ArticlePDF Available

Abstract

This is a Special Issue on AI Governance with a Forword written by Paul Nemitz (EU Commission). It gathers 8 research papers on this topic.
IS SN 2626 -373 4
DELPHI INTERDISCIPLINARY REVIEW
OF EMERGING TECHNOLOGIES
AIGovernance
PaulNemitz,EuropeanCommission
Technologyand(economicandpolitical)powerareenteringintoan
everclosersymbiosis.Atechnologythatknowsmoreaboutmanand
theworldthanmanknowsabouthimself,andthatisgivenevermore
decision-makingpowers,leadstoamassiveasymmetryofknowledge
andpowerintherelationshipbetweenmanandmachine.Classical
modelsofactionanddecision-makingindemocraticsocietiesare
challengedbythesedevelopments.
Thequestionoftechnicalpowerandthecontroloftechnicalpoweris
raisedinanewway .Whowilldecideinfuture?And,asShoshanaZuboff
asks,'Whodecides,whodecides?'
Whentechnologychangesthepowertoshapethingssoradically ,itis
notsurprisingthatthefundamentalintellectualandculturalconcepts
onwhichmodernsocietiesarebasedaresubjectedtoastresstest.
Delphiisapioneeringinterdisciplinaryreviewofemergingtechnologiesasseen
throughtheperspectivesofexpertsfromthefieldsofscienceandtechnology,
ethics,economics,businessandlaw.Inspiredbytheideatoencourageinclusive,
thoughtfulandsometimesunsettlingdebatesonthemanyopportunitiesand
challengescreatedbytechnologicalprogress,theinternationalquarterlyreview
bringstogetherauthorswithdifferentprofessionalbackgroundsaswellas
opposingviews.ContributionstoDelphicomeincompactformatsandaccessible
languagetoguaranteealivelydialogueinvolvingboththinkersanddoers.
DELPHI INTERDISCIPLINARY REVIEW
OF EMERGING TECHNOLOGIES
2019|VOLUME2|NUMBER4
AIGovernance
TowardsanIndexofDigital
Responsibility
EvaThelisson,Jean-HenryMorinand
JohanRochel
AIandOnlineIntermediationPlatforms
ConciliatingEconomicEfficiencyand
EthicalIssues
FrédéricMartyandThierryWarin
AISafety
ClassificationSchemasforArtificial
IntelligenceFailures
PeterJ.ScottandRomanV .Y ampolskiy
2 0 1 9
|
V O L U M E 2
|
N U M B E R 4 D E L P H I I N T E R D I S C I P L I N A R Y R E V I E W O F E M E R G I N G T E C H N O L O G I E S
BIWEEKLY NEWS ON EU DATA PROTECTION
Sign up lexxion.eu/en/newsletter/
DATA PROTECTION INSIDER
Powered by EDPL and edited by
Dara Hallinan and Diana Dimitrova,
this free newsletter provides you with
up-to-date information and insights on
Data Privacy, Data Protection and GDPR related issues.
Let’s talk competition law!
Follow us now:
coreblog.lexxion.eu
Ocial blog of the
European Competition and Regulatory Law Review
Delphi4|2019IContents
Contents
Editorial155
EvaThelisson
F o r e w o r d
PowerinTimesofArtificialIntelligence158
PaulNemitz
A r t i c l e s
TheRighttoanExplanation161
AnInterpretationandDefense
MaëlPégny,EvaThelissonandIssamIbnouhsein
AIGovernance:DigitalResponsibilityasaBuildingBlock167
TowardsanIndexofDigitalResponsibility
EvaThelisson,Jean-HenryMorinandJohanRochel
AIEthicsforLawEnforcement179
AStudyintoRequirementsforResponsibleUseofAIattheDutchPolice
LexoZardiashvili,JordiBieger,FrancienDechesneandVirginiaDignum
ClassificationSchemasforArtificialIntelligenceFailures186
PeterJ.ScottandRomanV .Y ampolskiy
AnAGIwithTime-InconsistentPreferences200
JamesD.MillerandRomanY ampolskiy
AIforSustainableDevelopmentGoals207
NicolasMiailhe,CyrusHodes,ArohiJain,NikiIliadis,SachaAlanocaandJosephinePng
TheUseofAIbyOnlineIntermediationPlatforms217
ConciliatingEconomicEfficiencyandEthicalIssues
FrédéricMartyandThierryWarin
SustainableAISafety?226
Nadisha-MarieAliman,LeonKester,PeterWerkhovenandSoenkeZiesche
M i s c e l l A n e o u s
ImprintII
MastheadIII
Delphi4|2019 IIImprint
Publisher
LexxionVerlagsgesellschaftmbH
Güntzelstraße63·10717Berlin·Germany
Phone:+4930/814506-0·F ax:+4930/814506-22
www.lexxion.eu
Typeset
AutomatictypesettingbymetiTEC-software
me-tiGmbH,Berlin
Delphiannualsubscription*rates2019(4issues)
RegularPrice
printedversiononly417,00
printedversion+onlineedition(incl.archive)**471,00
onlineeditiononly(incl.archive)**410,00
Startups
printedversiononly165,00
printedversion+onlineedition(incl.archive)**198,00
onlineeditiononly(incl.archive)**158,00
Students
printedversion+onlineedition(incl.archive)***98,00
onlineeditiononly(incl.archive)***72,00
*PricesincludePostageandHandling.EUMemberStates:V ATwillbe
addedifapplicable.
**Multi-useronlineacessviaIPauthentication(IP-range).
***Singleuseronlineaccessviausernameandpassword.
Delphiissuppliedunderourtermsofsaleandsupply .
Copiesofourtermsandconditionsareavailableuponrequest.
LexxionVerlagsgesellschaftmbH.V ATReg.No.DE209981990.
Forfurtherinformationpleasecontact
info@lexxion.eu
Tel.:+4930/814506-0·Fax:+4930/814506-22
Contributions
arewelcomeandshouldbesubmittedaccordingtotheDelphi
authorguidelines.Anysuchcontributionisacceptedonthe
understandingthattheauthorisresponsiblefortheopinions
expressedinit.Moreinformationsavailableatdelphi.lexxion.eu.
Photocopying
Allrightsreserved.Nopartofthisjournalmaybereproducedin
anyformwhatsoever,e.g.byphotoprint,microfilm,orany
othermeans,withoutpriorpermissionofthepublisher.This
journalwascarefullyproducedinallitsparts.Nevertheless,
authors,editorsandpublisherdonotwarranttheinformation
containedthereintobefreeoferrors.Readersareadvisedto
keepinmindthatstatements,data,illustrations,procedural
detailsorotheritemsmayinadvertentlybeinaccurate.
OwnershipandshareholdingspursuanttoSection7lit.aNo.2
andSection2No.6oftheBerlinPressAct:Shareholderof
LexxionVerlagsgesellschaftmbHisDr.W olfgangAndreae,
Publisher,Berlin.
Thisjournalmaybecitedas[2019]Delphi.
ISSN(Print)2626-3734·ISSN(Online)2626-3742
e d i t o r - i n - c H i e F
CianoAydin
UniversityofTwente,theNetherlands
A s s o c i A t e e d i t o r s
FrancescaBosco
WorldEconomicForum,Switzerland
SarahFischer
DeutscheGesellschaftfürInternationale
ZusammenarbeitGmbH,Germany
FlorianKrausbeck
ambriteAG,Switzerland
AnnaLaesser
ImpactHubBerlin,Germany
MatthiasLamping
MaxPlanckInstituteforInnovationand
Competition,Germany
VinceMadai
CharitéBerlin,Germany
IdaRust
UniversityofTwente,theNetherlands
Yueh-HsuanWeng
TohokuUniversity,Japan
CeesZweistra
DelftUniversityofTechnology,theNetherlands
e d i t o r i A l B o A r d
SteffenAugsberg
Justus-Liebig-UniversitätGießen,GermanEthics
Council,Germany
WoodrowBarfield
ProfessorEmeritus,ChapelHill,USA
AubreydeGrey
SENSResearchFoundation,USA
WilliamEchikson
CentreforEuropeanPolicyStudies,Belgium
PaulNemitz
EuropeanCommission,Belgium
VuyiswaM’Cwabeni
SAP,Germany
NishantShah
ArtEZUniversityoftheArts,theNetherlands
StefanLorenzSorgner
JohnCabotUniversity,Italy
RobvandenHovenvanGenderen
VUUniversityAmsterdam,theNetherlands
StevenUmbrello
InstituteforEthicsandEmergingTechnologies,
Italy
AnnaZeiter
eBayInc.,Switzerland
e X e c u t i V e e d i t o r s
ClaraHausin
LexxionPublisher,Germany
hausin@lexxion.eu
JakobMcKernan
LexxionPublisher,Germany
mckernan@lexxion.eu
Delphi4|2019155 Editorial
Editorial:TheCentralRoleofStatesfor
BuildingaBalancedAIGovernance
Thedisruptivenatureofartificialintelligencetransformsalmostallhumanactivities
andrequiresacohesiveandsustainableAIgovernanceframeworkonaglobalscale.
Thisframeworkshouldaimatmanagingboththeopportunitiesandtherisksderived
fromthistechnologyinaproportionatemanner.Thedigitaleconomyhasincreased
theneedforatrustedecosystem,includingreinforcedregulationsandadditionalcon-
straintsforallactorsdealingwithartificialintelligenceatwhateverpartofthevalue
chain.Asaresult,publicactorshaveinitiatedaprocessthatpromotesabalancedap-
proachbeneficialforallinnovation,societyandindividuals.Itispartofaconcerted
internationalframeworkatEU,OECDandG20levelandalsoincludesisolatedprojects
likethe‘ModelAIGovernanceframework’fromSingapore.
ThegoodwillofStatesiskeyinensuringaneffectivegovernanceofartificialintelli-
gence.Thepeerreviewmechanismorreviewsbyindependentexpertscanplayacen-
tralroleintheeffectiveimplementationoftheseframeworks.DependingonhowAI
willbeused,itcanindeedeithercontributetoachievingtheUN’sSustainableDevel-
opmentGoals(SDGs)orleadtonegativesocietalexternalitieslikeharmtocitizens,
misuseofdata,themanipulationofpeople(deepfakemisuse)ormasssurveillance.
Withintheframeworkoftheirsovereigntyofpositiveresponsibilityandprotection,
Statesareresponsiblefortheimplementationofthesenon-bindingprinciplesorguide-
linesonartificialintelligenceatanationallevel.AIgovernancesafeguardsusers’in-
terestofdigitalservicesandproducts,aswellascitizens’interestsinpublicspaces.
OneofthemostrecentexamplesistheEUprojecttobanfacialrecognitiontechnolo-
giesforupto3to5years,followingtheClearviewscandal.Thisbanisfoundedon
theGeneralDataProtectionRegulationandtheright‘nottobesubjectofadecision
basedsolelyonautomatedprocessing,includingprofiling,whichproduceslegalef-
fects’.
WhiletheconstraintonStatestoimplementtheAIprinciplesandguidelinesasco-
ordinatedattheinternationallevelhasnotchangedinnature,thispressuremainly
politicalseemstohaveincreased,asisthecaseinnon-cooperativeterritoriesintax
matters.
AIGovernanceShouldConsidertheLongTermPerspectives
Inthewrestlingmatchbetweenexcessofindividualfreedomandthe‘commongood’,
thequestionastowhatconstitutes‘meaningfulgovernance’isapertinentone.TheAI
TransparencyInstituteholdstheopinionthatmeaningfulgovernanceviaabinding,di-
rectlyenforceableregulationisnecessarytoensurethesafetyofAI.Itshouldbepro-
portionate,basedonarisk-basedapproachandrespectdemocraticvaluesandprin-
DOI:10.21552/delphi/2019/4/3
Delphi4|2019 156Editorial
ciples.Integratinglongtermcriteriawithindecisionmakingprocesseswouldalsocon-
tributetomitigatingriskandensuringirreversiblestepsareavoided.
Inparticular,ex-anteandex-postmechanismsshouldbebuiltforasustainableAI
governance,mainlybasedonaccountability,transparency,gooddesign,safetyandli-
ability.Regularriskassessmentsforhighriskprojectspriortomarketdeploymentof
digitalproductsandservicesandlegallybindinginstrumentsshouldbeputinplace
tosafeguardthedemocraticuseofartificialintelligence.Softlawlikequalitylabels
andcertificationmechanismscouldcompletethisframework.
Inaglobalmarketeconomy,notboundbyterritorialbordersandmainlydrivenby
interdependenciesandshorttermindicatorslikestockexchangevalueorpollingda-
ta,longterminterestoffuturegenerationsshouldbeakeycomponentoftheAIgov-
ernanceframework.
CallforMultilateralGovernance,IncludingallPrivateandPublicStakeholders
OurfocusinthisSpecialIssueisonthegovernanceofAIandonGovernanceviaAI.
WerecommendahybridgovernancemethodologybyState(hardlaw)andbythemar-
ket(softlaw),inspiredbytheGDPRandthe108+Convention,inparticularanetwork
ofindependentcontrolauthoritiesandeffectivelegalremedies(classactions).
Inthefirstcontribution,MaelPegnyhighlightstheneedtorecognisearightofex-
planation.Hisarticleoffersapleainfavourofthetransparencyofautomateddecision-
makingasarequirementforasustainabletrustinaquantifiedanddata-drivensoci-
ety.Asheputsit,algorithmsandtrainingdatascrutinyandauditabilityarecorner-
stonesoftrustworthyAI.
WithJohanRochelandJean-HenryMorinwealsopresentaDigitalResponsibility
Indextoquantifytheresponsibilityofeconomicactors.
Inhiscontribution,LexoZardiashviliinvestigateswhyandhowtodeveloparespon-
sibleuseofAIwithinpoliceservicesandbuildagroundworkforhardregulationin
thelawenforcementenvironmentoftheNetherlands.
PeterJ.Scottanalyseshistoricalfailuresofartificialintelligenceandproposesaclas-
sificationschemeforcategorisingfuturefailures,whileJamesD.Millershowshow
time-inconsistencyincreasesthechallengeofbuildinganAGIalignedwithhumani-
ty’svalues.
NicolasMiailheproposesananalysisofspecificusecases,toachieveSustainable
DevelopmentGoals(SDG)andformulatesproposalsformulti-stakeholdercollabora-
tionandnewkindsof‘public-private-people’partnershipswhichwillreconciletech-
nical,ethical,legal,commercial,andoperationalframeworks.Headvancesnewin-
ternationalinitiatives,suchastheGlobalDataAccessFrameworkandtheAI4SDG
CenterspearheadedaspartofawiderinternationalpartnershipcalledAICommons.
FredericMarty’scontributiondealswiththegovernanceofplatforms.Heshowsthat
anincreasinguseofAIcansubstantiallyimproveperformanceinseveralareasand
improvetheleveloftrustinplatformsandadvanceduserdissatisfactiondetectiontools.
Finally,Nadisha-MarieAlimanaddressesthecomplexityofAIgovernancewithsafe-
ty-relevant,ethicalandlegalimplicationsataninternationallevel.Shealsoprovides
novelconstructiverecommendationsforanSDGinformedAIgovernanceandanAI-
Delphi4|2019157 Editorial
assistedapproachtotheSDGendeavour.AIgovernancecouldaimatasustainable
transdisciplinaryscientificapproachinstantiatedwithinacorrectivesocio-technolog-
icalfeedback-loop.Sheemphasisestheneedofastrongeducationandappropriate
institutionsfortherealisationofthispotentiallyrobustAIgovernancestrategy.
AContinuouslyImprovingAIGovernanceLegalFramework
ThisSpecialIssueisafirstcontributiontothediscussionofameaningfulAIgover-
nancelegalframework.Itproposesanoverviewofsomeofthemultifacetedaspects
ofthistopicaswellassomeconcreteproposalstopolicy-makersasawayforwardto-
wardsaneffectivehuman-centredAIgovernance.Theframeworkthatwillbeshaped,
mainlybasedonbilateralandmultilateralagreementsbetweenStates,willrequire
continuousimprovement.
EvaThelisson
GuestEditor
AIT ransparencyInstitute
Delphi4|2019 158ForewordbyPaulNemitz
PowerinTimesofArtificialIntelligence1
ThisissueofDelphiisaboutpowerinconfusingtimes,intimesofartificialintelli-
gence.Itshowswhatthenewtechnologicalpowermeansforthefundamentalfree-
domsofushumansandourdemocracy.AwisestartingpointisthatAImustnotbe
consideredinisolation,butratherinthecontextoftheconcentrationofeconomic
poweranddigitaltechnologicalpowerasitexiststoday.ThisissobecauseAIisde-
velopedanddeployedtoalargeextentbythosemajordigitalplayerscolloquially
calledtheGAFAM(Google,Apple,Facebook,Amazon,Microsoft)whichalreadyhave
astronggriponshapingtheinternetanddigitaltechnologiesasweallusethem.
AIwillbeaddedtoexistingtechnologyandbusinessmodelsandincreasetheirgrip
evenfurther,ifwedonottaketheappropriatemeasuresofregulation.Theanalysisof
AIrequiresaholisticviewofbusinessmodelsofthesedigitaltechnologiesandofthe
powertheyalreadyexerttoday.
WeneedtounderstandnotonlytheoreticalpotentialsbenefitsofAI,whichwithout
doubtexist.Wemustalsoandforemostunderstandthepowerthatiscreatedbythe
combinationofthedifferentdigitaltechnologiesinthehandsofthecorporationsthat
dominatetheinternetandthestate,andwhich,duetotherapidpaceoftechnologi-
caldevelopment,unfoldsitsowndynamicthatchallengesdemocraticprocesses.
Tounderstandthispoweranditsconsequences,aholisticviewisneededwhich
goesbeyondmarketimpacts.Wemustaskwhatitmeansforgovernmentanddemoc-
racythatnearlyallsoftwareforthethinkingandcommunicatingstate,whetheronthe
leveloftheEUorEUMemberStates,isprocuredfromMicrosoftandthatnearlyall
informationisstoredoncloudsystems.90%ofthesesystemsareownedbyUSsup-
pliers,withAmazonaccountingforalmost30%.Wemustalsobeawarethatmore
than90%ofinternetsearchesarecarriedoutonGoogle,whichinturnknowsmore
abouteveryoneindividuallythanindividualsandtheirfamilymembersthemselves.
ThefactthatanevergrowingsectionofsocietyexclusivelygetsitsnewsfromFace-
bookandY ouTubemustalsobeaconcern.WhatwilltheimpactofAI,developedand
deployedbythethusalreadypowerfulcorporationsbeonindividuals,democracy,
governmentsandmarkets?
Technologyand(economicandpolitical)powerareenteringintoanevercloser
symbiosis.Atechnologythatknowsmoreaboutmanandtheworldthanmanknows
abouthimself,andthatisgivenevermoredecision-makingpowers,leadstoamas-
siveasymmetryofknowledgeandpowerintherelationshipbetweenmanandma-
chine.
Classicalmodelsofactionanddecision-makingindemocraticsocietiesarechal-
lengedbythesedevelopments.Thequestionoftechnicalpowerandthecontrolof
technicalpowerisraisedinanewway.
DOI:10.21552/delphi/2019/4/4
1InMarch,PaulNemitzandMatthiasPfefferarepublishingPrinzipMenschMacht,FreiheitundDemokratieimZeitalterderKünstlichen
Intelligenz(DietzVerlag)<https://prinzipmenscheu.wordpress.com/>.AnEnglisheditionisforthcominglaterthisyear.
Theauthoriswritinghereinhispersonalcapacity,notnecessarilyrepresentingthepositionoftheEuropeanCommission.
Delphi4|2019159 ForewordbyPaulNemitz
Whowilldecideinfuture?And,asShoshanaZuboffasks,‘Whodecides,whode-
cides?’2
Whentechnologychangesthepowertoshapethingssoradically,itisnotsurpris-
ingthatthefundamentalintellectualandculturalconceptsonwhichmodernsocieties
arebasedaresubjectedtoastresstest.
Wearealreadyexperiencingthesecondstageofthedigital‘revolution’withthecur-
rentupheavalsofpopulism,fakenews,foreignpropagandaandthemanipulationof
companieslikeCambridgeAnalytica,basedonFacebookdata.Andnowthatwelook
forwardtoAIandquantumcomputers,itisworthtakingalookbackatthebeginning
ofthedigitalagetounderstandandlearnwhythegreathopesoffreedomandempow-
ermentofindividualsthatwereassociatedwithithavelargelynotbeenfulfilled.On
thecontrary,wenowliveinaworldnotonlyofunsustainableclimatechangeandpol-
lution,butalsoofanincreasinglyunsustainableconcentrationofpowerandundermin-
ingofdemocracyandindividualfreedom,includinginformationalself-determination.
Inthecurrentsecondphase,wecannolongeraffordthemistakesoftheearlydays
ofdigitaltechnologyandtheglobalInternet.T echnologyandknowledgearedevelop-
ingrapidly,seeminglyexploding(somespeakofanexponentialincrease),whichshould
leadtoatransitiontoawholenewqualityinthenearfuture.
Ontheotherhand,therearethedeliberatelysloweddownprocessesofdelibera-
tivedemocracies.Sloweddown,becauseitisanimportantexperienceofhumanrule,
thatreflectiveanddiscursiveprocessesarevitalbeforeopinion-forminganddecision-
makingprocessesindemocraciesarecompleted.Aconsequenceofthisinsightisal-
sotheseparationofpowersandthetraditionalguaranteesofthefreepress.
Iftechnologycreatesfactsanddevelopsfasterthandemocraciesdecide,doesthat
meanthatinthisgameofhareandhedgehog,technologywillwinforsure?Doestech-
nologyevenhaveitsowndevelopmentallogic,whichisprovingincreasinglyimmune
todemocraticcontrol?T oday,technologyiscreatingfactsatapacethatrisksanswer-
ingthequestionofpowerinitsfavourbythisspeedalone.
Thequestionofwhowillruleinthefutureandwhowillmakethedecisionsmust
beaskedtodayinlightofdevelopmentsinAIandQuantumcomputing.Weriskbe-
ingruledbyAInotonlythroughartificiallyintelligentsystemswhichselfdevelop,
asidentifiedbyStuartRusselandothers,3butalsothroughtheapplicationofthese
technologiesbypowerfulcorporationstodominateourdemocraciesandfreewill,
bothindividualandcollective.
Whoeverwantstoanswerthesequestionswithafirmcommitmenttodemocracy
mustnotonlybringtherepresentativesoftechnologyanddemocracyintoanewcon-
versation.Wealsoneedaclearcommitmenttosupportthegoodfunctioningofde-
mocraticprocessbythe‘T echnicalIntelligentsia’,aclearcommitmenttotheruleby
democracyandtheruleoflawratherthantheruleoftechnologicalpowerandspeed.
Thisalsomeans:Democracymustbewillingtouseitsmostnobletool,thelaw,tothe
settherulesinthisevermoretechnologicallycolonisedworld,includingforAI.
2SoshannaZuboff,TheAgeofSurveillanceCapitalism(ProfileBooks2019)
3StuartRussel,HumanCompatible,ArtificialIntelligenceandtheProblemofControl(Viking/Penguin2019)
Delphi4|2019 160ForewordbyPaulNemitz
InhisseminalStudyof1976,4EugenKogon,afrequentpanellistwithAdornoand
Horkheimer,theprotagonistsofthecriticalFrankfurtSchool,showedthatthepolitical
attitudesofengineersinGermanyarecharacterisedbyahighdegreeofresponsibili-
tyforthepoliticalandsocietalimpactsoftheirinventions.Itwasthetimeinwhich
‘ThePhysicists’bytheswissplayrightDürrenmatthadbeenreadinschoolbyallchil-
drenontheirpathtoanentryexamforuniversity.Itisthissenseofresponsibility,
whichatthetimewasspurredbythethreatofweaponsofmassdestructionandatom-
icpower,whichtodaymustbemobilisedforfendingoffthethreatstoindividualfree-
dom,fundamentalrights,democracyandsustainabilitythroughuncheckedtechno-
logicalpoweranditsconcentrationinthehandsoffewpowerfulcompanies,atthe
topofthestockexchange.
PaulNemitz
Directorate-GeneralforJusticeandConsumers
EuropeanCommission
4EugenKogon,DieStundederIngenieure(Düsseldorf1976)
Delphi4|2019161 TheRighttoAnExplanation
TheRighttoanExplanation
AnInterpretationandDefense
MaëlPégny,EvaThelissonandIssamIbnouhsein*
TheopacityofsomerecentMachineLearning(ML)techniqueshaveraisedfundamental
questionsontheirexplainability,andpromptedthecreationofaresearchsubdomain,Ex-
plainableArtificialIntelligence(XAI).Opacitywouldbeparticularlyproblematicifthose
methodswereusedinthecontextofadministrativedecision-making,sincemostdemocrat-
iccountriesgranttotheircitizensarighttoreceiveanexplanationofthedecisionsaffect-
ingthem.Ifthisdemandforexplanationwerenotsatisfied,theveryuseofAImethodsin
suchcontextsmightbecalledintoquestion.Inthispaper,wediscussanddefendtherele-
vanceofanidealrighttoanexplanation.Itisessentialbothfortheefficiencyandaccount-
abilityofdecisionprocedures,bothforpublicadministrationandprivateentitiescontrol-
lingtheaccesstoessentialsocialgoods.Weanswerseveralobjectionsagainstthisright,
whichpretendthatitwouldbeatbestinefficientinpracticeoratworstplaytheroleofa
legalsmokescreen.Ifthoseworst-casescenariosaredefinitelyintherealmofpossibilities,
theyarebynomeansanessentialviceoftherighttoanexplanation.Thisrightshouldnot
bedismissed,butdefendedandfurtherstudiedtoincreaseitspracticalrelevance.
I.Introduction
Thereisafundamentalambiguityinthecurrentuse
ofthetermexplainabilityintheAIcommunity.On
theonehand,explainabilityor(human)interpretabil-
itydenotesafundamentalscientificproblem,the
problemofunderstandingthebehaviourofcomplex
MLsystems,whichcanleadtothedevelopmentof
sophisticatedtechniques.Ontheotherhand,the
termexplainabilityisalsousedtodenoteapedagog-
icalproblem,theproblemofexplainingtoalayau-
dience,betheypolicy-makersorordinarycitizens,
thebehaviourandoutcomesofthosesystems.Those
twochallengesarenotcompletelyindependent:of
course,acomputerscientistneedstohaveafirmsci-
entificgrasponagivenissuebeforeshetriestogive
apedagogicalexplanationtoalayaudience.They
neverthelessneedtobedistinguishedifwearetoun-
derstandtheconsiderablepedagogicalchallenges
raisedbyMLprocedures.Inthispaper,thetermsex-
planation,explainableandexplainabilitywillhave
thepedagogicalmeaningbydefault.Wewilltalk
aboutdecisionexplainabilitywhentheexplanans
willbeanoutputthatcanbedescribedasadecision.
