Chapter

A Fast Gas Sensing Layer Working at Room Temperature for IOT in Air Quality Scenario

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The work deals with a technique adopted to calibrate in laboratory chemiresistor gas sensing film based on graphene that work at room temperature installed on a micro sensor board for applications in open air and IOT scenario. From the study in controlled environment the beginning of poisoning due to chemisorption can be estimated for the sensing layer and is possible to avoid harmful exposure to the analite during the calibration.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Here, we present a room temperature operating chemi-sensor based on a graphene film that shows sensitivity to NO2 up to a 50 parts-per-billion (ppb) with extremely limited interference from relative humidity and can be also calibrated in a sub-parts-per-million (ppm) range with a response and recovery time of few seconds. The device has been fabricated using as active material, a solution of graphene nanosheets suspended in N-methyl-pyrrolidone drop casted on an alumina substrate with gold interdigitated electrodes. The derivative of the device response is found to be univocally correlated to NO2 concentrations from 100 ppb up to 1000 ppb and the sensor can therefore be calibrated in this same range.
Article
This paper presents an overview of the work done on graphene in recent years. It explains the preparation techniques, the properties of graphene related to its physio-chemical structure and some key applications. Graphene, due to its outstanding electrical, mechanical and thermal properties, has been one of the most popular choices to develop the electrodes of a sensor. It has been used in different forms including nanoparticle and oxide forms. Along with the preparation and properties of graphene, the categorization of the applications has been done based on the type of sensors. Comparisons between different research studies for each type have been made to highlight their performances. The challenges faced by the current graphene-based sensors along with some of the probable solutions and their future opportunities are also briefly explained in this paper.
Article
Wearable electronics is expected to be one of the most active research areas in the next decade, therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, light-weight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.