusivelywith
cannabispetioles[81],whilestrainsofPantoea,Staphylococcus,Bacillus,andEnterobacterwereisolated
fromtheseed[81].ThemostprominentisolatedgenerafromrootsincludedAcinetobacter,
Chryseobacterium,Enterobacter,Microbacterium,andPseudomonas[87].
Thesefindingspromptedustofocusonwhethercannabisassociatedbacterialandfungal
communitiescould(i)increasehempandmarijuanayield,(ii)controlplantpathogensinfectionof
cannabisplants,andpromotediseaseresistance,(iii)modulatetheproductionofcannabissecondary
metabolites.
5.Endophytes,AsCannabisMicrobialBiostimulants
Associatedbacterialendophyteswithplantspeciescanpromoteplantgrowthinplantsvia
severalmechanisms:Nitrogenfixation,siderophoreproductiontochelateironandmakeitavailable
toplantroots,mineralsolubilizationmainlyphosphorusandcalcium,andproductionofseveral
phytohormonesincludingauxins,ABA,cytokinins,andGAs[75,79,89,90].Theproductionofsuch
bioactivemetabolitescanenhancehostplantgrowthandtolerateenvironmentalstresses.Thereare
limitedstudiesontheuseofgrowthpromotingbacterialendophytesandtheireffectoncannabis
growthandyield.Pagnanietal.[91]evaluatedthesuitabilityofmultispeciesconsortiumconsisting
ofAzospirillumbrasilense,Gluconacetobacterdiazotrophicus,Herbaspirillumseropedicae,andBurkholderia
ambifariaisolatedfromrootsorstemsofcorn,sorghum,sugarcane,andbermudagrass[92]toenhance
hempbiomass.Thebacterialconsortiumfavouredplantgrowthdevelopmentandtheaccumulation
ofsecondarymetabolites(i.e.,CBDandTHC).Conantetal.[93]reportedonsignificantmarijuana
budyieldof16.5%andplantheightasaresultoftreatmentwiththemicrobialbiostimulant
Microorganisms2020,8,3557of15
MammothPTM,amultispeciesconsortiumcomprisedoffourbacterialtaxaEnterobactercloacae,
Citrobacterfreundii,Pseudomonasputida,andComamonastestosteroni[94].Inthecaseoffungal
endophytes,rootinoculationofhempbyAMfungienhancedtoleranceofhemptoaccumulateCd,
Ni,andCr[95].
Mostoftheabovefindingsillustratetheuseofendophyticbacteriaisolatedfromplantspecies
otherthanhempormarijuanawiththeabilitytotriggersomephysiologicalplantresponses.Our
laboratory,alongwithotherresearchers,hasreportedonthediversityofendogenousfungaland
bacterialendophytesandtheabundanceoftaxonomicgroupsindifferenttissuesofhempand
marijuanawithgrowthpromotioncapabilities(Table1)andbiologicalcontrolpotential(Table2)[81–
84,87,96].SomeoftheseisolateswereabletotriggertheproductionofIAAlikemoleculesintheplant,
reinforcingthenotionthatbeneficialendophytesmodulateplantdevelopmentandgrowththrough
theproductionofphytohormones.However,themechanismbehindthisisnotfullyclarified.
Performingexperimentswithendophytesasgrowthelicitorswouldfacilitatetheevaluationof
secondarymetabolitesprofiles,particularlyforTHC,cannabinoidscompounds,andterpenesof
cannabisplantsinoculatedwithendophytes.
Table1.Plantgrowthpromotingbacteriaandfungiassociatedwithcannabisandtheirmodeof
action.
OrganismActivityReferences
Bacillussp.Psolubilizing
J
oeetal.2016[97]
B.amyloliquefaciensGAsproductionShahzadetal.2016[98]
PantoeavagansMOSELt13IAAproductionAfzaletal.2015[87]
PseudomonasfulvaBTC63PsolubilizingandIAA Scottetal.2018[81]
P.geniculataMOSELtnc1IAAproductionAfzaletal.2015[87]
SerratiamarcescensMOSELw2IAAproductionAfzaletal.2015[87]
Bipolarissp.CS1IAAandGAsproductionLubnaetal.2019[96]
IAA:Indoleaceticacid;Gas:Gibberellins;P:Phosphate.
Duetopastlegalrestrictionsontheproductionofmarijuanaandhemp,growthpromotiontrials
applyingendogenousmicrobiomeisolatedfromhempandmarijuanaarefew.Itseemsreasonableto
hypothesizethatendogenousendophyticbacteriaandfungipossessthegeneticinformationto
triggerphenotypicdrasticgrowthpromotion,andpositivelyincreasecannabissecondary
metabolitesintheirrespectivehostsascomparedtoendophytesisolatedfromdifferentplantspecies.
WiththelegalizationofmarijuanainCanadaandothercountries,intensiveinvestigationsonhow
hormonelikemoleculesproducedbyendophytesinfluenceplantadaptationandgrowthbecome
possible.
Table2.Cannabisendophyteswithantagonisticeffectsagainstpathogens.
OrganismTargetpathogenActivityReferences
Fungi 
PenicilliumcopticolaL3TrichotheciumroseumGrowthinhibitionKusarietal.2013[84]
PaecilomyceslilacinusA3
AlternariaalternataCN1
Aspergillusniger2
Botrytiscinerea
Fusariumsolani
Curvularialunata
Growthinhibition
Growthinhibition
Growthinhibition
Kusarietal.2013[84]
Qadrietal.2013[82]
Gautametal.2013[83]
Bacteria
PseudomonasfulvaBTC81BotrytiscinereaCellulase,HCNSiderophoreScottetal.2018[81]
P.orientalisBTG85BotrytiscinereaCellulase,IAA,
SiderophoreScottetal.2018[81]
Paenibacillussp.MOSELw13
A
spergillusniger
FusariumoxysporumGrowthinhibitionAfzaletal.2015[87]
Microorganisms2020,8,3558of15
6.CannabisEndophyteswithAntagonisticEffectAgainstPathogens
Therearelimitedbioprospectingstudiesonantagonisticactivityofmicrobialendophytes
associatedwithhempandmarijuanaagainstinvadingpathogensandcontaminatingmycotoxigenic
fungi[81,84,87].Thesestudiesusedthebioprospectingrationalethathempandmarijuanacontain
medicinalcompoundsthatmightalsoharbourcompetentmicrobialendophytescapableofproviding
healthbenefitstothehostplant.ThehempassociatedstrainsofPseudomonasfulva(BTC63andBTC8
1)andPseudomonasorientalis(BTG85andBT144),exhibitedantifungalactivitiesagainstBotrytis
cinereaindualconfrontationassays[81].Thesestrainsaretopproducersofhydrogencyanide(HCN),
cellulose,siderophore,IAA,andcouldsolubilizeP[81].Additionally,Pseudomonasstrainsproduce
wellcharacterizedsecondarymetabolitesasdiffusibleantibiotics,includingphenazinessuchas
phenazine1‐ carboxylicacid(PCA),2,4diacetylphloroglucinol(DAPG),pyocyanine,pyoluteorin,
pyrrolnitrin,phloroglucinols,lipopeptides,andthevolatilemetaboliteasHCN[99].Allthese
attributesmakePseudomonasstrainseffectivebiocontrolagents.Theendophyticbacterialstrains,
BacillusmegateriumB4,BrevibacillusborstelensisB8,Bacillussp.B11,andBacillussp.B3,employ
quorumquenchingasastrategytodisruptcelltocellquorumsensingsignalsinthetargetorganism
[88].Thisstrategyprovidesdefenceagainstplantpathogensandpreventsthepathogenfrom
developingresistanceagainstthebioactivesecondarycompoundsproducedbytheplantandorthe
endophytes.
Thecannabisendophytes,PaecilomyceslilacinusA3,Penicilliumsp.T6,andP.copticolaL3
successfullyinhibitedthegrowthofcannabispathogens,B.cinerea,andTrichotheciumroseum[84].The
endophyticstrainsofPaenibacillussp.andPantoeavaganssuccessfullyantagonizedthepathogen
Fusariumoxysporumindualconfrontationassays[87].Takentogether,thesestudies,althoughlimited
inscope,revealthepotencyofendophytesincannabisplants,andtheirapplicationsholdgreat
promisenotonlyasbiocontrolagentsagainsttheknownandemergingphytopathogensofcannabis
plantsbutalso,asasustainableresourceofbiologicallyactiveandnovelsecondarymetabolites.
Thesebioactivemetabolitesareanidealsubstituteforchemopesticide notonlytosupportlow
pesticideresiduelevelsincannabisflowersbutalsoforadoptingthezerotolerancepolicyofpesticide
residuesincompliancewithgovernmentregulatorybodies[100].
7.EndophytesofMedicinalPlantsasSourcesofPlantsSecondaryMetabolites
Anexhaustivelistofsomeofthesameantimicrobialnaturalproductsbiosynthesizedby
endophytesastheirhostplantisdescribedintherecentreviewbyMartinezKlimovaetal.[101].The
pharmaceuticalmoleculessuchastheantitumordrugs,vinblastineandvincristine[102],the
anticancerdrugcamptothecin[103],theaneoplasticpaclitaxel[104],andtheinsecticideazadirachtin
[105]areamazingexamplesofthesignificanceandimportanceofpotentiallyvaluablesecondary
metabolitesproducedbyendophytes.
