Content uploaded by Meysam Taghinasab Phd
Author content
All content in this area was uploaded by Meysam Taghinasab Phd on Mar 02, 2020
Content may be subject to copyright.
Microorganisms2020,8,355;doi:10.3390/microorganisms8030355www.mdpi.com/journal/microorganisms
Review
CannabisMicrobiomeandtheRoleofEndophytesin
ModulatingtheProductionofSecondary
Metabolites:AnOverview
MeysamTaghinasabandSuhaJabaji*
PlantScienceDepartment,FacultyofAgriculturalandEnvironmentalSciences,MacDonaldCampusof
McGillUniversity,QCH9X3V9,Canada;meysam.taghinasab@mcgill.ca
*Correspondence:suha.jabaji@mcgill.ca
Received:13January2020;Accepted:28February2020;Published:2March2020
Abstract:Plants,includingcannabis(Cannabissativasubsp.sativa),hostdistinctbeneficialmicrobial
communitiesonandinsidetheirtissuesandorgans,includingseeds.Theycontributetoplant
growth,facilitatingmineralnutrientuptake,inducingdefenceresistanceagainstpathogens,and
modulatingtheproductionofplantsecondarymetabolites.Understandingthemicrobial
partnershipswithcannabishasthepotentialtoaffecttheagriculturalpracticesbyimprovingplant
fitnessandtheyieldofcannabinoids.Littleisknownaboutthisbeneficialcannabis‐microbe
partnership,andthecomplexrelationshipbetweentheendogenousmicrobesassociatedwith
varioustissuesoftheplant,andtherolethatcannabismayplayinsupportingorenhancingthem.
Thisreviewwillconsidercannabismicrobiotastudiesandtheeffectsofendophytesonthe
elicitationofsecondarymetaboliteproductionincannabisplants.Thereviewaimstoshedlighton
theimportanceofthecannabismicrobiomeandhowcannabinoidcompoundconcentrationscanbe
stimulatedthroughsymbioticand/ormutualisticrelationshipswithendophytes.
Keywords:Cannabissativa;marijuana;hemp;microbiome;endophytes;secondarymetabolites;
Cannabinoids;gutmicrobiota;rootmicrobiota
1.Introduction
Cannabis(CannabissativaL.)referstogeneticallydifferentbiotypesofboth(nonintoxicant)
industrialhempandmarijuana[1].Differentiatingstrainsofhempfrommarijuanaisbasedonan
arbitrarythresholdpointofthepsychoactivecompound,Δ9‐tetrahydrocannabinol(THC)at0.3%,a
criterionestablishedbySmallandCronquist[2].
OriginatingfromtheHimalayas,industrialhemp(C.sativaL.)isthemostancientdomesticated
crop.Itistypicallybredforseedandfiber,andalsoformultipurposeindustrialusessuchasoilsand
topicalointments,aswellasfiberforclothing,andconstructionmaterialforhomesandforbuilding
electriccarcomponents[3,4].BothhempandherbalmarijuanavarietiesaremembersoftheC.sativa
species;however,industrialhempcultivarsarecultivatedforfiberproducts,edibleseeds,andoilseed
andnonpsychoactivemedicinaldrugs[1].
Herbalmarijuana,atermdesignatedfortheformofcannabisthatisusedformedicaland
recreationalpurposes,producessomeprincipalcomponentsofphytocannabinoidssuchasthe
intoxicatingcompoundΔ9‐tetrahydrocannabinol(THC),andwithatherapeuticeffectsuchas
cannabinol(CBN),cannabidiol(CBD),cannabidiol‐carboxylicacid,cannabigerol(CBG),
cannabichromene(CBC),allofwhicharecurrentlyundergoingpromisingresearch[1].Incannabis
plants,cannabinoidsaccumulateascannabinoidacidsandnonenzymaticallydecarboxylizedinto
theirneutralformsduringstorage.Thebiosyntheticpathwaysofthemajorphytocannabinoids(CBC,
Microorganisms2020,8,3552of15
CBD,CBGTHC)withpentylsidechains‐C5H11beginswiththeproductionofCBGwhichisproduced
bycondensationofaphenol‐derivedolivetolicacid,aprecursorofthepolyketidebiosynthetic
pathway,andaterpene‐basedgeranylpyrophosphate,aprecursoroftheplastidalbiosynthetic
pathway.FromCBG,Δ‐THC,CBD,andCBCaresynthesizedeachbyaspecificenzyme[1].Formore
completeanalysesofphytocannabinoidbiosynthesis,seeAndreetal.[5]andHanusetal.[6].
Additionally,thenoncannabinoidcompounds,includingterpenoidsandflavonoids,deserve
attentionastheymayprovideanti‐inflammatoryactivity[7].
Phytocannabinoidsaccumulateinallpartsoftheplant;however,theyaremoreconcentratedin
specializedsecretorystructures,thetrichomesofthefemaleflowerbuds[5,8].Inadditionto
phytocannabinoids,cannabisproducesaplethoraofsecondarymetabolitesthatareproducedasan
adaptationforspecificfunctionsinplantsmostlytoimproveplantgrowthordefenceagainstbiotic
andabioticstress[9].Thesemetabolitesprovidediversebiologicalactivitiesforuseinhuman
medicineandthepharmaceuticalindustry[10,11].Theuseofmetabolicengineeringapproachesis
promisingasitopensupthepossibilityofincreasingtheproductionlevelsofdesiredtargeted
phytocannabinoid‐derivedcompounds[10,11].Interestingly,CBDexhibitsstrongantimicrobial
propertiesagainstclinicallyrelevantmultidrug‐resistantbacteria(MDR)suchasthemethicillin‐
resistantStaphylococcusaureus(MRSA)strains,andthedrug‐resistantMycobacteriumtuberculosis
XDR‐TBwithminimuminhibitoryconcentration(MIC)rangingfrom0.5–2μg/mL.Theseactivities
comparefavourablywithstandardantibioticsforthesestrains[12].Essentialoilsofcannabisshowed
moderatepotencywithanIC50of33μg/mLagainstseveralyeasts,includingCryptococcusneoformans,
Candidaglabrata,andC.krusei[13].
BeforethelegalizeduseofC.sativaindifferentcountries,cultivationwasrestrictedtohemp
varietiesofhigh‐yieldingfiberwithsignificantlylowlevelsofthepsychoactiveΔ9‐THC.Therecent
legalizationofcannabisinvariouscountries,includingCanada,Uruguay,andelevenstatesinthe
UnitedStatesfortheproductionofmedicaland/orrecreationalpurposes,havegenerateddemand
notonlyforhighyieldingvarietiesofΔ9‐THCand/orcannabinoidsbutfirmandreliablecannabinoid
profiles.However,thelegalityofcannabisformedicalandrecreationalusesvariesbycountry,in
termsofitspossession,distributionandcultivation,consumptionandusesformedicalconditionsit
canbeusedfor[14,15].
Althoughbeyondthescopeofthisreview,itisworthmentioningtheimportanceofthe
productionmethodsandenvironmentalconditions,allofwhichinfluencetheproductionof
commercialandhigh‐grademedicaland/orrecreationalmarijuanaunderindoorcultivation[16].The
criticalconditionsforoptimalcannabisgrowth,includelightintensity,qualityandphotoperiod[17],
storagetemperaturesandhumidity[18],fertilization[19,20],abioticelicitorsincluding
phytohormones[21,22],andthemicrobiome[23].Forcannabis,smallerquantitiesoftheinvisible
ultraviolet(UV‐B)lightreportedlyelicitsΔ9‐THCaccumulationinleavesandbuds[24,25],however,
theeffectofspectralcompositiononcannabinoidconcentrationremainstenuous.Thestressresponse
isoneofthemajorfactorsthatalterplantchemicalcomposition[26].Droughtstressisknownto
reduceplantgrowthsignificantlybutcanalsoincreasesecondarymetabolitecontent[27].For
cannabisandhempplants,thereisinconclusiveevidencelinkingdroughtordecreasedhumidityto
increasedcannabinoidandΔ9‐THCproduction[28,29].Moreworkisneededtounderstandbetter
theroleofwaterstressincannabinoidandTHCproduction.
Thisreviewaimstocharacterizethemicrobialdiversityassociatedwithhempandmarijuana,
showwithrecentexamplesthediversityofmicrobialcommunities(endophytes)thatinternalizetheir
tissues,andlistthebenefitsthattheyconfertotheirhosts.Wealsohighlightthevaluesofthe
biologicallyactivecompoundsproducedbyendophytesthatcontributetoincreasedplantfitnessand
toleranceagainstbioticandbioticstress.Moreover,weprovidesomeevidencethatthemicrobial
bioactivecompoundsproducedbysomeendophytesarederivativesand/oranalogsoftheir
associatedhostplants.
Microorganisms2020,8,3553of15
2.TheMicrobiome
Themicrobiomeisatermthatdescribesthecollectivegenomeofmicrobialcommunities,theso‐
calledmicrobiota,whichisassociatedwithhumans,animals,andplants.Duringrecentyears,the
impactofmicrobialcommunitiesonshapingthehostimmunesystemandfitnessoftheirhosthas
gainedattention[30].Thecompositionofmicrobiotaresidinginahostisaffectedbyenvironmental
conditionssuchastemperature,pH,andnutrientavailability[31].Theoveruseofxenobioticsin
agriculture,alongwiththeemergenceofantibioticandpesticide‐resistancestrainsinagricultureand
humanmedicine,canaffectthehostcapacitytointeractproperlywiththemicrobiota[30].Compared
tothenumberofstudiesonthemicrobiotaofhumansubjects,thereisaminimalnumberofstudies
focusingoneconomicallyagriculturalcrops.Itisbecausethemicrobiotaofagriculturalorganismsis
affectedbyplantspeciesandgenotypes,developmentalstages,rootexudation,soiltype,and
environmentalconditions.