Theneedforexplainabilityismademoreurgent
bytheuseofopaqueMLtechniquesincontexts
wherethepublichasarighttodemandanexplana-
tionofthedecisionsaffectingthem.1Theuseofsome
ofthemostsophisticatedMLtechniquesasanaidto
decision-makingmightthusbecompromisedifthose
techniquesarenotexplainable.
However,someauthorshaverecentlymadelight
oftherighttoanexplanation,dismissingitasatooth-
lesslegaltoolatbest,orasmokescreengivingtheil-
lusionofarightatworst.Althoughthosearerealpos-
sibilitiesofperversionoftheright,theyarebyno
meansanessentialvice:legalandtechnicalstrate-
giescanbeenforcedtomakeitafruitfullegaltool.
Inordertomakethispoint,wewillfirstexplain
thepoliticalstakesoftherighttoanexplanation(Sec-
tionII).Wewillthenpresenttherecentobjections
tothisright,andshowitspromotersthatwecanas-
DOI:10.21552/delphi/2019/4/5
*MaëlPégny,P ostdoctoralFellow ,ArchivesHenriPoincaré,
UniversitédeLorraine(Nancy),MembreAssociéIHPST(Paris1);
EvaThelisson,UniversityofFribourg,MITConnexionScience,for
correspondence:eva.thelisson@unifr.com;
IssamIbnouhsein,Quantmetry,P aris,forcorrespondence:iib-
nouhsein@quantmetry.com
1Thepersonsaffectedbyanadministrativedecisionmightof
coursebemoralaswellasphysicalpersons.However,explana-
tionscanonlybeprocessedbyhumanbeings.
Delphi4|2019 162TheRighttoAnExplanation
similatethemtoimprovetheconceptionandenforce-
mentofthislegaltool.W ewillfirstexamineVeale
andEdwards'objectionthattherighttoanexplana-
tionmightonlyprovideanillusionofaright(Sec-
tionIII),andFloridietal'sobjectionagainsttherel-
evanceofcounterfactualexplanations(SectionIV).
II.ThePoliticalStakesoftheRighttoan
Explanation
1.TheRelevanceofaRighttoan
ExplanationforGovernment
Transparency
Althoughmostofthispaperdealswithgenericis-
suesofAI-assisteddecision-making,itisimportant
tostresstherelevanceofbureaucraticprocedures.
Bureaucraticprocedures,publicandprivate,areone
ofthemainsurfacesofcontactbetweenthepublic
andsystematizeddecisionprocedures,andassuch
theyareahugeorganisationalandpoliticalissue.
Whenitcomestobureaucraticproceduresingov-
ernment,thereisagenerallegalidealofgovernment
transparency,whichtranslatesintoa‘righttoanex-
planation’:thecitizenshavearighttobegivenanex-
planationoftheadministrativedecisionsaffecting
them.Therighttoanexplanationwementionhere
isagenericphilosophicalideal,notitsparticularand
perhapsflawedimplementationinanygivensystem
ofpositivelaw ,egtheEUGeneralDataProtection
Regulation(GDPR)ortheFrenchLoisurla
Républiquenumérique.However,ourdiscussionof
thisidealrightwillofcoursebeinformedbythepos-
itivelegalsystemsandthechallengesraisedbytheir
application.Thisrighttoanexplanationshouldim-
poseexplainabilityasapre-conditionfortheuseof
AIsystemsinbureaucraticprocedures.
Socialcontracttheoriesclarifywhygovernment
transparencyisapre-requisitetocitizens'trustin
suchprocedures.
Governmenttransparencyofferssomesafeguards
tocitizens:initsEssayConcerningtheTrueOriginal
ExtentandEndofCivilGovernment2,JohnLockear-
guesthattheLawofNaturecommandsthatwedo
notharmothers.Inthisconception,governmentis
basedonthevoluntaryagreementsbetweencitizens
andgovernmenttocareforeachother.Astandardof
duecareobligesthegovernmenttoprotectitsciti-
zens.Ifindividualsconsenttocreateapoliticalsoci-
etyandagovernment,theyreceiveincounterpart
laws,judgestoadjudicatelaws,andtheexecutive
powernecessarytoenforcetheselaws.Therecogni-
tionofarighttoanexplanationispartofasustain-
abilitypolicyforaState,actinginatransparentand
responsiblemanner,ieinreferencetoitsdutyofcare.
Therighttoanexplanationisthuspartofthecon-
ceptofgovernmentaccountability:itwillfacilitate
thedemonstrationbytheuserofabreachofthedu-
tyofcare.
Therighttoanexplanationalsoplaysmanyroles
intheconcreteinteractionsbetweengovernmentand
citizens.Itisofcoursethebasisforappealingfroma
givendecision.Italsoplaysadecisiveroleinraising
awarenessoftheirrightsandinterestsamongciti-
zens.Itisworthbeingremindedthatformanyciti-
zenstheirinteractionwithadministrativeofficialsis
theironlysourceofinformationonthelegalenviron-
mentaffectingthem.Theexplanationofaspecificde-
cisiongivesthemanopportunitytoimprovetheirun-
derstandingofthisenvironment,andconceiveastrat-
egytodefendtheirrightsandinterests.Onemightof
coursethinkofdetrimentaleffectsofthisadaptation
tothelegalenvironment,suchastheexploitationof
legalloopholesfortaxevasion.However,oneshould
notreducethisstrategicadaptationtothosenegative
examples.Thecitizens'abilitytoadapttotheirlegal
environmentisoftenadesirablething,whichisen-
couragedbygovernmentsthroughincentives.Forex-
ample,theUSproposesfinancialandtaxincentives
toencourageitssustainabledevelopmentpoliciesand
promotetheuseofenergy-savingtechnologies.3
Havingdecisionswithoutexplanationswould
thuscutoneofthemainchannelsofcommunication
betweengovernmentandcitizens.Thedebateonex-
plainabilityshouldnotfallpreytoacrudeopposi-
tionbetweenproceduralefficiencyandrespectof
rights.Firstly ,givingexplanationscreatesopportuni-
tytocorrectmanymistakes.Secondly ,procedures
withoutexplanationswouldlosesomeoftheirmain
functionalities,especiallytheirabilitytoincrease
awarenessofrightsandchannelincentives.Admin-
istrationwithoutexplanationwouldnotbesystem-
aticallymoreefficient:itwouldbemaimed.
2JohnLocke,TwoT reatisesofGovernment(PeterLaslett,ed,CUP
1983)
3USGovernment,DatabaseofStateIncentivesforRenewablesand
Efficiency(2019)http://www.dsireusa.org/DSIREaccessed30
January2020
Delphi4|2019163 TheRighttoAnExplanation
Asaconsequence,boththedefendersoffunda-
mentalrightsandthepromotersofgovernmentef-
ficiencyshouldsupportexplainability.
2.RelevanceforPrivateEntities
Ourinsistenceongovernmenttransparencydoesnot
meanthattherighttoanexplanationisirrelevantfor
privateentities.Forthetimebeing,mostpositivelaws
allowprivatecompaniestotreattheirproceduresas
tradesecrets.However,asalgorithmssuchasscoring
systemsusedbybanks,insurancecompaniesandHR
departmentshaveaconsiderableimpactonthegen-
eralpublic,theyshouldalsofall,insomewayoran-
other,underthepurviewofanidealrighttoanexpla-
nation.Onecouldevenventuretosaythatentitiesde-
cidingwhogetsaloan,ajob,ahouseoraninsurance
playadefactogovernmentalfunction,andshouldas
suchbesubjecttosomeformofaccountability.The
peoplehavetherighttounderstandtheprocedural
environmentthatshapestheirlives,regardlessofthe
publicorprivatenatureoftheproceduralagent,or
wewouldotherwise,toquoteF .PasqualeandD.Cit-
ron'sfinewriting,pavethewayto‘anewfeudalor-
derofunaccountablereputationalintermediaries’.4
However,articulatingthelegalconsequencesofsuch
aviewpointwouldbebeyondthescopeofsuchashort
paper(formorelegalreflectionsontheaccountabili-
tyofprivatealgorithmicdecision-making5),asit
wouldentailacarefulexaminationofthetensionbe-
tweentherighttoanexplanationandIPrights.
However,someaspectsoftherighttoanexplana-
tioninpositivelawalreadyapplytoprivateentities,
andareworthyofcomment.Amazonisfacinglawsuits
forthisreason.Anautomateddecisionmakingprocess,
withoutanyhumanintervention,provideswarnings
anddecidesautomaticallytofireemployeesontheba-
sisofinputdata.6Astheproductivitymetricsarepro-
prietary ,employeescannotunderstandonwhichbasis
automateddecisionsaretaken,despitethefactthatthe
decisionshavelegaleffectsontheconcernedperson.
Notransparencyismadeontheprinciplesandvalues
encodedinthedesignofthealgorithms.Theresultof
thislawsuitmayconfirmthelegalrelevanceoftrans-
parencyandexplanation.Basedonthemodernised
Convention108,employeesareentitledtohaveknowl-
edgeonthelogicinvolvedbythealgorithmicdecision
makingprocessandhavetherighttoobject.7
InUKlaw ,therighttoanexplanationmightalso
beinstrumentalinextendingthedutyofcaretopri-
vateactors.InApril2019,theUKpublishedaWhite
PaperonOnlineHarmspresentingstatutorymea-
surestakenbytheUKtoreinforcetheaccountabili-
tyofonlineeconomicactorslikeFacebook,Google,
Snapchat,orFortnite.TheUKrecognisesadutyof
careofonlineeconomicactors.Companieswillbe
heldtoaccountfortacklingacomprehensivesetof
onlineharms,rangingfromillegalactivityandcon-
tenttobehaviourswhichareharmfulbutnotneces-
sarilyillegal.Anindependentregulatorybodywould
enforcethenewregulatoryframeworkandbenefit
fromenforcementpowers.AnannualT ransparency
Reportwillexplainwhichorganisationalmeasures
havebeentakentoavoidharmingtheusers.Inthis
perspective,theexplanationofbureaucraticproce-
duresanddecisionscanbeseenasaduedilligence
elementandasaproofofitsdutyofcare.8
Inthisperspective,theburdenofprooflieswith
thecompanyortheState.Therefore,theOnline
HarmsWhitePaperisanhistoricpaper.Itobliges
thedigitalactors,betheypublicorprivate,tobetrans-
parentandtopublishanannualreportbringingthe
proofthattheybehavedinaresponsiblemannerand
explaininghowtotheusersandtotheState.
III.VealeandEdwards'Objections:An
IllusionofARight?
Intheircomprehensiveandthoroughpapers9,11,Ed-
wardsandV ealehaveformulatedseveralarguments
4FrankPasqualeandDanielleCitron,‘TheScoredSocietyDue
ProcessforAutomatedPredictions’(2014)89WashingtonLaw
Review1
5FrankPasquale,BlackBoxSociety .TheSecretAlgorithmsthat
ControlMoneyandInformation(HarvardUniversityPress2015)
6ColinLecher.,‘HowAmazonAutomaticallyT racksandFires
WarehouseWorkersfor"Productivity"’,(TheV erge,2019)<https://
www.theverge.com/2019/4/25/18516004/amazon-warehouse
-fulfillment-centers-productivity-firing-terminations>accessed30
January2020
7Conseildel'Europe,Convention108(2019)<https://www .coe
.int/fr/web/data-protection/newsroom/-/asset_publisher/
7oll6Oj8pbV8/content/modernisation-of-convention-108>ac-
cessed30January2020
8UKGovernment,OnlineHarmWhitePaper(2019)<https://www
.gov.uk/government/consultations/online-harms-white-paper>ac-
cessed30January2020
9LilianEdwardsandMichaelVeale,‘SlavestotheAlgorithm?’
(2017)16DukeLawandT echnologyReview18
11LilianEdwardsandMichaelV eale,‘EnslavingtheAlgorithm:From
a“RighttoanExplanation”toa“RighttoBetterDecisions?”’
(2018)16IEEESecurityandPrivacy46
Delphi4|2019 164TheRighttoAnExplanation
limitingtherelevanceoftherighttoanexplanation,
anddefendedtheviewthatotherapproachesmight
bemorefruitfultopromotetherightsofgroupsand
individuals.Theyevenwarnedagainstadegeneres-
cenceofthatrightintoanillusionofaright,justas
tickingtheboxofaUserConsentFormcreatesanil-
lusionofconsent:‘thesearchforalegallyenforce-
ablerighttoanexplanationmaybeatbestdistract-
ingandatworstnurtureanewkindof“transparen-
cyfallacy”tomatchtheexistingphenomenonof
“meaninglessconsent”’10.
First,therighttoanexplanationisnotamagical,
one-fits-allsolutiontoeverydataandalgorithm-re-
latedproblem.Insteadofholdingthatrighttosuch
anunrealisticstandard,oneshouldconsideritasa
necessarybutinsufficientconditionfortheprotec-
tionofcitizens'rights,andwonderwhetherone
wouldliketoliveinasocietywhereinstitutionsare
notrequiredtoprovideexplanationsfortheirdeci-
sions.Therighttoanexplanationshouldbepartof
apackageincludingotherapproachesthatareallrel-
evanttoafairalgorithmicsociety,suchas,toname
afew ,therighttoerasure,therighttodataportabil-
ity,structuraldueprocessingovernmentagencies,
auditingbodies,certificationmechanisms,privacy
andfairnessbydesign.
Furthermore,therighttoanexplanationshould
notbeconfusedwithadutytounderstand’.Individ-
ualsubjectsshouldnotbeburdenedwithanobliga-
tiontounderstandalltheproceduresaffectingthem,
asitwouldrepresentacrushingintellectualload.It
willsometimesremainabettersolutiontorelyona
governmentauditingagencyoratrustedexpert:af-
terall,thatiswhatwedowhenwehirealegalcoun-
sel.Therighttoanexplanationshouldnotberead
asadenialofthenecessityofanintellectualdivision
oflaboranddelegationofsaidlabor ,anditshould
notbeusedtoburdentheordinarycitizenwithan
intellectualworkloadnoindividualcanpossiblyface.
However,justasthecomplexitiesofpositivelegal
systemsarenoexcusetomakelawsincomprehensi-
bletoordinarycitizens,thecomplexitiesofsoftware
arenoexcusetomakethemincomprehensibletothe
peopleaffectedbythem.
Finally,weagreewithVealeandEdwardsthatthe
explanationofsomealgorithms,especiallyMLalgo-
rithms,willfaceconsiderableintellectualchallenges,
andmighthavesomefundamentallimitations.
Nevertheless,weobjecttoastrongreadingofV eale
andEdwards'conclusionthatwouldreducetheright
toanexplanationtoanintellectualdeadend,noteven
worthyofexploration.Ourpositionisnotrootedin
apriorioptimismonthechancesofsuccessofexpla-
nation.Itisrootedinthemethodologicalbeliefthat
suchchancescannotbeevaluatedbypurelyapriori
arguments,andmustbetheobjectofathoroughem-
piricalinvestigation(foranexampleofsuchanem-
piricalinvestigation12).Thereal-lifeexplainabilityof
algorithmsdependsonmanyissues,suchasopensci-
entificquestionsonhumaninterpretabilityofcom-
plexmodels,thetypesofquestionsaskedorlikelyto
beaskedbythepublic,theirrelativefrequency ,the
typeofinformationandabstractionleveladequate
toanswerthosequestions,andthetypeofdecision-
makingabilitieswithwhichwewanttoempowerthe
publicthroughthoseexplanations.Thiscomplex
webofissuesisworthbeingexplored.Evenifthe
righttoanexplanationweretofailasapracticalen-
deavor,exploringtheexplainabilityofourdecision
proceduresisafundamentalworkontheintellectu-
aldivisionoflabor,andtheflowofknowledge,or
lackthereof,inoursocialsystem,anditshouldnot
begivenupupon.However ,webelievethatthework
thathasalreadybeendoneinexplainability,suchas
Lage,Isaacandal2018and13,14warrantsthemore
optimisticconjecturethatsomerelevantdemands
forexplanationcanbeanswered.Theexplainability
ofalgorithmicproceduresandtherighttoanexpla-
nationarenotdeadends:theyarevastavenuesyet
tobeexplored.
Furthermore,therighttoanexplanationdoesnot
onlyneedanempiricalinvestigation:itdemandsa
normativereflection.Inourunderstanding,theright
toanexplanationishighlynormativeinatleasttwo
respects.Thefirstisthatitsaimisnottoproduceex-
planationsthatareaccepted,butexplanationsthat
arehonest.Thereisthusanecessarypreliminaryre-
flectiononthenatureofanhonestexplanation,as
opposedtoarhetoricalmovepermittingaquick-and-
easyacceptanceoftheprocedureanditsresults.The
secondistheimportanceofunderstandingnotonly
10ibid81
12IsaacLageetal,AnEvaluationoftheHumanInterpretabilityof
Explanation’(2018)NIPSConference32,Montréal,Canada
13SandraWachteretal,‘CounterfactualExplanationWithout
OpeningtheBlackBox:AutomatedDecisionsandtheGDPR’
(2017)31HarvardJournalofLawandT echnology842
14SandraWachteretal,‘ExplainingExplanationsinAI’(2019)ACM
FAT*19Conference
Delphi4|2019165 TheRighttoAnExplanation
thequestionsthatareaskedbutalsothequestions
thatshouldbeasked.Ifweonlyfocusontheques-
tionsthatarecurrentlyasked,wewillreproducethe
currentbiasesofadministrativepower,wherecer-
tainpopulationshavelittleknowledgeorunder-
standingoftheirrights,littlecontactwithadminis-
trativeinstitutions,orevenahostilerelationwith
them.Thosepopulationsareunlikelytoaskques-
tions,ortoaskthequestionsthatwouldbetrulyhelp-
fultothem.Itisthedutyoftheadministrationtobe
pro-active,toreachouttomarginalisedpopulations,
andtomakeanormativeefforttoguessthekindof
explanationsthatcouldtrulyhelpalloftheaffected
individuals.Thisrequiresadeepnormativereflec-
tiononthefunctionsoftheadministration,itsideal
relationtothepopulationitissupposedtoserve,and
theroleofexplanationinthosefunctionsandrela-
tions.
IV .Floridi'sObjectionsAgainstthe
RelevanceofCounterfactualsforthe
RighttoanExplanation
Inarecentpaper,Floridietal15stronglyobject
againstaparticularmethodtoimplementtheright
toanexplanation,iecounterfactualreasoning.Coun-
terfactualreasoningisaphilosophicalnamefor‘what
wouldhappenif...reasoning.Answeringthoseques-
tionsisobviouslycrucialtounderstandtherole
playedbyvariousfactorsinadecision,andtoem-
powercitizenswiththeabilityofstrategicadapta-
tion.Assuch,theyareavitalpartofvirtuallyanyin-
centivepolicies:citizenscannotadapttheirbehav-
iourtoincentivesiftheydon'tunderstandwhat
wouldhappeniftheyadopttheincentivisedbehav-
iour.Ifitwouldturnoutthatitisimpossibletouse
counterfactualreasoningforcomplexalgorithmic
systems,thentherelevanceoftherighttoanexpla-
nation,ifitwouldnotbecompletelyannihilated,
wouldbedrasticallyreduced.
ItispreciselythepointmadebyFloridietalin
theirrecentpaper,whicharguesthatcounterfactual
explanationswouldprovideverylimitedinter-
pretabilitytothepublicorthetechnicalcommunity .
Counterfactualexplanationscouldactuallybeused
togenerateascroll-downmenu’ofexcusesforille-
galdecisions:insteadofadmittingtheuseofanille-
galfactorx,suchasgender,theculpritcouldchoose
amongnumerous,innocuousfactorstoprovidefake
explanations,suchas‘yourloanwouldhavebeen
grantedifyouhadhigherincome’.Counterfactual
reasoningwouldthenbeinefficientatbest,andtox-
icatworst,andthesamecouldbesaidinalargepart
fortherighttoanexplanation.
Firstofall,thisisactuallyagenericproblemofle-
galexplanation.Acompetent(andshrewd)legalex-
pertisabletoprovideexplanationsfordecisionsthat
makethemlookcompliantwiththelaw,evenifthe
actualreasonsforthedecisionsareillegal.Thatis
particularlyproblematicforindividualdecisions,as
itisthenimpossibletouseordinarystatisticaltools
todemonstratethepresenceofbiases.
Inthecaseofhumandecisions,wedonothaveac-
cesstotheprivacyofanindividual'sbrain:human
decisionsarethusbynatureopaque.Moreoftenthan
notwedonothaveaccesstotheoraldeliberationsof
agivengroup,whichreducestheirtraceability.Ask-
ingforanexplanationisthusprimarilyameansof
pressure,asaremanyinterrogationtechniques:the
personsinchargeofprovidinganexplanationwill
havetocommittoastory,whichmightbedeemed
implausiblethroughfurtherquestioningorthedis-
coveryofnewevidence.Thispressureactsnotonly
asawaytodiscoverwrongdoings,butalsoasade-
terrenttoillegalbehaviour.Thepowerofsuchatool
isofcourselimited,andsomeculpritsmightgetaway
withanillegaldecisionbutagain,that'sagenericle-
galproblem.
Hasthesituationchangedwithautomateddeci-
sion-making?Itisherenecessarytodistinguishbe-
tweencases.Inthemostfavorablecasesthesituation
isalteredforthebetter,asforsomecomputersys-
temswedohaveaccesstothetruereasonsofadeci-
sion.Automateddecisionsystemscanbeprobedin
waysimpossibleforthehumanmind,andiftheright
technicalconditionsofhumaninterpretabilityand
traceabilityaremet,wemighthavedirectaccessto
thetruemotivationsofagivendecision.Moreover,
Floridietal'sobjectionseemstobefoundedonasce-
nariowhereanexplanationcouldalwaysbefreely
chosenfromascroll-downmenuofexcuses.Ifthat
isobviouslyintherealmofpossibility,theextraction
ofthereasonsforautomateddecisionsmightbe
15LucianoFloridietal,‘FromWhattoHow:AnInitialReviewof
ReviewofPubliclyAvailableAIEthicsTools,MethodsandRe-
searchtoTranslatePrinciplesintoPractices’(ArxivPreprint,2019)
<https://arxiv.org/ftp/arxiv/papers/1905/1905.06876.pdf>ac-
cessed30January2020
Delphi4|2019 166TheRighttoAnExplanation
madebyatrustedthirdparty ,possiblyasecureded-
icatedpieceofsoftware,thatwouldactuallywarrant
againstsuchmaneuvers.Inthosecases,therightto
anexplanation,andinparticulartheexplorationof
counterfactuals,wouldevolveinadirectionopposite
tothescenarioexploredintheirpaperinfavorof
moretransparencyandaccountability.Ifitcouldbe
usedtoautomatetheartofexcuse-makingandfor-
malcompliance,automateddecision-makingcould
alsobeusedtoincreasetraceabilityandwarrantthe
accesstogenuineexplanationsandcounterfactual
reasoning.Theallegeddefectofcounterfactualrea-
soningisthusjustadefectofaparticulartechnolog-
icalscenariowhichcouldbeactivelyprevented.
Someothercasesmightofcoursenotbeasfavor-
able.T echnicalconditionsoftraceabilitymightnot
alwaysbemet,evenifthelegislationshouldencour-
ageapositiveevolutiontowardstraceabilitywhen-
evertherighttoanexplanationapplies.Insomecas-
es,thedecisionmightnotbeentirelyautomated,
whichcouldaddmoredegreesoffreedomforacul-
prittomakeupafalseexplanation.Inothercases,
thewilltoexplainanactualdecisionortoexplore
counterfactualdecisionsmightfacethechallenges
raisedbyopacity,makinganindividualdecisionhard
toexplainevenfortheexpert,butthatwouldnotnec-
essarilymakeiteasiertogeneratefakecounterfactu-
als.
Furthermore,Floridietal'sargumentseemstoas-
sumethatforavastmajorityofdecisionsy,itwillbe
possibletofindanarrayoffactorsx0,...,xn-1inorder
toformulatecounterfactualargumentssuchas‘you
wouldhavehadthepositionifyouhadcollegeedu-
cation’or‘youwouldhavebeenconsideredifthis
wereaseniorposition’.Itistheavailabilityofsuch
factorsthatmaketheproductionofexcusespossible,
hidingthetrue(andpossiblyillegal)decisionfactor
xjbehinda‘just-so’story.However,weseenoreason
toassumesuchapossibilityinthevastmajorityof
cases,anditsexistenceisanotherinterestingtopic
forempiricalinvestigation.Furthermore,thosedeci-
sionfactorsmighthaveapre-determined,hierar-
chisedinfluenceonagivenoutcome.Agoodexpla-
nationwillalsoprovidetheuserwiththatinforma-
tion,makingherhardertofoolwitha‘just-so’story.
Forinstance,shemightknowthathervaluesfortwo
factorsareenoughtograntherapositivedecision,
nomatterwhattheothervaluesmightbe.Shemight
alsoknowthatanotherapplicantwithsimilarvalues
hasbeenaccepted,makingherresistanttofakeex-
planations.Itisthusimpossibleinthegeneralcase
topickanyfactortojustifyanydecisionyouwish.If
counterfactualexplanationsaremixedwithexplana-
tionsofthecausalrelevanceofeachfactor,asisthe
caseinsomecurrent‘blackbox’explanationap-
proaches(seereferencesabove),itwillbemuchhard-
ertogeneratefakeexplanationsatwill.Floridiand
al'sobjectionmistakesagainthepeculiaritiesofsome
scenarioforanessentialfeatureofcounterfactualex-
planations.Combinedwiththerelevantinformation,
counterfactualreasoningcouldbeameanstoresist
disingenuousexplanationsinsteadofameanstogen-
eratethem.
V .Conclusion
ThediscussionofAIassisteddecisionmakingand
explainabilityshouldnotgetstuckintoacrudeop-
positionbetweenrespectofrightsandefficiency .Ex-
planationsarenotadecorativefeatureofbureaucrat-
icprocedures:theyareamajorcommunicationchan-
nelbetweengovernmentanditscitizens,andfor
manyofthosecitizens,theonlychanneltheyhave.
Explanationsallowtoincreasecitizens'awarenessof
theirrightstoopennewopportunities,tocorrectmis-
takesandtoincentivisebehaviour.