Thereiscompellingevidencethatboththeplantandtheirendophytescanproduceacollection
ofsecondarymetabolitesfromsimilarprecursors,possiblyasanadaptationofthehostenvironment
[106].Someexamplesincludepodophyllotoxin[107,108],camptothecin,andstructuralanalogs
[103,109].Someoftheseendophytescanbiochemicallyproducecompoundssimilaroridenticalto
thoseproducedbytheirhostplants.Itisproposedthatsuchamolecularbasismayattributeto
horizontalgenerecombinationortransferduringtheevolutionaryprocess.Forexample,theability
ofthetaxolproducingfungusClasdosporiumcladosporioidesMD2associatedwiththehostplantTaxus
mediaisattributedtothegene10deacetylbaccatinIII10Oacetyltransferase.Thisgeneplaysarole
inthebiosyntheticpathwayoftaxolandbearsa99%resemblancetothehostplantgene[106].The
latterendophyticfungusbeingthesourceofthisimportantanticancerdrug.Thebiosynthesisofthe
insecticideazadirachtinAandBbythefungalendophyteEupenicilliumpurviumisolatedfromthe
Indianneemplantlendsanotherevidenceontheabilityofendophytestoproducesimilarhostplant
metabolites[105].Therecentprogressinthemolecularbiologyofsecondarycompoundsandthe
cloningofgenesofendophyticmetabolitesofferinsightintohowtheplantandendophytegenesof
encodingthesecondarymetabolitesareorganized.
Microorganisms2020,8,3559of15
7.1.EndophytesModulateSecondaryMetabolitesofMedicinalPlants
Accumulatedevidenceestablishedthatendophytesarecapableofelicitingphysiologicalplant
responses,whichinturninfluencetheproductionofsecondarymetabolitesinthehostplant[110].
TheproductionofbioactivesecondarymetabolitesofRumexgmeliniseedlingsisenhancedthrough
coculturewithendophyticfungi[111].AnendophyticbacteriumPseudonocardiasp.induced
artemisinin(antimalarialdrugs)productioninArtemisiaplant[112].Inoculationofthemedicinal
plantPapaversomniferumL.withamultispeciesconsortiumincreasedthemorphineyieldby
enhancingtheexpressionofCOR,anessentialgeneformorphinebiosynthesis[113].Thealkaloid
drugHuperzineA(HupA)usedtotreatAlzheimer’sdiseaseisnotonlyderivedfromtheHuperzia
serrataplantbutalsoisproducedandbiosynthesizedbythefungalendophytePenicilliumsp.LDL4.4
isolatedfromH.serrata[114].InthelegumeCrotalaria(subfamilyFabaceae),thebiosynthesisof
pyrrolizidinealkaloids(antiherbivore,nematicide)dependsonthenodulationbyBradyrhizobiumsp.
[115].Inanotherexample,thebacterialandfungalendophytesassociatedwiththeAgarwoodtree
(Aquilariamalaccensis)enhancedtheproductionofagarospirol,ahighlysoughtafterproductinthe
pharmaceuticalandperfumeryindustry,withinthreemonthsofartificialinfection[116].Despite
currentresearchontheabilityofendophyticmicroorganismstoproduceplantassociated
metabolites,theirpotentialisnotfullyexploredandisfarfromexhausted.Exploitingthiscomplex
plantmicroberelationshipcanonlyenhancethesustainedproductionofphytochemicalsbythe
associatedmicroorganisms.
7.2.PossibleModulationofCannabisSecondaryMetabolitebyEndophytes
Endophytesarewellknowntoproducebiologicallyactivesecondarymetabolitesthatmimicthe
effectofthehostplantmetabolitesorproduceprecursorsofhostplantcompoundstoactivatethe
signalingpathwayaimingtomodulatesecondaryplantmetabolites[117].Theyinducethe
productionofphytohormonessuchasABA,GA,andETthatmayprovideasignificantpotentialfor
improvingcannabissecondarymetabolites.Secondarymetabolites,includingTHC,CBN,andCBD,
arethemostprevalentofcannabinoidcompoundsandinherentlyareemployedincannabisstress
responses[118].Thepreciseroleofcannabinoidinplantdefenceisnotyetknown.Theplantgrowth
regulators,includingABA,cycocel,ethephon,GAs,salicylicacid,γ‐Aminobutyricacid(GABA),and
mevinolincanmanipulatecannabinoidbiosynthesisandmodulatingsecondarycannabismetabolites
[22,118–121].
Thepotentialforsecondarymetaboliterecoverycanbeimprovedbytheexogenousapplication
ofinducers.Forexample,theapplicationofplanthormoneGA3at100μMlevelincreasedtheamount
ofTHCandCBD[120].Theexactmechanismofhowtheadditionofexogenoushormonescanaffect
thecontentofTHCandCBDisnotyetunderstood.Oneplausiblehypothesisisthattheexogenous
applicationofGA3contributestotheregulationof1aminocyclopropane1carboxylicacid[92]
content,whichinturnelevatesETlevelsthatleadtohigherTHCandCBDcontents[120].Ethephon,
anotherplantgrowthregulator,increasedTHCcontentofmaleflowers,andCBDcontentoffemale
flowers[118].SuchanincreaseisattributedtoETlevelsthatmayfunctionasaswitchbetweengrowth
andsecondarymetabolitessynthesis.Accordingly,theexogenousapplicationoftwostresssignaling
molecules,salicylicacid(1mM)andGABA(0.1mM)improvedTHCcontentbutdeterioratedCBD
contentsimultaneously.Thiseffectsuggeststhatthesesignalingmoleculescouldaffectthe
cannabinoidbiosynthesispathwaythroughelicitationofexpressionofcriticalgenesleadingto
eventualchangesintheamountofthefinalproducts[22].
Theconcentrationofcannabinoidcompoundscanbeconceivablystimulatedthroughbiotic
elicitationbysymbioticandormutualisticrelationshipswithendophytes.Thisraisesthequestionof
whethertheproductionofidenticalmoleculestoplanthormonesbyendophytesintheplantwould
beusefulaswiththeexogenousapplicationofelicitors.Amixtureoffourbacterialendophytes
significantlyimprovedCBDandTHCcontents[91].EndophytecouldmanipulatethatACC
deaminaselevel,theprecursorofTHCbiosynthesisintheplant[59,67,122].Despitetheseadvances,
themechanismsunderlyingtheregulationofTHCsynthesishavenotbeencompletelyelucidated.
Microorganisms2020,8,35510of15
Itmightbeusefultodrawananalogybetweenthemedicinalplantendophyteassociationand
theengagementoftheendophytestoproducestructurallysimilarsecondarymetabolitesofmedicinal
cannabis.However,theexactroleofthenaturalproductsproducedbyendophytesinsidecannabis
fromtheperspectiveofhelpinginplantfitnessisnotpreciselyknown.Unfortunately,thispotential
hasnotyetachieved.
8.ChallengesandFutureDirections
Todate,basicinformationoncannabisendophytesdiversityandcompositionispublished.Most
publicationsarerestrictedtoisolationandidentificationofcannabisendophytes,buttheirbiological
effectsoncannabisgrowthpromotionandmodulatingofsecondarycompoundsareunrevealed.
Thus,itisimperativetounderstandthemicrobialpartnershipswithcannabisasithasthepotential
toaffectagriculturalpracticesbyimprovingplantfitnessandtheproductionyieldofcannabinoids.
Interestingly,theactivemetabolitesofmicrobialendophytespossessexcellentbiologicalactivities
thatnotonlyhavethepotentialtowagewaronplantbioticandabioticstress,butarealsousefulfor
humanhealthtopreventorcurefatalillness.Theaboveobservationshighlightthewealthof
untapped,andasofyetunknownfunctionaltraitsofendophytesharbouringcannabisthatneedto
bediscoveredandcharacterizetheirroleintheenrichmentofcannabissecondarymetabolites.The
importanceofendophyticmicroorganismsproducingcompoundssimilartotheirplantshasgained
momentum.Synthesizedplantcompoundsbymicrobialendophytesarestudiedtoproduce
secondarymetabolitesthatareoriginallyidentifiedintheirhostplants.Theycouldturnoutsome
importantmedicinalcompoundsindependently,whichenablethepharmacologicalindustryto
largescalefermentationofcannabinoids,independentofcannabiscultivation.Thisreview
emphasizesthegreatimportanceofmorestudiesoncannabisendophytesandtheirbiological
properties.Theexamplespresentedinthisreviewindicatethatthereisanurgentneedtounderstand
themolecularandbiochemicalmechanismsthatmightelicitsimilarresponsesinbothplantsand
theirassociatedendophytesthatleadtotheproductionofsimilarsecondarymetabolites.
AuthorContributions:Writethefirstdraft,M.T.;writemanysectionsandcorrectedseveraldrafts,S.J.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchwasfundedbytheNaturalSciencesandEngineeringresearchCouncilofCanada,
throughaDiscoverygrant(RGPIN201604805)toS.Jabaji,andalsobytheMITACSIT15824ELVProgram.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Small,E.Cannabis:Acompleteguide;CRCPress:BocaRaton,UnitedStates,2017;
https://www.crcpress.com/CannabisACompleteGuide/Small/p/book/9781498761635.