Nevertheless,gutandrootmicrobiotasharecommonalitiesconcerningtheregulationofhost
geneexpression[32,33],enhancementofmetaboliccapacitiesoftheirhoststhroughcatabolicgenes
[34,35],andsuppressionofharmfulpathogens[36].Thesearefewillustrationsofthecommonalities
betweenrootandgutmicrobiota.Theliteratureonthistopicisfoundinrecentreviews[37,38].
Strategicandappliedresearchontheimpactofmicrobialcompositionconcerninghumanhealth
recognizestheroleofprebioticsthatincludeschangesinthestructureanddiversityofthemicrobiota
andstimulationoftheactivityofhealth‐promotingbacteriasuchasLactobacillusandBifidobacteria
[39,40].Oneofthehottopicsingutmicrobiotaisthenutritionalstrategyofaddingdietary
phytochemicalcompoundssuchasthesecondarymetabolites,flavonols,andquercetin,whichcan
influencetheimmunefunctionofthehostphysiology[41,42].Itisworthwhilementioningthat
flavonoidsandquercetinareimportantphytochemicalsincannabis,andtheircombinationmakes
thempotentantioxidants[7].Dataontheantioxidantpotentialofnoncannabinoidsarebasedonin
vitrostudies.Undoubtedly,theireffectsinvolvingclinicaltrialsdeserveattention.
ThePlantMicrobiome
Plants,includingcannabishostdistinctbeneficialmicrobialcommunitiesonandinsidetheir
tissues,designatedtheplantmicrobiotafromthemomentthattheyareplantedintothesoilasseed.
Theplantmicrobiomeiscomposedofspecificmicrobialcommunitiesassociatedwiththerootsand
thesoilsurroundingtheroots(i.e.,therhizosphere),theair‐plantinterface(i.e.,thephyllosphere),
andtheinternaltissuesoftheplant,theso‐calledtheendosphere[43,44].Seedsharbourdiverse
groupsofmicrobiotathatareasourceofbio‐inoculumforjuvenileplantspromotingprotection
againstbioticandabioticstressatseedgerminationandlaterstages[45,46].Verticaltransmissionof
endophytesfromseedstoseedlingsoccursinrice,wheat,andbioenergycrops[47,48].Eachofthese
microhabitatsprovidessuitableconditionsformicrobiallife,whichalsohasarespectivefunctionfor
thehost.Plantmicrobiomeisacontributingfactortoplanthealthandproductivity[49].Anincreasing
bodyofevidencehighlightstheimportanceofplantmicrobiomeasasystemicboosteroftheplant
immunesystembyprimingacceleratedactivationofthedefencesystem[50].Manystudiesfocused
ontherhizospheremicrobiomeduetothesoil‐derivedmicrobialdiversitysurroundingtheroot,and
apotentialsourceforselectingbeneficialmicrobesthatpositivelyaffectplanthealth[49,51,52].
Severalreviewsaddressedtheroleoftherhizospheremicrobiomeinconferringdisease
suppressivenessandimprovingdroughtresistance[49,53,54];othersstudiedcontributingchemical
componentstoselectiveenrichmentofmicroorganismsintherhizosphere[55,56].Generally,above‐
groundplantmicrobiotamostlyoriginatedfromthesoil,seed,andairadaptanendophyticlifestyle
inhabitingtissuesoftheplantinternallyandplayvitalrolesinplantdevelopmentandfitness.These
microbialcommunitiesthatinternallyinhabitplanttissues,arereferredtoasendophytes,andplaya
crucialroleinplantdevelopmentandgrowth[57].Inthisreview,weusethetermendophytebased
onthedefinitionofPetrinitosignify‘allorganismsinhabitingplantorgansthatatsometimeintheir
lifecancolonizeinternaltissueswithoutcausingharmtotheirhosts[58].
Microorganisms2020,8,3554of15
3.TheFunctionsofPlantMicrobiomeareEssentialfortheHost
Thereisaconsiderableamountofinformationonthefunctionalroleofmicrobialcommunities
associatedwithplantsandtheirinternaltissues.Plant‐growthpromotingrhizobacteria(PGPR)and
endophytesstimulateplantgrowthbyproducingphytohormonessuchasauxins[50]gibberellins
(GAs)abscisicacid(ABA),andethylene(ET),orbymodulatingtheplant’sendogenous
phytohormonelevels[59,60].Undergreenhouseconditions,PGPRfavouredplantgrowthand
development,aswellasplantsecondarymetabolitesaccumulationand,consequently,antioxidant
capacity.Seedandroot‐exudatedflavonoidsareinducersforthenodulationgenesinrhizobia‐
legumeinteractions,andinmycorrhizationofhostplants[61,62]whichremarkablyiscomparableto
themodulationofgutmicrobiotabydietaryflavonoids.
Ingeneral,Proteobacteria,andespeciallyγ‐Proteobacteria,suchasPseudomonasandPantoeaare
thedominantendophyticbacteriaisolatedfromavarietyofplantspecies[63].Moreover,Gram–
positiveandGram‐negativebacteria,includingPseudomonas,Azospirillum,Azotobacter,Streptomyces,
Enterobacter,Alcaligenes,Arthrobacter,Burkholderia,andBacilluscouldenhancetheplantgrowthand
suppressphytopathogens[64].DiversestrainsofPseudomonas,Bacillus,Arthrobacter,andPantoea
speciesassociatedwithsoybeanandwheatrootsexhibitedgrowth‐promotionpropertiessuchas
phytohormoneproduction,mineralsolubilization,andtheproductionoftheenzyme1‐amino
cyclopropnae‐1‐carbixylate(ACC)deaminase[65,66].ACCdeaminasereducestheendogenouslevel
ofthestresshormoneETbylimitingtheamountofplantACCdeaminase,andpreventsET‐induced
rootgrowthinhibition.Inreturn,itpromotesplantgrowthandloweringstresssusceptibility,in
return,resultinginmorenitrogensupplyforbacteria[67].
Aswithbacterialendophytes,fungalendophytescanfacilitatemineralnutrientuptake,promote
plantgrowthanddevelopment,andinducedefenceresistanceagainstpathogens[68,69].
Furthermore,theyenhanceabioticstresstolerance,notably,thedarkseptateendophyticfungus,
Curvulariasp.providedthermalprotectionforhostplantathightemperature[69].Indeed,bacteria
andnonmycorrhizalfungihavetheadvantageofaxenicpropagationthatplacesthemasanideal
modeloftheagri‐horticultureapplication.
Oneofthetoolstocontrolplantpathogenswiththeleastimpactontheenvironmentis
biocontrol.Therearenumerousexamplesofbiocontrolactivitiesofbacterialandfungalendophytes
againstpathogeninvasionanddiseases[43,70,71].Variousmechanismsunderliethebeneficialeffects
ofbacterialendophytesontheirhosts.Theseincludeantibioticproduction,inductionofhost
defences,andimmunityviainducedsystemicresistance(ISR),parasitism,competition,andquorum
sensing[72].Equally,endophyticfungicanprotectplantsagainstpathogensbytriggeringhost
resistanceviasystemicacquiredresistanceandISR[73,74],orbyantibiosisandmycoparasitism[71].
4.TheMicrobiomeofHempandMarijuana
Understandingmicrobialpartnershipswithindustrialhempandmedicalandrecreational
marijuanacaninfluenceagriculturalpracticesbyimprovingplantfitnessandproductionyield.
Furthermore,marijuanaandhempareattractivemodelstoexploreplant–microbiomeinteractionsas
theyproducenumeroussecondarymetaboliccompounds[75].Together,theplantgenomeandthe
microbialgenomeinsideplanttissues(i.e.,theendorhiza)thatformstheholobiontisnowconsidered
asoneunitofselectioninplantbreeding,andalsoacontributortoecologicalservicesofnutrient
mineralizationanddelivery,protectionfrompestsanddiseases,andtolerancetoabioticstress[76].
Increasingevidencesuggeststhatthehostgenotypeinfluencesthecompositionandfunctionof
certaincriticalmicrobialgroupsintheendorhiza,which,inturn,affectshowtheplantreactsto
environmentalstresses[45]withplanttraitsessentialforhostingandsupportingbeneficialmicrobes.
Particularly,populationsofrhizosphericbacteriaindiseasesuppressivesoilsareenrichedandactas
thefirstlineofdefenceinthehostplantagainstrootpathogens,therebyactivatingsecondary
metabolitebiosyntheticgeneclustersthatencodeNRPSsandPKSstoenhancethelevelofdefence
metabolites[77].Agrowingbodyofevidencesignalsthatatwo‐stepselectionmodelwhereplant
typeandsoiltypearethemaindriversofdefiningsoilmicrobialcommunitystructure[78,79].The
soiltypedefinesthecompositionoftherhizosphereandrootinhabitingbacterialcommunities,
Microorganisms2020,8,3555of15
whereasmigrationfromtherhizosphereintotheendorhizatissueisdependentonplantgenotype
[80].Accordingly,theinfluenceofsoiltypeandplantgenotypeonthemicrobialcommunitystructure
ofmarijuanaofferssupportofthetwo‐tiersystemmodelwherebysoiltypeisadeterminantof
microbialcommunitiesintherhizosphere,andcannabiscultivarsareafactorofcommunitystructure
intheendorhiza[23].Thisviewthattherhizosphericmicrobiomeinfluencestheselectionofthenext
generationcannabiscultivarsthatareresilienttobioticandabiotictypesofstressopensupanew
approachofbreeding.Ofparticularinterest,thecommunitystructureofendorhizacorrelates
significantlywithcannabinoidconcentrationandcomposition[23].Futurestudiesonusingmicrobial
communitiesofcannabisnotonlyincreasefitnessbutaugmentderivedmetaboliteproductionthat
areworthpursuing.