Itisalltooeasytobedismissivewiththerightto
anexplanation.Therightisbynomeansasufficient
warrantofafairalgorithmicsociety ,anditcouldeas-
ilybepervertedandemptiedofitstruemeaningin
practice.However,itiswithoutadoubtanecessary
componentofafairalgorithmicsociety.Ithastobe
consideredintherightlegalandtechnicalcontextto
beassessedfairly ,andavoidmistakingthefeatures
ofaparticularscenarioforessentialfeaturesofthis
right.Dismissingtherighttoanexplanationinthe
discussionofalgorithmicfairnesswouldbeaterri-
blemistake,asitwouldleaveoutofpublicsighta
rightwhichneedscarefulinterpretation,vigorousen-
forcementanddedicatedtechnicalworktobearits
fruits.
Delphi4|2019167 TowardsanIndexofDigitalResponsibility
AIGovernance:DigitalResponsibilityasa
BuildingBlock
TowardsanIndexofDigitalResponsibility
EvaThelisson,Jean-HenryMorinandJohanRochel*
TherapiddevelopmentofAI-basedtechnologiessignificantlyimpactsalmostallhumanac-
tivitiesastheyaretiedtoalreadyexistingunderlyingsystemsandservices.Inordertomake
surethatthesetechnologiesareatleasttransparentifnotprovablybeneficialforhuman
beingsandsocietyandrepresentatrueprogress,AIgovernancewillplayakeyrole.Inthis
paper,weproposetoreflectonthenotionof‘digitalresponsibility’toaccountfortherespon-
sibilityofeconomicactors.Ourobjectiveistoprovideanoutlineofwhatdigitalresponsi-
bilityisandtoproposeaDigitalResponsibilityIndextoassesscorporatebehavior.Wear-
guethataDigitalResponsibilityIndexcanplayacentralroleinrestoringtrustinadata-
driveneconomyandcreateavirtuouscircle,contributingtoasustainablegrowth.Thisper-
spectiveispartofAIgovernancebecauseitprovidesaconcretewayofquantifyingtheim-
plementationofAIprinciplesincorporatepractice.
I.Introduction
AItechnologiesnowunderliealmostallsystemsand
servicesusedintransforminghowwelive,learn,
work,engage,vote,socialise,travel,help,etc.AItech-
nologiessufferfromalackoftransparency,which
raisesthequestionofhowliabilityriskswillbetak-
enintoconsiderationbypolicy-makers.1Inaddition,
companiesleveragingtheunderlyingdataarebuild-
ingempiresconcentratingpoweroverpeopletoa
levelneverachievedbefore.2Thisbecomesallthe
moresignificantasafewactorsdominatingthemar-
ketholdthedataofbillionsofpeople,potentiallyin-
fluencingtheirlivesandpractices.Aprominentex-
ampleisFacebook,whichinbarelytenyearsrose
frombeinganinternalcollegedatingsitetothe
biggestglobalsocialnetworkserviceeverbuiltwith
almostonethirdoftheworldpopulationbeingreg-
isteredandsharingtheirmostintimateinformation.3
Corporateresponsibilityisaconceptlargerand
olderthanthatappliedinthedigitalfield.TheUNC-
TAD(UnitedNationsConferenceonTradeandDe-
velopment)hasdiscussedformorethan25yearsthe
SocialResponsibilityofT ransnationalCorporations
withallstakeholdersinvolved(Governments,Corpo-
rations,CivilSociety,etc.).Thispaperwillfocuson
digitalresponsibilityonly.Thisisaveryimportant
conceptinevermoredigitalizedsocieties.Inboth
caseswehavesimilardimensions:politics,ethics,le-
galissues,humanrights,finance,geopolitics,etc.
AIplaysanimportantroleinthedigitalizationof
oursocieties.Thistransitionisanongoingprocess
weneedtocopewithandorganiseamongstdiffer-
entstakeholderstoachieveabalancepreventingone
stakeholderfromdominatingtheothersattheirex-
pense.Broadly ,weidentifythreemajorstakeholders:
privatecompanies(industry),publicauthorities
(state)andindividuals(society).7Implementing
DOI:10.21552/delphi/2019/4/6
*EvaThelisson,MassachusettsInstituteofTechnology,MITCon-
nexionScienceLab,Boston,USA,Co-FounderoftheAITrans-
parencyInstitute.Forcorrespondence:<evathelisson@proton-
mail.com>.
Jean-HenryMorin,InstituteofInformationServiceScience(ISS),
CentreUniversitaired’Informatique(CUI),GenevaSchoolof
SocialSciences,UniversityofGeneva,Geneva,Switzerland.For
correspondence:<jhmorin@unige.ch>.
JohanRochel,FacultyofLaw,UniversityofZürich;ethix-Labfor
InnovationEthics,Zurich,Switzerland.Forcorrespondence:
<johan.rochel@gmail.com>.
1IriaGiuffrida,‘LiabilityforAIDecision-Making:SomeLegaland
EthicalConsiderations’(2019)88F ordhamLRev439
2JamesEBessen,‘ThePolicyChallengeofArtificialIntelligence’
(2018)CPIAntitrustChronicle,BostonUnivSchoolofLaw ,Law
andEconomicsResearchPaperNo18-16
3RogerMcNamee,Zucked:W akingUptotheF acebookCatastro-
phe(HarperCollins2019)
Delphi4|2019 168TowardsanIndexofDigitalResponsibility
checksandbalanceswhichenableeconomicgrowth
andinnovation,whilefosteringtherespectofdemo-
craticandhumanvaluesandprinciplesisthecore
purposeofdesigningwhatiscalledAIgovernance’.4
Inthisgovernancescheme,weneedstronglegal
andregulatoryframeworks.Ex-antemechanisms
mightconcernpre-authorisationbysafetyauthori-
tiesforhighriskproductsandservices.Ex-postmech-
anismspertaintosafeguards(egprivacyandhuman
rightsimpactassessments)andeffectiveremedies
(egclassactions)toprotectindividuals’rightsen-
ablingasustainabledigitalsociety .TheEUhasgiv-
enastrongsignalinthisdirectionwiththeGeneral
DataProtectionRegulationreform(GDPR)basically
applyingtoallstatesaslongasthedataconcernsEU
datasubjects.TheEUGuidelinesonAITrustworthi-
nessareanotherexampleofthispoliticalwilltoco-
operateattheEUlevelandtoengageinasustainable
andresponsiblewayintheuseofartificialintelli-
gence.AttheOECDlevel,thePrinciplesonArtificial
IntelligencesetstandardsforAIandpromoteartifi-
cialintelligencethatisinnovativeandtrustworthy
andthatrespectshumanrightsanddemocraticval-
ues.InJune2019,theG20adoptedhuman-centered
AIPrinciplesthatdrawfromtheOECDAIPrinciple.
TheIEEEisalsodevelopingethicalstandardsmain-
lyforintelligentandautonomoussystems.
AspartofthisAIgovernancescheme,wealsoneed
toconsiderprivatecompaniesasduty-bearers.But
howshouldprivatecompaniesdefinetheirrespon-
sibility?Wearguefortheneedtointroduce‘digital
responsibility’asacriteriatoapproachtheresponsi-
bilityofcompanieswithrespecttodigitalmatters,
andAIinparticular.Wewillshowhowthisconcept
mightbeusedasanoperationalisingconceptforcor-
porateresponsibilitytocontributetoasustainable
andhuman-centereddigitalsociety.Thisapproach
focusedontheresponsibilityofcorporationsisthe
waywethinkwewillhavethebestchancetocon-
tributetotheissueasitiscomplementarytodevel-
opingstronglegalandregulatoryframeworks.
Thiscontributionisorganisedasfollows.First,we
willpresentanddiscusstheconceptofresponsibili-
tyandtheirbearerswithaparticularfocusonthe
corporatesector.Secondly,wewillintroducedigital
responsibilityandproposeawayofclassifyingits
components.Thirdly,wewilloutlineatentativede-
signofadigitalresponsibilityindexanddescribe
howitcouldbeusedinawaytohelporganisations
bothassesswheretheystandandhelpthemprogress
onapathtowardsimprovingtheirdigitalresponsi-
bility.
II.ResponsibilityinGeneralandits
RelationtotheDigitalRealm
Inordertodefine‘digitalresponsibility’wemustfirst
understandresponsibilityingeneralbeforeaddress-
ingthespecificfeaturesofdigitalresponsibility.Ina
nutshell,theconceptofdigitalresponsibilityrepre-
sentsaspecificcategoryoftheconceptofresponsi-
bilityusedinmoralphilosophy.
Wefocusonaspecifictypeofresponsibilityhold-
er,namelycompanies.5Inthecompany-focusedlit-
erature,digitalresponsibilityisoftenunderstoodas
‘corporatedigitalresponsibility’,meaningakindof
digitalCorporateSocialResponsibility(CSR).6We
complementthisliteraturebytakingabroaderview,
highlightingthedifferentfundamentalmeaningsof
responsibilitybeforespecifyingwhatthesemean-
ingscouldmeaninthedigitalrealm.7Indoingso,
weputourapproachinthecontextoftheliterature
onresponsibleinnovation.8Thisapproachappears
4UrsGasserandVirgilioAFAlmeida, ALayeredModelforAI
Governance’(2017)21IEEEInternetComputing6,58-62;Allan
Dafoe,‘AIGovernance:AResearchAgenda’(2018)Futureof
HumanityInstitute,UniversityofOxford;AlanFTWinfieldand
MarinaJirotka,‘EthicalGovernanceisEssentialtoBuildingTrust
inRoboticsandArtificialIntelligenceSystems’(2018)376Philo-
sophicalTransactionsoftheRoyalSocietyA:Mathematical,
PhysicalandEngineeringSciences2133,20180085
5Forasimilarapproach,MariarosariaTaddeoandLucianoFloridi
(eds),TheResponsibilitiesofOnlineServiceProviders(Springer
2017)
6ForaconceptualisationonCSRindigitaltime,focusingon‘new
waysofcommunicatingexistingissuesandnewresponsibilities
associatedwiththecorporateuseofdigitaltechnologies’,Geor-
gianaGrigoreetal,'NewCorporateResponsibilitiesintheDigital
Economy'inATheofilou,GGrigoreandAStancu(eds),Corpo-
rateSocialResponsibilityinthePost-FinancialCrisisEra(P algrave
Macmillan2017)43;SeealsoCThorun,'CorporateDigital
Responsibility:UnternehmerischeVerantwortunginderdigitalen
Welt'inGärtnerCandHeinrichC(eds),FallstudienzurDigitalen
Transformation(SpringerGabler2018)
7SeealsoSPelléandBReber ,'ResponsibleInnovationintheLight
ofMoralResponsibility'(2015)15JournalonChainandNetwork
Science107,111
8Onthisliterature,JobT immermansandVincentBlok,'ACritical
HermeneuticReflectionontheP aradigm-LevelAssumptions
UnderlyingResponsibleinnovation'(2018)SyntheseVincentBlok
andPieterLemmens,'TheEmergingConceptofResponsible
Innovation.ThreeReasonsWhyitisQuestionableandCallsfora
RadicalTransformationoftheConceptofInnovation'inBert-Jaap
Koops(ed),ResponsibleInnovation:Concepts,Approaches,and
Applications(Springer2015);Onthedistinctunderstandingsof
responsibilityatstakeininnovation,IbovandePoelandMartin
Sand,'VarietiesofResponsibility:TwoProblemsofResponsible
Innovation'(2018)Synthese1
Delphi4|2019169 TowardsanIndexofDigitalResponsibility
tobeconceptuallymoresolidandoffersacompre-
hensiveoverviewoftheimplicationsofresponsibil-
ityinthedigitalrealm.
1.ResponsibilityinGeneral
Responsibilityisoneofthemostfundamentalissues
addressedinmoralandpoliticalphilosophy .9The
concepthasgivenrisetoabundantliteratureindi-
versephilosophicaltraditions.Wefocusontwoim-
portantaspects:distinguishingbetweendistinct
meaningsofresponsibility ,andbrieflyaddressing
thequestionofwhichentitycouldbearresponsibil-
ity.
Inshort,themainideaofresponsibilitycouldbe
summarisedinthefollowingway:whenapersonor
anentityperformsorfailstoperformamorallysig-
nificantaction,wethinkthataparticularkindofre-
sponseiswarranted.Thisrelationbetweenwhathas
beendoneorshouldbedoneandthespecificre-
sponseiswhatwegraspwiththeideaofresponsibil-
ity.
Thisideaofresponsibilityonlymakessenseifone
essentialconditionisfulfilled.Thisconditionrefers
tothefreedomapersonoranentityneedstohave
whenperformingaspecificaction.Thiscondition
mightbefurtherspecifiedashavingthecapacityto
actdifferently.Iftherewasnootheroptionforhow
toact,thequestionofresponsibilitycannotberaised
inthesameway.Itshallbemadeclearthatthe‘free
will’questionaboutdeterminismloomslargeinthis
debate.10Wecanaddtothisfreedom-conditiona
knowledge-condition.Inspecificsituations,thequal-
ityofknowledgeavailablewhenmakingaspecific
decisionmighthaveafundamentalimpactwhenit
comestoassessingwhetheranagent’sresponsibili-
tyisengaged.Insituationswhereitwasimpossible
toknowthekindofharm(whichwouldbe)done,we
needtoadjustthekindofresponsibilityatstake.
Ofcourse,thisquestionofhavingthecapacityto
actdifferently ,orthebenchmarkusedtoassess
whetherenoughknowledgewasavailableisultimate-
lyasocialquestion.Itdependsonthecontextin
whichthesituationoccurs.AIsystemsmakethede-
batemorecomplex.Theseelementsemphasisethat
ourunderstandingofresponsibilityisalwaysdefined
inaspecificcontext.Areaction-orabsenceofreac-
tion-inturnfurtherdefinesthiscontext.Asputby
Eshleman,‘throughthereactiveattitudes(egresent-
ment)wecommunicatetofellowmembersofthe
moralcommunityourinterpersonalexpectationsfor
areasonabledegreeofgoodwill.11
Weneedtobrieflyaddresstheissueofthetypeof
agentthatcouldbesaidtobearresponsibility.Ifwe
assumethatahumanbeingmightbearthistypeof
responsibility,thequestionismorecomplicatedfor
acompany .Broadly,twoconditionsneedtobeful-
filled.
Thefirstonepertainstotheidentificationofa
companybeingabletocarryoutanaction.Thiscon-
ditionhelpstodistinguishanorganisedcompany
fromthemereaggregationofindividuals.Itcouldbe
describedandmeasuredbyobservinginternaldeci-
sion-makingproceduresorrepresentationmecha-
nisms(executives,boardmembers,etc.).Thesecond
onepertainstotherequiredqualityofthedecision
takenbythecompany.Itmirrorsandqualifiesthe
‘freedom’conditionmentionedaboveforthecaseof
humanbeings.Thedecisionstakenbythecompany
mustshowacertaindegreeofrationality.Itmustbe
abletopursuesomethingandtotakereasonsintoac-
count.
Inthecontextofthispaper,weassumethesetwo
conditionsarefulfilledinthecaseofstandardcom-
panies.Togiveanexample,theseconditionsmight
bearguableinthecaseofadecentralisedau-
tonomousorganizationonablockchain.Itisnotclear
whetherafullydecentralisedorganizationfulfillsthe
conditionsrequiredtobeabletobearresponsibili-
ty.12
2.TwoUnderstandingsofResponsibility
Assumingthattheconditionoffreedomisfulfilled,
wecandistinguishbetweentwotypesofresponsibil-
ity:negativeandpositiveresponsibilities.13
9Foranoverview,AndrewEshleman,'MoralResponsibility'(2014)
StanfordEncyclopediaofPhilosophy
10Forreferences,MatthewT albert,'MoralResponsibility'(2019)
StanfordEncyclopediaofPhilosophy1.
11Eshleman,'MoralResponsibility'(2014)StanfordEncyclopediaof
Philosophy2.2
12Foralegalperspectiveonthisissue,DanielKraus,ThierryObrist
andOlivierHari,Blockchains,Smartcontracts,Decentralised
AutonomousOrganisationsandtheLaw(EdwardElgarPublishing
2019)
13Forasimilardistinction,PelléandReber ,'ResponsibleInnovation
intheLightofMoralResponsibility'(2015)15JournalonChain
andNetworkScience107111
Delphi4|2019 170TowardsanIndexofDigitalResponsibility
Negativeresponsibilityidentifiesactsoromis-
sionswhichshouldnotbecarriedout/shouldnot
havebeencarriedout.Inanutshell,itisaboutpre-
ventingharm.Thisunderstandingofresponsibility
islinkedtoconceptssuchasblameworthiness,liabil-
ityoraccountability .Itlegitimatesfaircompensation
inordertorepairdamageaposterioriandtopunish
theoriginatorofthenegligenceorthefault.14Itis
usedforbothindividualsandcompanies.Negative
responsibilityputsaclearfocusonthecausalrole
playedbyanagentincarryingoutanaction.Itisof-
tenusedinthecontextofidentifyingpastwrongdo-
ings.Byanticipatingfuturereactionslinkedtoaspe-
cificactoromission,negativeresponsibilitycouldbe
usedtoassessdecisionsmadeinthepresent(seebe-
lowthefurtherdistinctionbetweenprospectiveand
retrospectiveresponsibility).
Whenreferringtothisnegativeresponsibility ,we
needtoaddressthefollowingquestions:
Whichvalue(s)areusedtodeterminethetypesof
harmwhichgenerateresponsibility?
Whichkindofbenchmarkisusedtoassessone’s
contributiontothisharm?
Howshouldthetypeandextentofcompensation
bedetermined?
Thepositivedimensionofresponsibilitysharesa
maininsightofthenegativedimension:itlinksthe
behaviorofanagenttoaparticularsituationinthe
world.However,unlikethesituationdescribed
above,itfocusesonamorallyrelevantsituationthat
isnottheresultofthecompany’saction.Itputsthe
focusonthecapacityofanagent(freedomand
knowledge)topursueaspecificcourseofactionfor
thesakeofaddressingamorallyrelevantsituation.
Whenweascribepositiveresponsibilitytoanenti-
ty,wedonottellacausalstoryabouttheentity.In-
stead,wespecifywhatthisentityshouldbedoingin
theworld.AsputbySmiley ,positiveresponsibility
isusedtodistributemorallaborforfuturedeci-
sions.15
Agoodexampleofthispositiveresponsibilityis
inspiredbyPeterSinger’schilddrowning’thought
experiment.16Whilejogginginthepark,younotice
achilddrowninginapond.Itiscompletelysafefor
youtostepintothewaterandtakethechildoutof
it.Inthisexample,yourresponsibilitytoactappears
tobefullyengaged.Bytakingaction,youmightpre-
ventamorallydisastroussituation(thechild’sdeath),
withouttakingmajorrisksforyourself.Thesitua-
tionhereisabsolutelyclear:youaretheonlyoneable
tohelpthechild.Thedistributionofresponsibility
upondiverseagentsisnotanissuehere.Similarly,
themoralurgencyofthesituationisindisputable.A
numberofagentsmightberesponsibleforcontribut-
ingtosolvingaspecificproblem.Furthermore,the
assessmentoftheproblematstakemightbeitself
disputed.
Whenreferringtothispositiveresponsibility,we
needtoaddressthefollowingquestions:
Whatis/arethemoralvalue(s)usedtodescribethe
morallyrelevantsituationatstake?
Ifthemoralvalue(s)collide(s)withanotherone,
whataretheirrelativepriorities?
Ifdiverseagentsshouldaddressthismorallyrele-
vantsituation,whatisoneagent’sfairshare?
Whoplayedacausalroleforthecreationofthe
morallyrelevantsituationinthefirstplace?
Doparticularpracticalelementsimpactonan
agent’sresponsibility,suchasaspecificcapacity
toaddressthesituationordetrimentalconditions
(egcosts)?
Determininganagent’spositiveresponsibility
shouldbeunderstoodasanongoingprocess.17As
forthenegativeresponsibility,thisprocessisimpact-
edbyanddoesitselfimpactthesocialcontextin
whichittakesplace.Thisismostclearlythecasewith
theassessmentofthemoralvalueofthesituationat
stakeandthedefinitionofwhatisseenasa‘prob-
lem’.
a.ProspectiveandRetrospectiveResponsibility
Anotherconceptoftheoreticalvalueisthedistinc-
tionbetweenretrospectiveresponsibilityand
prospectiveresponsibility.Bothdimensionsclearly
applytotherealmofdigitalresponsibility.Whileret-
rospectiveresponsibilityhastodowiththequestion
whichresponsibilityanactorbearsforanaction(or
omission)inthepast,prospectiveresponsibilityis
14PoelandSand,'VarietiesofResponsibility:T woProblemsof
ResponsibleInnovation'(2018)Synthese1
15MarionSmiley,'CollectiveResponsibility'(2017)StanfordEncy-
clopediaofPhilosophy§7
16PeterSinger ,PracticalEthics(CambridgeUniversityPress1980)
17PelléandReber ,'ResponsibleInnovationintheLightofMoral
Responsibility'(2015)15JournalonChainandNetworkScience
107113
Delphi4|2019171 TowardsanIndexofDigitalResponsibility
aboutactionstobetaken(ortobeomitted)inthefu-
ture.Addingthesetwodimensions,aconceptual
frameworkofthenotionofresponsibilitycanbepre-
sentedasinT able1.
b.DigitalResponsibilityinParticular
Thesetwounderstandingsofresponsibilitymightbe
appliedinthedigitalrealm,representingwhatwe
willcall‘digitalresponsibility’.Hereagain,somedis-
tinctionsareusefulinstructuringthedebate.Firstly,
responsibilitymightbeusedtoaccountforclassical
issuesofbusinessethicsinthedigitaleconomy .The
issuesarewellknownandare‘simplyfoundinadif-
ferentsetting.18Inthesecases,digitalcompanies
needtoaddresssimilarcriticismsasothertypesof
companies.Thefactthattheydevelopandselldigi-
taltechnologiesdoesnotpreventthemfrombeing
caughtupinquestionablechoicesregardingforin-
stancetaxes,bribing,corruption,thebehaviorsof
theiremployees.Inthissense,digitalresponsibility ,
understoodastheresponsibilityofdigitalcompa-
nies,isthesameastheresponsibilitywhichother
typesofcompanieshave.
Secondly,andmoreimportantlyforthispaper,
newusesandactionsmadepossiblebydigitaltech-
nologiesmightcreatenewresponsibilities.Thisis-
sueisofcrucialimportanceascompaniesaretaking
noteofthegrowingawarenessoftheirclients,and
morebroadlyofthepublic.Whatisrequiredisto
structurethedifferentfieldsofthisnewdigitalre-
sponsibilityandinvestigatewhichvaluesareatstake.
III.DecomposingDigitalResponsibility
initsConstituencies
Ifthecompany’sresponsibilityisourmainfocus,we
needtodistinguishbetweenthedistincttargetcate-
goriesofactorswhichthecompanyisresponsiblefor
(itsconstituencies’).19Eachcategorymayhavedif-
ferentorsometimesevenopposinggoalsdepending
ontheethicalconflicts,potentiallyleadingtocon-
flictingoutcomes.Letusconsidertwobasicinitial
categories,definedalongtheirrelationstowardsthe
company.
Digitalservicesandproducts:thiscategorycon-
sidersallactorsdirectlyorindirectlyaffectedbythe
digitalservicesandproductsdevelopedbyacompa-
ny.
Customers/users:Thiscategoryincludesindividu-
alswhouseadigitalservice/product.Theyhavea
directinterestindigitalresponsibility ,forexam-
pleintermsofprivacyanddataprotection,orthe
responsibledesignofsystemsandservices,etc.
Society:Inthiscategory ,theactions/omissionsof
acompanymaynegativelyimpactsocietalandeco-
nomicqualitiesoflife(egcloudcomputingstrat-
egy).
18Grigoreetal,'NewCorporateResponsibilitiesintheDigital
Economy'inTheofilou,GrigoreandStancu(eds),Corporate
SocialResponsibilityinthePost-FinancialCrisisEra(Palgrave
Macmillan2017)49
19Forasimilarreflection,Klaus-DieterAltmeppenetal,'Öf-
fentlichkeit,VerantwortungundGemeinwohlimdigitalenZeital-
ter'(2019)64Publizistik59,67
Table1:ResponsibilityConceptualFramework.Source:Authors'elaboration
Negative
responsibility
Positive
responsibility
Retrospective
responsibility
Addressproblemscreatedbythecom-
panyinthepast
=>repairandcompensate
Addressproblemswhichthecompanyhadnotcreated,but
whichrepresentedamoralurgency
=>contributetoreducingtheharmfulconsequencesofthe
actionsofothers
Prospective
responsibility
Addressproblemswhichthecompa-
nycouldcreatenowandinthefuture
=>prevent
Addressproblemswhichthecompanydoesnotfocusitsac-
tionson,butwhichmightrepresentamoralurgency ,eg
withregardtotheenvironmentinwhichthecompanyacts
=>contributetopreventingtheharmfulconsequencesof
theactionsofothers
Delphi4|2019 172TowardsanIndexofDigitalResponsibility
Governanceofthecompany:Thiscategoryconsid-
ersallindividualsorentitiesdirectlyaffectedby
thedigitizationofthecompany .Itmeansthatit
alsoappliestocompanieswhichdonotproduce
digitalservicesorproducts.
Employees:Thiscategoryincludesindividualsin
asituationofemploymentwithinthecompany.
Theyhaveanindirectinterestintheoutcomeof
digitalresponsibilityintermsoftrainingand
skills,qualityofworkplace,valuealignmentwith
themanagementetc.
Shareholders/owners:Thiscategoryincludesindi-
vidualsorentitiesholdingashareorwhoarethe
ownersofthecompany.Theirfocusmaycoveris-
suesofgovernance,technologywatch,planning
forskills,revenue,etc.
Suppliersandsubcontractors:Thiscategoryin-
cludesallthirdpartycommercialentitiesworking
withthecompanytodeliveritsproductsandser-
vices.Dataaccessandjointliabilitywiththedata
controllerarekeyconcerns.
Wewillnowconsiderthedifferentthematicdimen-
sionsofdigitalresponsibilityandapplyeachofthese
dimensionstothedifferentconstituencies.Follow-
ingthis,thesedimensionsarematchedwiththecon-
stituencies,fromtheperspectiveofbothnegativeand
positiveresponsibility(seeFigure1).
1.SecuringAutonomyandPrivacy
Artificialintelligencesystemsshouldbedesigned,
implementedandbroughttothemarketrespecting
thevaluesofautonomyandprivacy .Thecrucialca-
pacityofhumanbeingstofreelytakedecisionsand
actaccordingtothemshouldberespected.Thisca-
pacityrequiresaprotectedpersonalsphere,asde-
tailedintheGeneralDataProtectionRegulationand
theConvention108oftheCouncilofEuropeandits
protocol.