2. Small,E.;Cronquist,A.ApracticalandnaturaltaxonomyforCannabis.Taxon1976,25,405–435.
3. Domke,P.V.;Mude,V.D.Naturalfiberreinforcedbuildingmaterials,Iosr.J.Mech.Civ.Eng.2015.12,104–
107.
4. Yallew,T.B.;Kumar,P.;Singh,I.Slidingwearpropertiesofjutefabricreinforcedpolypropylene
composites.ProcediaEng.2014,97,402–411.
5. Andre,C.M.;Hausman,J.F.;Guerriero,G.Cannabissativa:Theplantofthethousandandonemolecules.
FrontPlantSci.2016,7,19.
6. Hanus,L.O.;Meyer,S.M.;Munoz,E.;TaglialatelaScafati,O.;Appendino,G.Phytocannabinoids:Aunified
criticalinventory.Nat.Prod.Rep.2016,33,1357–1392.
7. McPartland,J.M.;Russo,E.B.Cannabisandcannabisextracts.J.CannabisTher.2001,1,103–132.
8. Rodziewicz,P.;Loroch,S.;Marczak,Ł.;Sickmann,A.;Kayser,O.Cannabinoidsynthasesand
osmoprotectivemetabolitesaccumulateintheexudatesofCannabissativaL.glandulartrichomes.PlantSci.
2019,284,108–116.
9. Gonçalves,J.;Rosado,T.;Soares,S.;Simão,A.Y.;Caramelo,D.;Luís,Â.;Fernández,N.;Barroso,M.;
Gallardo,E.;Duarte,A.P.Cannabisanditssecondarymetabolites:Theiruseastherapeuticdrugs,
toxicologicalaspects,andanalyticaldetermination.Med.(BaselSwitz.)2019,6,31.
Microorganisms2020,8,35511of15
10. Deshmukh,S.K.;Gupta,M.K.;Prakash,V.;Reddy,M.S.Mangroveassociatedfungi:Anovelsourceof
potentialanticancercompounds.J.Fungi(BaselSwitz.)2018,4,101.
11. Verpoorte,R.;Contin,A.;Memelink,J.Biotechnologyfortheproductionofplantsecondarymetabolites.
Phytochem.Rev.2002,1,13–25.
12. Appendino,G.;Gibbons,S.;Giana,A.;Pagani,A.;Grassi,G.;Stavri,M.;Smith,E.;Rahman,M.M.
AntibacterialcannabinoidsfromCannabissativa:Astructureactivitystudy.J.Nat.Prod.2008,71,1427–1430.
13. Wanas,A.S.;Radwan,M.M.;Mehmedic,Z.;Jacob,M.;Khan,I.A.;Elsohly,M.A.Antifungalactivityofthe
volatilesofhighpotencyCannabissativaL.againstCryptococcusneoformans.RecNatProd2016,10,214–220.
14. Schuermeyer,J.;SalomonsenSautel,S.;Price,R.K.;Balan,S.;Thurstone,C.;Min,S.J.;Sakai,J.T.Temporal
trendsinmarijuanaattitudes,availabilityanduseinColoradocomparedtononmedicalmarijuanastates:
200311.DrugAlcoholDepend.2014,140,145–155.
15. Hall,W.Thefutureoftheinternationaldrugcontrolsystemandnationaldrugprohibitions.Addiction2018,
113,1210–1223.
16. Potter,D.J.Areviewofthecultivationandprocessingofcannabis(CannabissativaL.)forproductionof
prescriptionmedicinesintheUK.DrugTest.Anal.2014,6,31–38.
17. EichhornBilodeau,S.;Wu,B.S.;Rufyikiri,A.S.;MacPherson,S.;Lefsrud,M.Anupdateonplant
photobiologyandimplicationsforcannabisproduction.FrontPlantSci2019,10,296.
18. Taschwer,M.;Schmid,M.G.DeterminationoftherelativepercentagedistributionofTHCAandΔ9THC
inherbalcannabisseizedinAustriaImpactofdifferentstoragetemperaturesonstability.ForensicSci.Int.
2015,254,167–171.
19. Caplan,D.;Dixon,M.;Zheng,Y.OptimalrateoforganicfertilizerduringthevegetativestageforCannabis
grownintwocoirbasedsubstrates.HortscienceHorts2017,52,1307–1312.
20. Bernstein,N.;Gorelick,J.;Zerahia,R.;Koch,S.ImpactofN,P,K,andhumicacidsupplementationonthe
chemicalprofileofmedicalcannabis(CannabissativaL).FrontPlantSci.2019,10,736.
21. Mansouri,H.;Asrar,Z.;Szopa,J.EffectsofABAonprimaryterpenoidsandΔ9tetrahydrocannabinolin
CannabissativaL.atfloweringstage.PlantGrowthRegul.2009,58,269–277.
22. Jalali,S.;Salami,S.A.;Sharifi,M.;Sohrabi,S.Signalingcompoundselicitexpressionofkeygenesin
cannabinoidpathwayandrelatedmetabolitesincannabis.Ind.Crop.Prod.2019,133,105–110.
23. Winston,M.E.;HamptonMarcell,J.;Zarraonaindia,I.;Owens,S.M.;Moreau,C.S.;Gilbert,J.A.;Hartsel,J.;
Kennedy,S.J.;Gibbons,S.M.Understandingcultivarspecificityandsoildeterminantsofthecannabis
microbiome.PlosONE2014,9,e99641.
24. Potter,D.J.;Duncombe,P.Theeffectofelectricallightingpowerandirradianceonindoorgrowncannabis
potencyandyield.J.ForensicSci.2012,57,618–622.
25. Magagnini,G.;Grassi,G.;Kotiranta,S.Theeffectoflightspectrumonthemorphologyandcannabinoid
contentofCannabissativaL.MedCannabisCannabinoids2018,1,19–27.
26. Gorelick,J.;Bernstein,N.Chemicalandphysicalelicitationforenhancedcannabinoidproductionin
cannabis.InCannabissativaL.‐BotanyandBiotechnology,2nded.;Chandra,S.,Lata,H.,ElSohly,M.A.,Eds.;
SpringerInternationalPublishing:Cham2017;pp439–456.
27. Gorelick,J.;Bernstein,N.ChapterFiveElicitation:Anunderutilizedtoolinthedevelopmentofmedicinal
plantsasasourceoftherapeuticsecondarymetabolites.InAdvancesinAgronomy,2nded.;Sparks,D.L.,Ed.;
AcademicPress,2014;pp201–230.
28. Sharma,G.K.AltitudinalvariationinleafepidermalpatternsofCannabissativa.Bull.TorryBot.Club1975;
102,199–200.
29. Paris,M.;Boucher,F.;Cosson,L.TheconstituentsofCannabissativapollen.Econ.Bot.1975,29,245–253.
30. Brugman,S.;IkedaOhtsubo,W.;Braber,S.;Folkerts,G.;Pieterse,C.M.J.;Bakker,Peter,A.H.M.A
comparativereviewonmicrobiotamanipulation:LessonsFromFish,Plants,Livestock,andHuman
Research.Front.Nutr.2018,5,80.
31. IkedaOhtsubo,W.;Brugman,S.;Warden,C.H.;Rebel,J.M.J.;Folkerts,G.;Pieterse,C.M.J.Howcanwe
define“optimalmicrobiota?”:Acomparativereviewofstructureandfunctionsofmicrobiotaofanimals,
fish,andplantsinagriculture.Front.Nutr.2018,5,90.
32. Hooper,L.V.;Wong,M.H.;Thelin,A.;Hansson,L.;Falk,P.G.;Gordon,J.I.Molecularanalysisofcommensal
hostmicrobialrelationshipsintheintestine.Science2001,291,881–884.
33. Rudrappa,T.;Czymmek,K.J.;Paré,P.W.;Bais,H.P.Rootsecretedmalicacidrecruitsbeneficialsoil
bacteria.PlantPhysiol.2008,148,1547.
Microorganisms2020,8,35512of15
34. Gérard,P.Metabolismofcholesterolandbileacidsbythegutmicrobiota.Pathogens2013,3,14–24.
35. Rodriguez,H.;Gonzalez,T.;Goire,I.;Bashan,Y.Gluconicacidproductionandphosphatesolubilization
bytheplantgrowthpromotingbacteriumAzospirillumspp.Naturwissenschaften2004,91,552–555.
36. RamirezPuebla,S.T.;ServinGarciduenas,L.E.;JimenezMarin,B.;Bolanos,L.M.;Rosenblueth,M.;
Martinez,J.;Rogel,M.A.;OrmenoOrrillo,E.;MartinezRomero,E.Gutandrootmicrobiotacommonalities.
ApplEnv.Microbiol2013,79,2–9.
37. Pinton,R.;Varanini,Z.;Nannipieri,P.TheRhizosphere.CRCPress:BocaRaton,UnitedStates,2007;
https://doi.org/10.1201/9781420005585.
38. Sandowsky,M.J.;Whitman,R.L.Thefecalbacteria.ASMPress:WashingtonDC,UnitedStates2011.
39. Gerritsen,J.;Smidt,H.;Rijkers,G.T.;Vos,W.M.de.Intestinalmicrobiotainhumanhealthanddisease:The
impactofprobiotics.GenesNutr.2011,6,209–240.