4.1.FungalEndophytesAssociatedwithDifferentOrgansofHempandMarijuana
Thediversityoffungalandbacterialendophytesassociatedwithdifferenttissuesofhempand
marijuanasampledfromvariousgeographicandecologicalregionsislistedinFigure1.Almostall
ofthenonsymbioticfungalendophytesreportedbyseveralstudiesbelongedtotheAscomycetes,
exceptfortwostudiesthatreportedthepresenceofstrainsbelongingtotheBasidiomycetes,suchas
Irpex,Cryptococcus[81]andSchizophyllumcommune[82].Dependingonthegeographicalregion,the
abundanceoffungalendophytesassociatedwithcannabistissuesvaried.Forexample,the
abundancenumberoffungalstrainsbelongingtoAspergillus,Penicillium,Phoma,Rhizopus,
Colletotrichum,Cladosporium,andCurvulariainleafsamplesfromHimachalPradesh,India[83]was
higherascomparedtothoseinstemsandpetioles[83].Similarly,thefungalstrainsCochliobolusand
AureobasidiumisolatedfromCanadianhempsampleswereabundantinleaftissue[81].Leaf,twig,
andbudtissuesofBedrocanBVMedicinalmarijuanafromtheNetherlandswereassociatedwith
endophyticcommunitiesbelongingtothePenicilliumspecies(predominantly,Penicilliumcopticola),
Eupenicilliumrubidurum,Chaetomiumglobosum,andPaecilomyceslilacinus[84].Differentspeciesof
Aspergillus(A.niger,A.flavus,andA.nidulans),Penicillium(P.chrysogenumandP.citrinum),andsome
pathogens,suchasRhizopusstolonifer,Alternariaalternata,andCladosporiumsp.werefoundin
marijuanastemtissues[83].Moreover,strainsbelongingtoAlternaria,Cryptococcus,Aspergillus,
Cladosporium,andPenicillium[81,83,85]wereisolatedfrommarijuanaandhemppetioles,whereas
AureobasidiumandCladosporiumwereisolatedfromhempseeds[81].Intensivemycorrhizationof
hemprootsbythearbuscularmycorrhizal(AM)fungi,Diversisporasp.,Funneliformismosseae,
Funneliformisgeosporum,Glomuscaledonium,andGlomusoccultumenabledtheplanttotoleratesoils
contaminatedwithphosphogypsumandsewagesludge,andrespondedpositivelyregarding
biomassproduction[86].Itishighlyprobablethathempselectivelyestablishedrelationshipswith
mycorrhizalfungitocounteractabioticstressthroughsymbiosis.
Microorganisms2020,8,3556of15
Figure1.ThemostcommonendophytesharbouredindifferenttissuesofCannabissativaplants
obtainedfromdifferentgeographicallocations.
4.2.BacterialEndophytesCompositioninDifferentOrgansofC.sativa
ThemicrobialcommunityofbacterialendophytesassociatedwithdifferentcultivarsofC.sativa
belongtoϒ‐proteobacteriaandα‐proteobacteria,includingPseudomonadaceae,Oxalobacteraceae,
Xanthomonadaceae,andSphingobacteriales,andallarewell‐knownendophyticbacteriawhich
substantiateobservationsfromotherplantsystems(Figure1)[87].Themostabundantstrainsisolated
fromleavesbelongtoPseudomonasandBacillus.Namely,Bacilluslicheniformis,Bacillussubtilis,Bacillus
pumilus,andBacillusmegateriumformedthemostabundantGram‐positivebacterialendophytes
populationintheleaf[81,88].StrainsofPantoeaandStaphylococcuswereassociatedexclusivelywith
cannabispetioles[81],whilestrainsofPantoea,Staphylococcus,Bacillus,andEnterobacterwereisolated
fromtheseed[81].ThemostprominentisolatedgenerafromrootsincludedAcinetobacter,
Chryseobacterium,Enterobacter,Microbacterium,andPseudomonas[87].
Thesefindingspromptedustofocusonwhethercannabis‐associatedbacterialandfungal
communitiescould(i)increasehempandmarijuanayield,(ii)controlplantpathogensinfectionof
cannabisplants,andpromotediseaseresistance,(iii)modulatetheproductionofcannabissecondary
metabolites.
5.Endophytes,AsCannabisMicrobialBiostimulants
Associated‐bacterialendophyteswithplantspeciescanpromoteplantgrowthinplantsvia
severalmechanisms:Nitrogenfixation,siderophoreproductiontochelateironandmakeitavailable
toplantroots,mineralsolubilizationmainlyphosphorusandcalcium,andproductionofseveral
phytohormonesincludingauxins,ABA,cytokinins,andGAs[75,79,89,90].Theproductionofsuch
bioactivemetabolitescanenhancehostplantgrowthandtolerateenvironmentalstresses.Thereare
limitedstudiesontheuseofgrowth‐promotingbacterialendophytesandtheireffectoncannabis
growthandyield.Pagnanietal.[91]evaluatedthesuitabilityofmultispeciesconsortiumconsisting
ofAzospirillumbrasilense,Gluconacetobacterdiazotrophicus,Herbaspirillumseropedicae,andBurkholderia
ambifariaisolatedfromrootsorstemsofcorn,sorghum,sugarcane,andbermudagrass[92]toenhance
hempbiomass.Thebacterialconsortiumfavouredplantgrowthdevelopmentandtheaccumulation
ofsecondarymetabolites(i.e.,CBDandTHC).Conantetal.[93]reportedonsignificantmarijuana
budyieldof16.5%andplantheightasaresultoftreatmentwiththemicrobialbiostimulant
Microorganisms2020,8,3557of15
MammothPTM,amultispeciesconsortiumcomprisedoffourbacterialtaxaEnterobactercloacae,
Citrobacterfreundii,Pseudomonasputida,andComamonastestosteroni[94].Inthecaseoffungal
endophytes,rootinoculationofhempbyAMfungienhancedtoleranceofhemptoaccumulateCd,
Ni,andCr[95].
Mostoftheabovefindingsillustratetheuseofendophyticbacteriaisolatedfromplantspecies
otherthanhempormarijuanawiththeabilitytotriggersomephysiologicalplantresponses.Our
laboratory,alongwithotherresearchers,hasreportedonthediversityofendogenousfungaland
bacterialendophytesandtheabundanceoftaxonomicgroupsindifferenttissuesofhempand
marijuanawithgrowthpromotioncapabilities(Table1)andbiologicalcontrolpotential(Table2)[81–
84,87,96].SomeoftheseisolateswereabletotriggertheproductionofIAA‐likemoleculesintheplant,
reinforcingthenotionthatbeneficialendophytesmodulateplantdevelopmentandgrowththrough
theproductionofphytohormones.However,themechanismbehindthisisnotfullyclarified.
Performingexperimentswithendophytesasgrowthelicitorswouldfacilitatetheevaluationof
secondarymetabolitesprofiles,particularlyforTHC,cannabinoidscompounds,andterpenesof
cannabisplantsinoculatedwithendophytes.
Table1.Plantgrowthpromotingbacteriaandfungiassociatedwithcannabisandtheirmodeof
action.
OrganismActivityReferences
Bacillussp.Psolubilizing
J
oeetal.2016[97]
B.amyloliquefaciensGAsproductionShahzadetal.2016[98]
PantoeavagansMOSEL‐t13IAAproductionAfzaletal.2015[87]
PseudomonasfulvaBTC6‐3PsolubilizingandIAA Scottetal.2018[81]
P.geniculataMOSEL‐tnc1IAAproductionAfzaletal.2015[87]
SerratiamarcescensMOSEL‐w2IAAproductionAfzaletal.2015[87]
Bipolarissp.CS‐1IAAandGAsproductionLubnaetal.2019[96]
IAA:Indoleaceticacid;Gas:Gibberellins;P:Phosphate.
Duetopastlegalrestrictionsontheproductionofmarijuanaandhemp,growthpromotiontrials
applyingendogenousmicrobiomeisolatedfromhempandmarijuanaarefew.Itseemsreasonableto
hypothesizethatendogenousendophyticbacteriaandfungipossessthegeneticinformationto
triggerphenotypicdrasticgrowthpromotion,andpositivelyincreasecannabissecondary
metabolitesintheirrespectivehostsascomparedtoendophytesisolatedfromdifferentplantspecies.
WiththelegalizationofmarijuanainCanadaandothercountries,intensiveinvestigationsonhow
hormone‐likemoleculesproducedbyendophytesinfluenceplantadaptationandgrowthbecome
possible.
Table2.Cannabisendophyteswithantagonisticeffectsagainstpathogens.