2.RespectingEquality
Forcompaniesactiveinademocraticandliberalen-
vironment,thevalueofequalityamongindividuals
iscrucial.Thisvaluerepresentsanidealforsociety:
everyindividualshouldberecognisedasequallyim-
portanthumanbeings.Thisequalityisunderstood
hereasabasicmoralequalityamongallhumanbe-
ings.Thisraisesthekeyquestionforeverypolicyre-
gardingequality:whichfeaturesofbeinghumando
wewanttoprotectfrombeinggroundsfordiscrim-
ination?Somegroundsfordifferentialtreatmentare
legitimate,whileothersarenotconsideredassuch.
Fromthisveryfundamentalunderstandingofequal-
ity,wemightformulateandjustifymorespecificde-
mands(economicequality ,equalityofopportunities,
etc.).Algorithmictoolsraisenewchallengesregard-
ingsocialjusticeandequality,duetothekeyroleof
datasetsquality.Ifthedatasetsarenotrepresentative
ofthepopulationofacountry ,thentheproductor
servicebasedonthetrainingdatamaynotworkfor
somecategoriesofpersonsandbeharmfulforthem
(egacancerdiagnosissystemnotworkingforblack
people).20
3.DealingwithData
Digitaltechnologiesmakepossible,contributetoand
takeadvantageofthedataification’oftheworld.Al-
mosteveryaspectofourindividualandcollective
livesmightbeexpressedanddocumentedintheform
ofdata.Respectingprivacyandautonomyrequires
consent-basedandproportionatedatacollection,
storage,useandtransfer.Consentshouldbein-
formedandexplicit,basedonfullinformationasto
thetype,scopeandpurposeofthedatabeingcollect-
ed.Dealingwiththesedatashouldrespecttheprin-
cipleofgoodfaithandduecare.21
4.DealingwithAlgorithms
Digitalresponsibilitydealswiththechallengesraised
bythewideuseofalgorithmsindifferentsettings.
Acrossallthesesettings,digitalresponsibilitycalls
fortheuseofalgorithmswhichrespectsafety ,auton-
omyand,moregenerally,theprincipleslinkedtothe
ruleoflaw.Thismeansinparticularthecapacityto
reconstructandexplaindecisionstakenbyalgo-
rithms.Italsomeanstheprecautionaryuseofalgo-
rithmsinsettingsespeciallysensitiveforautonomy.
20AdamConner-SimonsandRachelGordon,‘UsingAItoPredict
BreastCancerandPersonalizeCare’(2019)MITNews
21Inlatin,bonuspaterfamilias.
Delphi4|2019173 TowardsanIndexofDigitalResponsibility
Furthermore,digitalresponsibilitybearsuponthe
wideuseofalgorithminautomatingdifferenttasks
withinthecompany .EveniftheAIsystemisnota
decision-makingsystembutonlyassistshumanbe-
ingsinmakingdecisions,thereisariskthatprofes-
sionalsrelytoomuchondataanalyticswhichraises
adefactodelegationofresponsibilitytothesystem
(egradiology).
5.TakingImpactontheEnvironment
intoAccount
Digitaltechnologieshaveanimportantimpactonre-
sourcesand,morebroadly,ontheenvironment.22
Whilethisimpactmightbepositive(egdigitaltech-
nologiesreducingthegeneralconsumptionofre-
sources,suchasinsmartcityprojects),theuseof
thesetechnologiesrelyuponresourcessuchaselec-
tricity,space,watertocooldowndatacenters,butal-
soonspecificmaterialsusedintheproductionof
hardware(andtherecyclingthereof).
6.EnsuringaFairTransition
Digitaltechnologiesbringchangeswhichimpactin-
dividualsandsociety .Thisimpactmightbepositive,
butitmightalsobenegative.Companieshaveare-
sponsibilitytoidentify ,accompanythesechanges
andtoproactivelycontributetoasuccessfultransi-
tionenablingafairandsustainabledigitalsociety.
Onesolutioncouldbetoallocateasharetodatasub-
jectsasrewardforthedatacollectedandmonetised.
Thissolutionwouldaligntheinterestsofsharehold-
ersanddatasubjects,whosedataareanassetforcom-
panies.
IV .TheDigitalResponsibilityIndex:
TentativeDesignandPotentialUse
InTable2(seeAnnex),wepresentthesedifferent
dimensionsalongthedifferentconstituenciesand
thedistinctionbetweennegativeandpositivere-
sponsibility.T akentogether,theyformthecoreof
theDigitalResponsibilityIndex.Wearguethatcom-
paniesshouldusethisIndexasbothanassessment
andanimprovementmetric.Throughaself-assess-
mentapproach,companiescanassesstheirlevelof
maturityandeventuallyengageinanimprovement
processonthebasisoftheIndex.Intheabsenceof
recognisedformallegalframeworks,asoft-compli-
anceapproachmaybeappealingandcouldevenbe-
comeabusinessadvantageinanagewherecus-
tomersareincreasinglyputtingsustainabilityand
responsibilitypressureoncompaniesondigitalis-
sues.Self-assessmentmethodscombinedwithap-
proachesusingmaturitybasedmodelscanbecon-
sideredasvaluableforthecompanyinimproving
theirdigitalreadiness.Overall,theIndexhelpsbet-
terunderstandtheissuesandassesswherecompa-
niesstand,butalsotoprovidethemwithanimprove-
mentprocessshouldtheydecidetoincreasetheir
maturitylevel.
Concretely,ourpropositionistoformulateeachof
thenormativedesiderataentailedbytheIndexinthe
formofaquestionwhichthecompanyshouldaskit-
self.Eachquestionreceivesaweightaswellasacrit-
icalityindicatorwhichrepresentstheimportanceof
thequestionwithregardstotheoveralltopic.With
thesupportofanevaluationsystem,wededucea
summarydashboardpresentingthestrengthsand
weaknessesofacompanypolicy.Wededucefrom
thisdashboardsomechartspresentingthestateof
maturityofthecompanyorofaresearchprojectcom-
paredtoapredefinedthreshold(seeFigure1).Weal-
sodeduceaglobalscoring,aggregatingthedigitalre-
sponsibilityconstituentsintoapercentageindexfor
exampletoshowthematuritylevel.Thesecanbeor-
ganisedintocategoriesdependingonthefocus.This
wouldallowforagraphicalrepresentationinthe
formofaradarclearlyshowingthecoverageofthe
company.Wealsocombinethisapproachwithasim-
plematuritymodelrecommendingwhatisneeded
toengageandprogresstothenextlevelofdigitalre-
sponsibility.
Whilesuchanapproachmaybeveryusefulfor
privatecompanies,itmayalsohelpinshapingthe
debateondigitalresponsibilityoforganisationspri-
ortechnologytransfersofAI-basedsystemsinthe
market.Justaswithsocialresponsibility,ratingagen-
ciesoranalystsspecialisedininvestmentrecommen-
dationsmayusethesamecriteriatoaskthetough
questions.Thisalsohelpstoshowlargedigitalactors
thatsocietyismoreawareandsensitivetotheseis-
22MStuermer ,GAbu-TayehandTMyrach,'DigitalSustainability:
BasicConditionsforSustainableDigitalArtifactsandTheir
Ecosystems'(2017)12SustainabilityScience247
Delphi4|2019 174TowardsanIndexofDigitalResponsibility
suesinasimilarwayinwhichsocialresponsibility
madeitswayintothecorporateenvironmentover
time.
V .Conclusion
TheframingofanAIgovernanceschemeisaques-
tionfortheState(s)(inalegalandregulatoryway),
butitisalsoachallengeforprivatecompaniesact-
ingwithinthebroadernormativeframeworkofa
freemarketeconomy .Inordertoaddresstheirre-
sponsibility,wehaveoutlinedtheconceptofadigi-
talresponsibility’anddevelopedaDigitalResponsi-
bilityIndex.ThisIndexbringstogetherakeydistinc-
tionbetweennegativeandpositiveresponsibility,the
identificationofconstituenciesandthethematicdi-
mensionsofdigitalresponsibility.Alltogether,they
formtheIndex.ThisIndexmightbeusedasaself-
assessmenttoolforprivatecompaniesaswellasan
evaluationframeworkforlargecorporations.Aswe
alsothinkitisimportanttoallowimprovement,we
proposetheuseofmaturitymodelstohelpprogress
alongthevariouslevelstoultimatelyhelpreachalev-
elofbeingatrustworthyand‘digitallyresponsible
company’.
Figure1:DigitalResponsibilityIndexRadar
Source:AITransparencyInstitute
Delphi4|2019175 TowardsanIndexofDigitalResponsibility
Annex
Table2:EthosMatrix.Source:Authors'elaboration
Delphi4|2019 176TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019177 TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019 178TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019179 AIEthicsforLawEnforcement
AIEthicsforLawEnforcement
AStudyintoRequirementsforResponsibleUseofAIattheDutch
Police
LexoZardiashvili,JordiBieger,FrancienDechesneandVirginiaDignum*
Thisarticleanalysesthefindingsofempiricalresearchtoidentifypossibleconsequencesof
usingArtificialIntelligence(AI)forandbythepoliceintheNetherlands,andethicaldimen-
sionsinvolved.Welistthemorallysalientrequirementsthepoliceneedtoadheretoforen-
suringtheresponsibleuseofAIand,further,analysetheroleofsuchrequirementsforgov-
ernanceofAIinthelawenforcementdomain.Welisttheessentialresearchquestionsthat
can,ontheonehand,helptofleshoutmoredetailedcriteriafortheresponsibleuseofAIin
thepolice,andontheother,buildagroundworkforthehard-regulationinthelawenforce-
mentenvironmentoftheNetherlands.
I.Introduction
UndertheDutchPoliceLaw(Politiewet2012)thetask
oftheDutchpoliceistwo-fold:(1)toensuremain-
tainingtheruleoflawand(2)toprovideassistance
tothoseinneed.1Thepolicehaveaspecialroleinso-
cietythatinvolvesaconstitutionalrighttousevio-
lencefortheenforcementofthelaw.2Forthepolice
tofunctionandrealiseitsobjectives,societyhasto
deemthepoliceaslegitimateandtrustthatitisef-
fectiveinitstasks.3Inorderforthepolicetobetrust-
worthyintheirefficacy,theymustcontinuouslyin-
novatetoevolvewithdevelopments,stayaheadof
criminals’newstrategiesandcapabilities,andutilise
newmethodsandtechnologyforthefulfilmentof
theirtasks.4Inorderforthepolicetobetrustworthy
intheiruseofpower,thepolicemustdemonstrate
goodwillandrespectfortherightsofcivilians.The
NationalPolicegreatlyvaluesthetrustofDutchciti-
zens,whichwasmeasuredtobethehighestofany
measuredinstitutionin2017.5Itisimportanttore-
tainthistrust,alsowhenintroducingnewtechnolo-
giessuchasArtificialIntelligence(AI)thathavea
fundamentalimpactonthenatureoftheiroperations
andinteractionswithsociety.6
AIhasmanypotentiallybeneficialapplicationsin
lawenforcementincludingpredictivepolicing,auto-
matedmonitoring,(pre-)processinglargeamounts
ofdata(eg,imagerecognitionfromconfiscateddig-
italdevices,policereportsordigitizedcoldcases),
findingcase-relevantinformationtoaidinvestiga-
tionandprosecution,providingmoreuser-friendly
servicesforcivilians(egwithinteractiveformsor
chatbots),andgenerallyenhancingproductivityand
DOI:10.21552/delphi/2019/4/7
*LexoZardiashvili,LLM,PhDCandidateattheCenterforLawand
DigitalTechnologiesLeidenLawSchool,LeidenUniversity.For
correspondence:a.zardiashvili@law.leidenuniv.nl.JordiBieger,
MSc,Researcher/TeacherattheF acultyofTechnology,Policyand
Management,DelftUniversityofTechnology,andPhDCandidate
attheCenterforAnalysisandDesignofIntelligentAgents,Reyk-
javikUniversity.Forcorrespondence:<J.E.Bieger@tudelft.nl>.
FrancienDechesne,AssistantProfessorattheCenterforLawand
DigitalTechnologies,LeidenLawSchool,LeidenUniversity.For
correspondence:<f.dechesne@law.leidenuniv.nl>.Virginia
Dignum,AssociateProfessorattheFacultyofT echnology,Policy
andManagement,DelftUniversityofT echnology.Forcorrespon-
dence:<M.V.Dignum@tudelft.nl>.
1TheDutchPoliceLaw(Politiewet)2012
2JorisBoumans,‘TechnologischeEvolutiesinWetshandhavingen
Legitimiteit:TussenOptimismeenOnbehagen’(MScthesis,
TilburgUniversity2018)
3KeesvanderVijver,‘Legitimiteit,gezagenpolitie.Eenverkenning
vandehedendaagsedynamiek’inC.D.vanderVijverandF .
Vlek(eds),Delegitimiteitvandepolitieonderdruk?Beschouwin-
genovergrondslagenenontwikkelingenvanlegitimiteiten
legitimiteitstoekenning(Elsevier2006),15-133
4ibid
5CentraalBureauvoordeStatistiek,‘Meervertrouweninelkaaren
instituties’(CentraalBureauvoordeStatistiek28May2018)
<www.cbs.nl/nl-nl/nieuws/2018/22/meer-vertrouwen-in-elkaar-
en-instituties>accessed24September2019
6Boumans(n2)
Delphi4|2019 180AIEthicsforLawEnforcement
paperlessworkflows.AIcanbeusedtopromotecore
societalvaluescentraltopoliceoperations(human
dignity,freedom,equality,solidarity,democracy,and
theruleoflaw),but,ontheotherhand,valuescare-
fullyguardedinexistingoperationsandprocedures
mayalsobechallengedbytheuseofAI.
CurrentlythepoliceintheNetherlandshavebeen
usingAIinallapplicationsmentionedabove.Forex-
ample,the‘CrimeAnticipationSystem’(CAS)isan
internallydevelopedpredictive-policingtoolthat
aimstopredictcrimeswithstatisticsbasedondata
fromvarioussources.7‘Pro-Kid12-SI’(pronounced
“Pro-Kidtwelve-minus”)isarule-basedsystemfor
riskassessmentonchildrenagedbetween0-12years,
usednationwidebythepolicetopreventchildren
frombeinginvolvedinacrimeoranti-socialbehav-
iour.8TheOnlineFraudReportIntakeSystemuses
NLPtechniques,computationalargumentation(legal
informatics)andreinforcementlearningtoassist
civiliansinreportingthecrime.
Itisimpossibletoanticipatealltheeffectsofthe
useofAIinsociety ,andmorespecifically ,inthelaw
enforcementdomain.Therefore,itisessentialthat
adoptionanduseofanyapplicationbecontinuous-
lyevaluated,inorderfortheDutchpolicetoensure
policingpracticesinlinewiththevaluesacknowl-
edgedbytheDutchstateandtheEuropeanUnion.
Withthisgoalinmind,weconductedanempiri-
calstudytoidentifypossibleconsequencesofusing
AIfor,andbylawenforcementandtheethicalissues
thismayleadto.Onthebasisofthisresearch,we
haveco-writtenawhitepaperfortheDutchpolice:
AI&EthicsatthePolice:TowardsResponsibleUseof
ArtificialIntelligenceintheDutchPolice’(hereafter
Whitepaper).9Itdescribesthestate-of-the-artinAI,
howitcouldbenefitlawenforcement,andwhateth-
icalconcernswillneedtobeaddressedintheuseof
AIinordertosafeguardthelegitimacyofandtrust
inthenationalpolice.
II.OntheLawandEthics:TheRoleof
EthicsinLawEnforcement
Similartootherauthoritiesofthestate,thepolice
necessarilyoperatewithinaspecificlegalframe-
work.Thisframeworkincludesbutisnotlimitedto
preventingmisuseofpowers,conflictsofinterestand
discrimination,andisensuredthroughactiveac-
countabilitymeasures.Thepoliceorganisationinthe
Netherlandsiscommittedtoprotectfundamentalhu-
manrightsandtoensurerespectfortheruleoflaw.10
Thepoliceisdirectlyobligedtocomplywithdomes-
ticandinternationallegalinstrumentsthatspecify
thiscommitment,likethenationalconstitution,the
EUCharter,specificnationallegislativeacts,andthe
EUdirectivesandregulationsliketheGeneralData
ProtectionRegulation(GDPR)orLawEnforcement
Directive(LED).Theselegalrequirementsapplyto
allpoliceworkregardlessofthemeansusedandthus
includetheuseofAI.
InademocraticstatesuchastheNetherlands,com-
pliancewithholdinglawsandregulationsmustbe
seenasagivenforanyapplicationofAI.However,
theapplicationofAIraisessomechallengesthatare
not—oritisuncleariftheyare—coveredbycurrent
legalprovisions.Forexample,whilethelegislation
mightnotrequirefullopenness,theopacityofrea-
soningthatisinherenttosomeAItechniquesmight
decreasetransparencyandweakenhumanagencyin
thepolice’sdecision-making,andtherebyposea
threattothelegitimacyofandtrustinthepolice.11
Therefore,forsuchspacesleftopenbythelaw ,the
policecan,andweadvisethattheyshould,incorpo-
rateethics’throughpracticalmeasurestoensurere-
sponsibleuseofAIandcontributetowardsenhanc-
ing(ratherthanlimiting)legitimacyofandtrustin
thepolice.
Incommonuse,theterm‘ethics’referstoasetof
acceptedprinciplesonwhatis(morally)rightor
wrongwithinandforacertaincommunity .The
Dutchgovernmentandthelawenforcementinpar-
ticularareexpectedtoactcoherentlyandoutofthe
7SerenaOosterlooandGerwinvanSchie,‘ThePoliticsand
Biasesofthe‘CrimeAnticipationSystem’oftheDutchPolice’,Jo
Bates,PaulD.Clough,RobertJäschkeandJahnaOtterbacher
(eds),ProceedingsoftheInternationalW orkshoponBiasin
Information,Algorithms,andSystems(CEURWorkshopProceed-
ings2018)30-41
8KarolinaLaF ors-OwczynikandGovertValkenburg,‘RiskIdenti-
ties:ConstructingActionableProblemsinDutchY outh’,I.vander
PloegandJ.Pridmore(eds),DigitizingIdentities.DoingIdentityin
aNetworkedWorld(Routledge/Taylor&FrancisGroup2016)
103-124
9FrancienDechesne,VirginiaDignum,LexoZardiashviliand
JordiBieger, AIandEthicsatthePolice:TowardsResponsibleUse
ofArtificialIntelligenceattheDutchPolice’(Whitepaper,2019)
https://www.universiteitleiden.nl/binaries/content/assets/rechts-
geleerdheid/instituut-voor-metajuridica/artificiele-intelligentie-en-
ethiek-bij-de-politie/ai-and-ethics-at-the-police-towards-responsi-
ble-use-of-artificial-intelligence-at-the-dutch-police-2019..pdfac-
cessed24September2019
10Politiewet2012(n1),art2
11Dechesneandothers(n9)
Delphi4|2019181 AIEthicsforLawEnforcement
principlesoftheDutch(andlargerEuropean)com-
munity.Thisexpectationofresponsibilityextendsto
theuseofAIbytheDutchpolice.Toactresponsibly
meanstoacceptmoralintegrityandauthenticityas
idealsandtodeployreasonableefforttowardachiev-
ingthem.12FortheDutchgovernmentstrivingfor
moralintegritymeansadheringtothevaluesoffree-
dom,equality,andsolidarity.13Thesevaluesarethree
fromfourvaluestheEuropeanUnion(EU)isaiming
touphold,withdignitybeingthefourth.14Notethat,
althoughtheDutchgovernmenthasnotyetaccept-
edproposalsbyaspeciallyestablishedcommission
(establishedbytheCabinetforconstitutionalamend-
ments),toincludevalueofhumandignityexplicitly
inthetextoftheDutchConstitution,itacknowledges
dignityasafundamentalvaluethathumanrights
aimtouphold.15Humanrights,ontheotherhand,
togetherwithdemocracy,andruleoflaw,areoften
referredasthegeneralprinciplesoftheDutchcon-
stitution,16oftheEU,17andofalsolargerEuropean
community(CouncilofEurope).18
Thefourvalues(dignity ,freedom,equality ,soli-
darity)andthreeprinciples(humanrights,democra-
cy,ruleoflaw)provideaframeworkforthemoralin-
tegritythattheDutchgovernment(andinthiscase
theDutchpolice)hastocontinuouslystrivetowards.
However,societalorderasamoralmilieucannotbe
sustainedbyreferenceonlytogenerallyexpressed
valuesthereforeformal(statutoryandcase)lawis
intendedtofillinthegapandoperationalisethese
abstractideals.Ontheotherhand,suchmoralmilieu
cannotbebuiltuponstricttextually-rootedrules
alone.19Forexample,inthecontextofstate-of-the-
arttechnology ,formallawfailstobetheomnibus
governancesolution:existinglegislationisnotper-
fectlysuitedtoaddressunprecedentedscopeofac-
tionsthatAIallows,andregulatoryintervention
(amongotherthings)mightpreventpotentialadvan-
tagesfrommaterialising.20
Therefore,maintainingresponsibleaction(moral
integrity)requiresaproperbalancetobestruckbe-
tween‘rule’and‘value’.Whatthismeansinthecon-
textofusingAIisthat,unprecedentedmodusoperan-
ditotheformallawdoesnotrelievetheDutchpolice
fromanobligationtostrivetowardsmoralintegrity.
WehaveevaluatedtheuseofAIbythelawenforce-
mentthroughthelensofthe(European)values(dig-
nity,freedom,equality ,solidarity)andprinciples(hu-
manrights,democracy,ruleoflaw)thattheDutch
policeaimstouphold,andidentifiedrequirements
forensuringresponsibleuseofAIwithinthepolice.21
Weprovidetheoverviewofidentifiedrequirements
inthenextchapter.
III.RequirementsfortheResponsible
UseofAIbytheDutchPolice
Weidentifiedrequirementsandrecommendations
fortheresponsibleuseofAIattheDutchpolice.They
include,(i)accountability,(ii)transparency,(iii)pri-
vacyanddataprotection,(iv)fairnessandinclusivi-
ty,(v)humanautonomyandagency,and(vi)socio-
technicalrobustnessandsafety.22Whilethesere-
quirementsaremorallysalient,theydonotoccupy
thesamelevelofhierarchyasthevaluesandtheprin-
ciplesdiscussedinthechapterII(hencethetermre-
quirements).Rathertheserequirementsareintended
toprovideguidanceonhowtoensurethatthepolice
useofAIiscoherenttothehigh-levelvalues(iedig-
nity)andtheprinciples(iedemocracy):
1.AccountabilityInthecontextofusingAIforand
bythepolice,‘accountability’isarequirementthat
referstotheabilitytoholdthepolicepersonnelor
theentirepoliceorganisationanswerableand/or
12RonaldDworkin,‘JusticeforHedgehogs’(TheBelknapPress,
2011)111
13MinistryofSocialAffairsandEmployment,‘CoreValuesofDutch
Society’(ProDemos,HouseofDemocracyandConstitution,
2014)https://www.prodemos.nl/wp-content/uploads/2016/04/
KERNWAARDEN-ENGELS-S73-623800.pdfaccessed17October
2019
14CharterofFundamentalRightsoftheEuropeanUnion(TheEU
Charter),26October2012,2012/C326/02
15Jan-PeterLoof,‘HumanDignityintheNetherlands’inP aolo
Becchi,KlausMathisandJan-PeterLoof(eds.),Handbookof
HumanDignityinEurope(SpringerInternationalPublishing
2017)423
16ibid
17TheEUCharter ,Preamble;seealsoEuropeanUnion,Goalsand
valuesoftheEU’https://europa.eu/european-union/about-eu/eu-
in-brief_enaccessed17October2019
18CouncilofEurope,‘ValuesHumanRights,Democracy,Ruleof
Law’https://www.coe.int/en/web/about-us/valuesaccessed17
October2019
19ChiefJusticeAllsopAO,‘V aluesinLaw:HowTheyInfluenceand
ShapeRulesandtheApplicationsofLaw’(HochelagaLecture,
2016)https://www.fedcourt.gov .au/digital-law-library/judges-
speeches/chief-justice-allsop/allsop-cj-20161020#_ftn3accessed
17October2019
20RonaldLeenesandothers,‘Regulatorychallengesofrobotics:
someguidelinesforaddressinglegalandethicalissues’(2017)9
(1)Law,InnovationandT echnology,7
21Dechesneandothers(n9)
22ibid
Delphi4|2019 182AIEthicsforLawEnforcement
responsible(and/orsometimesliable)foranac-
tion,choiceordecisionbyAI.Tracing(causal)re-
sponsibilitycanbecomplicatedwhenhumande-
cisionmakersare(partially)replacedoraugment-
edbyAIsystemsthatcannotthemselvescarry
moralresponsibilityorbeaccountable.Account-
abilitycanbeimprovedifthesesystemscanbere-
viewed(auditability),andifthedecisionsthatthey
makeexplainedandjustified(explainability)on
thetechnicallevel.Moreover,independentevalu-
ationsshouldbeabletoverifyandreproducethe
AI-system’sbehaviorinallsituations(repro-
ducibility).23Incaseswheretracingresponsibili-
tyisnotfeasible(andpossiblyothers),clearagree-
mentsshouldbemadeaboutwhoisaccountable
(egtheowner,operatororprogrammerofanAI
system).
2.TransparencyT ransparencyisanimportantcom-
ponentinensuringtrustandfiguringoutwhoor
whatisaccountableforpotentialproblemswith
AIsystems.Withtransparency ,wemustalways
ask1)aboutwhat,2)towhomand3)howmuch
transparencyshouldbeprovided,andofcourseto
whatend.Wecanbetransparentforexample
aboutpeople,rationale,operations,ordatain-
volvedindecision-making.Wecanbetransparent
forcourts,policeorganisation,ortothepublic.Per-
hapsgivingeveryonefullaccesstoeverythingis
notproductive,anditcanevenbedangerousifit
letsbadactorsfindwaystoexploitorcircumvent
thepolice'sAI.Transparencyisagradualmatter,
andthesameholdsforexplainabilityandinter-
pretability:wehavetotakeintoaccountthatin
thecontextofAIonlypartsofadecisionmaybe
interpretable,orthatexplanationsonlygivea
roughideaofwhathappened.