40. O’Callaghan,A.;vanSinderen,D.Bifidobacteriaandtheirroleasmembersofthehumangutmicrobiota.
FrontMicrobiol.2016,7,925.
41. CarreraQuintanar,L.;LopezRoa,R.I.;QuinteroFabian,S.;SanchezSanchez,M.A.;Vizmanos,B.;Ortuno
Sahagun,D.Phytochemicalsthatinfluencegutmicrobiotaasprophylacticsandforthetreatmentofobesity
andinflammatorydiseases.Mediat.Inflamm2018,2018,9734845.
42. Marin,L.;Miguelez,E.M.;Villar,C.J.;Lombo,F.Bioavailabilityofdietarypolyphenolsandgutmicrobiota
metabolism:Antimicrobialproperties.BiomedRes.Int.2015,2015,905215
43. Berg,G.;Grube,M.;Schloter,M.;Smalla,K.Unravelingtheplantmicrobiome:Lookingbackandfuture
perspectives.Front.Microbiol.2014,5,148.
44. Turner,T.R.;James,E.K.;Poole,P.S.Theplantmicrobiome.GenomeBiol.2013,14,209.
45. Gopal,M.;Gupta,A.Microbiomeselectioncouldspurnextgenerationplantbreedingstrategies.Front.
Microbiol.2016,7,1971.
46. Khalaf,E.M.;Raizada,M.N.Bacterialseedendophytesofdomesticatedcucurbitsantagonizefungaland
Oomycetepathogensincludingpowderymildew.Front.Microbiol.2018,9,42.
47. Robinson,R.J.;Fraaije,B.A.;Clark,I.M.;Jackson,R.W.;Hirsch,P.R.;Mauchline,T.H.Wheatseedembryo
excisionenablesthecreationofaxenicseedlingsandKoch’spostulatestestingofputativebacterial
endophytes.Sci.Rep.2016,6,25581.
48. GagneBourgue,F.;Aliferis,K.A.;Seguin,P.;Rani,M.;Samson,R.;Jabaji,S.Isolationandcharacterization
ofindigenousendophyticbacteriaassociatedwithleavesofswitchgrass(PanicumvirgatumL.)cultivars.J
ApplMicrobiol2013,114,836–853.
49. Berendsen,R.L.;Pieterse,C.M.J.;Bakker,P.A.H.M.Therhizospheremicrobiomeandplanthealth.Trends
PlantSci.2012,17,478–486.
50. vanderEnt,S.;vanHulten,M.;Pozo,M.J.;Czechowski,T.;Udvardi,M.K.;Pieterse,C.M.J.;Ton,J.Priming
ofplantinnateimmunitybyrhizobacteriaandβ‐aminobutyricacid:Differencesandsimilaritiesin
regulation.NewPhytol.2009,183,419–431.
51. Weller,D.M.;Raaijmakers,J.M.;Gardener,B.B.M.;Thomashow,L.S.Microbialpopulationsresponsiblefor
specificsoilsuppressivenesstoplantpathogens.Annu.Rev.Phytopathol.2002,40,309–348.
52. Philippot,L.;Raaijmakers,J.M.;Lemanceau,P.;vanderPutten,W.H.Goingbacktotheroots:Themicrobial
ecologyoftherhizosphere.Nat.Rev.Microbiol.2013,11,789–799.
53. Raaijmakers,J.M.;Paulitz,T.C.;Steinberg,C.;Alabouvette,C.;MoënneLoccoz,Y.Therhizosphere:A
playgroundandbattlefieldforsoilbornepathogensandbeneficialmicroorganisms.PlantSoil2009,321,
341–361.
54. Marasco,R.;Rolli,E.;Ettoumi,B.;Vigani,G.;Mapelli,F.;Borin,S.;AbouHadid,A.F.;ElBehairy,U.A.;
Sorlini,C.;Cherif,A.,etal.Adroughtresistancepromotingmicrobiomeisselectedbyrootsystemunder
desertfarming.PlosONE2012,7,e48479.
55. Bais,H.P.;Weir,T.L.;Perry,L.G.;Gilroy,S.;Vivanco,J.M.Theroleofrootexudatesinrhizosphere
interactionswithplantsandotherorganisms.Annu.Rev.PlantBiol.2006,57,233–266.
56. Doornbos,R.F.;vanLoon,L.C.;Bakker,P.A.H.M.Impactofrootexudatesandplantdefensesignalingon
bacterialcommunitiesintherhizosphere.Areview.Agron.Sustain.Dev.2012,32,227–243.
57. Hardoim,P.R.;vanOverbeek,L.S.;Berg,G.;Pirttilä,A.M.;Compant,S.;Campisano,A.;Döring,M.;
Sessitsch,A.Thehiddenworldwithinplants:Ecologicalandevolutionaryconsiderationsfordefining
functioningofmicrobialendophytes.Microbiol.Mol.Biol.Rev.:Mmbr2015,79,293–320.
Microorganisms2020,8,35513of15
58. Petrini,O.Fungalendophytesoftreeleaves.InMicrobialEcologyofLeaves,2nded.;Andrews,J.H.,Hirano,
S.S.,Eds.SpringerNewYork:1991;pp.179–197.
59. Khan,A.L.;Halo,B.A.;Elyassi,A.;Ali,S.;AlHosni,K.;Hussain,J.;AlHarrasi,A.;Lee,I.J.Indoleacetic
acidandACCdeaminasefromendophyticbacteriaimprovesthegrowthofSolanumlycopersicum.Electron.
J.Biotechnol.2016,21,58–64.
60. GagnéBourque,F.;Bertrand,A.;Claessens,A.;Aliferis,K.A.;Jabaji,S.Alleviationofdroughtstressand
metabolicchangesinTimothy(PhleumpratenseL.)colonizedwithBacillussubtilisB26.FrontPlantSci.2016,
7,584–584.
61. Maj,D.;Wielbo,J.;MarekKozaczuk,M.;Skorupska,A.Responsetoflavonoidsasafactorinfluencing
competitivenessandsymbioticactivityofRhizobiumleguminosarum.Microbiol.Res.2010,165,50–60.
62. Hassan,S.;Mathesius,U.Theroleofflavonoidsinrootrhizospheresignalling:Opportunitiesand
challengesforimprovingplantmicrobeinteractions.J.Exp.Bot.2012,63,3429–3444.
63. Truyens,S.;Weyens,N.;Cuypers,A.;Vangronsveld,J.Bacterialseedendophytes:Genera,vertical
transmissionandinteractionwithplants.Environ.Microbiol.Rep.2015,7,40–50.
64. Lugtenberg,B.;Kamilova,F.PlantGrowthPromotingRhizobacteria.Annu.Rev.Microbiol.2009,63,541–556.
65. Win,K.T.;Tanaka,F.;Okazaki,K.;Ohwaki,Y.TheACCdeaminaseexpressingendophytePseudomonasspp.
enhancesNaClstresstolerancebyreducingstressrelatedethyleneproduction,resultinginimprovedgrowth,
photosyntheticperformance,andionicbalanceintomatoplants.PlantPhysiol.Biochem.2018,127,599–607.
66. Rascovan,N.;Carbonetto,B.;Perrig,D.;Díaz,M.;Canciani,W.;Abalo,M.;Alloati,J.;GonzálezAnta,G.;
Vazquez,M.P.Integratedanalysisofrootmicrobiomesofsoybeanandwheatfromagriculturalfields.Sci.
Rep.2016,6,28084.
67. vandePoel,B.;vanderStraeten,D.1aminocyclopropane1carboxylicacid(ACC)inplants:Morethan
justtheprecursorofethylene!FrontPlantSci.2014,5,640.
68. Taghinasab,M.;Imani,J.;Steffens,D.;Glaeser,S.;Kogel,K.H.TherootendophytesTrametesversicolorand
PiriformosporaindicaincreasegrainyieldandPcontentinwheat.PlantSoil2018,426,229–348.
69. Redman,R.S.;Sheehan,K.B.;Stout,R.G.;Rodriguez,R.J.;Henson,J.M.Thermotolerancegeneratedby
plant/fungalsymbiosis.Sci.2002,298,1581.
70. Arnold,A.E.;Mejía,L.C.;Kyllo,D.;Rojas,E.I.;Maynard,Z.;Robbins,N.;Herre,E.A.Fungalendophytes
limitpathogendamageinatropicaltree.Proc.Natl.Acad.Sci.2003,100,15649,doi:10.1073/pnas.2533483100.
71. Silva,N.I.;Brooks,S.;Lumyong,S.;Hyde,K.D.Useofendophytesasbiocontrolagents.FungalBiol.Rev.
2019,33,133–148.
72. Eljounaidi,K.;Lee,S.K.;Bae,H.Bacterialendophytesaspotentialbiocontrolagentsofvascularwilt
diseasesReviewandfutureprospects.Biol.Control2016,103,62–68,doi:10.1016/j.biocontrol.2016.07.013.
73. Busby,P.E.;Ridout,M.;Newcombe,G.Fungalendophytes:Modifiersofplantdisease.PlantMol.Biol.2016,
90,645–655.