OrganismTargetpathogenActivityReferences
Fungi
PenicilliumcopticolaL3TrichotheciumroseumGrowthinhibitionKusarietal.2013[84]
PaecilomyceslilacinusA3
AlternariaalternataCN1
Aspergillusniger2
Botrytiscinerea
Fusariumsolani
Curvularialunata
Growthinhibition
Growthinhibition
Growthinhibition
Kusarietal.2013[84]
Qadrietal.2013[82]
Gautametal.2013[83]
Bacteria
PseudomonasfulvaBTC8‐1BotrytiscinereaCellulase,HCNSiderophoreScottetal.2018[81]
P.orientalisBTG8‐5BotrytiscinereaCellulase,IAA,
SiderophoreScottetal.2018[81]
Paenibacillussp.MOSEL‐w13
A
spergillusniger
FusariumoxysporumGrowthinhibitionAfzaletal.2015[87]
Microorganisms2020,8,3558of15
6.CannabisEndophyteswithAntagonisticEffectAgainstPathogens
Therearelimitedbioprospectingstudiesonantagonisticactivityofmicrobialendophytes
associatedwithhempandmarijuanaagainstinvadingpathogensandcontaminatingmycotoxigenic
fungi[81,84,87].Thesestudiesusedthebioprospectingrationalethathempandmarijuanacontain
medicinalcompoundsthatmightalsoharbourcompetentmicrobialendophytescapableofproviding
healthbenefitstothehostplant.Thehemp‐associatedstrainsofPseudomonasfulva(BTC6‐3andBTC8‐
1)andPseudomonasorientalis(BTG8‐5andBT14‐4),exhibitedantifungalactivitiesagainstBotrytis
cinereaindualconfrontationassays[81].Thesestrainsaretopproducersofhydrogencyanide(HCN),
cellulose,siderophore,IAA,andcouldsolubilizeP[81].Additionally,Pseudomonasstrainsproduce
well‐characterizedsecondarymetabolitesasdiffusibleantibiotics,includingphenazinessuchas
phenazine‐1‐ carboxylicacid(PCA),2,4‐diacetylphloroglucinol(DAPG),pyocyanine,pyoluteorin,
pyrrolnitrin,phloroglucinols,lipopeptides,andthevolatilemetaboliteasHCN[99].Allthese
attributesmakePseudomonasstrainseffectivebiocontrolagents.Theendophyticbacterialstrains,
BacillusmegateriumB4,BrevibacillusborstelensisB8,Bacillussp.B11,andBacillussp.B3,employ
quorumquenchingasastrategytodisruptcell‐to‐cellquorumsensingsignalsinthetargetorganism
[88].Thisstrategyprovidesdefenceagainstplantpathogensandpreventsthepathogenfrom
developingresistanceagainstthebioactivesecondarycompoundsproducedbytheplantandorthe
endophytes.
Thecannabisendophytes,PaecilomyceslilacinusA3,Penicilliumsp.T6,andP.copticolaL3
successfullyinhibitedthegrowthofcannabispathogens,B.cinerea,andTrichotheciumroseum[84].The
endophyticstrainsofPaenibacillussp.andPantoeavaganssuccessfullyantagonizedthepathogen
Fusariumoxysporumindualconfrontationassays[87].Takentogether,thesestudies,althoughlimited
inscope,revealthepotencyofendophytesincannabisplants,andtheirapplicationsholdgreat
promisenotonlyasbiocontrolagentsagainsttheknownandemergingphytopathogensofcannabis
plantsbutalso,asasustainableresourceofbiologicallyactiveandnovelsecondarymetabolites.
Thesebioactivemetabolitesareanidealsubstituteforchemo‐pesticide notonlytosupportlow
pesticideresiduelevelsincannabisflowersbutalsoforadoptingthezero‐tolerancepolicyofpesticide
residuesincompliancewithgovernmentregulatorybodies[100].
7.EndophytesofMedicinalPlantsasSourcesofPlantsSecondaryMetabolites
Anexhaustivelistofsomeofthesameantimicrobialnaturalproductsbiosynthesizedby
endophytesastheirhostplantisdescribedintherecentreviewbyMartinez‐Klimovaetal.[101].The
pharmaceuticalmoleculessuchastheantitumordrugs,vinblastineandvincristine[102],the
anticancerdrugcamptothecin[103],theaneoplasticpaclitaxel[104],andtheinsecticideazadirachtin
[105]areamazingexamplesofthesignificanceandimportanceofpotentiallyvaluablesecondary
metabolitesproducedbyendophytes.
Thereiscompellingevidencethatboththeplantandtheirendophytescanproduceacollection
ofsecondarymetabolitesfromsimilarprecursors,possiblyasanadaptationofthehostenvironment
[106].Someexamplesincludepodophyllotoxin[107,108],camptothecin,andstructuralanalogs
[103,109].Someoftheseendophytescanbiochemicallyproducecompoundssimilaroridenticalto
thoseproducedbytheirhostplants.Itisproposedthatsuchamolecularbasismayattributeto
horizontalgenerecombinationortransferduringtheevolutionaryprocess.Forexample,theability
ofthetaxol‐producingfungusClasdosporiumcladosporioidesMD2associatedwiththehostplantTaxus
mediaisattributedtothegene10‐deacetylbaccatin‐III‐10‐O‐acetyltransferase.Thisgeneplaysarole
inthebiosyntheticpathwayoftaxolandbearsa99%resemblancetothehostplantgene[106].The
latterendophyticfungusbeingthesourceofthisimportantanticancerdrug.Thebiosynthesisofthe
insecticideazadirachtinAandBbythefungalendophyteEupenicilliumpurviumisolatedfromthe
Indianneemplantlendsanotherevidenceontheabilityofendophytestoproducesimilarhostplant
metabolites[105].Therecentprogressinthemolecularbiologyofsecondarycompoundsandthe
cloningofgenesofendophyticmetabolitesofferinsightintohowtheplantandendophytegenesof
encodingthesecondarymetabolitesareorganized.
Microorganisms2020,8,3559of15
7.1.EndophytesModulateSecondaryMetabolitesofMedicinalPlants
Accumulatedevidenceestablishedthatendophytesarecapableofelicitingphysiologicalplant
responses,whichinturninfluencetheproductionofsecondarymetabolitesinthehostplant[110].
TheproductionofbioactivesecondarymetabolitesofRumexgmeliniseedlingsisenhancedthrough
coculturewithendophyticfungi[111].AnendophyticbacteriumPseudonocardiasp.induced
artemisinin(antimalarialdrugs)productioninArtemisiaplant[112].Inoculationofthemedicinal
plantPapaversomniferumL.withamultispeciesconsortiumincreasedthemorphineyieldby
enhancingtheexpressionofCOR,anessentialgeneformorphinebiosynthesis[113].Thealkaloid
drugHuperzineA(HupA)usedtotreatAlzheimer’sdiseaseisnotonlyderivedfromtheHuperzia
serrataplantbutalsoisproducedandbiosynthesizedbythefungalendophytePenicilliumsp.LDL4.4
isolatedfromH.serrata[114].InthelegumeCrotalaria(subfamilyFabaceae),thebiosynthesisof
pyrrolizidinealkaloids(antiherbivore,nematicide)dependsonthenodulationbyBradyrhizobiumsp.
[115].Inanotherexample,thebacterialandfungalendophytesassociatedwiththeAgarwoodtree
(Aquilariamalaccensis)enhancedtheproductionofagarospirol,ahighlysoughtafterproductinthe
pharmaceuticalandperfumeryindustry,withinthreemonthsofartificialinfection[116].Despite
currentresearchontheabilityofendophyticmicroorganismstoproduceplant‐associated
metabolites,theirpotentialisnotfullyexploredandisfarfromexhausted.Exploitingthiscomplex
plant‐microberelationshipcanonlyenhancethesustainedproductionofphytochemicalsbythe
associatedmicroorganisms.
7.2.PossibleModulationofCannabisSecondaryMetabolitebyEndophytes
Endophytesarewellknowntoproducebiologicallyactivesecondarymetabolitesthatmimicthe
effectofthehostplantmetabolitesorproduceprecursorsofhostplantcompoundstoactivatethe
signalingpathwayaimingtomodulatesecondaryplantmetabolites[117].Theyinducethe
productionofphytohormonessuchasABA,GA,andETthatmayprovideasignificantpotentialfor
improvingcannabissecondarymetabolites.Secondarymetabolites,includingTHC,CBN,andCBD,
arethemostprevalentofcannabinoidcompoundsandinherentlyareemployedincannabisstress
responses[118].Thepreciseroleofcannabinoidinplantdefenceisnotyetknown.Theplantgrowth
regulators,includingABA,cycocel,ethephon,GAs,salicylicacid,γ‐Aminobutyricacid(GABA),and
mevinolincanmanipulatecannabinoidbiosynthesisandmodulatingsecondarycannabismetabolites
[22,118–121].