3.PrivacyandDataProtectionThePolicehasa(le-
gal)obligationtotaketheprivacyofciviliansinto
considerationintheiroperations.Wherecivilians
canreasonablyexpecttobeprivateisbeingaltered
bythecurrenttechnologythatallowspersonalda-
tafrommanydifferentspherestobeprocessedon
anunprecedentedscale,alsoforlawenforcement
purposes(egprevention,investigation,detection
orprosecutionofcriminaloffences).AIcanin-
creasetheinformation-gatheringcapabilitiesof
thepolice,becauseofitsabilitytocombineand
analyzevastquantitiesofdatafromdifferent
sources,andthereforehasanimmenseimpacton
privacy.
4.FairnessandInclusivityAIsystemscanplayan
importantroleintheinclusivityandaccessibility
ofpoliceservices.Forinstance,reportingofa
crimewillbeaccessibletomorepeopleifmorere-
portingmethodsareavailable,eginpersonata
policestation,byphoneandonline.Intelligent
chatbotscanmakereportingcrimesmoreaccessi-
bleforsomebyincreasingaccessibility,user
friendlinessandcatchingerrorsthatmightother-
wisebemadeonstaticforms.Oneshouldhowev-
erbecarefulthattherangeofmethodsofferedis
indeedusablebyall,includingegblindpeopleor
(computer)illiteratepeople.Ifthisisnotfeasible
forthemainmethod,alternativesshould(contin-
ueto)beprovided.AIcanalsoincreaseusability
byegaddingspeechrecognitionfunctionality
(whichcanhelppeoplewhocan’ttypetext).Itis
alsoimportanttoensurethatdecisionsinformed
byAIarefreefrombiaswhichcouldresultinthe
unfairordiscriminatorytreatmentof(groupsof)
civilians.Thisrequiresrigorousacquisition,man-
agement,developmentandevaluationofAIsys-
temsandalgorithmsaswellasthedatatheyuse.
Sincetherearedifferentconceptionsoffairness,
presentingdifferenttradeoffsdependingonthe
situation,aninformedcase-by-caseanalysisinnec-
essaryfortheresponsibleuseofAIbythepolice.
Intheend,(human)policeemployeeswillneedto
decidewhattodowiththeinformationandrec-
ommendationsprovidedbyAI,raisingquestions
aboutwhatkindofactionisappropriate:egifa
suspecthasnotdoneanythingwrongyet,butan
(imperfect)AIsystempredictsthattheymightin
thefuture,whatinterventionsbalancetherights
oftheas-of-yetinnocentcivilianwiththeneedto
preventseriouscrimes?
5.HumanAutonomyandAgencyPreservingthehu-
mansenseofagencyismainlyanindividual-lev-
elrequirementtorealisethehigh-levelvalues(i.c.
freedom)andshouldhelpwithbothjobsatisfac-
tionandtheabilitytoprovidemeaningfulhuman
control.Problemscanoccurwithdecisionsupport
systemsthatrecommendacourseofactionthat
mustthenbeevaluatedbyahumanoperator.Peo-
pleareincreasinglywillingandexpectedtodele-
23MatthewHudson, ArtificialIntelligenceFacesReproducibility
Crisis’(2018),359(6377)Science725-726
Delphi4|2019183 AIEthicsforLawEnforcement
gatedecisionsandactionstomachines(egrecom-
mendersystems,searchengines,navigationsys-
tems,virtualcoachesandpersonalassistants).A
possibleconsequenceofworkingwithAIsystems
isthelossofasenseofagency:theabilitytoact
freely.Especiallywithsystemsthatareveryaccu-
rateinsomerespect,humanoperatorsmaybe
‘nudged’toactupontheoutcomeofthesystem
withoutfurthercriticaldeliberation.Thiscannot
onlyinvalidateanoperator’ssenseofagency,but
alsofailstoutilisehumancapabilitiesthatAIsys-
temstypicallystilllack,suchascommonsenserea-
soning,lookingatthebiggerpicture,andadapt-
ingtounforeseensituations.
6.(Socio-technical)RobustnessandSafetyAIsys-
temsmustbedevelopedanddeployedwithan
awarenessoftherisksandbenefitsoftheiruse,
andanassumptionthatdespiteamplepreventa-
tivemeasures,errorswilloccur.Theymustbero-
busttoerrorsand/orinconsistenciesintheirde-
sign,development,deploymentandusephases,
anddegradegracefullyinextraordinarysitua-
tions,includingadversarialinteractionswithma-
liciousactors.Errorsandmalfunctionsshouldbe
preventedasmuchaspossible,andprocesses
shouldbeinplacetocopewiththemandminimise
theirimpact.24Anexplicitandwell-formeddevel-
opmentandevaluationprocessisnecessarytoen-
sureperformance,robustness,securityandsafe-
ty.
TheDutchPoliceactstomaintainsocietalorderby
enforcingthelaw .Thelawitselfisasetofbinding
rulesthataimtoupholdthevalueswithinsociety.
Whileasetofbindingrulescanguidetheonlylim-
itedamountofpoliceactions,societalvaluesareal-
wayspresent,andtheactivitiesofthepolicearere-
sponsibleonlywhenadheringtothesevalues.IfAI
istobeutilised,thepoliceiscompelledtotakeinto
considerationmorallysalientrequirementsde-
scribedinthischapter,toensureresponsibleaction
(responsibleuseofAI).Howcantheserequirements
influencethesetofbindingruleswillbediscussed
inthenextchapter.
IV .EthicsandtheR e-evaluationofLa w
AlongsidetherapiddevelopmentofAI,thereisapro-
liferationofarticlesandpolicydocumentsaboutthe
governanceofAI,someofwhichseemtosuggest
‘ethics’asthesolutionforensuringresponsibleuse
ofAI.FewmonthsbeforewedeliveredtheWhitepa-
pertotheDutchpolice,researchersatBerkmanKlein
Centeridentifiedandpositionedthirty-twosetsof
policydocumentssidebyside,enablingcomparison
betweeneffortsfromgovernments,companies,ad-
vocacygroups,andmulti-stakeholderinitiatives.25
Thirteenofthethirty-twodocumentspresentedin
thisstudydiscusstheresponsibilityofgovernments
inthecontextofAI,aswedidinourWhitepaper.
Thesedocumentsacknowledgethattheexistingset
oflegalrulesisnotabletofullydealwiththeimpacts
ofAI,andproposeguidanceformaintainingmoral
integrityofgovernmentalactionsbyreflectingupon
ethicalvaluesandprinciples.26
However,contrarytosomeofthesegovernmen-
tal27andmostoftheprivatesector28policydocu-
ments,ourwhitepaperdidnotintendtocomeup
withthenewsetofprinciplesfortheuseofAIwith-
intheDutchpolice.Rather,welookedatthevalues
andtheprinciplesthattheDutchpolice,asthelaw
enforcementbodyoftheDutchstate,isalreadyoblig-
edtoadheretoandidentifiedwhatisrequiredtoen-
suresuchcoherence(andthereforeresponsibleuse
ofAI).Moreover,webelievethatethicalvaluesand
lawsare‘expressionsalongagradationofparticular-
ity’ratherthanclearlyidentifiableseparatevehi-
cles’.29Inthissense,lawconformstoethics,asthe
latterprovides‘agaugetothelaw’sflexibility’,and
its‘avenueforgrowth’.30
Inotherwords,whileethicalreflectionsprovide
advantagesasanopennorm-settingvenuesforthe
governanceofAIwithinthelawenforcement,such
considerationscoulddomorebygoingbeyondtech-
24HighLevelExpertGrouponArtificialIntelligence,‘EthicsGuide-
linesforT rustworthyAI’(High-LevelExpertGroupOnArtificial
Intelligence,TheEuropeanCommission2019)
25JessicaFjeldandothers,‘PrincipledArtificialIntelligence:AMap
ofEthicalandRights-BasedApproaches’(BerkmanKleinCenter
2019)https://ai-hr.cyber .harvard.edu/images/primp-viz.pdfac-
cessed24September2019
26seeFederalGovernmentofGermany, AIStrategy’(2019)
27seeSmartDubai, AIPrinciplesandEthics’(2019)
https://www.smartdubai.ae/
accessed18October2019
28seeSundarPichai, AIatGoogle:OurPrinciples’(Google,2018)
https://www.blog.google/technology/ai/ai-principles/accessed18
October2019
29ChiefJusticeAllsopAO(n21)
30ibid
Delphi4|2019 184AIEthicsforLawEnforcement
nicalinterpretationsofmorallysalientrequirements
(ieaccountability ,transparency)31,andserveasthe
lensthroughwhichexistinglegalframeworks(in-
cludingframeworksregulatingtheactivitiesofthe
police)arere-evaluated,toseeifimprovementsare
possible.32Intheend,suchre-evaluationseemstobe
thelastlogicalstepastheabsenceofadequatefor-
malrules,mightconfoundlawbyadriftintoaform-
lessvoidofsentimentandintuition’ .33
V .FurtherResearchinResponsibleUse
ofAIinLawEnforcement
Asthecompletepictureoftheeffectsoftheuseof
AItechnologycannotbeanticipated,notallethical
andsocietalimpactsoftheuseofAIatthelawen-
forcementbodyoftheNetherlandscouldbecovered
intheshortstudyoftheWhitepaper.34Therefore,
ethicalevaluationoftheuseofAIbythelawenforce-
mentneedstobecontinuoustobeabletotransform
concernsintobetterlaws.Withthisgoalinmind,we
identifiedthefollowingresearchdirectionsonAIand
ethicsatthepolice,35dividedintotracksfor(1)im-
pactonhumans,(2)organisationalembedding,and
(3)technicalwork:
1.ImpactsonHumans:
a.ImpactsonHumanDignityHumandignityis
theinviolablevalueuponwhichthehuman
rightsframeworkrests.Itillustratesthefunda-
mentalbeliefintheintrinsicworthofahuman
being,protectinghis/herautonomyandself-de-
termination.Beliefinhumandignitycanbeun-
derstoodastheraisond'êtreforthelawthepo-
liceaimstoenforce.
b.PublicTrustPublicperceptionofthelegitima-
cyofthepoliceandsubsequenttrustisasim-
portantasthelegalframeworkinwhichthepo-
liceoperate.Whileautomationandprediction
tosomeextentincreaseefficacyofthepolice,
thestudycouldexploreifsuchincreaseinpo-
tencyisdesirablefromthesocietalperspective.
2.ImpactsonthePoliceOrganisation:
a.EthicsGuidelinesandOversightThepolice
doesnotoperateinisolation,andtheuseofAI
takesplaceacrosstheentirejudicialchain:OM,
localgovernment,theMinistryofJusticeand
Security,judiciary.ResponsibleuseofAIwith-
intheDutchpoliceideallyfollowsfromaro-
bustethicsframeworkfortheentirechain.Such
aframeworkcanestablishcriteriatofollow
throughouttheAIdevelopmentandapplica-
tioncycle.
b.ImpactsonPolicePersonnelAIcanbeusedto
supportthepoliceorganisationinachievingits
goalsofefficiency ,traceability,uniformityand
integrity.However,thechangeofoperations
maycomewithdisplacementofemployeesand
changingroles.Researchisrequiredtoensure
thatworkerswithnon-traditionalskillsetsfitin-
tothepoliceorganisationinawaythatempow-
erspolicepersonnel.
3.TechnicalAspects
a.ExplainableAITheaforementionedoversight
canonlybeadequateandmeaningfulifauto-
mateddecisionscanbeexplainedandjustified
onthetechnicallevel.
b.Justifiable/VerifiableAIJustificationprovides
thereasonsbehindtheresultsandthechoices
forparticularapproaches.Mathematicaltools
forformalverificationmakeAIsystemsthem-
selvesandtheirdecisionsreviewable.
Furtherresearchisessentialsothatthepolicecon-
tinuestorealisetheirdualgoalsofincreasing(a)ef-
ficacyandefficiency ,and(b)trustandtrustworthi-
ness(toboostpublictrustandtheperceptionofthe
legitimacyofthepolice).Theresearchintheareas
describedabovewillhelpusre-evaluatetheformal
rulesregardinglawenforcement,andalsomakeso-
cietalrequirementstransparenttoboththepolice
31CorinneCath,‘Governingartificialintelligence:ethical,legaland
technicalopportunitiesandchallenges’(2018),376(2133)Philo-
sophicalTransactionsoftheRoyalSocietyAMathematical,
PhysicalandEngineeringSciences
32LucianoFloridi,andothers,AI4People—AnEthicalFramework
foraGoodAISociety:Opportunities,Risks,Principles,and
Recommendations’(2018),28(4)MindsandMachines689–707
33ChiefJusticeAllsopAO(n21)
34Whitepaper(n13)
35FrancienDechesne,VirginiaDignum,LexoZardiashviliand
JordiBieger,‘Long-T ermResearchStrategyforAIandEthicsatthe
Police’(Report2019)https://www.universiteitleiden.nl/bina-
ries/content/assets/rechtsgeleerdheid/instituut-voor-metajuridi-
ca/artificiele-intelligentie-en-ethiek-bij-de-politie/research-strate-
gy-ai-ethics-dutch-police-final.pdfaccessed24September2019
Delphi4|2019185 AIEthicsforLawEnforcement
andthepublicandultimatelyenablecodificationin
thelegalframeworks.
VI.Conclusions
Thisarticlehasanalysedtheroleofthemorally
salientrequirementsforgovernanceofAI,thatwere
foundinanempiricalstudywithinthelawenforce-
mentdomaininparticular:attheDutchPolice.W e
havearguedthatthereareinstances,wheretheneed
forsoftregulatoryinstrumentarises,andwehavede-
scribedhowethicalconsiderationscanhelpfulfilthis
need.Ouranalysissuggeststhattheresponsibleuse
ofAIattheDutchpolicerequiresprimarilythefol-
lowingrequirements:accountability ,transparency,
privacy,fairnessandinclusivity ,humanautonomy
andagencyandsocio-technicalrobustnessandsafe-
ty.
Furthermore,weexploredtheroleoftheserequire-
mentsinafuturere-evaluationoftheformalbind-
inginstruments.Finally ,weidentifiedtheareas
wherefurtherresearchisadvisableforensuringthe
responsibleuseofAIattheDutchpolice.Ontheone
hand,suchresearchcanhelpfleshoutmoredetailed
criteriaforthepoliceonhowtoadheretothevalues
andprinciplesoftheDutchstate.Ontheother,itcan
buildagroundworkforthehard-regulationforthe
useofAIinthelawenforcementecosystemofthe
Netherlands.
Delphi4|2019 186ClassificationSchemasforAIFailures
ClassificationSchemasforArtificial
IntelligenceFailures
PeterJ.ScottandRomanV.Yampolskiy*
Inthispaperweexaminehistoricalfailuresofartificialintelligence(AI)andproposeaclas-
sificationschemeforcategorisingfuturefailures.Bydoingsowehopethat(a)therespons-
estofuturefailurescanbeimprovedthroughapplyingasystematicclassificationthatcan
beusedtosimplifythechoiceofresponseand(b)futurefailurescanbereducedthrough
augmentingdevelopmentlifecycleswithtargetedriskassessments.
I.Introduction
Artificialintelligence(AI)isestimatedtohavea$4-6
trillionmarketvalue1andemploy22,000PhDre-
searchers.2Itisestimatedtocreate133millionnew
rolesby2022buttodisplace75millionjobsinthe
sameperiod.3Projectionsfortheeventualimpactof
AIonhumanityrangefromutopia4toextinction.5
InmanyrespectsAIdevelopmentoutpacestheef-
fortsofprognosticatorstopredictitsprogressandis
inherentlyunpredictable.6
Y etallAId evelop mentis(sof ar)u ndertak enb yhu-
mans,andthefieldofsoftwaredevelopmentisnote-
worthyforunreliabilityofdeliveringonpromises:over
two-thirdsofcompaniesaremorelikelythannottofail
intheirITprojects.7Asmucheffortashasbeenputin-
tothedisciplineofsoftwaresafety ,itstillhasfartogo.
Againstthisbackgroundoframpantfailureswe
mustevaluatethefutureofatechnologythatcould
evolvetohuman-likecapabilities,usuallyknownas
artificialgeneralintelligence(AGI).Thespectacular
advancesincomputingmadepossiblebytheexpo-
nentialhardwareimprovementsduetoMoore’sLaw8
balancedagainsttheunknownrequiredbreak-
throughsinmachinecognitionmakepredictionsof
AGInotoriouslycontentious.Estimatesofhowlong
wehavebeforeAGIwillbedevelopedrangeoversuch
widelyvaryingtimelines9thatresearchershavetak-
entometa-analysisofthepredictionsthroughcorre-
lationagainstmetricssuchascodingexperienceof
thepredictors.10
Lesscontentiousistheassertionthatthedevelop-
mentofAGIwillinevitablyleadtothedevelopment
ofASI:artificialsuperintelligence,anAImanytimes
moreintelligentthanthesmartesthuman,ifonlyby
virtueofbeingabletothinkmanytimesfasterthan
ahuman.11Analysisoftheapproachofconfininga
superintelligencehasconcludedthiswouldbediffi-
DOI:10.21552/delphi/2019/4/8
*PeterJ.Scott,NextWaveInstitute,USA.F orcorrespondence:
<peter@humancusp.com>;RomanV.Y ampolskiy,Universityof
Louisville,Kentucky,USA,<roman.yampolskiy@louisville.edu>
1McKinseyGlobalInstitute,‘NotesfromtheAIFrontier’<https://
www.mckinsey.com/~/media/mckinsey/featured%20insights/
artificial%20intelligence/notes%20from%20the%20ai%20frontier
%20applications%20and%20value%20of%20deep%20learning/
notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases
-discussion-paper.ashx>accessed1November2019
2JeremyKahn,‘JustHowShallowistheArtificialIntelligence
TalentPool?’(Bloomberg,7February2018)<https://www
.bloomberg.com/news/articles/2018-02-07/just-how-shallow-is
-the-artificial-intelligence-talent-pool>accessed1November
2019
3WorldEconomicForum,‘TheFutureofJobsReport’<http://
www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf>ac-
cessed1November2019
4RaymondKurzweil,TheSingularityIsNear:WhenHumans
TranscendBiology(Viking2005)487
5NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2005)
6RomanYampolskiy,‘UnpredictabilityofAI’(2019)arX-
iv:1905.13053v1[cs.AI]
7KeithEllis,‘TheImpactOfBusinessRequirementsOnTheSuccess
OfTechnologyProjects’(BATimes,15February2008)<https://www
.batimes.com/articles/the-impact-of-business-requirements-on-the
-success-of-technology-projects.html>accessed1November2019
8ChrisMack,‘FiftyYearsofMoore'sLaw’(2011)24IEEETransac-
tionsonSemiconductorManufacturing202-207
9KajSotalaandRomanY ampolskiy,'Corrigendum:Responsesto
CatastrophicAGIRisk:ASurvey'(2015)90Phys.Scr.018001
10BrianT omasik,‘PredictionsofA GITakeoffSpeedvs.YearsWorked
inCommercialSoftware’inEssaysonReducingSuffering(2014)
<https://reducing-suffering.org/predictions-agi-takeoff-speed-vs
-years-worked-commercial-software/>accessed1November2019
11VernorVinge,‘TheComingTechnologicalSingularity:Howto
SurviveinthePost-humanEra’inNationalAeronauticsandSpace
Administration(eds),Vision21:InterdisciplinaryScienceand
EngineeringintheEraofCyberspace(1993)
Delphi4|2019187 ClassificationSchemasforAIFailures
cult12ifnotimpossible.13Manyoftheproblemspre-
sentedbyasuperintelligenceresembleexercisesin
internationaldiplomacymorethancomputersoft-
warechallenges;forinstance,thevaluealignment
problem14(describedthereinasthe‘valueloading
problem’)ofaligningAIvalueswithhumans’.
II.Definitions
Wepresentsomeoperationaldefinitionsofterms
usedinthispaper.
Artificialintelligenceisashiftingtermwhosede-
finitionisfrequentlydebated.Itsscopechangesde-
pendingupontheera:duringanAIWinter’15many
fewervendorsarewillingtoidentifytheirproducts
asAIthanduringthecurrentperiodofmyriadAI
technologiescloggingthe‘peakofinflatedexpecta-
tions’intheGartnerHypeCycle.16
Failureisdefinedas‘thenonperformanceorin-
abilityofthesystemorcomponenttoperformitsex-
pectedfunctionforaspecifiedtimeunderspecified
environmentalconditions.’17Thisdefinitionoffail-
ureasaneventdistinguishesitfromanerror,which
isastaticcondition(orstate)thatmayleadtoafail-
ure.
Cybersecurityhasbeendefinedas‘theorganisa-
tionandcollectionofresources,processes,andstruc-
turesusedtoprotectcyberspaceandcyberspace-en-
abledsystemsfromoccurrencesthatmisaligndeju-
refromdefactopropertyrights.’18AISafetyhasbeen
definedasanextremesubsetofcybersecurity:‘The
goalofcybersecurityistoreducethenumberofsuc-
cessfulattacksonthesystem;thegoalofAISafety
istomakesurezeroattackssucceedinbypassingthe
safetymechanisms.19
Intelligencedefinitionsconvergetowardtheidea
thatit‘(…)measuresanagent’sabilitytoachieve
goalsinawiderangeofenvironments.’20W edonot
presentthisdefinitionwithanyintentionofdefin-
ingAIbyapplyingthe‘artificial’modifiertothis
one.Rather,thisdefinitionwillbeusedtojudge
whetherasoftwarefailureisinstructiveintheex-
tenttowhichitwasapplying(accidentallyorinten-
tionally)intelligenceineventhenarrowestsense,
sincesuchapplicationcouldextendtoamorepow-
erfulAI.
III.AIFailureClassification
WewilldescribeatagschemaforclassifyingAIfail-
ures.Itispreciselybecauseofthevolatiledefinition
ofAIthatwemustcastawidenetinwhatweusefor
examplesofAIfailures,becausewhatisclassifiedas
AItodaywilllikelybegivenalessglamoroustitle
(like‘machinevision’)onceitbecomescommon-
place.AsAIpioneerJohnMcCarthyputit,Assoon
asitworks,noonecallsitAIanymore.’21Where
someofourexamples,therefore,mayappeartobe
indistinguishablefromfailuresofsoftwarethathas
noparticularclaimtothelabelofartificialintelli-
gence,theyareincludedbecausetheyareclose
enoughtoAIonthesoftwarespectrumastobein-
dicativeofpotentialfailuremodesofAI.
1.HistoricalClassifications
Neumann22describedaclassificationforcomputer
riskfactors(seeT able1).
Wefindthislisttoobroadinsomerespectsand
toonarrowinotherstobeusefulforourpurposes.
Hardwarefactorsareoutsidethescopeofthispaper
12RomanY ampolskiy,‘LeakproofingtheSingularity:TheArtificial
IntelligenceConfinementProblem’(2012)19JournalofCon-
sciousnessStudies1-2
13EliezerY udkowsky,‘RetrievedfromTheAI-BoxExperiment’
(2002)<http://yudkowsky.net/singularity/aibox>accessed20
January2020
14(n5)
15DanielCrevier ,AI:TheT umultuousSearchforArtificialIntelli-
gence(BasicBooks1993)
16CIODive,‘GartnerServesup2018HypeCyclewithaHeavy
SideofAI’<https://www .ciodive.com/news/gartner-serves-up
-2018-hype-cycle-with-a-heavy-side-of-ai/530385/>accessed1
November2019
17NancyLeveson,Safeware:SystemSafetyandComputers(Addi-
son-Wesley1995)
18DanCraigen,NadiaDiakun-Thibault,andRandyPurse,‘Defining
Cybersecurity’(2012)T echnologyInnovationManagement
Review13-21
19RomanY ampolskiy, ArtificialIntelligenceSafetyandCybersecuri-
ty:aT imelineofAIFailures’(2016)arXiv:1610.07997v1[cs.AI]
20ShaneLeggandMarcusHutter, ACollectionofDefinitionsof
Intelligence’(2007)IDSIA-0707TechnicalReport
21BertrandMeyer,‘JohnMcCarthy’(Communicationsofthe
ACM,28October2011)<https://cacm.acm.org/blogs/blog
-cacm/138907-john-mccarthy/fulltext>accessed20January
2020
22PeterNeumann,Computer-RelatedRisks(Addison-Wesley1994)
Delphi4|2019 188ClassificationSchemasforAIFailures
(andareincreasinglyirrelevantassoftwarebecomes
moreplatform-independentandmobile);software
factorsneedgreaterelaboration.NeumannandPark-
er23listedclassesofcomputermisusetechniques(see
Figure1).
Despitethetreestructure,thisrepresentsasystem
ofdescriptorsratherthanataxonomyinthatagiv-
enmisusemayinvolvemultipletechniqueswithin
severalclasses.Theleftwardbranchesallinvolvemis-
use;therightwardbranchesrepresentpotentiallyac-
ceptableuse–untilaleftwardbranchistaken.How-
ever,theterm‘misuse’impliesdeliberateagencyand
23PeterNeumannandDonaldP arker, ASummaryofComputer
MisuseTechniques’(1989)12thNationalComputerSecurity
Conference396-407
Table1:ComputerRiskFactorsSourcesandExamples.Source:
P.G.Neumann
Figure1:ClassesofComputerMisuse
Source:NeumannandParker
Note:Theleftwardbranchesallinvolvemisuse;therightwardbranchesrepresent
potentiallyacceptableuseuntilaleftwardbranchistaken.
Delphi4|2019189 ClassificationSchemasforAIFailures
therebyignoresamultitudeoffailuremodesthat
stemfromaccidentaloversights.
2.AIFailureClassificationDimensions
HerewemodifyandextendearlierworkbyY ampol-
skiy24inclassifyingAIriskfactors.Hollnagel25de-
constructssafetyinthestepsofphenomenology(ob-
servables),etiology(causes),andontology(nature).
Weaddresseachofthesestepsinproposingthefol-
lowingdimensionsasusefulclassificationcriteriafor
AIfailures:
Consequences(phenomenology)
Agency(etiology)
Preventability(ontology)
Stageofintroductionintheproductlifecycle(phe-
nomenologyandontology)
Eachwillbedenotedwitha2-or3-lettercodethat
wewilltagourexampleswith.
a.Consequences
Consequencesmaybeconsideredonthescaleofhu-
managgregationonwhichtheycanoccur(see
Table2).
Individualscanrangeinnumberfromonetoevery
memberofthehumanrace;thegroupingwillbeused
todenoteatwhattypeofaggregationtheactionof
thefailurewasaimedratherthanthenumberofin-
stancesaffected.Corporationsarelegalstructuresfor
doingbusiness,ofanysize.Communitiesaregroup-
ingsofpeopleorganisedforpurposesotherthanbusi-
nessandrangefromfamiliestonations.
Physicalconsequencesoccurtoindividualsand
mayrangefrominconveniencetolossoflife.