74. Burketova,L.;Trda,L.;Ott,P.G.;Valentova,O.Biobasedresistanceinducersforsustainableplant
protectionagainstpathogens.Biotechnol.Adv.2015,33,994–1004.
75. Compant,S.;Samad,A.;Faist,H.;Sessitsch,A.Areviewontheplantmicrobiome:Ecology,functions,and
emergingtrendsinmicrobialapplication.J.Adv.Res.2019,19,29–37.
76. AlegriaTerrazas,R.;Giles,C.;Paterson,E.;RobertsonAlbertyn,S.;Cesco,S.;Mimmo,T.;Pii,Y.;Bulgarelli,
D.ChapterOneplant–microbiotainteractionsasadriverofthemineralturnoverintherhizosphere.In
AdvancesinAppliedMicrobiology,Sariaslani,S.,MichaelGadd,G.,Eds.AcademicPress:2016,95,1–67.
77. Carrión,V.J.;PerezJaramillo,J.;Cordovez,V.;Tracanna,V.;Hollander,M.;RuizBuck,D.;Mendes,L.W.;
vanIjcken,W.F.J.;GomezExposito,R.;Elsayed,S.S.,etal.Pathogeninducedactivationofdisease
suppressivefunctionsintheendophyticrootmicrobiome.Science2019,366,606.
78. Garbeva,P.;vanVeen,J.A.;vanElsas,J.D.Microbialdiversityinsoil:Selectionofmicrobialpopulationsby
plantandsoiltypeandimplicationsfordiseasesuppressiveness.Annu.Rev.Phytopathol.2004,42,243–270.
79. Berg,G.;Smalla,K.Plantspeciesandsoiltypecooperativelyshapethestructureandfunctionofmicrobial
communitiesintherhizosphere.FemsMicrobiol.Ecol.2009,68,1–13.
80. Bulgarelli,D.;Schlaeppi,K.;Spaepen,S.;vanThemaat,E.V.L.;SchulzeLefert,P.Structureandfunctions
ofthebacterialmicrobiotaofplants.Annu.Rev.PlantBiol.2013,64,807–838.
81. Scott,M.;Rani,M.;Samsatly,J.;Charron,J.B.;Jabaji,S.Endophytesofindustrialhemp(CannabissativaL.)
cultivars:Identificationofculturablebacteriaandfungiinleaves,petioles,andseeds.Can.J.Microbiol.2018,
64,664–680.
Microorganisms2020,8,35514of15
82. Qadri,M.;Johri,S.;Shah,B.A.;Khajuria,A.;Sidiq,T.;Lattoo,S.K.;Abdin,M.Z.;RiyazUlHassan,S.
IdentificationandbioactivepotentialofendophyticfungiisolatedfromselectedplantsoftheWestern
Himalayas.SpringerPlus2013,2,8.
83. Gautam,A.K.;Kant,M.;Thakur,Y.IsolationofendophyticfungifromCannabissativaandstudytheir
antifungalpotential.Arch.Phytopathol.PlantProt.2013,46,627–635.
84. Kusari,P.;Kusari,S.;Spiteller,M.;Kayser,O.EndophyticfungiharboredinCannabissativaL.:Diversity
andpotentialasbiocontrolagentsagainsthostplantspecificphytopathogens.FungalDivers.2013,60,137–
151.
85. McKernan,K.;Spangler,J.;Zhang,L.;Tadigotla,V.;Helbert,Y.;Foss,T.;Smith,D.Cannabismicrobiome
sequencingrevealsseveralmycotoxicfunginativetodispensarygradeCannabisflowers.F1000Res.2015,
4,1422.
86. Zielonka,D.;SasPaszt,L.;Derkowska,E.;Lisek,A.;Russel,S.Occurrenceofarbuscularmycorrhizalfungi
inHemp(Cannabissativa)plantsandsoilfertilizedwithsewagesludgeandphosphogypsum.J.Nat.Fibers
2019,1–11.
87. Afzal,I.,S.Z.,Iqrar,I.Selectiveisolationandcharacterizationofagriculturallybeneficialendophytic
bacteriafromwildhempusingCanola.Pak.J.Bot.2015,5,1999–2008.
88. Kusari,P.;Kusari,S.;Lamshöft,M.;Sezgin,S.;Spiteller,M.;Kayser,O.Quorumquenchingisan
antivirulencestrategyemployedbyendophyticbacteria.Appl.Microbiol.Biotechnol.2014,98,7173–7183.
89. Köberl,M.;Schmidt,R.;Ramadan,E.M.;Bauer,R.;Berg,G.Themicrobiomeofmedicinalplants:Diversity
andimportanceforplantgrowth,qualityandhealth.Front.Microbiol.2013,4,400.
90. Egamberdieva,D.;Wirth,S.;Behrendt,U.;Ahmad,P.;Berg,G.Antimicrobialactivityofmedicinalplants
correlateswiththeproportionofantagonisticendophytes.Front.Microbiol.2017,8,199.
91. Pagnani,G.;Pellegrini,M.;Galieni,A.;D’Egidio,S.;Matteucci,F.;Ricci,A.;Stagnari,F.;Sergi,M.;LoSterzo,
C.;Pisante,M.,etal.Plantgrowthpromotingrhizobacteria(PGPR)inCannabissativa‘Finola’cultivation:
Analternativefertilizationstrategytoimproveplantgrowthandqualitycharacteristics.Ind.Crop.Prod.
2018,123,75–83.
92. Botta,A.L.;Santacecilia,A.;Ercole,C.;Cacchio,P.;DelGallo,M.Invitroandinvivoinoculationoffour
endophyticbacteriaonLycopersiconesculentum.NewBiotechnol.2013,30,666–674.
93. Conant,R.T.;Walsh,R.P.;Walsh,M.;Bell,C.W.;Wallenstein,M.D.Effectsofamicrobialbiostimulant,
MammothPTM,onCannabissativabudyield.J.Hortic.2017,04,5.
94. Baas,P.;Bell,C.;Mancini,L.M.;Lee,M.N.;Conant,R.T.;Wallenstein,M.D.Phosphorusmobilizing
consortiumMammothP(™)enhancesplantgrowth.PeerJ.2016,4,e2121e2121.
95. Citterio,S.;Prato,N.;Fumagalli,P.;Aina,R.;Massa,N.;Santagostino,A.;Sgorbati,S.;Berta,G.The
arbuscularmycorrhizalfungusGlomusmosseaeinducesgrowthandmetalaccumulationchangesin
CannabissativaL.Chemosphere2005,59,21–29.
96. Lubna;Asaf,S.;Khan,A.L.;Waqas,M.;Kang,S.M.;Hamayun,M.;Lee,I.J.;Hussain,A.Growth
promotingbioactivitiesofBipolarissp.CSL1isolatedfromCannabissativasuggestadistinctiverolein
modifyinghostplantphenotypicplasticityandfunctions.Acta.Physiol.Plant.2019,41,65.
97. Joe,M.M.;Devaraj,S.;Benson,A.;Sa,T.Isolationofphosphatesolubilizingendophyticbacteriafrom
PhyllanthusamarusSchum&Thonn:Evaluationofplantgrowthpromotionandantioxidantactivityunder
saltstress.J.Appl.Res.Med.Aromat.Plants2016,3,71–77.
98. Shahzad,R.;Waqas,M.;Khan,A.L.;Asaf,S.;Khan,M.A.;Kang,S.M.;Yun,B.W.;Lee,I.J.Seedborne
endophyticBacillusamyloliquefaciensRWL1producesgibberellinsandregulatesendogenous
phytohormonesofOryzasativa.PlantPhysiol.Biochem.2016,106,236–243.
99. Haas,D.;Keel,C.RegulationofantibioticproductioninrootcolonizingPseudomonasspp.andrelevance
forbiologicalcontrolofplantdisease.Annu.Rev.Phytopathol.2003,41,117–153.
100. Nate,S.IntotheWeeds:Regulatingpesticidesincannabis.Environ.HealthPerspect.2019,127,042001.
101. MartinezKlimova,E.;RodríguezPeña,K.;Sánchez,S.Endophytesassourcesofantibiotics.Biochem.
Pharmacol.2017,134,1–17.
102. Kumar,A.;Patil,D.;Rajamohanan,P.R.;Ahmad,A.Isolation,purificationandcharacterizationof
vinblastineandvincristinefromendophyticfungusFusariumoxysporumisolatedfromCatharanthusroseus.
PlosONE2013,8,e71805e71805.
103. Puri,S.C.;Verma,V.;Amna,T.;Qazi,G.N.;Spiteller,M.AnendophyticfungusfromNothapodytesfoetida
thatproducesCamptothecin.J.Nat.Prod.2005,68,1717–1719.
Microorganisms2020,8,35515of15
104. Stierle,A.;Strobel,G.;Stierle,D.TaxolandtaxaneproductionbyTaxomycesandreanae,anendophytic
fungusofPacificyew.Sci.1993,260,214.
105. Kusari,S.;Hertweck,C.;Spiteller,M.Chemicalecologyofendophyticfungi:Originsofsecondary
metabolites.Chem.Biol.2012,19,792–798.