Thepotentialforsecondarymetaboliterecoverycanbeimprovedbytheexogenousapplication
ofinducers.Forexample,theapplicationofplanthormoneGA3at100μMlevelincreasedtheamount
ofTHCandCBD[120].Theexactmechanismofhowtheadditionofexogenoushormonescanaffect
thecontentofTHCandCBDisnotyetunderstood.Oneplausiblehypothesisisthattheexogenous
applicationofGA3contributestotheregulationof1‐aminocyclopropane‐1‐carboxylicacid[92]
content,whichinturnelevatesETlevelsthatleadtohigherTHCandCBDcontents[120].Ethephon,
anotherplantgrowthregulator,increasedTHCcontentofmaleflowers,andCBDcontentoffemale
flowers[118].SuchanincreaseisattributedtoETlevelsthatmayfunctionasaswitchbetweengrowth
andsecondarymetabolitessynthesis.Accordingly,theexogenousapplicationoftwostresssignaling
molecules,salicylicacid(1mM)andGABA(0.1mM)improvedTHCcontentbutdeterioratedCBD
contentsimultaneously.Thiseffectsuggeststhatthesesignalingmoleculescouldaffectthe
cannabinoidbiosynthesispathwaythroughelicitationofexpressionofcriticalgenesleadingto
eventualchangesintheamountofthefinalproducts[22].
Theconcentrationofcannabinoidcompoundscanbeconceivablystimulatedthroughbiotic
elicitationbysymbioticandormutualisticrelationshipswithendophytes.Thisraisesthequestionof
whethertheproductionofidenticalmoleculestoplanthormonesbyendophytesintheplantwould
beusefulaswiththeexogenousapplicationofelicitors.Amixtureoffourbacterialendophytes
significantlyimprovedCBDandTHCcontents[91].EndophytecouldmanipulatethatACC
deaminaselevel,theprecursorofTHCbiosynthesisintheplant[59,67,122].Despitetheseadvances,
themechanismsunderlyingtheregulationofTHCsynthesishavenotbeencompletelyelucidated.
Microorganisms2020,8,35510of15
Itmightbeusefultodrawananalogybetweenthemedicinalplant‐endophyteassociationand
theengagementoftheendophytestoproducestructurallysimilarsecondarymetabolitesofmedicinal
cannabis.However,theexactroleofthenaturalproductsproducedbyendophytesinsidecannabis
fromtheperspectiveofhelpinginplantfitnessisnotpreciselyknown.Unfortunately,thispotential
hasnotyetachieved.
8.ChallengesandFutureDirections
Todate,basicinformationoncannabisendophytesdiversityandcompositionispublished.Most
publicationsarerestrictedtoisolationandidentificationofcannabisendophytes,buttheirbiological
effectsoncannabisgrowthpromotionandmodulatingofsecondarycompoundsareunrevealed.
Thus,itisimperativetounderstandthemicrobialpartnershipswithcannabisasithasthepotential
toaffectagriculturalpracticesbyimprovingplantfitnessandtheproductionyieldofcannabinoids.
Interestingly,theactivemetabolitesofmicrobialendophytespossessexcellentbiologicalactivities
thatnotonlyhavethepotentialtowagewaronplantbioticandabioticstress,butarealsousefulfor
humanhealthtopreventorcurefatalillness.Theaboveobservationshighlightthewealthof
untapped,andasofyetunknownfunctionaltraitsofendophytesharbouringcannabisthatneedto
bediscoveredandcharacterizetheirroleintheenrichmentofcannabissecondarymetabolites.The
importanceofendophyticmicroorganismsproducingcompoundssimilartotheirplantshasgained
momentum.Synthesizedplantcompoundsbymicrobialendophytesarestudiedtoproduce
secondarymetabolitesthatareoriginallyidentifiedintheirhostplants.Theycouldturnoutsome
importantmedicinalcompoundsindependently,whichenablethepharmacologicalindustryto
large‐scalefermentationofcannabinoids,independentofcannabiscultivation.Thisreview
emphasizesthegreatimportanceofmorestudiesoncannabisendophytesandtheirbiological
properties.Theexamplespresentedinthisreviewindicatethatthereisanurgentneedtounderstand
themolecularandbiochemicalmechanismsthatmightelicitsimilarresponsesinbothplantsand
theirassociatedendophytesthatleadtotheproductionofsimilarsecondarymetabolites.
AuthorContributions:Writethefirstdraft,M.T.;writemanysectionsandcorrectedseveraldrafts,S.J.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchwasfundedbytheNaturalSciencesandEngineeringresearchCouncilofCanada,
throughaDiscoverygrant(RGPIN‐2016‐04805)toS.Jabaji,andalsobytheMITACSIT15824ELVProgram‐.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Small,E.Cannabis:Acompleteguide;CRCPress:BocaRaton,UnitedStates,2017;
https://www.crcpress.com/Cannabis‐A‐Complete‐Guide/Small/p/book/9781498761635.
2. Small,E.;Cronquist,A.ApracticalandnaturaltaxonomyforCannabis.Taxon1976,25,405–435.
3. Domke,P.V.;Mude,V.D.Naturalfiberreinforcedbuildingmaterials,Iosr.J.Mech.Civ.Eng.2015.12,104–
107.
4. Yallew,T.B.;Kumar,P.;Singh,I.Slidingwearpropertiesofjutefabricreinforcedpolypropylene
composites.ProcediaEng.2014,97,402–411.
5. Andre,C.M.;Hausman,J.‐F.;Guerriero,G.Cannabissativa:Theplantofthethousandandonemolecules.
FrontPlantSci.2016,7,19.
6. Hanus,L.O.;Meyer,S.M.;Munoz,E.;Taglialatela‐Scafati,O.;Appendino,G.Phytocannabinoids:Aunified
criticalinventory.Nat.Prod.Rep.2016,33,1357–1392.
7. McPartland,J.M.;Russo,E.B.Cannabisandcannabisextracts.J.CannabisTher.2001,1,103–132.
8. Rodziewicz,P.;Loroch,S.;Marczak,Ł.;Sickmann,A.;Kayser,O.Cannabinoidsynthasesand
osmoprotectivemetabolitesaccumulateintheexudatesofCannabissativaL.glandulartrichomes.PlantSci.
2019,284,108–116.
9. Gonçalves,J.;Rosado,T.;Soares,S.;Simão,A.Y.;Caramelo,D.;Luís,Â.;Fernández,N.;Barroso,M.;
Gallardo,E.;Duarte,A.P.Cannabisanditssecondarymetabolites:Theiruseastherapeuticdrugs,
toxicologicalaspects,andanalyticaldetermination.Med.(BaselSwitz.)2019,6,31.
Microorganisms2020,8,35511of15
10. Deshmukh,S.K.;Gupta,M.K.;Prakash,V.;Reddy,M.S.Mangrove‐associatedfungi:Anovelsourceof
potentialanticancercompounds.J.Fungi(BaselSwitz.)2018,4,101.
11. Verpoorte,R.;Contin,A.;Memelink,J.Biotechnologyfortheproductionofplantsecondarymetabolites.
Phytochem.Rev.2002,1,13–25.
12. Appendino,G.;Gibbons,S.;Giana,A.;Pagani,A.;Grassi,G.;Stavri,M.;Smith,E.;Rahman,M.M.
AntibacterialcannabinoidsfromCannabissativa:Astructure‐activitystudy.J.Nat.Prod.2008,71,1427–1430.
13. Wanas,A.S.;Radwan,M.M.;Mehmedic,Z.;Jacob,M.;Khan,I.A.;Elsohly,M.A.Antifungalactivityofthe
volatilesofhighpotencyCannabissativaL.againstCryptococcusneoformans.RecNatProd2016,10,214–220.
14. Schuermeyer,J.;Salomonsen‐Sautel,S.;Price,R.K.;Balan,S.;Thurstone,C.;Min,S.‐J.;Sakai,J.T.Temporal
trendsinmarijuanaattitudes,availabilityanduseinColoradocomparedtonon‐medicalmarijuanastates:
2003‐11.DrugAlcoholDepend.2014,140,145–155.
15. Hall,W.Thefutureoftheinternationaldrugcontrolsystemandnationaldrugprohibitions.Addiction2018,
113,1210–1223.
16. Potter,D.J.Areviewofthecultivationandprocessingofcannabis(CannabissativaL.)forproductionof
prescriptionmedicinesintheUK.DrugTest.Anal.2014,6,31–38.
17. EichhornBilodeau,S.;Wu,B.‐S.;Rufyikiri,A.‐S.;MacPherson,S.;Lefsrud,M.Anupdateonplant
photobiologyandimplicationsforcannabisproduction.FrontPlantSci2019,10,296.
18. Taschwer,M.;Schmid,M.G.DeterminationoftherelativepercentagedistributionofTHCAandΔ9‐THC
inherbalcannabisseizedinAustria–Impactofdifferentstoragetemperaturesonstability.ForensicSci.Int.
2015,254,167–171.
19. Caplan,D.;Dixon,M.;Zheng,Y.Optimalrateoforganicfertilizerduringthevegetative‐stageforCannabis
grownintwocoir‐basedsubstrates.HortscienceHorts2017,52,1307–1312.
20. Bernstein,N.;Gorelick,J.;Zerahia,R.;Koch,S.ImpactofN,P,K,andhumicacidsupplementationonthe
chemicalprofileofmedicalcannabis(CannabissativaL).FrontPlantSci.2019,10,736.
21. Mansouri,H.;Asrar,Z.;Szopa,J.EffectsofABAonprimaryterpenoidsandΔ9‐tetrahydrocannabinolin
CannabissativaL.atfloweringstage.PlantGrowthRegul.2009,58,269–277.
22. Jalali,S.;Salami,S.A.;Sharifi,M.;Sohrabi,S.Signalingcompoundselicitexpressionofkeygenesin
cannabinoidpathwayandrelatedmetabolitesincannabis.Ind.Crop.Prod.2019,133,105–110.