Mentalconsequencesoccurtoindividualsandin-
cludethealterationofmentalstatessuchasbe-
liefs,withconcomitantchangesinbehaviour.For
instance,thepurposeoreffectof‘fakenews’isto
causesuchchanges.26
Emotionalconsequencesoccurtoindividualsand
includedepressivestatesresultingfromAIinci-
dentswithphysicalormentalconsequences,and
AIusurpingrolesthatpeoplehaveassumedtobe
unassailable.
Financialconsequencesoccurtoindividuals,cor-
porations,andcommunities.
Socialconsequencesarethemodificationsofbe-
haviourofsystemsororganisationsofpeople.
Culturalconsequencesarethemodificationsofan
organisationorgrouping’svision,values,norms,
systems,symbols,language,assumptions,beliefs,
andhabits.27
Consequencesarenotnecessarilynegative,ormay
benegativeinsomerespectswhilebeingpositivein
others.Asuperintelligencethatenslavedhumansin
bootcampsmightkeeptheminoptimalphysicalcon-
ditionbutpessimalemotionalstate.
24RomanY ampolskiy,‘T axonomyofPathwaystoDangerousAI’
Proceedingsof2ndInternationalWorkshoponAI,Ethicsand
Society(AIEthicsSociety2016)143-148
25ErikHollnagel,Safety-IandSafety-II(AshgatePublishing2014)
26DavidM.J.Lazeretal,‘TheScienceofFakeNews’(2018)359
Science1094-1096
27DavidNeedle,BusinessinContext:AnIntroductiontoBusiness
andItsEnvironment(CengageLearningEMEA2014)
Table2:AIFailureConsequencesatHumanAggre-
gationLevelsSchemaTags
Human
Aggre-
gation
Scale
Consequences
Phys-
ical
Men-
tal
Emo-
tional
Finan-
cial
So-
cial
Cultur-
al
Individ-
ual
CIPCIMCIECIF
Corpora-
tion
CCFCCC
Commu-
nity
CYFCY
S
CYC
Table3:AIFailureLevelsof
AgencySchemaTags
AgencyCode
AccidentalAA
NegligentAN
InnocuousAI
MaliciousAM
Delphi4|2019 190ClassificationSchemasforAIFailures
b.Agency
Theagencyofafailureisthedegreeofhumaninten-
tionalityinitsoriginorpropagation(seeTable3).
Anaccidentalfailureisonethatwasnotforeseen
andcouldnotreasonablyhavebeenforeseen.Weare
departingslightlyfromthecustomaryengineering
definitionof‘accident’hereinordertodrawamore
usefuldistinction.Leveson28defines‘accident’as An
undesiredandunplanned(butnotnecessarilyunex-
pected)eventthatresultsin(atleast)aspecifiedlev-
elofloss.’Thusautomobileaccidentsareforeseeable
butneitherexpectednordesired.Wepreferinstead
todefineanegligentfailureasonethatwasnotfore-
seenbutcould(andperhapsshould)havebeenfore-
seen.
Aninnocuousfailureisonedeliberatelycaused,
butnotwithmaliciousintent,possiblywiththein-
tentofcausingamorebenigneffectthanwhatactu-
allyresulted.Amaliciousfailureisonethatwasini-
tiatedwiththeintentionofcausingdeleteriousef-
fects,whethertheywerespecificallytheeffectsthat
actuallyresultedorothers.Noconnectionwithlegal
definitionsofthesetermsshouldbeinferredfrom
theirattributiontospecificevents.
c.Preventability
Levelsofagencyareindependentofthedegreeof
preventability(seeT able4).
Somefailuremodesofsuperintelligencesarefore-
castbysomeauthoritiestobeunpreventable:‘[W]e
haveseenenoughtoconcludethatscenariosin
whichsomemachineintelligencegetsadecisive
strategicadvantagearetobeviewedwithgravecon-
cern.’29
d.LifecycleStage
Acommontaxonomyforcomputersystemerrorsis
thesoftwaredevelopmentlifecyclestage(seeT able
5);itisoftenassertedthatthecostoffixinganerror
ateachstageistentimesthecostoffixingitinthe
previousstage.30
Weaddinthelesscommonlyincludedstagesof
concept(wasitagoodideatodothisinthefirst
place?)atthebeginning,anddecommissioning
(whataretheproblemscausedbygettingridofthe
product)attheend.Asuperintelligencemightbe
highlyresistanttodecommissioning.31
IV .AIFailures
Withthesedimensionsinmindwenowexamine
variousreportedandhypothesisedfailures.Note
thatthereisanunavoidabledegreeofsubjectivevari-
abilityintheclassificationsofpreventabilityand
agency.
28(n17)
29(n5)154
30MauriceDawson,DarrellNormanBurrellandEmadRahim,
‘IntegratingSoftwareAssuranceintotheSoftwareDevelopment
LifeCycle(SDLC)’(2010)3JournalofInformationSystemsT ech-
nologyandPlanning49-53
31‘2001:ASpaceOdyssey(1968)-I'mSorry,DaveScene’
(YouT ube)<https://www.youtube.com/watch?v=Wy4EfdnMZ5g>
accessedon1November2019
Table4:AIFailureDegreeofPreventability
SchemaTags
DegreeofPreventabilityCode
TriviallypreventablePT
PreventablewithsomedifficultyPS
PreventablewithgreatdifficultyPD
UnpreventablePU
Table5:SoftwareDevelopmentLifecy-
cleStagesSchemaTags
LifecycleStageCode
ConceptLC
DesignLD
DevelopmentLE
TestingLT
OperationLO
DecommissioningLG
Delphi4|2019191 ClassificationSchemasforAIFailures
1.ReportedFailures
WhereasYampolskiy32enumeratedseveraldozen
failuresinatimelinethathighlightedanexponen-
tiallyincreasingfrequencyandseverity,nearlyallof
theexampleswecitehereoccurredwithinthe
2016-2019periodandsoachronologicalordering
wouldnotbeilluminating.Wewillthereforeplace
theminsteadwithinamorenarrativestructure.
Themostrecognisableandstraightforwardclass
offailuresresultinphysicalinjurytohumans,going
backtotheclassicTherac-25radiationtherapyover-
dosecases33(CIP ,AN,PS,LD,LE,LO).WhenanAma-
zonwarehouserobotaccidentallypuncturedacon-
tainerofbearspray34(CIP,AN,PS,LT)itwasamore
benignoutcomeofanindustrialaccidentthanwhen
aChinesefactoryworkerwasimpaledwithtenfoot-
longspikes35(CIP ,AN,PT ,LD).Buttheseandother
morefatalaccidentswithindustrialrobotsgoing
backatleastto1984whenanoperatorwaskilledby
a2,500lbrobotthatcamebehindhimwithnowarn-
ing36(CIP ,AN,PS,LD)indicatelackofconsideration
forhumanssharingthesamelocationasmachines.
Acarproductionplantrobotgrabbedaworkerin-
steadofapartandcrushedhimagainstametalplate,
killinghim37(CIP ,AN,PS,LD).
Incidentsofcarsinsemi-autonomousoperation
causingfatalitiesincludeanUberincorrectlyclassi-
fyingapedestrianasafalsepositivematchbecause
toomanyreactionstoactualfalsepositivesresulted
inajerkyride38(CIP ,AN,PS,L T),andaTeslacrash-
ingafterrequestingdriverintervention39(CIP ,CCF ,
AA,PD,LE).
Inmedicine,IBM’sWatsonrecommended‘unsafe’
cancertreatments40(CIP,CCF,AA,PD,LT,LO),and
astudyof14yearsofroboticsurgeryconcludedthat
‘anon-negligiblenumberof[preventable]technical
difficultiesandcomplicationsarestillbeingexperi-
encedduringprocedures.41(CIP ,CCF ,AA,PS,LD).
AIaccidentsmayresultindirectfinancialloss.The
May2010‘FlashCrash’resultedintheDowJonesIn-
dustrialAveragedroppingabout9%for36minutes
andresultedfromprogramtradingalgorithmsbeing
inadequatelypreparedtodealwithlargevolumesof
strategically-placedtradeswhichthemselveswere
computer-mediatedmalice42(CIF ,CCF,AA,AM,PD,
LD,L T).Remediationeffortsdidnotpreventmore
flashcrashesin2015.43
AmajorconcernintheapplicationofAIispriva-
cy.Consumerdevicesconnectedtocorporateclouds
ofidentitydatacomeunderscrutiny ,especially
when,forinstance,anAmazonAlexanoderecorded
aprivateconversationandsentittoarandomcon-
tact44(CIE,AA,PS,LT ,LO),oraniPhonebugallowed
userstolistenonothers’conversationsviaFace-
Time45(CIE,AA,PS,LT).Insomecases,thetechnol-
32RomanY ampolskiy,‘PredictingFutureAIFailuresfromHistoric
Examples’(2018)foresight138-152
33J.A.Rawlinson,‘ReportontheTherac-25’OCTRT/OCIPhysicists
Meeting(Kingston,Ontario1987)
34SaqibShah, AmazonWorkersHospitalizedafterWarehouse
RobotReleasesBearRepellent’(engadget,6December2018)
<https://www.engadget.com/2018/12/06/amazon-workers
-hospitalized-robot>accessed20January2020
35T ariqTahir,'FactoryRobotImpalesWorkerwith10Foot-long
SteelSpikesafterHorrorMalfunction'(TheSun,14December
2018)<https://www.thesun.co.uk/news/7954270/factory-robot
-malfunctions-and-impales-worker-with-10-foot-long-steel
-spikes/>accessed1November2019
36JohnG.Fuller ,‘DeathbyRobot’(1984)Omni,45-46,97-102
37AssociatedPressinBerlin,'RobotKillsWorkeratVolkswagen
PlantinGermany'(TheGuardian,2July2015)<https://www
.theguardian.com/world/2015/jul/02/robot-kills-worker-at
-volkswagen-plant-in-germany>accessed1November2019
38T imothyB.Lee,'SoftwareBugLedtoDeathinUber’sSelf-
drivingCrash'(arsTechnica,7May2018)<https://arstechnica
.com/tech-policy/2018/05/report-software-bug-led-to-death-in
-ubers-self-driving-crash/>accessed20January2020
39FaizSiddiqui,'NTSB“Unhappy”withT eslaReleaseofInvestiga-
tiveInformationinFatalCrash'(WashingtonPost,1April2018)
<https://www.washingtonpost.com/news/dr-gridlock/wp/2018/04/
01/ntsb-unhappy-with-tesla-release-of-investigative-information
-in-fatal-crash/>accessed1November2019
40CaseyRossandIkeSwetlitz,'IBM’sWatsonSupercomputer
Recommended“UnsafeandIncorrect”CancerT reatments,
InternalDocumentsShow'(StatNews,25July2018)<https://
www.statnews.com/2018/07/25/ibm-watson-recommended
-unsafe-incorrect-treatments/>accessed1November2019.
41HomaAlemzadeh,JaishankarRaman,NancyLeveson,Zbigniew
KalbarczykandRavishankarK.Iyer, AdverseEventsinRobotic
Surgery:ARetrospectiveStudyof14Y earsofFDAData’(2016)
11PLoSONE
42'2010FlashCrash'(Wikipedia)<https://en.wikipedia.org/wiki/
2010_Flash_Crash>accessed1November2019
43CoryMitchell,'TheT woBiggestFlashCrashesof2015'(Investo-
pedia,25June2019)<https://www .investopedia.com/articles/
investing/011116/two-biggest-flash-crashes-2015.asp>accessed1
November2019.
44GaryHorcher ,'AmazonAlexaRecordedPrivateConversation,
SentittoRandomContact,WomanSays'(WHBQ,24May2018)
<https://www.fox13memphis.com/news/trending-now/amazon
-alexa-recorded-private-conversation-sent-it-to-random-contact
-woman-says/755720160>accessed1November2019
45MarkGurman,'AppleBugLetsiPhoneUsersListeninonOthers
ViaFaceT ime'(Bloomberg,28January2019)<https://www
.bloomberg.com/news/articles/2019-01-29/apple-bug-lets-iphone
-users-listen-in-on-others-via-facetime>accessed1November
2019
Delphi4|2019 192ClassificationSchemasforAIFailures
ogyfacilitatedacasualviolationofprivacysuchas
whenUberusers’locationsandidentitiesweredis-
playedonascreenatalaunchparty46(CIE,AI,PT,
LC).
Privacyviolationscarrymoreseriousconse-
quenceswhentheybecomemisidentifications.The
ACLUdemonstratedthatwhentheyshowedthat
Amazonfacialrecognitionwouldflagcertainmem-
bersofCongressaswantedcriminals47(CYF,CYS,
AN,PS,LD).Alackoftrainingdata(andimplicitbias)
resultedinfacialrecognitionsystemsbeingunable
toseeblackpeople48ortaggingthemasgorillas49
(CIE,CYS,AN,PD,LD).Facialrecognitionusedby
policeintheUnitedKingdomhasbeenrecorded
makingmanyfalsepositiveidentifications50(CIE,
CIF,CYF,CYS,AN,PS,LT,LO).AndinChina,facial
recognitionsystemsdeployedforautomatedmisde-
meanorticketingpubliclyshamedawomanasajay-
walkerwhenmistakingherphotoonthesideofa
busforthewomanherself51(CIE,CIF ,AN,PD,LE)
andadriverwasticketedforusingacellphonewhen
hewasactuallyscratchinghisface52(CIE,CIF,AN,
PD,LE).T rafficcamerasinNewOrleansticketed
parkedcarsforspeeding53(CIF ,AN,PS,LD,LO).A
manwasfalselyarrestedaftersystemsatApple
misidentifiedhimasstealingfromitsstores54(CIP ,
CIM,CIE,CIF,CCF,AA,PS,LE).
Notallmisidentificationsresultinsuchobvious
harm.ArtistT omWhitespecialisesincreatingab-
stract(andveryunarousing)artthatisflaggedasun-
acceptablenuditybysocialmediaAI.55Thismachine
myopiaindicatesthatthedevelopmentofusefulim-
agecensorshipisnotyetrealisedandsomeinoffen-
siveartissuppressed.(CIM,CIF,AA,PD,LD).
Implicitmisidentificationbycategoryisbias,an-
othertopicofgreatconcerninAIdevelopment.With
goodreason:areportconcludedthatAIstrainedon
hiringdecisionswouldreplicateoramplifyhuman
bias,56Amazon’shiringAIturnedouttobesexist,57
andtheCOMPASsystemusedinWisconsintopre-
dictrecidivismwasbiasedagainstblacks58(CIE,CIF ,
CYC,AA,PD,LE).Justashumanbiasoftenresults
frominadequateexposuretodiversity ,AIbiasoften
arisesfromthesamecause.AnattempttouseAIto
objectivelyjudgeanonlineinternationalbeautycon-
testwithouthumanbiasfailedwhenonlyoneof44
winnersitchosehaddarkskin,promptingspecula-
tionthatthiswasduetothetrainingdatabasehav-
ingfewdarkfaces59.AndtheNewZealandautomat-
edpassportapplicationcheckingsystemrejectedan
46KashmirHill,'”GodView”:UberAllegedlyStalkedUsersFor
Party-Goers'ViewingPleasure'(Forbes,3October ,2014)<https://
www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber
-allegedly-stalked-users-for-party-goers-viewing-pleasure/
#4b7dd5593141>accessed1November2019
47CyrusFarivar,'Amazon’ sRecognitionMessesUp,Matches28
LawmakerstoMugshots'(arsTechnica,26July2018)<https://
arstechnica.com/tech-policy/2018/07/amazons-rekognition
-messes-up-matches-28-lawmakers-to-mugshots/>accessed1No-
vember2019
48'AlgorithmicJusticeLeague'<https://www .ajlunited.org/>ac-
cessed1November2019
49JanaKasperkevic,'GoogleSaysSorryforRacistAuto-tagin
PhotoApp'(TheGuardian,1July2015)<https://www .theguardian
.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo
-app>accessed1November2019
50MattBurgess,'FacialRecognitionT echUsedbyUKPoliceis
MakingaT onofMistakes'(WiredUK,4May2018)<https://www
.wired.co.uk/article/face-recognition-police-uk-south-wales-met
-notting-hill-carnival>accessed1November2019
51XinmeiShen,'FacialRecognitionCameraCatchesT opVusiness-
woman"Jaywalking"BecauseherFaceWasonaBus'(Abacus
News,22November2018)<https://www.abacusnews.com/digital
-life/facial-recognition-camera-catches-top-businesswoman
-jaywalking-because-her-face-was-bus/article/2174508>accessed
1November2019
52WTF ,'ChineseDriverFinedforScratchinghisFaceafterP assing
AITrafficCamera'(9gag,26May2019)<https://9gag.com/gag/
av8VBdd/chinese-driver-fined-for-scratching-his-face-after -passing
-ai-traffic-camera>accessed1November2019
53WillieJamesInman,'T rafficCamerainNewOrleansGiving
SpeedingTicketstoP arkedCars'(FoxNews,11April2018)
<https://www.foxnews.com/auto/traffic-camera-in-new-orleans
-giving-speeding-tickets-to-parked-cars>accessed1November
2019
54'AppleAIAccusedofLeadingtoMan'sWrongfulArrest'(BBC
News,23April2019)<https://www.bbc.com/news/technology
-48022890>accessed1November2019
55JasonBailey,'AIArtistsExpose“Kinks”InAlgorithmicCensor-
ship'(Artnome,11December2018)<https://www .artnome.com/
news/2018/12/6/ai-artists-expose-kinks-in-algorithmic-censorship
>accessed1November2019
56NicolT urnerLee,PaulResnicketal,'AlgorithmicBiasDetection
andMitigation:BestPracticesandPoliciestoReduceConsumer
Harms'(BrookingsInstitute,22May2019)<https://www
.brookings.edu/research/algorithmic-bias-detection-and
-mitigation-best-practices-and-policies-to-reduce-consumer
-harms/>accessed1November2019
57JamesCook,'AmazonScraps“SexistAI”RecruitingT oolthat
ShowedBiasAgainstWomen'(TheTelegraph,10October2018)
<https://www.telegraph.co.uk/technology/2018/10/10/amazon
-scraps-sexist-ai-recruiting-tool-showed-bias-against/>accessed1
November2019
58EdY ong,'APopularAlgorithmIsNoBetteratPredictingCrimes
ThanRandomPeople'(TheAtlantic,17January2018)<https://
www.theatlantic.com/technology/archive/2018/01/equivant
-compas-algorithm/550646/>accessed1November2019
59JordanPearson,'WhyAnAI-JudgedBeautyContestPickedNearly
AllWhiteWinners'(Vice,5September2016)<https://www .vice
.com/en_us/article/78k7de/why-an-ai-judged-beauty-contest
-picked-nearly-all-white-winners>accessed1November2019
Delphi4|2019193 ClassificationSchemasforAIFailures
Asianapplicant’sphotograph,claimingthat‘Sub-
ject’seyesareclosed.60Astudydemonstratedthat
implicitraceandgenderbiasesintrainingcorpora
flowedthroughintoAIstrainedonthosecorpora.61
Inthehandsofanauthoritarianregime,AIcan
createenvironmentspromptingcomparisonswith
Orwell’s1984.Nowhereisthismoreapparentthanin
China,whichhasembracedfacialrecognitionona
largescale.62AIthereblocksmentionoftheTianan-
menSquaremassacreonsocialmedia63(CYS,AI,PT,
LC).Whilethissoftwareisbeingusedtocreateex-
actlyitsintendedeffect,welabelthisafailurebecause
ithasconsequencesmanywesternobserverswould
considertobesociallyharmful.Chinahasa‘social
credit’scoringsystemreminiscentofaBlackMirror
episode,64linkedtosocialmediaandconsumersys-
temssuchasSesameCredit,65thatwillbanpeople
fromcertainvenueslikeflightsandhotelsforpoor
scores,whichmaybeincurredbyundesirablebehav-
ioursuchasbuyingvideogames(CYC,AI,PT ,LC).
Somecommentatorsspeculatethatthiswillhavecon-
sequencesinhealthcare.66AlsoinChina,AIisbeing
usedtogradeschoolpapers,67withsomegoodwrit-
ingbeinggivenpoormarks(CYS,AI,PD,LO).And
AIisusedtomonitorthemoodsofworkers68andthe
attentionpaidbychildreninclass69withthemostat-
tentivebeingrewarded(CIM,CYC,AI,PT ,LC).
IntheWestthedangersaremorenascent.Re-
searchersattheUniversityofPennsylvaniademon-
stratedthattextualanalysisofanindividual’sFace-
bookpostscouldpredict21differentmedicalcondi-
tionssuchasdiabetes.70OthersshowedthatAIwas
betterthanpeopleatdeterminingsexualorientation
fromaphotograph,71whileathirdgroupdetermined
thatAIcoulddetectcertaingeneticdiseasesfrom
faces.72ADepartmentofHomelandSecuritypro-
grampredictswhichflyersarepotentialterrorists73
fromdemographicandtraveldataalone,andifthose
travellersmakeittotheEuropeanUniontheymay
faceanAI-poweredliedetectionsystematthebor-
der.74ThestartupFaceptionclaimsitssoftwarecan
predictpersonalitytraitssuchaspedophileorpoker
playerfromfacialimageanalysis,causingonecom-
mentatortolikenittophrenology.75Aperson’sgait
60JamesT itcomb,'RobotPassportCheckerRejectsAsianMan's
PhotoforHavinghisEyesClosed'(TheT elegraph,7December
2016)<https://www.telegraph.co.uk/technology/2016/12/07/robot
-passport-checker-rejects-asian-mans-photo-having-eyes/>ac-
cessed1November2019
61AylinB.Caliskan,‘SemanticsDerivedAutomaticallyfromLan-
guageCorporaContainHuman-likeBiases’(2017)Science
183-186
62SijiaJiang,'BackingBigBrother:ChineseFacialRecognition
FirmsAppealtoFunds'(Reuters,12November2017)<https://
www.reuters.com/article/us-china-facialrecognition-analysis/
backing-big-brother-chinese-facial-recognition-firms-appeal-to
-funds-idUSKBN1DD00A>accessed1November2019
63MichaelGrothaus,'NowAIEasilyErasestheTiananmenSquare
MassacrefromOnlineMemory'(FastCompany,28May2019)
<https://www.fastcompany.com/90355806/now-ai-easily-erases
-the-tiananmen-square-massacre-from-online-memory>accessed
1November2019
64J.Wright(Director)(2016)BlackMirror:Nosedive[Motion
Picture]
65'SocialCreditSystem'(Wikipedia)<https://en.wikipedia.org/wiki/
Social_Credit_System>accessed1November2019
66JohnHarris,'TheT yrannyofAlgorithmsisPartofourLives:Soon
TheyCouldRateEverythingWeDo'(TheGuardian,5March
2018)<https://www.theguardian.com/commentisfree/2018/mar/
05/algorithms-rate-credit-scores-finances-data>accessed1No-
vember2019
67StephenChen,'China’ sSchoolsareQuietlyUsingAItoMark
Students’Essays...ButdotheRobotsMaketheGrade?'(South
ChinaMorningP ost,27May2018)<https://www .scmp.com/
news/china/society/article/2147833/chinas-schools-are-quietly
-using-ai-mark-students-essays-do>accessed1November2019
68JamieFullerton,'”Mind-reading”T echBeingUsedtoMonitor
ChineseWorkers'Emotions'(TheTelegraph,30April2018)
<https://www.telegraph.co.uk/news/2018/04/30/mind-reading
-tech-used-monitor-chinese-workers-emotions/>accessed1No-
vember2019
69JiayunFeng,'ChineseP arentsWantStudentstoWearDystopian
Brainwave-detectingHeadbands'(supChina,5April2019)
<https://supchina.com/2019/04/05/chinese-parents-want-students
-to-wear-dystopian-brainwave-detecting-headbands/>accessed1
November2019
70RainaM.Merchantet,‘EvaluatingthePredictabilityofMedical
ConditionsfromSocialMediaPosts’(2019)PLoSONE
71YilunWangandMichalKosinski,‘DeepNeuralNetworksare
MoreAccuratethanHumansatDetectingSexualOrientation
fromFacialImages(2018)JournalofPersonalityandSocial
Psychology246–257
72NinaAvramova,'AITechnologyCanIdentifyGeneticDiseasesby
LookingatY ourFace,StudySays'(CNN,8January2019)<https://
edition.cnn.com/2019/01/08/health/ai-technology-to-identify
-genetic-disorder-from-facial-image-intl/index.html>accessed1
November2019
73SamBiddle,'HomelandSecurityWillLetComputersPredictWho
MightBeaT erroristonY ourPlaneJustDon’tAskHowIt
Works'(TheIntercept,3December2018)<https://theintercept
.com/2018/12/03/air-travel-surveillance-homeland-security/>ac-
cessed1November2019
74'SmartLie-detectionSystemtoTightenEU'sBusyBorders'(Euro-
peanCommission,24October2018)<https://ec.europa.eu/
research/infocentre/article_en.cfm?artid=49726>accessed1No-
vember2019
75MattMcFarland,'T erroristorPedophile?ThisStart-upSaysitCan
OutSecretsbyAnalyzingFaces'(WashingtonPost,24May2016)
<https://www.washingtonpost.com/news/innovations/wp/2016/
05/24/terrorist-or-pedophile-this-start-up-says-it-can-out-secrets
-by-analyzing-faces/>accessed1November2019
Delphi4|2019 194ClassificationSchemasforAIFailures
canbeusedtoidentifythem.76Twosystemssupply
‘predictivepolicing’systemsthat,invitingacompar-
isonwiththemovieMinorityReport,suggestwhere
crimeislikelytooccur.7778Companiesexploithu-
manpsychologytogetourattention,79theUSmili-
tarystudieshowtoinfluenceTwitterusers,80andthe
PentagonwantstopredictprotestsagainsttheUS
Presidentviasocialmediasurveillance.81
AsY ampolskiy82pointedout, AnAIdesignedto
doXwilleventuallyfailtodoX,’codifiedastheFun-
damentalTheoremofSecurity:Thereisnosuchthing
asa100%securesystem.Inalltheexamplesinthe
previousparagraphthelatentfailuresaretheones
impliedbythistheorem,withtheirconcomitantrisks.