106. Zhang,P.;Zhou,P.P.;Yu,L.J.AnEndophytictaxolproducingfungusfromTaxusmedia,Cladosporium
cladosporioidesMD2.Curr.Microbiol.2009,59,227.
107. Puri,S.C.;Nazir,A.;Chawla,R.;Arora,R.;RiyazulHasan,S.;Amna,T.;Ahmed,B.;Verma,V.;Singh,S.;
Sagar,R.,etal.TheendophyticfungusTrameteshirsutaasanovelalternativesourceofpodophyllotoxin
andrelatedaryltetralinlignans.J.Biotechnol.2006,122,494–510.
108. Eyberger,A.L.;Dondapati,R.;Porter,J.R.EndophytefungalisolatesfromPodophyllumpeltatumproduce
Podophyllotoxin.J.Nat.Prod.2006,69,1121–1124.
109. Shweta,S.;Zuehlke,S.;Ramesha,B.T.;Priti,V.;MohanaKumar,P.;Ravikanth,G.;Spiteller,M.;Vasudeva,
R.;UmaShaanker,R.EndophyticfungalstrainsofFusariumsolani,fromApodytesdimidiataE.Mey.ex
Arn(Icacinaceae)producecamptothecin,10hydroxycamptothecinand9methoxycamptothecin.
Phytochemistry2010,71,117–122.
110. Pandey,S.S.;Singh,S.;Babu,C.S.V.;Shanker,K.;Srivastava,N.K.;Shukla,A.K.;Kalra,A.Fungal
endophytesofCatharanthusroseusenhancevindolinecontentbymodulatingstructuralandregulatory
genesrelatedtoterpenoidindolealkaloidbiosynthesis.Sci.Rep.2016,6,26583.
111. Ding,C.h.;Wang,Q.B.;Guo,S.;Wang,Z.y.Theimprovementofbioactivesecondarymetabolitesaccumulation
inRumexgmeliniTurczthroughcoculturewithendophyticfungi.Braz.J.Microbiol.2018,49,362–369.
112. Li,J.;Zhao,G.Z.;Varma,A.;Qin,S.;Xiong,Z.;Huang,H.Y.;Zhu,W.Y.;Zhao,L.X.;Xu,L.H.;Zhang,S.,
etal.AnendophyticpseudonocardiaspeciesinducestheproductionofArtemisinininArtemisiaannua.Plos
ONE2012,7,e51410.
113. Ray,T.;Pandey,S.S.;Pandey,A.;Srivastava,M.;Shanker,K.;Kalra,A.Endophyticconsortiumwithdiverse
generegulatingcapabilitiesofBenzylisoquinolineAlkaloidsbiosyntheticpathwaycanenhance
endogenousMorphinebiosynthesisinPapaversomniferum.Front.Microbiol.2019,10,925.
114. ThiMinhLe,T.;ThiHongHoang,A.;ThiBichLe,T.;ThiBichVo,T.;vanQuyen,D.;HoangChu,H.
IsolationofendophyticfungiandscreeningofHuperzineA–producingfungusfromHuperziaserratain
Vietnam.Sci.Rep.2019,9,16152.
115. Irmer,S.;Podzun,N.;Langel,D.;Heidemann,F.;Kaltenegger,E.;Schemmerling,B.;Geilfus,C.M.;Zörb,
C.;Ober,D.Newaspectofplant–rhizobiainteraction:Alkaloidbiosynthesisincrotalariadependson
nodulationProc.Natl.Acad.Sci.2015,112,4164.
116. Chhipa,H.;Kaushik,N.FungalandbacterialdiversityisolatedfromAquilariamalaccensistreeandsoil,
inducesAgarospirolformationwithin3monthsafterartificialinfection.Front.Microbiol.2017,8,1286.
117. Kusari,P.;Kusari,S.;Spiteller,M.;Kayser,O.Cannabisendophytesandtheirapplicationinbreedingand
physiologicalfitness.InCannabissativaL.‐BotanyandBiotechnology,2nded.;Chandra,S.,Lata,H.,ElSohly,
M.A.,Eds.SpringerInternationalPublishing:Cham,2017;419–437.
118. Mansouri,H.;Salari,F.;Asrar,Z.Ethephonapplicationstimulatescannabinoidsandplastidicterpenoids
productioninCannabissativaatfloweringstage.Ind.Crop.Prod.2013,46,269–273.
119. Mansouri,H.;Salari,F.InfluenceofmevinolinonchloroplastterpenoidsinCannabissativa.Physiol.Mol.
Biol.Plants:Int.J.Funct.PlantBiol.2014,20,273–277.
120. Mansouri,H.;Asrar,Z.;Amarowicz,R.Theresponseofterpenoidstoexogenousgibberellicacidin
CannabissativaL.atvegetativestage.ActaPhysiol.Plant.2011,33,1085–1091.
121. Mansouri,H.;Asrar,Z.EffectsofabscisicacidoncontentandbiosynthesisofterpenoidsinCannabissativa
atvegetativestage.Biol.Plant.2012,56,153–156.
122. Etesami,H.;MirseyedHosseini,H.;Alikhani,H.A.Bacterialbiosynthesisof1aminocyclopropane1
caboxylate(ACC)deaminase,ausefultraittoelongationandendophyticcolonizationoftherootsofrice
underconstantfloodedconditions.Physiol.Mol.Biol.Plants:Int.J.Funct.PlantBiol.2014,20,425–434.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... Explant sources, especially juvenile tissues from in vitro-grown seedlings, play a fundamental role in in vitro tissue culture. Under natural conditions, endophytic microbes within seeds provide plants with enhanced nutrient availability, beneficial metabolites, and enzymes that protect them from different stress factors [3,[10][11][12][13][14][15][16][17][18][19][20]. However, endophytic microbes can also create serious contamination problems under in vitro culture conditions [3,[10][11][12][13][14][15][16][17][18][19][20]. ...
... Under natural conditions, endophytic microbes within seeds provide plants with enhanced nutrient availability, beneficial metabolites, and enzymes that protect them from different stress factors [3,[10][11][12][13][14][15][16][17][18][19][20]. However, endophytic microbes can also create serious contamination problems under in vitro culture conditions [3,[10][11][12][13][14][15][16][17][18][19][20]. Notably, the generation of pathogen-free seedlings in vitro from seeds having a thick seed coat, such as Cannabis, is highly challenging, and surface sterilization alone is not usually enough [3,[10][11][12][13][14][15][16][17][18][19][20]. ...
... However, endophytic microbes can also create serious contamination problems under in vitro culture conditions [3,[10][11][12][13][14][15][16][17][18][19][20]. Notably, the generation of pathogen-free seedlings in vitro from seeds having a thick seed coat, such as Cannabis, is highly challenging, and surface sterilization alone is not usually enough [3,[10][11][12][13][14][15][16][17][18][19][20]. Recently, the dual roles of H 2 O 2 as a disinfectant and a germination-promoting signaling molecule have led to remarkable success in generating pathogen-free seedlings in vitro [10]. ...
Article
Full-text available
Cannabis sativa L. cv. ‘Cheungsam’ is an industrial hemp plant of Republic of Korea origin, primarily cultivated for fiber and seed production. In vitro seed germination and tissue culture are valuable tools for developing various biotechnological techniques. In the present study, we aimed to develop a tissue culture process for hemp plants using Cheungsam as a model plant and examine the secondary metabolites produced from its callus. We also developed a method to prepare pathogen-free seedlings from field-derived seeds using hydrogen peroxide (H2O2) solution as a liquid germination medium. Treating seedlings with removed seed coat in 3% H2O2 significantly reduced the contamination rate. Callus formation and de novo organogenesis of shoots and roots from callus were successfully achieved using cotyledon and leaf tissues prepared from the pathogen-free seedlings. The most effective in vitro regeneration results were obtained using the Murashige and Skoog (MS) medium supplemented with certain targeted growth regulators. An optimal combination of 0.5 mg/L thidiazuron (TDZ) and 1.0 mg/L 1-naphthalene acetic acid proved highly effective for callus induction. The addition of 0.5 mg/L TDZ in the MS medium significantly stimulated shoot proliferation, while robust root development was best supported by MS medium supplemented with 2.5 mg/L indole-3-butyric acid for both cotyledon and leaf explants. Finally, gas chromatography–mass spectrometry (GC–MS) analysis of ethanol extract from Cheungsam leaf callus revealed the presence of different secondary metabolites, including 9-octadecenamide, methyl salicylate, dodecane, tetradecane, and phenol, 2,4-bis-(1,1-dimethylethyl). This study provides a comprehensive de novo regeneration protocol for Cheungsam plants and insight into the secondary metabolite profiles of its callus.
... The microbiota in the gut has two broad operational associations, namely with hematological structures (e.g., mucosal immune system) and non-hematological structures (e.g., the gut epithelial barrier). While the molecular mechanisms for drug metabolism in the gut remain mostly improbable, there is increasing evidence that the variability of responses observed to pharmaceutical drugs and medicinal cannabinoid molecules is intestinal microbiome-mediated [2,3]. ...