23. Winston,M.E.;Hampton‐Marcell,J.;Zarraonaindia,I.;Owens,S.M.;Moreau,C.S.;Gilbert,J.A.;Hartsel,J.;
Kennedy,S.J.;Gibbons,S.M.Understandingcultivar‐specificityandsoildeterminantsofthecannabis
microbiome.PlosONE2014,9,e99641.
24. Potter,D.J.;Duncombe,P.Theeffectofelectricallightingpowerandirradianceonindoor‐growncannabis
potencyandyield.J.ForensicSci.2012,57,618–622.
25. Magagnini,G.;Grassi,G.;Kotiranta,S.Theeffectoflightspectrumonthemorphologyandcannabinoid
contentofCannabissativaL.MedCannabisCannabinoids2018,1,19–27.
26. Gorelick,J.;Bernstein,N.Chemicalandphysicalelicitationforenhancedcannabinoidproductionin
cannabis.InCannabissativaL.‐BotanyandBiotechnology,2nded.;Chandra,S.,Lata,H.,ElSohly,M.A.,Eds.;
SpringerInternationalPublishing:Cham2017;pp439–456.
27. Gorelick,J.;Bernstein,N.ChapterFive‐Elicitation:Anunderutilizedtoolinthedevelopmentofmedicinal
plantsasasourceoftherapeuticsecondarymetabolites.InAdvancesinAgronomy,2nded.;Sparks,D.L.,Ed.;
AcademicPress,2014;pp201–230.
28. Sharma,G.K.AltitudinalvariationinleafepidermalpatternsofCannabissativa.Bull.TorryBot.Club1975;
102,199–200.
29. Paris,M.;Boucher,F.;Cosson,L.TheconstituentsofCannabissativapollen.Econ.Bot.1975,29,245–253.
30. Brugman,S.;Ikeda‐Ohtsubo,W.;Braber,S.;Folkerts,G.;Pieterse,C.M.J.;Bakker,Peter,A.H.M.A
comparativereviewonmicrobiotamanipulation:LessonsFromFish,Plants,Livestock,andHuman
Research.Front.Nutr.2018,5,80.
31. Ikeda‐Ohtsubo,W.;Brugman,S.;Warden,C.H.;Rebel,J.M.J.;Folkerts,G.;Pieterse,C.M.J.Howcanwe
define“optimalmicrobiota?”:Acomparativereviewofstructureandfunctionsofmicrobiotaofanimals,
fish,andplantsinagriculture.Front.Nutr.2018,5,90.
32. Hooper,L.V.;Wong,M.H.;Thelin,A.;Hansson,L.;Falk,P.G.;Gordon,J.I.Molecularanalysisofcommensal
host‐microbialrelationshipsintheintestine.Science2001,291,881–884.
33. Rudrappa,T.;Czymmek,K.J.;Paré,P.W.;Bais,H.P.Root‐secretedmalicacidrecruitsbeneficialsoil
bacteria.PlantPhysiol.2008,148,1547.
Microorganisms2020,8,35512of15
34. Gérard,P.Metabolismofcholesterolandbileacidsbythegutmicrobiota.Pathogens2013,3,14–24.
35. Rodriguez,H.;Gonzalez,T.;Goire,I.;Bashan,Y.Gluconicacidproductionandphosphatesolubilization
bytheplantgrowth‐promotingbacteriumAzospirillumspp.Naturwissenschaften2004,91,552–555.
36. Ramirez‐Puebla,S.T.;Servin‐Garciduenas,L.E.;Jimenez‐Marin,B.;Bolanos,L.M.;Rosenblueth,M.;
Martinez,J.;Rogel,M.A.;Ormeno‐Orrillo,E.;Martinez‐Romero,E.Gutandrootmicrobiotacommonalities.
ApplEnv.Microbiol2013,79,2–9.
37. Pinton,R.;Varanini,Z.;Nannipieri,P.TheRhizosphere.CRCPress:BocaRaton,UnitedStates,2007;
https://doi.org/10.1201/9781420005585.
38. Sandowsky,M.J.;Whitman,R.L.Thefecalbacteria.ASMPress:WashingtonDC,UnitedStates2011.
39. Gerritsen,J.;Smidt,H.;Rijkers,G.T.;Vos,W.M.de.Intestinalmicrobiotainhumanhealthanddisease:The
impactofprobiotics.GenesNutr.2011,6,209–240.
40. O’Callaghan,A.;vanSinderen,D.Bifidobacteriaandtheirroleasmembersofthehumangutmicrobiota.
FrontMicrobiol.2016,7,925.
41. Carrera‐Quintanar,L.;LopezRoa,R.I.;Quintero‐Fabian,S.;Sanchez‐Sanchez,M.A.;Vizmanos,B.;Ortuno‐
Sahagun,D.Phytochemicalsthatinfluencegutmicrobiotaasprophylacticsandforthetreatmentofobesity
andinflammatorydiseases.Mediat.Inflamm2018,2018,9734845.
42. Marin,L.;Miguelez,E.M.;Villar,C.J.;Lombo,F.Bioavailabilityofdietarypolyphenolsandgutmicrobiota
metabolism:Antimicrobialproperties.BiomedRes.Int.2015,2015,905215
43. Berg,G.;Grube,M.;Schloter,M.;Smalla,K.Unravelingtheplantmicrobiome:Lookingbackandfuture
perspectives.Front.Microbiol.2014,5,148.
44. Turner,T.R.;James,E.K.;Poole,P.S.Theplantmicrobiome.GenomeBiol.2013,14,209.
45. Gopal,M.;Gupta,A.Microbiomeselectioncouldspurnext‐generationplantbreedingstrategies.Front.
Microbiol.2016,7,1971.
46. Khalaf,E.M.;Raizada,M.N.Bacterialseedendophytesofdomesticatedcucurbitsantagonizefungaland
Oomycetepathogensincludingpowderymildew.Front.Microbiol.2018,9,42.
47. Robinson,R.J.;Fraaije,B.A.;Clark,I.M.;Jackson,R.W.;Hirsch,P.R.;Mauchline,T.H.Wheatseedembryo
excisionenablesthecreationofaxenicseedlingsandKoch’spostulatestestingofputativebacterial
endophytes.Sci.Rep.2016,6,25581.
48. Gagne‐Bourgue,F.;Aliferis,K.A.;Seguin,P.;Rani,M.;Samson,R.;Jabaji,S.Isolationandcharacterization
ofindigenousendophyticbacteriaassociatedwithleavesofswitchgrass(PanicumvirgatumL.)cultivars.J
ApplMicrobiol2013,114,836–853.
49. Berendsen,R.L.;Pieterse,C.M.J.;Bakker,P.A.H.M.Therhizospheremicrobiomeandplanthealth.Trends
PlantSci.2012,17,478–486.
50. vanderEnt,S.;vanHulten,M.;Pozo,M.J.;Czechowski,T.;Udvardi,M.K.;Pieterse,C.M.J.;Ton,J.Priming
ofplantinnateimmunitybyrhizobacteriaandβ‐aminobutyricacid:Differencesandsimilaritiesin
regulation.NewPhytol.2009,183,419–431.
51. Weller,D.M.;Raaijmakers,J.M.;Gardener,B.B.M.;Thomashow,L.S.Microbialpopulationsresponsiblefor
specificsoilsuppressivenesstoplantpathogens.Annu.Rev.Phytopathol.2002,40,309–348.
52. Philippot,L.;Raaijmakers,J.M.;Lemanceau,P.;vanderPutten,W.H.Goingbacktotheroots:Themicrobial
ecologyoftherhizosphere.Nat.Rev.Microbiol.2013,11,789–799.
53. Raaijmakers,J.M.;Paulitz,T.C.;Steinberg,C.;Alabouvette,C.;Moënne‐Loccoz,Y.Therhizosphere:A
playgroundandbattlefieldforsoilbornepathogensandbeneficialmicroorganisms.PlantSoil2009,321,
341–361.
54. Marasco,R.;Rolli,E.;Ettoumi,B.;Vigani,G.;Mapelli,F.;Borin,S.;Abou‐Hadid,A.F.;El‐Behairy,U.A.;
Sorlini,C.;Cherif,A.,etal.Adroughtresistance‐promotingmicrobiomeisselectedbyrootsystemunder
desertfarming.PlosONE2012,7,e48479.
55. Bais,H.P.;Weir,T.L.;Perry,L.G.;Gilroy,S.;Vivanco,J.M.Theroleofrootexudatesinrhizosphere
interactionswithplantsandotherorganisms.Annu.Rev.PlantBiol.2006,57,233–266.
56. Doornbos,R.F.;vanLoon,L.C.;Bakker,P.A.H.M.Impactofrootexudatesandplantdefensesignalingon
bacterialcommunitiesintherhizosphere.Areview.Agron.Sustain.Dev.2012,32,227–243.
57. Hardoim,P.R.;vanOverbeek,L.S.;Berg,G.;Pirttilä,A.M.;Compant,S.;Campisano,A.;Döring,M.;
Sessitsch,A.Thehiddenworldwithinplants:Ecologicalandevolutionaryconsiderationsfordefining
functioningofmicrobialendophytes.Microbiol.Mol.Biol.Rev.:Mmbr2015,79,293–320.
Microorganisms2020,8,35513of15
58. Petrini,O.Fungalendophytesoftreeleaves.InMicrobialEcologyofLeaves,2nded.;Andrews,J.H.,Hirano,
S.S.,Eds.SpringerNewYork:1991;pp.179–197.