TheconsequencesofmisinformationspreadbyAI
includeofcourse‘fakenews,suchasthatattributed
toCambridgeAnalytica,83assiduouslyspreadbyso-
cialmedia,84anddeepfake’videos,85whichcouldbe
usedtoautomateblackmailatscale86(CIM,CYS,AM,
PU,LO)
AclassofincidentsillustratesthatmuchAIisnot
yetmature.Ahardwaredesignbugallowedmemo-
ryprotectionviolationsinyears’worthofIntel
chips87(CCF ,AA,PD,LD).AndMicrosoft’sTaychat-
botbecameracistwithinhoursofbeingdeployedto
learnfromotherTwitterusers88(CYS,AA,PS,
LC/LD).Someaspectsofthisimmaturityarefunda-
mentallybrittle;forinstance,whenadigitalex-
changelost$137millionbecausetheonepersonhold-
ingthemasterpassworddied,89orwhenbotstasked
withmaintainingWikipediafoughtwitheachother
foryears,90Deepreinforcementlearningfailsmore
oftenthanadmitted.91
Intentionalmisusespansmanyincidents;tocite
two,smartscootersforhirewerehackedtodisplay
obscenemessagesandbeusedwithoutpayment92
(CCF,AM,PS,LE)andDomino’sPizzaaffiliationapp
wasfooledintograntingpointsbyfakepicturesof
pizza93(CCF,AM,PD,LC).
Some‘backfire’eventsresultindamagetotheAI
industrythroughoverreachingormisrepresentation.
Forinstance,apreternaturallycapablehealthcareAI
called‘Zach’inNewZealandwassuspectedtobea
personindisguise.94AndtheSophiarobotattractsa
76'ForensicGaitAnalysis'(RoyalSocietyofEdinburgh,November
2017)<https://royalsociety.org/~/media/about-us/programmes/
science-and-law/royal-society-forensic-gait-analysis-primer-for
-courts.pdf>accessed1November2019
77'PredPol'<https://www .predpol.com/>accessed1November
2019
78'P alantir'<http://www.palantir.com/>accessed1November2019
79T ristanHarris,'HowaHandfulofT echCompaniesControl
BillionsofMindsEveryDay'(TED,April2017)<https://www.ted
.com/talks/tristan_harris_the_manipulative_tricks_tech_companies
_use_to_capture_your_attention>accessed1November2019
80BenQuinnandJamesBall,'USMilitaryStudiedHowtoInfluence
TwitterUsersinDarpa-fundedResearch'(TheGuardian,8July
2014)<https://www.theguardian.com/world/2014/jul/08/darpa
-social-networks-research-twitter-influence-studies>accessed1
November2019
81NafeezAhmed,'PentagonWantstoPredictAnti-T rumpProtests
UsingSocialMediaSurveillance'(Vice,30October2018)
<https://www.vice.com/en_us/article/7x3g4x/pentagon-wants-to
-predict-anti-trump-protests-using-social-media-surveillance>ac-
cessed1November2019
82(n19)
83'CambridgeAnalyticaplantedfakenews'(BBC,20March2018)
<https://www.bbc.com/news/av/world-43472347/cambridge
-analytica-planted-fake-news>accessed1November2019
84EmergingT echnologyfromthearXiv,'FirstEvidenceThatSocial
BotsPlayaMajorRoleinSpreadingFakeNews'(Technology
Review,7August2017)<https://www.technologyreview.com/s/
608561/first-evidence-that-social-bots-play-a-major-role-in
-spreading-fake-news/>accessed1November2019
85BenCollins,'ThisViralSchwarzeneggerDeepfakeisn'tJust
Entertaining.It'saWarning'(NBCNews,12June,2019)<https://
www.nbcnews.com/tech/tech-news/viral-schwarzenegger
-deepfake-isn-t-just-entertaining-it-s-warning-n1016851>ac-
cessed1November2019
86P aulBricman,'DeepFakeRansomware'(Medium,2February
2019)<https://medium.com/@paubric/deepfake-ransomware
-oaas-part-1-b6d98c305cd9>accessed1November2019
87ZackWhittaker ,'NewSecret-spillingFlawAffectsAlmostEvery
IntelChipSince2011'(T echCrunch,14May2019)<https://
techcrunch.com/2019/05/14/zombieload-flaw-intel-processors/>
accessed1November2019
88ElleHunt,'T ay,Microsoft'sAIChatbot,GetsaCrashCoursein
RacismfromTwitter'(TheGuardian,24March2016)<https://
www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai
-chatbot-gets-a-crash-course-in-racism-from-twitter>accessed1
November2019
89DanGoodin,'DigitalExchangeLoses$137MillionasFounder
TakesP asswordstotheGrave'(arsT echnica,2February2019)
<https://arstechnica.com/information-technology/2019/02/digital
-exchange-loses-137-million-as-founder-takes-passwords-to-the
-grave/>accessed1November2019
90SaraChodosh,'WikipediaBotsSpentY earsFightingSilent,Tiny
BattleswithEachOther'(PopularScience,27February2017)
<https://www.popsci.com/wikipedia-bots-fighting/>accessed1
November2019
91AlexIrpan,'DeepReinforcementLearningDoesn'tWorkY et'
(SortaInsightful,14February2018)<https://www .alexirpan.com/
2018/02/14/rl-hard.html>accessed1November2019
92MattNovak,'LimeScootersHackedtoSaySexualThingsto
RidersinAustralia'(Gizmodo,24April2019)<https://gizmodo
.com/lime-scooters-hacked-to-say-sexual-things-to-riders-in
-1834264534>accessed1November2019
93MatthewGault,'T akePicturesofFakePizzastoGetaFree
PizzafromDomino's'(Vice,6March2019)<https://www .vice
.com/en_us/article/kzdkgw/take-pictures-of-fake-pizzas-to-get-a
-free-pizza-from-dominos>accessed1November2019
94DavidFarrier,'TheMysteryofZach,NewZealand’sall-too-miracu-
lousmedicalAI'(TheSpinoff,6March2018)<https://thespinoff.co
.nz/the-best-of/06-03-2018/the-mystery-of-zach-new-zealands-all
-too-miraculous-medical-ai/>accessed1November2019
Delphi4|2019195 ClassificationSchemasforAIFailures
degreeofadulationfarbeyonditsrealcapabilities.95
ThethreathereistothereputationofAIanditscom-
munity(CYF,CYC,AI,PU,LO).
AIthatisunintentionallyinsensitivealsodamages
itsownreputation,suchastheAIthatthoughtthat
houseburningdownwas‘spectacular’96andPaypal’s
virtualassistantwhichinsensitivelyreplied,‘Great!’
whensomeonetoldit,‘Igotscammed’97(CIE,AA,
PS,LE).TheStarbucksshift-schedulingsoftwarewas
alsoinsensitivewhenitoptimisedforhour-by-hour
businessneedsbutassignedworkerstounpre-
dictableanderraticschedules98(CIP ,CIF ,CCC,AN,
PT,LD).AIthatistrustedwithoutverificationmay
notliveuptothattrust,suchaswhenamodelused
togradethe‘value-add’impartedbyNewYorkCity
teacherswasfoundtogenerateessentiallyrandom
results99(CIM,CIE,CIF,AN,PS,LT).Acorporateem-
ploymentworkflowsystemwasunstoppableinter-
minatinganemployeeerroneouslyflaggedassuper-
fluous;100afterthreeweeksspentfixingtheerrorhe
declinedtoreturntothefirm(CIE,CIF,CCF,AA,PS,
LD).
Somefailuresaresobenignonthesurfacethat
manycasualobserverswouldclassifythemascute
behaviourratherthanfailures.Whenarobot(with
smileyfacetoboot)ontheInternationalSpaceSta-
tionstoppedobeyingastronauts101theparallelswith
HAL9000of2001:ASpaceOdysseyweresoirre-
sistibleastoobscuretherealrisksofacomputerfail-
ureinacriticalenvironment.Apple’sSiri’sinitialre-
sponsetotherequestCallmeanambulance’wasto
refertotheuserthereafteras‘ambulance’102(CIP ,
AA,PS,LE).Whenatextgeneratorcreatedweirdde-
scriptionsofBitcoin103,andanAI’spredicted
YouTubepornographysearches,104theresultswere
sofunnyastobeequallydisarming(CYC,AA,PS,
LD).Atrivialtypointhecodeforagameagentmade
itmucheasiertobeatthanitshouldhavebeen105
(CIM,AA,PT ,LT).ARoombaspreaddogpoopall
overahouse106(CIP,CIF,AA,PS,LE).Asignprint-
edinWelshtranslatedto‘Iamnotintheofficeat
themoment.Sendanyworktobetranslated.’107
(CYC,AN,PT,LO).Theswarmintelligence’UNU
failedtopredicttheresultsoftheKentuckyDerby
thesecondtimearoundafterpreviouslywinningthe
superfecta.108(CIF,AA,PD,LE).Aneuralnetwork
hallucinatedsheepinimageswheretherewerenone,
ormislabelledthemwhentheywereplacedin(ad-
mittedlyunusual)locations109(CIM,AA,PS,LE).
Andinastoryguaranteedtogetmorelaughsthan
95NoelSharkey,'MamaMiaIt'sSophia:AShowRobotOrDanger-
ousPlatformToMislead?'(Forbes,17November2018)<https://
www.forbes.com/sites/noelsharkey/2018/11/17/mama-mia-its
-sophia-a-show-robot-or-dangerous-platform-to-mislead/
#4fabeea87ac9>accessed1November2019
96MargaretMitchell,'HowWeCanBuildAItoHelpHumans,Not
HurtUs'(TED,October2017)<https://www.ted.com/talks/
margaret_mitchell_how_we_can_build_ai_to_help_humans_not
_hurt_us/transcript>accessed1November2019
97Facebook,20March2019<https://www .facebook.com/photo
.php?fbid=10217225240875399>accessed1November2019
98JodiKantor ,'WorkingAnythingbut9to5'(NewYorkTimes,13
August2014)<https://www.nytimes.com/interactive/2014/08/13/
us/starbucks-workers-scheduling-hours.html>accessed1Novem-
ber2019
99GaryRubinstein,'AnalyzingReleasedNYCValue-AddedData
Part2'(T eachforUs,28February2012)<http://garyrubinstein
.teachforus.org/2012/02/28/analyzing-released-nyc-value-added
-data-part-2/>accessed1November2019
100JaneWakefield,'TheManWhoWasFiredbyaMachine'(BBC
News,21June2018)<https://www.bbc.com/news/technology
-44561838>accessed1November2019
101JamieSeidel,'CIMON,theInternationalSpaceStation’ sArtificial
Intelligence,HasTurnedBelligerent'(NewsCorpAustralia,5
December2018)<https://www.news.com.au/technology/science/
space/cimon-the-international-space-stations-artificial
-intelligence-has-turned-belligerent/news-story/
953a84bc8c4fe414eed2d0550e1d8bf4>accessed1November
2019
102WillKnight,'TougherT uringTestExposesChatbots’Stupidity'
(TechnologyReview,14July2016)<https://www
.technologyreview.com/s/601897/tougher -turing-test-exposes
-chatbots-stupidity/>accessed1November2019
103DanielOberhaus,‘WatchThisHilariousBitcoinExplainerGener-
atedbyanAI’(Vice,23May2018)<https://www .vice.com/en_us/
article/xwmy9a/watch-botnik-ai-bitcoin-explainer>accessed01
November2019
104DrewSchwartz,‘AIPredictedtheFutureofPornSearchesandWe
Can'tStopLaughing’(Vice,6March2018)<https://www .vice
.com/en_us/article/bj54xv/ai-predicted-the-future-of-porn
-searches-and-we-cant-stop-laughing-vgtrn>accessed01Novem-
ber2019
105SamMachkovech,‘AY ears-old,One-letterTypoLedtoAliens:
ColonialMarines’WeirdAI’(arsTechnica,13July2018)<https://
arstechnica.com/gaming/2018/07/a-years-old-one-letter-typo-led
-to-aliens-colonial-marines-awful-ai/>accessed01November
2019
106JesseNewton(F acebook,9August2016)<https://www .facebook
.com/jesse.newton.37/posts/776177951574>accessed01No-
vember2019
107‘E-mailErrorEndsuponRoadSign’(BBC,31October2008)
<http://news.bbc.co.uk/2/hi/7702913.stm>accessed01Novem-
ber2019
108DavidZ.Morris,‘ArtificialIntelligenceFailsonKentuckyDerby
Predictions’(Fortune,7May2017)<https://fortune.com/2017/05/
07/artificial-intelligence-kentucky-derby-predictions/>accessed
01November2019
109JanelleShane,‘DoNeuralNetsDreamofElectricSheep?’(AI
Weirdness,18March2018)<https://aiweirdness.com/post/
171451900302/do-neural-nets-dream-of-electric-sheep>ac-
cessed01November2019
Delphi4|2019 196ClassificationSchemasforAIFailures
fearsofAIfailure,Alexadeviceswereallegedtobe
spontaneouslylaughing.110
Behaviorthatisalsoperceivedas‘cute’inthesense
of‘lookathowsmartmychildis,’canbemorecon-
cerningbecauseitindicatesjusthowcreativeAIcan
beinsolvingproblemswithsolutionsthateludedhu-
mans.AIs‘cheat’atgamesbyfindingloopholesin
therulesorunintendedbackdoorsintheimplemen-
tation.111OneAIinvented(orrediscovered)
steganographyinordertomeetitsgoals.112And
GPT2,atextgeneratordevelopedbyOpenAI,anor-
ganisationdedicatedtoopensourcingAItoensure
itssafety ,wasdeemedtobesogoodatwhatitdid
thatitwouldbetoodangeroustopublishitscode.113
GeneticAlgorithms
Geneticalgorithmscanbesoinnovativeat‘breaking
therules’114115thattheycheckeverycategoryoffail-
ureclassification,suggestingapathtowardsun-
boundedrisk,andarethereforecollectedinthissub-
section.
Theycanexploitmisfeaturesorbugsintheiren-
vironment,suchaswheninthedevelopmental
stagesoftheNEROvideogame,players’robots
evolvedawigglingmotionthatallowedthemto
walkupwallsratherthansolvetheobstacles‘prop-
erly’bywalkingaroundthewalls,116orwhenina
capstoneprojectforagraduatelevelclass,students
wererequiredtomakeaafive-in-a-rowTic- Tac-T oe
gameplayedonaninfinitelylargeboard.Onesub-
mission’salgorithmevolvedtorequestnon-exis-
tentmovesthatwereextremelyfaraway,leading
toanautomaticwinsincetheotherplayerssys-
temwouldcrash.117
Theycan‘cheat’byexploitingloopholesinthe
rulesoftheirgoals,suchasinanexperimentthat
involvedorganismsnavigatingpaths,whenone
organismcreatedanodometertoallowittonavi-
gatethepathpreciselyandearnaperfectscore,118
orwhenanattempttocreatecreaturesthatcould
evolveswimmingstrategiesresultedinthem
learningthatbytwitchingtheirbodypartsrapid-
ly,theycouldobtainmoreenergythatletthem
swimatunrealisticspeeds.119
Theycanreinvent,totheircreators’surprise,ca-
pabilitiesofbiologicalorganisms,suchasinanex-
perimentwhereroboticorganismshadtofind
foodsorpoisonsthatwerebothrepresentedby
redlightsandcouldusebluelightstocommuni-
catewithotherrobots,theorganismsevolvedin
surprisingwaysthatresembledmimicryanddis-
honestyinnature,120orwhenadigitalevolution
modelthatwasinitiallythoughttohavebeena
completefailure,wasdiscoveredtohaverepro-
ducedthebiologicalconceptDrake’srulewithout
havingbeentoldtodoso.121
Theycanimprovisenovelsolutionstotheiras-
signedtasks,suchaswhen3-Dcreaturesthatcould
run,walk,andswimweregaugedbyafitnessfunc-
tionofaveragegroundvelocity ,whichresultedin
creaturesthatweretallandrigid,fallingoverand
110RachelSandler,‘SomeAmazonEchoDevicesAreSpontaneously
Laughing,AndNobodyKnowsWhy’(ScienceAlert,7March
2018)<https://www.sciencealert.com/amazon-echo-devices-are
-creepily-laughing-at-people>accessed01November2019
111VictoriaKrakovna,‘SpecificationGamingExamplesinAI’(2April
2018)<https://vkrakovna.wordpress.com/2018/04/02/specification
-gaming-examples-in-ai/>accessed01November2019
112DevinColdewey,‘ThisCleverAIHidDatafromitsCreatorsto
CheatatitsAppointedT ask’(techcrunch,31December2018)
<https://techcrunch.com/2018/12/31/this-clever-ai-hid-data-from
-its-creators-to-cheat-at-its-appointed-task/>accessed01Novem-
ber2019
113TomSimonite,‘TheAIT extGeneratorThat'sT ooDangerousto
MakePublic’(Wired,14February2019)<https://www .wired
.com/story/ai-text-generator-too-dangerous-to-make-public/>ac-
cessed01November2019
114JanelleShane,‘WhenAlgorithmsSurpriseUs’(AIWeirdness,13
April2018)<https://aiweirdness.com/post/172894792687/when
-algorithms-surprise-us>accessed01November2019
115JoelLehmanetal,‘TheSurprisingCreativityofDigitalEvolution:
ACollectionofAnecdotesfromtheEvolutionaryComputation
andArtificialLifeResearchCommunities’(2018)arX -
iv:1803.03453v1[cs.NE]
116KennethO.Stanleyetal,‘Real-timeNeuroevolutionintheNERO
VideoGame’(2005)9IEEETransactionsonEvolutionaryCompu-
tation653–668
117DavidE.MoriartyandRistoMiikkulainen,‘FormingNeural
NetworksthroughEfficientandAdaptiveCo-evolution’(1997)5
EvolutionaryComputation373–399
118LauraM.Grabowskietal, ACaseStudyoftheDeNovoEvolu-
tionofaComplexOdometricBehaviorinDigitalOrganisms
(2013)8PL oSOnee60466
119KarlSims,‘EvolvingVirtualCreatures’(1994)Proceedingsofthe
21stAnnualConferenceonComputerGraphicsandInteractive
Techniques15–22
120SaraMitri,‘T heEvolutionofInformationSuppressioninCommu-
nicatingRobotswithConflictingInterests’(2009)Proceedingsof
theNationalAcademyofSciences15786–15790
121ThomasK.Hindré,‘NewInsightsintoBacterialAdaptation
ThroughInVivoandInSilicoExperimentalEvolution(2012)10
NatureReviewsMicrobiology352–365
Delphi4|2019197 ClassificationSchemasforAIFailures
usingtheirpotentialenergytogainhighveloci-
ty,122orwhenarobotarmwasprogrammedtoin-
teractwithasmallboxonatable,butthegripper
wasbroken,resultingintherobothittingthebox
withthegripperinawaythatwouldforcethegrip-
pertoholdtheboxfirmly .123
Theycancreativelyexceedtheirgoals,suchas
whentheartificiallifesystemTierra,notexpect-
edtoevolvehigherlifeformsforyears,created
complexecologicalsystemsonthefirstsuccessful
run,124orwhenrobotsthatweredesignedtode-
tectandtraveltoalightsourceevolvedaspinning
behaviorthatwasmoreefficientthantheexpect-
edBraitenberg-stylemovement.125
2.HypotheticalFailures
Avideoproducerdepictedafictionalfuturewhere
anartificialsuperintelligencechargedwithcopyright
enforcementhackedpeople’sbrainswithnanotech-
nologytocorrectviolations126(CIM,CYC,AI,PD,
LO).ItwasdemonstratedthataDNAsequencercould
behackedthrough(currentlynon-existent)flawsin
acompressionalgorithm127(CIPAM,PD,LE).
MostshowsthatexploreAIfailuredevelopa
themeepitomisedbyTerminatorseries:amassiveAI
becomesself-awareandattemptstodestroyhuman-
ity.(CIP,CIE,CIF,CCF,CYF ,CYS,CYC,AN,AI,PD,
LC,LO).V ariationsincludeColossus:TheForbin
Project,wheretheAIimprisonshumanitytoendcon-
flict(CIM,CIE,CYS,CYC,AN,AI,PD,LC,LO),the
samegoalastheAIVIKIinthemovieI,Robotand
therobotsinJackWilliamson’snovelette‘WithFold-
edHands’.128Oneoftheleastapocalypticfailureswas
exploredinthe2013filmHer,wherevirtualassistant
AIshaveunforeseenintimaterelationshipswith
manyhumanswhoarelargelychangedforthebet-
ter(CIE,AA,PD,LD).
BroadClassificationsofFutureFailureScenarios
Anotherclassificationforfailurescanbeappliedto
futurescenarios.
Figure2depictstheseverityandscale(numberof
individualsaffected)ofbroadlyclassifiedfailuresce-
narios.Inchronologicalordertheseare:
1.Autonomousweapons,whichcurrentlymostly
fallintothe‘lethal’category,129130.
2.Employmentautomation:Thepotentialsegment
ofthepopulationmadejoblessthroughAIau-
tomation.
3.Controlfailures:AIofsufficientcomplexityand
powerthatbugscausecatastrophes.
4.ConsciousAIs:ControlfailuresinAGIsorAIsthat
aresocomplexthattheirbehaviorismostuseful-
lycategorisedasconscious.’
5.Self-replicatingmachines:EmbodiedAIsthatcan
createcopiesofthemselvesfromrawmaterialsin
theenvironment.
ThescenarioofConsciousAIs’meritssomeelabora-
tion.WhetheranAIisactuallyconsciousisgoingto
becomeanincreasinglydifficultandcontentious
questiontoanswer,butthisscenariodoesnotdepend
ontheanswer.The‘apparentlyconscious’AIsinthis
categoryareonesthat,whethertheyareconscious
ornot,willbedoingsuchagoodimpressionofcon-
sciousnessthatitwouldbemoreproductivetothink
ofthemthatwaythantoapplytraditionalcomputer
sciencemethodstothem.Wewillhavereachedthis
stagewhenthefieldofAIpsychiatry’comesintoex-
istence.
Thechartisnottoscale;thesearequalitativeas-
sessmentsintendedtoprovokeandinformstrategic
planning.Whilesomeoftheselabelsareapocalyp-
tic,wearemotivatedbyconsideringNormalAcci-
dentTheory131andMaas’applicationtoAI:Attheir
extreme,unexpectedinteractionsbetweencompet-
ingsystems,especiallyincyberspace,couldcauseun-
122KarlSims,‘Evolving3DMorphologyandBehaviorbyCompeti-
tion’(1994)1ArtificialLife353–372
123Ecarlat,‘LearningaHighDiversityofObjectManipulations
ThroughanEvolutionary-basedBabbling’(2015)Proceedingsof
LearningObjectsAffordancesWorkshopatIROS,1-2
124ThomRay,‘J’aiJouéàDieuetCréélaVieDansMonOrdinateur’
(1992)LeT empsStratégique68–81
125Watson,‘EmbodiedEvolution:DistributinganEvolutionary
AlgorithminaPopulationofRobots’(2002)39Roboticsand
AutonomousSystems1–18
126‘TheArtificialIntelligenceThatDeletedACentury’(YouT ube)
<https://www.youtube.com/watch?v=-JlxuQ7tPgQ>accessed01
November2019
127AndyGreenberg,‘BiohackersEncodedMalwareinaStrandof
DNA(Wired,9October2017)<https://www.wired.com/story/
malware-dna-hack/>accessed01November2019
128JackWilliamson,WithFoldedHands(FantasyPress1947)
129‘Slaughterbots’(Y ouTube)<https://www .youtube.com/watch?v
=9CO6M2HsoIA>accessed01November2019
130‘BanLethalAutonomousWeapons’<https://autonomousweapons
.org/>accessed01November2019
131CharlesPerrow,NormalAccidents:LivingwithHighRiskT ech-
nologies(PrincetonUniversityPress2011)
Delphi4|2019 198ClassificationSchemasforAIFailures
expectedescalation—a‘flashwar’,analogoustothe
algorithmicflashcrashesobservedinthefinancial
sector.132
V .Responses
Therearevariousresponsestothesefailuresand
risks.Severaladdressprivacy.‘Differentialprivacy’
masksindividualdatainBigDatacollections.133The
Myelinframeworkpreservesprivacyintrustedhard-
wareenclaves.134Anotherapproachencryptsdatabe-
foreusingittotrainneuralnetworkswithoutlossof
capability.135TheDataSelfiebrowseradd-onshows
leakageofpersonaldata136.Anotherprogramcon-
fusesadtrackingbyclickingoneveryadintheback-
ground.137AFacebookcontainerisolatesyourFace-
bookactivityfromeverythingelseyoudo138anda
programcreatessearchnoisetodrownoutyourac-
tualsearches.139
Defensesarebeingdevelopedagainsthackingim-
agerecognitionnetworksthroughmicrochanges.140
132MatthijsMaas,Regulatingfor‘NormalAIAccidents’:Operational
LessonsfortheResponsibleGovernanceofArtificialIntelligence
Deployment(2018)AIES'8223-228
133‘Slaughterbots’(Y ouTube)<https://www .youtube.com/watch?v
=9CO6M2HsoIA>accessed01November2019
134NickHynes,‘EfficientPrivacy-PreservingMLUsingTVM’(TVM,
9October2018)<https://tvm.ai/2018/10/09/ml-in-tees.html>
accessed1November2019.
135MortenDahl,‘PrivateImageAnalysiswithMPCTrainingCNNs
onSensitiveData’(CryptographyandMachineL earning,19
September2017)<https://mortendahl.github.io/2017/09/19/
private-image-analysis-with-mpc/>accessed1November2019
136(DataSelfie)<https://dataselfie.it/>accessed1November2019
137‘AdNauseamBannedfromtheGoogleWebStore’(AdNauseam,
5January2017)<https://adnauseam.io/free-adnauseam.html>
accessed1November2019
138DaveCamp,‘FirefoxNowAvailablewithEnhancedT racking
ProtectionbyDefaultPlusUpdatestoF acebookContainer,Fire-
foxMonitorandLockwise’(TheMozillaBlog,4June2019)
<https://blog.mozilla.org/blog/2019/06/04/firefox-now-available
-with-enhanced-tracking-protection-by-default/>>accessed1No-
vember2019
139TrackMeNot<http://trackmenot.io/>accessed1November2019
140IanGoodfellow,NicolasPapernotetal, AttackingMachine
LearningwithAdversarialExamples’(OpenAI,24February2017)
<https://openai.com/blog/adversarial-example-research/>ac-
cessed01November2019
Figure2:AIfailurescenarioclasseschartedbydistanceintothe
future,numberofhumansaffected(logarithmicscale),andseverityof
effect
Source:Authors'elaboration
Delphi4|2019199 ClassificationSchemasforAIFailures
VI.Conclusions
Whilewehavenotmaderecommendationsastohow
toaddressAIfailuresineachcategoryofthedimen-
sionswehavepresented,wehopethatthisclassifi-
cationschemewillmakethedevelopmentofreme-
diationapproacheseasier.