... Pharmacomicrobiomic studies that target intestinal bacteria can significantly influence the pharmacological actions of drugs [4]. Pharmacomicrobiomic studies focus on the intestinal microbiota and the biochemical actions of bacteria to biotransform/metabolize pharmaceutical drugs, xenobiotic compounds and cannabinoid molecules [3,5]. Moreover, biochemical reactions that can change the activity and toxicity of exogenous compounds can thereby shape the host's response to drugs, xenobiotics and cannabinoids [4,5]. ...
Article
Full-text available
Historically, the multiple uses of cannabis as a medicine, food, and for recreational purposes as a psychoactive drug span several centuries. The various components of the plant (i.e., seeds, roots, leaves and flowers) have been utilized to alleviate symptoms of inflammation and pain (e.g., osteoarthritis, rheumatoid arthritis), mood disorders such as anxiety, and intestinal problems such as nausea, vomiting, abdominal pain and diarrhea. It has been established that the intestinal microbiota progresses neurological, endocrine, and immunological network effects through the gut–microbiota–brain axis, serving as a bilateral communication pathway between the central and enteric nervous systems. An expanding body of clinical evidence emphasizes that the endocannabinoid system has a fundamental connection in regulating immune responses. This is exemplified by its pivotal role in intestinal metabolic and immunity equilibrium and intestinal barrier integrity. This neuromodulator system responds to internal and external environmental signals while also serving as a homeostatic effector system, participating in a reciprocal association with the intestinal microbiota. We advance an exogenous cannabinoid–intestinal microbiota–endocannabinoid system axis potentiated by the intestinal microbiome and medicinal cannabinoids supporting the mechanism of action of the endocannabinoid system. An integrative medicine model of patient care is advanced that may provide patients with beneficial health outcomes when prescribed medicinal cannabis.
... Similarly, in the phyllosphere, microbiomes produce antibiotics, enzymes, volatile organic compounds, and phytohormones that help and promote plant growth and development 63 . Interestingly, endophytes promote the plant's secondary metabolite production by supplying the plant with essential nutrients and phytohormones; this symbiotic relationship plays a pivotal role in the accumulation of cannabinoids in CBD-producing hemp varieties 64 . ...
... Interestingly, we found Alternaria, Fusarium, and Cladosporium, genera that are pathogenic to plants. Alternaria and Cladosporium are also reported as human pathogens in cannabis-associated microbe studies 64,71 , but the involvement of cannabis and its products in these diseases is not reported. Moreover, Gibberella, Septoria, Moesziomyces, Candida, and Alternaria are endogenous plant symbionts that can help plants in secondary metabolite production and promote plant health, growth, and development 72 . ...
Article
Full-text available
Microbes like bacteria and fungi are crucial for host plant growth and development. However, environmental factors and host genotypes can influence microbiome composition and diversity in plants such as industrial hemp (Cannabis sativa L.). Herein, we evaluated the endophytic and rhizosphere microbial communities of two cannabidiol (CBD; Sweet Sensi and Cherry Wine) and two fibers (American Victory and Unknown). The four hemp varieties showed significant variations in microbiome diversity. The roots had significantly abundant fungal and bacterial endophyte diversity indices, whereas the stem had higher fungal than bacterial diversity. Interestingly, the soil system showed no significant diversity variation across CBD vs. fiber genotypes. In fungal phyla, Ascomycota and Basidiomycota were significantly more abundant in roots and stems than leaves in CBD-rich genotypes compared to fiber-rich genotypes. The highly abundant bacterial phyla were Proteobacteria, Acidobacteria, and Actinobacteria. We found 16 and 11 core-microbiome bacterial and fungal species across genotypes. Sphingomonas, Pseudomonas, and Bacillus were the core bacteria of fiber genotypes with high abundance compared to CBD genotypes. Contrarily, Microbacterium, and Rhizobium were significantly higher in CBD than fiber. The Alternaria and Gibberella formed a core-fungal microbiome of fiber-genotype than CBD. Contrarily, Penicillium, and Nigrospora were significantly more abundant in CBD than fiber genotypes. In conclusion, specific hemp genotypes recruit specialized microbial communities in the rhizosphere and phyllosphere. Utilizing the core-microbiome species can help to maintain and improve the growth of hemp plants and to target specialized traits of the genotype.
... Like in other crops, a multitude of fungal and bacterial endophytes have been identified in different tissues of C. sativa plants (Taghinasab and Jabaji 2020). Endophytes can promote plant growth and tolerance against environmental stresses and pathogens via several mechanisms that include the facilitation of nutrient uptake, and the modulation of plant's production of phytohormones and secondary metabolites (Taghinasab and Jabaji 2020). ...
... At this stage, an increase in the total terpene content was instead observed in plants treated with the Mucilaginibacter and the Pseudomonas spp., with the highest increase observed for b-caryophyllene (Lyu et al. 2023) (Table 4). Both studies revealed that early inoculation with PGPR also promoted the plant growth and biomass accumulation (Pagnani et al. 2018;Lyu et al. 2023) (Table 4), which was likely related to increased nutrient availability, since PGPR may facilitate access to nutrients (Taghinasab and Jabaji 2020). ...
Article
Full-text available
Cannabis sativa L. is an annual dioecious species native from Central Asia, which has mainly been used for medical purposes by many ancient cultures and is currently used for the treatment of several diseases. The pharmacological properties of C. sativa are related to cannabinoids, a class of secondary metabolites entirely unique to this crop that are produced and stored at high levels in the inflorescences and leaves. In addition to cannabinoids, C. sativa plants also produce a large number of non-cannabinoid secondary metabolites including terpenes, phenolic compounds and others, which have also been associated with health-promoting activities. In recent decades, the interest in secondary metabolites from C. sativa has been increasing due to their potential applications not only as pharmaceuticals, but also as nutraceuticals, food additives, drugs, fragrances, and biopesticides. This has generated a significant increase in the development of effective strategies for improving the production of such bioactive compounds. In this context, elicitation has emerged as an effective tool based on the application of abiotic or biotic factors that induce physiological changes and stimulate defense or stress-related responses in plants, including the biosynthesis of secondary metabolites. The current review gives a comprehensive overview of the available studies on the different elicitation approaches used to enhance the accumulation of the major bioactive compounds in C. sativa, and highlights challenges and opportunities related to the use of external elicitors for improving the added value of this crop.
... Cannabis (Cannabis sativa sub sp. sativa) also hosts beneficial microbial communities in its tissues and seeds [23]. Stage I disinfection with 20%, 40%, and 60% bleach (7.5% sodium hypochlorite) for 10 min demonstrated no differences in contamination rates and caused no damage to explants in micropropagation studies [5]. ...
Article
Full-text available
Cannabis sativa is used for multiple purposes, notably for its medicinal properties. It produces various secondary metabolites, including cannabinoids, terpenes, and flavonoids, which have therapeutic value and typically produce high amounts in female plants. The growth of the global cannabis market has led to intensive breeding efforts to develop elite cultivars with enhanced secondary metabolite profiles. As a dioecious and anemophilous plant, it produces staminate and pistillate inflorescences on separate plants and relies on wind for pollination, rendering traditional propagation methods challenging owing to high genetic recombination in progeny. Consequently, asexual propagation (micropropagation) is commonly employed to maintain female clones entirely. Micro-propagation/direct organogenesis is a tissue culture technique that produces numerous disease-free clone plants in vitro more rapidly than traditional rooted cuttings. Factors such as sterilization, hormonal balance, explant type, nutrient additives, carbon source, pH, and environment influence the success of cultivar-specific micropropagation. In this review, we discussed how these factors affect cannabis micropropagation based on recent findings, emphasizing the importance of optimizing cultivar-specific protocols for long-term germplasm conservation and efficient breeding based on a mechanistic background.
... For instance, during cannabis stress response, bacterial endophytes modulate cannabinoid secretions through gibberellin synthesis, which regulates 1-aminocyclopropane-1-carboxylic acid, which, in turn, negatively impacts ethylene production, thereby improving THC and CBD content as well as increasing growth. It has been hypothesized that these metabolites have a role to play in crop growth improvement, hence, the implication for endophyte-plant-metabolites interaction, although this roadmap for crop productivity enhancement has not been explored (Taghinasab and Jabaji, 2020). Regarding the nutrient impact on cannabis yield and metabolite content, synthetic NPK application improved cannabigerol, leaf, flower, and stem biomass (Bernstein et al., 2019). ...
Article
Full-text available
The increase in cash crop productivity has helped improve farmers, communities, and economic streams and has served as a source of income. However, the erratic global climate change deeply affects crops' productivity due to the exacerbating high temperatures predominant in some geographical regions, which has translated into other environmental issues. Combinatorial impacts of these climate-associated problems have exposed agricultural lands to multiple abiotic stresses, placing massive pressure on cultivatable arable lands and reducing crop productivity. Agronomists, through an understanding of single abiotic stressors, have innovated new concepts like nanotechnology, molecular modified and cross-bred varieties to unravel these problems. However, the complexity, toxicity, and resistance development associated with these approaches have consistently left the search window open for novel, natural, and more sustainable alternatives. To this end, the roles of root microbiomes, particularly root endophytes, in ensuring plant growth promotion through siderophore production, phytohormone release and regulation, and nutrient fertilization have been harnessed in an effort to resolve single, double, and multiple abiotic stressors without a complete understanding of the pathways involved in each mechanism of plant growth promotion. Thus, to successfully leverage root endophytes for growth promotion during multi-stresses, this review is targeted to reveal single abiotic stress mechanism for each cash crop group, as this could help conceptualize the details involved in stress control and the alleviation of multi-stresses through nutrient fertilization pathways.