59. Khan,A.L.;Halo,B.A.;Elyassi,A.;Ali,S.;Al‐Hosni,K.;Hussain,J.;Al‐Harrasi,A.;Lee,I.‐J.Indoleacetic
acidandACCdeaminasefromendophyticbacteriaimprovesthegrowthofSolanumlycopersicum.Electron.
J.Biotechnol.2016,21,58–64.
60. Gagné‐Bourque,F.;Bertrand,A.;Claessens,A.;Aliferis,K.A.;Jabaji,S.Alleviationofdroughtstressand
metabolicchangesinTimothy(PhleumpratenseL.)colonizedwithBacillussubtilisB26.FrontPlantSci.2016,
7,584–584.
61. Maj,D.;Wielbo,J.;Marek‐Kozaczuk,M.;Skorupska,A.Responsetoflavonoidsasafactorinfluencing
competitivenessandsymbioticactivityofRhizobiumleguminosarum.Microbiol.Res.2010,165,50–60.
62. Hassan,S.;Mathesius,U.Theroleofflavonoidsinroot‐rhizospheresignalling:Opportunitiesand
challengesforimprovingplant‐microbeinteractions.J.Exp.Bot.2012,63,3429–3444.
63. Truyens,S.;Weyens,N.;Cuypers,A.;Vangronsveld,J.Bacterialseedendophytes:Genera,vertical
transmissionandinteractionwithplants.Environ.Microbiol.Rep.2015,7,40–50.
64. Lugtenberg,B.;Kamilova,F.Plant‐Growth‐PromotingRhizobacteria.Annu.Rev.Microbiol.2009,63,541–556.
65. Win,K.T.;Tanaka,F.;Okazaki,K.;Ohwaki,Y.TheACCdeaminaseexpressingendophytePseudomonasspp.
enhancesNaClstresstolerancebyreducingstress‐relatedethyleneproduction,resultinginimprovedgrowth,
photosyntheticperformance,andionicbalanceintomatoplants.PlantPhysiol.Biochem.2018,127,599–607.
66. Rascovan,N.;Carbonetto,B.;Perrig,D.;Díaz,M.;Canciani,W.;Abalo,M.;Alloati,J.;González‐Anta,G.;
Vazquez,M.P.Integratedanalysisofrootmicrobiomesofsoybeanandwheatfromagriculturalfields.Sci.
Rep.2016,6,28084.
67. vandePoel,B.;vanderStraeten,D.1‐aminocyclopropane‐1‐carboxylicacid(ACC)inplants:Morethan
justtheprecursorofethylene!FrontPlantSci.2014,5,640.
68. Taghinasab,M.;Imani,J.;Steffens,D.;Glaeser,S.;Kogel,K.‐H.TherootendophytesTrametesversicolorand
PiriformosporaindicaincreasegrainyieldandPcontentinwheat.PlantSoil2018,426,229–348.
69. Redman,R.S.;Sheehan,K.B.;Stout,R.G.;Rodriguez,R.J.;Henson,J.M.Thermotolerancegeneratedby
plant/fungalsymbiosis.Sci.2002,298,1581.
70. Arnold,A.E.;Mejía,L.C.;Kyllo,D.;Rojas,E.I.;Maynard,Z.;Robbins,N.;Herre,E.A.Fungalendophytes
limitpathogendamageinatropicaltree.Proc.Natl.Acad.Sci.2003,100,15649,doi:10.1073/pnas.2533483100.
71. Silva,N.I.;Brooks,S.;Lumyong,S.;Hyde,K.D.Useofendophytesasbiocontrolagents.FungalBiol.Rev.
2019,33,133–148.
72. Eljounaidi,K.;Lee,S.K.;Bae,H.Bacterialendophytesaspotentialbiocontrolagentsofvascularwilt
diseases–Reviewandfutureprospects.Biol.Control2016,103,62–68,doi:10.1016/j.biocontrol.2016.07.013.
73. Busby,P.E.;Ridout,M.;Newcombe,G.Fungalendophytes:Modifiersofplantdisease.PlantMol.Biol.2016,
90,645–655.
74. Burketova,L.;Trda,L.;Ott,P.G.;Valentova,O.Bio‐basedresistanceinducersforsustainableplant
protectionagainstpathogens.Biotechnol.Adv.2015,33,994–1004.
75. Compant,S.;Samad,A.;Faist,H.;Sessitsch,A.Areviewontheplantmicrobiome:Ecology,functions,and
emergingtrendsinmicrobialapplication.J.Adv.Res.2019,19,29–37.
76. AlegriaTerrazas,R.;Giles,C.;Paterson,E.;Robertson‐Albertyn,S.;Cesco,S.;Mimmo,T.;Pii,Y.;Bulgarelli,
D.ChapterOne‐plant–microbiotainteractionsasadriverofthemineralturnoverintherhizosphere.In
AdvancesinAppliedMicrobiology,Sariaslani,S.,MichaelGadd,G.,Eds.AcademicPress:2016,95,1–67.
77. Carrión,V.J.;Perez‐Jaramillo,J.;Cordovez,V.;Tracanna,V.;Hollander,M.;Ruiz‐Buck,D.;Mendes,L.W.;
vanIjcken,W.F.J.;Gomez‐Exposito,R.;Elsayed,S.S.,etal.Pathogen‐inducedactivationofdisease‐
suppressivefunctionsintheendophyticrootmicrobiome.Science2019,366,606.
78. Garbeva,P.;vanVeen,J.A.;vanElsas,J.D.Microbialdiversityinsoil:Selectionofmicrobialpopulationsby
plantandsoiltypeandimplicationsfordiseasesuppressiveness.Annu.Rev.Phytopathol.2004,42,243–270.
79. Berg,G.;Smalla,K.Plantspeciesandsoiltypecooperativelyshapethestructureandfunctionofmicrobial
communitiesintherhizosphere.FemsMicrobiol.Ecol.2009,68,1–13.
80. Bulgarelli,D.;Schlaeppi,K.;Spaepen,S.;vanThemaat,E.V.L.;Schulze‐Lefert,P.Structureandfunctions
ofthebacterialmicrobiotaofplants.Annu.Rev.PlantBiol.2013,64,807–838.
81. Scott,M.;Rani,M.;Samsatly,J.;Charron,J.‐B.;Jabaji,S.Endophytesofindustrialhemp(CannabissativaL.)
cultivars:Identificationofculturablebacteriaandfungiinleaves,petioles,andseeds.Can.J.Microbiol.2018,
64,664–680.
Microorganisms2020,8,35514of15
82. Qadri,M.;Johri,S.;Shah,B.A.;Khajuria,A.;Sidiq,T.;Lattoo,S.K.;Abdin,M.Z.;Riyaz‐Ul‐Hassan,S.
IdentificationandbioactivepotentialofendophyticfungiisolatedfromselectedplantsoftheWestern
Himalayas.SpringerPlus2013,2,8.
83. Gautam,A.K.;Kant,M.;Thakur,Y.IsolationofendophyticfungifromCannabissativaandstudytheir
antifungalpotential.Arch.Phytopathol.PlantProt.2013,46,627–635.
84. Kusari,P.;Kusari,S.;Spiteller,M.;Kayser,O.EndophyticfungiharboredinCannabissativaL.:Diversity
andpotentialasbiocontrolagentsagainsthostplant‐specificphytopathogens.FungalDivers.2013,60,137–
151.
85. McKernan,K.;Spangler,J.;Zhang,L.;Tadigotla,V.;Helbert,Y.;Foss,T.;Smith,D.Cannabismicrobiome
sequencingrevealsseveralmycotoxicfunginativetodispensarygradeCannabisflowers.F1000Res.2015,
4,1422.
86. Zielonka,D.;Sas‐Paszt,L.;Derkowska,E.;Lisek,A.;Russel,S.Occurrenceofarbuscularmycorrhizalfungi
inHemp(Cannabissativa)plantsandsoilfertilizedwithsewagesludgeandphosphogypsum.J.Nat.Fibers
2019,1–11.
87. Afzal,I.,S.Z.,Iqrar,I.Selectiveisolationandcharacterizationofagriculturallybeneficialendophytic
bacteriafromwildhempusingCanola.Pak.J.Bot.2015,5,1999–2008.
88. Kusari,P.;Kusari,S.;Lamshöft,M.;Sezgin,S.;Spiteller,M.;Kayser,O.Quorumquenchingisan
antivirulencestrategyemployedbyendophyticbacteria.Appl.Microbiol.Biotechnol.2014,98,7173–7183.
89. Köberl,M.;Schmidt,R.;Ramadan,E.M.;Bauer,R.;Berg,G.Themicrobiomeofmedicinalplants:Diversity
andimportanceforplantgrowth,qualityandhealth.Front.Microbiol.2013,4,400.
90. Egamberdieva,D.;Wirth,S.;Behrendt,U.;Ahmad,P.;Berg,G.Antimicrobialactivityofmedicinalplants
correlateswiththeproportionofantagonisticendophytes.Front.Microbiol.2017,8,199.
91. Pagnani,G.;Pellegrini,M.;Galieni,A.;D’Egidio,S.;Matteucci,F.;Ricci,A.;Stagnari,F.;Sergi,M.;LoSterzo,
C.;Pisante,M.,etal.Plantgrowth‐promotingrhizobacteria(PGPR)inCannabissativa‘Finola’cultivation:
Analternativefertilizationstrategytoimproveplantgrowthandqualitycharacteristics.Ind.Crop.Prod.