... Although surface sterilization was able to markedly reduce the contamination, it failed to eliminate the Cannabis endophytes. Cannabis endophytes are believed to have the potential to enhance Cannabis growth and cannabinoid yields, though the details of their interaction are not fully understood [40]. However, endophytes also have been identified as likely attributing to a resurgence of contamination observed several weeks after an aseptic culture appears to have been established [41]. ...
Article
Full-text available
Producing uniform Cannabis sativa (Cannabis) for medicinal/recreational flower production through sexual propagation has been problematic, leading to dominance of clonal propagation from “mother plants” in the cannabinoid industry, which also faces significant limitations. Cannabis tissue culture (TC) methods have been developed to overcome these challenges, but the long-term health and maintenance of Cannabis explants in TC have been largely overlooked in previous studies. The current study focused on the development of an efficient and optimized micropropagation protocol covering the entire process, with a specific focus on the health and performance in the multiplication stage. Multiplication media were formulated hormone-free to avoid longer-term vitrification issues, resulting in single-main-shoot cultures rather than multiple-shoot cultures. This instigated the use of stage II explant types different from the standard shoot tips previously used for multiple shoot cultures. Multiplication media were further improved from the basal salt composition via nitrogen and calcium additives. The optimized protocol was used on eight diverse Cannabis cultivars to test its applicability across various genetic backgrounds. Results indicated that the protocol was effective for conservation purposes across all cultivars and achieved good long-term multiplication rates for some but not all. The outcomes of this study mark a significant stride towards an efficient Cannabis TC methodology ready for more comprehensive industrial applications.
Article
Full-text available
The crop of medicinal cannabis has developed great importance in recent years in Colombia and other Latin American countries. Considering the production characteristics of the crop, which is fundamentally based on organic models, it is important to know the microorganisms that accompany the production system and their possible implications for management. In this research were isolated and characterized the microorganisms in the different phases of production of a high-density cannabis crop: planting, or propagation areas, production areas, and postharvest areas (flower pre-drying). In each area samples of soil, substrates and water were taken and the microorganisms present were identified by direct sowing in culture media, using microscopic identification and molecular characterization. A high diversity was found in all production areas, and it was evidenced that beneficial microorganisms (Trichoderma spp. and Bacillus spp.) applied to the production system regulate the populations of microorganisms in the soil and in the substrates. It was identified that perlite and coconut fiber allow the development of populations of phosphorus solubilizing and nitrogen fixing microorganisms and that the production of compost using crop waste is safe at a sanitary level. No populations of pathogens were identified in any of the samples evaluated at levels that could explain the presence of diseases in the crop.
Article
Full-text available
Huperzine A (HupA), a natural Lycopodium alkaloid derived from Huperzia serrata (Thunb. ex Murray) Trev. plants, is a highly active acetylcholinesterase inhibitor and a key compound used for treating Alzheimer’s disease (AD). Recently, HupA has been reported in various endophytic fungi isolated from H. serrata. In the present study, 153 endophytic fungi were isolated from healthy tissues of H. serrata collected from natural populations in Lam Dong province of Central Vietnam. The endophytic fungi were identified based on morphological characteristics and Internal Transcribed Spacer sequences. Among them, 34 strains were classified into seven genera belonging to Ascomycota, including Alternaria, Fusarium, Trichoderma, Penicillium, Paecilomyces, and Phoma, and eight strains belonging to the genus Mucor (Zygomycota). The other strains remained unidentified. According to the results of thin-layer chromatography and high-performance liquid chromatography, only one of the 153 strains, Penicillium sp. LDL4.4, could produce HupA, with a yield 1.38 mg l⁻¹ (168.9 µg g⁻¹ dried mycelium) when cultured in potato dextrose broth, which was considerably higher than that of other reported endophytic fungi. Such a fungus is a promising candidate and alternative to presently available HupA production techniques for treating AD and preventing further memory decline.
Article
Full-text available
Mineral nutrition is a major factor affecting plant growth and function. Increasing evidence supports the involvement of macro and micronutrients in secondary metabolism. The use of the appropriate nutritional measures including organic fertilizers, supplements, and biostimulants is therefore a vital aspect of medicinal plant production including medical cannabis. Due to legal restriction on cannabis research, very little information is available concerning the effects of nutritional supplements on physiological and chemical properties of medical cannabis, and their potential role in standardization of the active compounds in the plant material supplied to patients. This study therefore evaluated the potential of nutritional supplementations, including humic acids (HAs) and inorganic N, P, and K to affect the cannabinoid profile throughout the plant. The plants were exposed to three enhanced nutrition treatments, compared to a commercial control treatment. The nutrition treatments were supplemented with HA, enhanced P fertilization, or enhanced NPK. The results demonstrate sensitivity of cannabinoids metabolism to mineral nutrition. The nutritional supplements affected cannabinoid content in the plants differently. These effects were location and organ specific, and varied between cannabinoids. While the P enhancement treatment did not affect THC, CBD, CBN, and CBG concentrations in the flowers from the top of the plants, a 16% reduction of THC concentration was observed in the inflorescence leaves. Enhanced NPK and HA treatments also produced organ-specific and spatially specific responses in the plant. NPK supplementation increased CBG levels in flowers by 71%, and lowered CBN levels in both flowers and inflorescence leaves by 38 and 36%, respectively. HA was found to reduce the natural spatial variability of all of the cannabinoids studied. However, the increased uniformity came at the expense of the higher levels of cannabinoids at the top of the plants, THC and CBD were reduced by 37 and 39%, respectively. Changes in mineral composition were observed in specific areas of the plants. The results demonstrate that nutritional supplements influence cannabinoid content in cannabis in an organ- and spatial-dependent manner. Most importantly, the results confirm the potential of environmental factors to regulate concentrations of individual cannabinoids in medical cannabis. The identified effects of nutrient supplementation can be further developed for chemical control and standardization in cannabis.
Article
Full-text available
Secondary metabolite biosynthesis in medicinal plants is multi-step cascade known to be modulated by associated endophytes. While a single endophyte is not able to upregulate all biosynthetic steps, limiting maximum yield achievement. Therefore to compliment the deficient characteristics in an endophyte we tried consortium of endophytes to achieve maximum yield. Here, efforts were made to maximize the in planta morphine yield, using consortium of two endophytes; SM1B (Acinetobacter sp.) upregulating most of the genes of morphine biosynthesis except T6ODM and CODM, and SM3B (Marmoricola sp.) upregulating T6ODM and CODM in alkaloid-less Papaver somniferum cv. Sujata. Consortium-inoculation significantly increased morphine and thebaine content, and also increased the photosynthetic efficiency of poppy plants resulted in increased biomass, capsule weight, and seed yields compared to single-inoculation. The increment in morphine content was due to the modulation of metabolic-flow of key intermediates including reticuline and thebaine, via upregulating pertinent biosynthetic genes and enhanced expression of COR, key gene for morphine biosynthesis. This is the first report demonstrating the endophytic-consortium complimenting the functional deficiency of one endophyte by another for upregulating multiple genes of a metabolic pathway similar to transgenics (overexpressing multiple genes) for obtaining enhanced yield of pharmaceutically important metabolites.
Article
Protecting plants from the inside out Some soils show a remarkable ability to suppress disease caused by plant pathogens, an ability that is attributed to plant-associated microbiota. Carrión et al. investigated the role of endophytes, the intimate microbial community found within roots, in fungal disease suppression (see the Perspective by Tringe). The wilt fungus Rhizoctonia solani infects sugar beets, whereupon transcriptional analysis shows that several bacterial endophyte species activate biosynthetic gene clusters to cause disease suppression. These organisms produce antifungal effectors, including enzymes that can digest fungal cell walls, and secondary metabolites, including phenazines, polyketides, and siderophores, which may contribute to the antifungal phenotype. Science , this issue p. 606 ; see also p. 568
Article
The colonization of soil and roots by arbuscular mycorrhizal fungi and the formation of spores under the influence of fertilization with phosphogypsum and sewage sludge were examined. Identification of arbuscular mycorrhizal fungi was carried out in soil and in roots of outdoor experimental hemp plantation. Assessment of the colonization was carried out by molecular and microscopic methods. The material for the isolation of DNA consisted of soil samples taken from mycorrhizal soil and hemp roots of cv. Białobrzeskie, cv. Tygra, and cv. Beniko. In nested PCR reactions part of the small subunit (SSU) region, the region of the internal transcribed spacer (ITS) and part of large subunit (LSU) rDNA region were amplified. As a result of the cloning and sequencing of the DNA, it was found that the greatest similarity of the obtained sequences present in the samples of roots and soil was to the following species: Diversispora sp., Funneliformis sp., Glomus sp., Funneliformis mosseae, Glomus caledonium, Funneliformis geosporum, Glomus occultum. The colonization by the fungi was estimated and found to differ depending on the hemp cultivar and doses of fertilizers. Cultivar Tygra showed no negative impact on biomass production by intensive mycorrhization, proved its high tolerance to phosphogypsum and sewage sludge pollution, and responded positively regarding biomass production.