2018,123,75–83.
92. Botta,A.L.;Santacecilia,A.;Ercole,C.;Cacchio,P.;DelGallo,M.Invitroandinvivoinoculationoffour
endophyticbacteriaonLycopersiconesculentum.NewBiotechnol.2013,30,666–674.
93. Conant,R.T.;Walsh,R.P.;Walsh,M.;Bell,C.W.;Wallenstein,M.D.Effectsofamicrobialbiostimulant,
MammothPTM,onCannabissativabudyield.J.Hortic.2017,04,5.
94. Baas,P.;Bell,C.;Mancini,L.M.;Lee,M.N.;Conant,R.T.;Wallenstein,M.D.Phosphorusmobilizing
consortiumMammothP(™)enhancesplantgrowth.PeerJ.2016,4,e2121‐e2121.
95. Citterio,S.;Prato,N.;Fumagalli,P.;Aina,R.;Massa,N.;Santagostino,A.;Sgorbati,S.;Berta,G.The
arbuscularmycorrhizalfungusGlomusmosseaeinducesgrowthandmetalaccumulationchangesin
CannabissativaL.Chemosphere2005,59,21–29.
96. Lubna;Asaf,S.;Khan,A.L.;Waqas,M.;Kang,S.‐M.;Hamayun,M.;Lee,I.‐J.;Hussain,A.Growth‐
promotingbioactivitiesofBipolarissp.CSL‐1isolatedfromCannabissativasuggestadistinctiverolein
modifyinghostplantphenotypicplasticityandfunctions.Acta.Physiol.Plant.2019,41,65.
97. Joe,M.M.;Devaraj,S.;Benson,A.;Sa,T.Isolationofphosphatesolubilizingendophyticbacteriafrom
PhyllanthusamarusSchum&Thonn:Evaluationofplantgrowthpromotionandantioxidantactivityunder
saltstress.J.Appl.Res.Med.Aromat.Plants2016,3,71–77.
98. Shahzad,R.;Waqas,M.;Khan,A.L.;Asaf,S.;Khan,M.A.;Kang,S.‐M.;Yun,B.‐W.;Lee,I.‐J.Seed‐borne
endophyticBacillusamyloliquefaciensRWL‐1producesgibberellinsandregulatesendogenous
phytohormonesofOryzasativa.PlantPhysiol.Biochem.2016,106,236–243.
99. Haas,D.;Keel,C.Regulationofantibioticproductioninroot‐colonizingPseudomonasspp.andrelevance
forbiologicalcontrolofplantdisease.Annu.Rev.Phytopathol.2003,41,117–153.
100. Nate,S.IntotheWeeds:Regulatingpesticidesincannabis.Environ.HealthPerspect.2019,127,042001.
101. Martinez‐Klimova,E.;Rodríguez‐Peña,K.;Sánchez,S.Endophytesassourcesofantibiotics.Biochem.
Pharmacol.2017,134,1–17.
102. Kumar,A.;Patil,D.;Rajamohanan,P.R.;Ahmad,A.Isolation,purificationandcharacterizationof
vinblastineandvincristinefromendophyticfungusFusariumoxysporumisolatedfromCatharanthusroseus.
PlosONE2013,8,e71805‐e71805.
103. Puri,S.C.;Verma,V.;Amna,T.;Qazi,G.N.;Spiteller,M.AnendophyticfungusfromNothapodytesfoetida
thatproducesCamptothecin.J.Nat.Prod.2005,68,1717–1719.
Microorganisms2020,8,35515of15
104. Stierle,A.;Strobel,G.;Stierle,D.TaxolandtaxaneproductionbyTaxomycesandreanae,anendophytic
fungusofPacificyew.Sci.1993,260,214.
105. Kusari,S.;Hertweck,C.;Spiteller,M.Chemicalecologyofendophyticfungi:Originsofsecondary
metabolites.Chem.Biol.2012,19,792–798.
106. Zhang,P.;Zhou,P.‐P.;Yu,L.‐J.AnEndophytictaxol‐producingfungusfromTaxusmedia,Cladosporium
cladosporioidesMD2.Curr.Microbiol.2009,59,227.
107. Puri,S.C.;Nazir,A.;Chawla,R.;Arora,R.;Riyaz‐ul‐Hasan,S.;Amna,T.;Ahmed,B.;Verma,V.;Singh,S.;
Sagar,R.,etal.TheendophyticfungusTrameteshirsutaasanovelalternativesourceofpodophyllotoxin
andrelatedaryltetralinlignans.J.Biotechnol.2006,122,494–510.
108. Eyberger,A.L.;Dondapati,R.;Porter,J.R.EndophytefungalisolatesfromPodophyllumpeltatumproduce
Podophyllotoxin.J.Nat.Prod.2006,69,1121–1124.
109. Shweta,S.;Zuehlke,S.;Ramesha,B.T.;Priti,V.;MohanaKumar,P.;Ravikanth,G.;Spiteller,M.;Vasudeva,
R.;UmaShaanker,R.EndophyticfungalstrainsofFusariumsolani,fromApodytesdimidiataE.Mey.ex
Arn(Icacinaceae)producecamptothecin,10‐hydroxycamptothecinand9‐methoxycamptothecin.
Phytochemistry2010,71,117–122.
110. Pandey,S.S.;Singh,S.;Babu,C.S.V.;Shanker,K.;Srivastava,N.K.;Shukla,A.K.;Kalra,A.Fungal
endophytesofCatharanthusroseusenhancevindolinecontentbymodulatingstructuralandregulatory
genesrelatedtoterpenoidindolealkaloidbiosynthesis.Sci.Rep.2016,6,26583.
111. Ding,C.‐h.;Wang,Q.‐B.;Guo,S.;Wang,Z.‐y.Theimprovementofbioactivesecondarymetabolitesaccumulation
inRumexgmeliniTurczthroughco‐culturewithendophyticfungi.Braz.J.Microbiol.2018,49,362–369.
112. Li,J.;Zhao,G.‐Z.;Varma,A.;Qin,S.;Xiong,Z.;Huang,H.‐Y.;Zhu,W.‐Y.;Zhao,L.‐X.;Xu,L.‐H.;Zhang,S.,
etal.AnendophyticpseudonocardiaspeciesinducestheproductionofArtemisinininArtemisiaannua.Plos
ONE2012,7,e51410.
113. Ray,T.;Pandey,S.S.;Pandey,A.;Srivastava,M.;Shanker,K.;Kalra,A.Endophyticconsortiumwithdiverse
gene‐regulatingcapabilitiesofBenzylisoquinolineAlkaloidsbiosyntheticpathwaycanenhance
endogenousMorphinebiosynthesisinPapaversomniferum.Front.Microbiol.2019,10,925.
114. ThiMinhLe,T.;ThiHongHoang,A.;ThiBichLe,T.;ThiBichVo,T.;vanQuyen,D.;HoangChu,H.
IsolationofendophyticfungiandscreeningofHuperzineA–producingfungusfromHuperziaserratain
Vietnam.Sci.Rep.2019,9,16152.
115. Irmer,S.;Podzun,N.;Langel,D.;Heidemann,F.;Kaltenegger,E.;Schemmerling,B.;Geilfus,C.‐M.;Zörb,
C.;Ober,D.Newaspectofplant–rhizobiainteraction:Alkaloidbiosynthesisincrotalariadependson
nodulationProc.Natl.Acad.Sci.2015,112,4164.
116. Chhipa,H.;Kaushik,N.FungalandbacterialdiversityisolatedfromAquilariamalaccensistreeandsoil,
inducesAgarospirolformationwithin3monthsafterartificialinfection.Front.Microbiol.2017,8,1286.
117. Kusari,P.;Kusari,S.;Spiteller,M.;Kayser,O.Cannabisendophytesandtheirapplicationinbreedingand
physiologicalfitness.InCannabissativaL.‐BotanyandBiotechnology,2nded.;Chandra,S.,Lata,H.,ElSohly,
M.A.,Eds.SpringerInternationalPublishing:Cham,2017;419–437.
118. Mansouri,H.;Salari,F.;Asrar,Z.Ethephonapplicationstimulatescannabinoidsandplastidicterpenoids
productioninCannabissativaatfloweringstage.Ind.Crop.Prod.2013,46,269–273.
119. Mansouri,H.;Salari,F.InfluenceofmevinolinonchloroplastterpenoidsinCannabissativa.Physiol.Mol.
Biol.Plants:Int.J.Funct.PlantBiol.2014,20,273–277.
120. Mansouri,H.;Asrar,Z.;Amarowicz,R.Theresponseofterpenoidstoexogenousgibberellicacidin
CannabissativaL.atvegetativestage.ActaPhysiol.Plant.2011,33,1085–1091.
121. Mansouri,H.;Asrar,Z.EffectsofabscisicacidoncontentandbiosynthesisofterpenoidsinCannabissativa
atvegetativestage.Biol.Plant.2012,56,153–156.
122. Etesami,H.;MirseyedHosseini,H.;Alikhani,H.A.Bacterialbiosynthesisof1‐aminocyclopropane‐1‐
caboxylate(ACC)deaminase,ausefultraittoelongationandendophyticcolonizationoftherootsofrice
underconstantfloodedconditions.Physiol.Mol.Biol.Plants:Int.J.Funct.PlantBiol.2014,20,425–434.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(http://creativecommons.org/licenses/by/4.0/).