Theimportanceofthiseffortmaybeextrapolat-
edfromLeveson’sobservationthat‘Thedesignofthe
automatedsystemmaymakethesystemharderto
manageduringacrisis.’141Notingthatthiswastrue
ofthestateoftheartin1995,weareconcernedwith
howsystemsthatarenotjustfarmoreautomated
butautonomousmayalsobefarhardertomanage
duringacrisis.Themorecomplexasystembecomes,
thelargerthetaskXthatmaybeassignedtothatsys-
tem,andsothelargertheconsequencesofthesys-
temfailingtodoX.Today,ahumor-generatingsys-
temwritesajokethatisn’tfunny;tomorrow ,employ-
eescreeningsoftwarewillhirethewrongpeople,
nextweek,asystemdesignedtoprotectanational
powergridfromcyberattackwillfailtodothat,etc.
ObservethatAIsystemsthatperformcommonhu-
man-centrictaskssuchasimagerecognitiondosoin
waysthatareunrelatedtohowhumansperform
thosetasks,andareconsequentiallyeasilyfooledby
near-invisiblechanges;142thatfurthermoreAIcan
operateoncompletelyalienconceptssuchasthe‘op-
posite’ofanimagetoshow,eg,theoppositeofa
cat.143TheseexamplesindicatethatAIsystemsused
toperformcomplexhuman-liketaskswillhaveex-
tremelyunpredictablefailuremodes.
SomepeopleintheAIcommunityviewthesedis-
cussionsasscaremongeringthatimpedesthedevel-
opmentofAI;tothemwequoteWilliamBogard
chroniclingtheBhopalchemicalplanttragedy:
‘Wearenotsafefromtherisksposedbyhazardous
technologies,andanychoiceoftechnologycarries
withitpossibleworst-casescenariosthatwemust
takeintoaccountinanyimplementationdecision.
Thepublichastherighttoknowpreciselywhatthese
worst-casescenariosareandparticipateinalldeci-
sionsthatdirectlyorindirectlyaffecttheirfuture
healthandwell-being.Inmanycases,wemustaccept
thefactthattheresultofemployingsuchcriteriamay
beadecisiontoforegotheimplementationofahaz-
ardoustechnologyaltogether.’144
141(n17)
142AvishekBoseandParhamAarabi, AdversarialAttacksonFace
DetectorsusingNeuralNetbasedConstrainedOptimization’
<https://joeybose.github.io/assets/adversarial-attacks-face.pdf>ac-
cessed1November2019
143JanelleShane,‘WhatistheOppositeofGuacamole?(AIWeird-
ness,10May2019)<https://aiweirdness.com/post/184781529122/
what-is-the-opposite-of-guacamole>accessed1November2019
144WilliamBogard,TheBhopalT ragedy(WestviewPress1989)
Delphi4|2019 200AnAGIwithTime-InconsistentPreferences
AnAGIwithTime-InconsistentPreferences
JamesD.MillerandRomanY ampolskiy*
Anartificialgeneralintelligence(AGI)mighthavetime-inconsistentpreferenceswhereit
knowsthatitwilldisagreewiththechoicesitsfutureselfwillwanttomake.SuchanAGI
wouldnotnecessarilybeirrational.AnAGIwithsuchpreferencesmightseektomodifythe
preferencesorconstrainthedecisionmakingofitsfutureself.Time-inconsistencyincreas-
esthechallengeofbuildinganAGIalignedwithhumanity’svalues.
I.Introduction
Thispaperrevealsatrapforartificialgeneralintelli-
gence(AGI)theoristswhouseeconomists’standard
methodofdiscounting.Thistrapisimplicitlyand
falselyassumingthatarationalAGIwouldhavetime-
consistentpreferences.Anagentthatrealisesthatit
hastime-inconsistentpreferencesknowsthatitsfu-
tureselfwilldisagreewithitscurrentselfconcern-
ingintertemporaldecisionmaking.Suchanagent
cannotautomaticallytrustitsfutureselftocarryout
plansthatitscurrentselfconsidersoptimal.
Economistshavelongusedutilityfunctionsto
modelhowrationalagentsbehave.1AGItheoristsof-
tenrelyontheseutilityfunctionsbecausetheyas-
sumethatanAGIwouldeitherstartoutasrational
ormodifyitselftobecomerational.2,3,4,5,6
Wheneconomistsmodelintertemporaldecision
making,theyassumethatpeopleplacealowervalue
onreceivingmoneyorutilityinthefuturethanthey
dotodaybecausepeoplediscountfuturerewards.
Economistsgenerallyassumethatsuchdiscounting
takesonaparticularfunctionalform.Criticalforthis
paper,thisfunctionalformcausesagentstohave
time-consistentpreferences,andthisformdoesnot
followfromtheassumptionsofrationality .
Thispaperexplainswhyweshouldmodelhowa
futureAGIwillbehave,exploreswhattime-consis-
tentpreferencesare,discusseswhyrationalAGIs
mightnothavethem,andexploreshowanAGIwith
time-inconsistentpreferencesmightbehave.
II.TheValuetheModelingAGIs
Overthenextfewdecadeshumanityhasagood
chanceofcreatingcomputergeneralintelligences
muchsmarterthanus.7IftheseAGIsarefriendlyto-
wardshumanity,theycouldbringenormousbenefit.
Butasubstantialliteratureclaimsthatthechallenge
ofmakingtheseAGIsfriendlywillrangefromdiffi-
culttonearimpossible.8,9,10,11
AnAGI’sgoals,orwhateconomistswouldcallits
utilityfunction,willbedeterminedbyitscode.We
donotyetknowhowtoreduceourvaluestothelan-
guageofcomputerprograms.Worse,wemightlearn
howtobuildpowerfulAGIsbeforewelearnhowto
translateourvaluesintothecodetheyrunon.
DOI:10.21552/delphi/2019/4/9
*JamesD.Miller ,forcorrespondence:<jdmiller@Smith.edu>;
RomanV.Y ampolskiy,UniversityofLouisville,Kentucky,USA,
<roman.yampolskiy@louisville.edu>
SupportedbyFutureofLifeGrantRFP2-148
1AndreuMas-Colell,MichaelDennisWhinstonandJerryR.
Green,MicroeconomicTheory(Vol.1,NewY ork,OxfordUniver-
sityPress1995)
2StephenM.Omohundro,‘TheBasicAIDrives’(2008)171AGI
483-492
3EliezerYudkowsky,‘ComplexValueSystemsinFriendlyAI’,
InternationalConferenceonArtificialGeneralIntelligence
(Springer2011)388-393
4NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2014)
5NateSoaresetal,‘Corrigibility’(2015)WorkshopsattheT wenty-
NinthAAAIConferenceonArtificialIntelligence2015
6RomanV.Y ampolskiy,ArtificialSuperintelligence:AFuturistic
Approach(ChapmanandHall/CRC2015)
7KatjaGraceetal,‘WhenWillAIExceedHumanPerformance?
EvidencefromAIExperts’(2018)62JournalofArtificialIntelli-
genceResearch729-754
8ieOlleHäggström,HereBeDragons:Science,T echnologyand
theFutureofHumanity(OxfordUniversityPress2016)
9ie(n6)
10ie(n4)
11ieJamesD.Miller ,SingularityRising:SurvivingandThrivingina
Smarter,Richer ,andMoreDangerousWorld(BenBellaBooksInc.
2012)
Delphi4|2019201 AnAGIwithTime-InconsistentPreferences
FormanytypesofutilityfunctionanAGIcould
have,itwouldlikelyhavesimilarinstrumental(in-
termediate)drives.12Onesuchdrivewouldbetogath-
erresources.13ThemoreresourcesanAGIhad,the
moreprogressitcouldmaketowardsalmostanygoal
itmighthave,analogoustohowmosthumanscould
betterachievetheirobjectivesiftheyhadadditional
wealth.Unfortunately,apowerfulAGImightconsid-
ertheatomsinhumanbodiestobevaluablere-
sourcesthatcouldberepurposedtofulfillingthe
AGI’sultimategoals.AsAGItheoristEliezerYud-
kowskyhaswritten,‘TheAIdoesnothateyou,nor
doesitloveyou,butyouaremadeoutofatomswhich
itcanuseforsomethingelse’14.
ApowerfulAGIcoulddoenormousdamageful-
fillingagoalthatseemedbenigntoitsprogram-
mers.15Forexample,anAGIthathadanultimate
goalofmaximisingitschess-playingabilitymight
seektoturnalloftheatomsonearthintocomputer
processingchipsthatplayedchess.AnAGItasked
withpredictingfinancialmarkettrendsmightsim-
plifythesetrendsbyextinguishinghumanityand
thuseliminatingunpredictabilityinthestockmar-
ket.‘Commonsense’wouldpreventahumanata
hedgefundtaskedwithpredictingmarketsfromcre-
atingavirusthatexterminatedhumanitybecause
thispersonwouldrealisethattheviruswouldmake
himandhisemployerworseoff.Consequently,hedge
fundsdonothavetoinstructtheiremployeestoavoid
causinghumanextinction.ApowerfulAGI,howev-
er,likelywouldnothavethecommonsenseinstalled
initsmindbyhumancultureandmillionsofyears
ofevolutionandsomightachievethegoalsofitsutil-
ityfunctioninamannerharmfultoitsprogrammers.
SufficientlypowerfulAGIsmightbeincorrigible,
meaningthattheywouldresistcorrectiveinterven-
tionsfromtheircreators.16,17,18,19ModernAIiscor-
rectablebecausediscoveredbugscanbefixed.2021
But,powerfulAGIwouldhavethecapacitytoresist
havingitsbugsfixedandmightwellhavethedesire
tonotwantcertaintypesofwhatitshumanprogram-
mersconsiderederrorstobecorrected22,becausedo-
ingsowouldreducetheAGI’sutility.If,furthermore,
itsprogrammersbelievedthattheAGIhadtobeper-
manentlyshutdownbecauseitcontainedfundamen-
talerrors,theAGIwouldperceivethattheshutdown
wouldpermanentlystopitfromachievingitsgoals
andwouldresistshutdown.Wemightnotbeableto
solvethecorrigibilityshutdownproblembeforewe
createpowerfulAGI23,24,25,26,meaningthatwe
shouldworkoutandsubjecttoopenreviewatheo-
ryoffriendlyAGIbeforeweactivateapowerfulAGI.
Somemightclaimthatweshouldwaituntilwe
areclosertocreatingpowerfulAGIsbeforewewor-
ryaboutaligningtheirvalueswithourown.Afterall,
if,say,powerfulAGIsarethirtyyearsoff,whyspend
timeworryingabouthowtheywillbehave?Unfor-
tunately,asufficientlypowerfulAGImightbeable
toimmediatelyimplementitsgoals,evenifthese
goalsharmhumanity,soitisimportantthatwede-
velopatheoryofAGIsafetybeforewecreateAGIs.
Furthermore,giventheimmensepowerAGIsare
likelytohave,itseemsreasonabletoputinalarge
amountofeffortintoconsideringhowtheywillbe-
havebeforetheyhaveachancetoinfluenceciviliza-
tion.Analogously ,ifwesomehowknewin1915that
inthirtyyearswewouldcreateatomicbombs,it
wouldhavebeenworththetimeofmanyresearchers
tostarttheorisingabouthowtheworldshouldhan-
dletheseweaponsofmassdestructionwhentheyar-
rive.
Competitionamongfirmsdevelopingevermore
powerfulAIswillmakeitchallengingforourspecies
tohaltthedevelopmentofAGIuntilwehaveresolved
12(n2)
13(n2)
14EliezerY udkowsky, ArtificialIntelligenceasaPositiveandNega-
tiveFactorinGlobalRisk’inNickBostromandMilanM.
Ćirković(eds),GlobalCatastrophicRisks(OxfordUniversityPress
2008)
15JessicaT ayloretal,AlignmentforAdvancedMachineLearning
Systems’(2016)MachineIntelligenceResearchInstitute3
16Y atLongLo,ChungY uWooandKaLokNg,‘TheNecessary
RoadblocktoArtificialGeneralIntelligence:Corrigibility’(2019)
846EasyChair
17RyanCarey,‘IncorrigibilityintheCIRLFramework’(2018)Pro-
ceedingsofthe2018AAAI/ACMConferenceonAI,Ethics,and
Society
18(n15)
19(n5)
20KoenHoltman,‘CorrigibilitywithUtilityPreservation’(2019)
arXivpreprintarXiv:1908.01695
21(n5)
22LaurentOrseauandM.S.Armstrong,SafelyInterruptibleAgents
(2016)
23MarkO.RiedlandBrentHarrison,‘EntertheMatrix:Safely
InterruptibleAutonomousSystemsviaVirtualization’(2017)
arXivpreprintarXiv:1703.10284
24DylanHadfield-Menelletal,‘TheOff-switchGame’(2017)
WorkshopsattheThirty-FirstAAAIConferenceonArtificial
Intelligence2017
25(n22)
26(n5)9
Delphi4|2019 202AnAGIwithTime-InconsistentPreferences
safetyconcerns.27Evenifafewcountriesputamora-
toriumonAIresearch,otherswillseethisasaneco-
nomicandmilitaryopportunitytogainanadvantage.
Furthermore,manyindividualfirmsmightdecide
thatevenifAGIresearchisdangerous,iftheydonot
engageinitotherswillsothenetcosttohumanity
oftheirdoingtheresearchistiny.Consequently ,it
seemsunlikelythatifwecouldcreatepowerfulAGIs
beforeweunderstandhowtoaligntheirvalueswith
ourown,everyonewouldholdoffondeveloping
them.Therefore,weshouldworknowoncreating
friendlyAGItheory .Onenecessaryaspectofsucha
theoryisdetermininghowAGIswilldiscountfuture
rewards.
III.Discounting
Thestandarddiscountingfunctioneconomistsuse
assumesthatdiscountingtakestheformofδtwhere
δisanexogenouslydeterminedparameterbetween
zeroandone,andtishowmanyperiodsinthefu-
turetheagentexpectstoreceivethemoneyorutili-
ty.28Thelowerthevalueofδ,themoretheagentdis-
countsarewardexpectedtobereceivedinthefuture.
Thepresentvaluetoanagentofknowingthatitwill
receive,say ,$9inperiodtis$9δt.Anagentisindif-
ferentbetweenreceiving$9δtimmediatelyorreceiv-
inganabsoluteguaranteeofbeinggiven$9,tperi-
odsfromnow .
Thisstandarddiscountingfunctioncreatestime-
consistentpreferences,meaningthatyourfuture
choiceswillbeconsistentwiththechoicesyouwould
nowwantyourfutureselftomake.Forexample,
imaginethatyouwillbegivenachoiceofgettingX
oneperiodfromnow,orYtwoperiodsfromnow .
Today,youwouldpreferthatyourfutureself
wouldpickthefirstchoiceif:
δX>δ2Y.
Oneperiodfromnowyouwouldpreferthefirst
choiceif:
X>δY,
whichisthesameconditionasbefore.
Moregenerally ,thisstandarddiscountingfunc-
tioncreatestime-consistentpreferencesbecauseun-
derittherelativeimportanceofreceivingrewardsin
anytwofutureperiodsdoesnotchangeastheagent
approachestheseperiods.
Thisstandarddiscountingfunctiondoesnotfol-
lowfromrationality,norevenfromobservedhuman
behavior,butwasinsteadchosenfortractability.Paul
Samuelson,whofirstproposedwhatwastobecome
thestandarddiscountingfunction,wrote‘Thearbi-
trarinessoftheseassumptions[thatgeneratehisdis-
countingfunction]isagainstressedmathematical-
ly’29.Almostalltypesofdiscountingotherthanthis
standardonedonotresultintime-consistentprefer-
ences.30,31
IV .ASimpleExampleofTime-
InconsistentPreferences
Assumethatanagentdiscountsthefuturenotwith
thestandarddiscountingfunction,butratherwith
thefunction:
wheretisthenumberofdaysfromthepresentto
thedaythattheagentexpectstoreceivemoney .This
period(t=0)isMonday,andtheagentknowsthaton
Tuesdayhewillbegivenachoiceofgetting:
16onTuesday;or
30onWednesday .
IftheagentweretomakethischoiceonMonday ,he
wouldprefertogetthe30onW ednesdaythanthe16
onTuesday.Thisisbecausegiventheagent’sdis-
countingfunction,thevalueofgetting30twodays
fromnowis:
27JamesD.Miller ,‘SomeEconomicIncentivesFacingaBusiness
thatMightBringAboutaT echnologicalSingularity’Singularity
Hypotheses(Springer2012b)147-159
28ShaneFrederick,GeorgeLoewensteinandT edO'donoghue,
‘TimeDiscountingandTimePreference:ACriticalReview’(2002)
40JournalofEconomicLiterature351-401(358)
29P aulA.Samuelson,‘ANoteonMeasurementofUtility’(1937)4
TheReviewofEconomicStudies155-161(156)
30(n28)366
31MosheLooks,‘CompressionProgress,Pseudorandomness,and
HyperbolicDiscounting’,3dConferenceonArtificialGeneral
Intelligence(AGI-2010)(AtlantisPress2010)
Delphi4|2019203 AnAGIwithTime-InconsistentPreferences
whereasthevalueofgetting16onedayfromnow
is:
OnMondaythisagent,therefore,hopesthathisfu-
tureselfwilldecidetowaituntilW ednesdaytore-
ceivepayment.ButwhenTuesdayarrivestheagent
willmakeadifferentchoice.
OnTuesdaytheagentwillhaveachoiceofgetting
16rightawayor30inoneday.Thevalueofreceiv-
ing16thisperiodis16.Giventheagent’sdiscount-
ingfunction,thevaluetotheagentofreceiving30
inonedayis:
V .HowP eoplewithTime-Inconsistent
PreferencesBehave
Economistshaveextensivelyanalyzedwhathappens
toapersonwithtime-inconsistentpreferences.Such
apersoncanbe‘naïve’andnotrealisethisfactabout
himself,or‘sophisticated’andunderstandhowhis
futurechoiceswillnotalignwithhiscurrentde-
sires.32Time-inconsistentpreferencescancause
seeminglystrangebehaviorwith,forexample,a
naïveindividualcontinuallyputtingoffdoingatask
becausehealwaysintendstodothattaskinthenear
future.33Forexample,assumethatgivenyourcur-
rentpreferencesyouroptimalplanistoplayvideo
gamestodayandcleanyourroomtomorrow .Ifyou
hadtime-consistentpreferences,whentomorrow
cameyouwouldindeedcleanyourroom.Butinpart
becauseyouhavetime-inconsistentpreferencesyour
tomorrowselfwillfinditoptimaltoplayvideogames
thatdayandwantitsnext-dayselftocleantheroom.
Becauseofyournaïveté,however,todayyougenuine-
lythinkthatyourtomorrowselfwillcleantheroom.
Asophisticatedpersonwithtime-inconsistent
preferenceswillseektoconstrainhisfutureselfwith
commitmentstrategies.34Ifthissophisticatedindi-
vidualcannotpre-commit,hisplanningdecisions
shouldconsiderhowhisfutureselfwillbehaveand
recognisethatsomeotherwisefeasibleoutcomes
mightbeunobtainablebecausehisfutureselfcould
disobeyhiscurrentplans.35So,withourpreviousex-
ample,althoughyouwouldprefertoentirelyputoff
cleaningyourroomuntiltomorrow ,becauseyou
recognisethatyourtomorrowselfwouldnotnormal-
lyfollowthroughonthisplanyoucouldcleanhalf
ofyourroomtodayorpromisetogiveyourroom-
mate$1,000ifyoudonotcleantheroomtomorrow .
Scholarshavenot,tothebestofourknowledge,
modeledagentswithtime-inconsistentpreferences
whocan,perhapsatsomecost,modifytheirprefer-
encestomakethemtime-consistent,althoughFedus
etal(2019)36looksatareinforcementlearningagent
withhyperbolicdiscounting.Thisomissionislikely
becausehumansgenerallylackthecapacitytosignif-
icantlychangetheirpreferences.
VI.TheRationalityofTime-Inconsistent
Preferences
Havingtime-inconsistentpreferencesdoesnotim-
plythatanagentisirrational,atleastaccordingto
howeconomistsdefinerationality.Anagentisratio-
nalifitspreferencesaretransitive,reflexive,and
complete,andittakesactionsthatmaximizeitsutil-
ity.Notethatanyagentwhohastransitive,reflexive,
andcompletepreferencesnecessarilyhasprefer-
encesthatcanberepresentedbyanordinalutility
functionwhich,givenanytwochoices,willtellthe
agentthatatleastoneofthechoicesisweaklypre-
ferredtotheother.37Thisutilityfunctioncaptures
everythingabouttheagent’spreferencesincluding
howitdiscountsfuturerewards.Anagentthatpicks
theactionwhichmaximizesitsutilityistakingthe
actionitmostprefers.Nothingabouthavingtime-in-
consistentpreferencesisinconsistentwithecono-
mists’definitionofrationality.
EconomicsNobelPrizewinnerDanielKahneman
wrote,‘Thehistoryofanindividualthroughtimecan
32(n28)367
33(n28)367
34(n28)368
35RobertA.Pollak,‘ConsistentPlanning’(1968)35TheReviewof
EconomicStudies201-208(201)
36WilliamFedusetal,‘HyperbolicDiscountingandLearningover
MultipleHorizons’(2019)arXivpreprintarXiv:1902.06865
37AndreuMas-Colell,MichaelDennisWhinstonandJerryR.
Green,MicroeconomicTheory(Vol.1,NewY ork,OxfordUniver-
sityPress1995)9
Delphi4|2019 204AnAGIwithTime-InconsistentPreferences
bedescribedasasuccessionofseparateselves,which
mayhaveincompatiblepreferences,andmaymake
decisionsthataffectsubsequentselves’38.Twopeo-
plehavingdifferentpreferencesdoesnotimplythat
eitherpersonisirrational.Analogously,youarenot
necessarilyirrationalifyoudisagreewithyourpast
selfandknowthatyourfutureselfwilldisagreewith
thecurrentyou.
VII.WouldanAGIHaveTime-
InconsistentPreferences?
AnAGI’sutilityfunctionmightunpredictably
emergefromitscode,couldbetakenfromhuman
brains,orperhapswillbedeliberatelychosenbyits
humanprogrammers.IftheAGI’sutilityfunctionre-
sultsfromanunpredictableemergentprocess,itwill
almostcertainlybetime-inconsistentsincemost
waysautilityfunctiondiscountsthefuturecauses
thisinconsistency .IftheAGIadoptssomecombina-
tionofhumanpreferences,thenthetime-inconsis-
tencyinmanyofourpreferencescouldcausetheAGI
toalsohavetime-inconsistentpreferences.Ifhuman-
ityisfortunateenoughtobeabletodeliberatelypick
ourfutureAGI’sutilityfunction,thevalueofthispa-
perisshowingAGIprogrammerswhatmighthap-
peniftheypickafunctionwithtime-inconsistent
preferences.
VIII.AlignmentbyModifyingtheUtility
Function
AGIresearcherStephenOmohundrohastheorised
thatAGIswouldhaveabasicdriveto‘preservetheir
utilityfunctions’39.Anagent’sutilityfunctioncomes
fromthegoalsitwishestoachieve.Consequently ,if
theutilityfunctionischanged,theagent,undermost
circumstances,willworklesseffectivelytowardsits
goals.
Omohundrorecognises,however,thatinsome
limitedcircumstancestheAGIwillwanttomodify
itsutilityfunctionsuchastohelptheAGIingame
theoreticsituations.40Forexample,imaginethatan
AGI’sutilityfunctioncurrentlyleavesitvulnerable
toblackmailunderwhichanotheragentcouldcred-
iblythreatentotakeactionsthatwouldgreatlylow-
ertheAGI’sutilityunlesstheAGItransferredsub-
stantialresourcestothisotheragent.Inthissitua-
tion,iftheAGIhadtheabilitytomodifyitsutility
functioninamannerobservabletotheotheragent,
theAGImightbenefitfromchangingitsutilityfunc-
tionsothatitwouldhaveanintrinsicdislikeofgiv-
ingintoblackmail.
Togeneralisefromthisexample,anAGImightbe
willingtomodifyitsutilityfunctionifthemodifica-
tionwould,fromtheAGI’sviewpoint,improvehow
otheragentsbehaved.AnAGIwithtime-inconsistent
preferenceswouldconsideritsfutureselvestobe,in
somesense,otheragents.Consequently ,theAGI
mightbewillingtomodifyitspreferencestobetter
alignhowtheseotherswillbehave.
Tounderstandhowsuchmodificationmight
work,assumethatanAGI’sutilityfunctioninitially
takestheform:
Lett=thetimeperiod,withnowbeingperiodzero.
Letrt=resourcestheAGIconsumesinperiodt.
LetU(rt)=theAGI’soneperiodutilityfunction
whichshowshowmuchutilitytheAGIgetsinperi-
odtfromconsumingrtresources.ThefunctionU(rt)
ispresumablyincreasinginrt.
Theterm:
showshowmuchtheAGIdiscountsutilityitexpects
toreceivetperiodsfromnow .Asshownbefore,this
typeofdiscountingresultsintime-inconsistentpref-
erencesbecausetherelativeweightstheAGIgivesto
rewardsreceivedinfutureperiodschangesasthe
agentapproachestheseperiods.
MighttheAGIfinditacceptablethatitsfutureself
willmakeadifferentchoicethanitscurrentself
wouldprefer?No,bythedefinitionoftheutilityfunc-
tion.Thinkofautilityfunctionasthatwhichthe
38DanielKahneman,‘NewChallengestotheRationalityAssump-
tion’(1994)JournalofInstitutionalandTheoreticalEconomics
(JITE)/ZeitschriftfürdiegesamteStaatswissenschaft18-36
39(n2)
40(n2)
Delphi4|2019205 AnAGIwithTime-InconsistentPreferences
agentseekstomaximise.Whentheagentanticipates
makingdecisionsacrosstime,itsutilityfunction
mustincorporate(atleastimplicitly)adiscounting
functionthatspecifiestherelativeweightsitplaces
ongettingutilityindifferentperiods.IftheAGIwere
tofinditacceptablethatitsfutureselfwouldmake
intertemporaldecisionsconcerningallocatingre-
sourcesbetweenperiodsthatitscurrentselffinds
objectionable,thentheutilityfunctionthatgenerat-
edtheseweightswouldnot,tautologically,bethe
agent’sutilityfunction.Arationalagentwithtime-
inconsistentpreferencescannotpreferitsfuture
preferencesbecausethenitsfuturepreferences
wouldautomaticallybeitscurrentpreferencesand
theagentthereforewouldnothavetime-inconsistent
preferences.
IfthisAGIcaneasilymodifyitsutilityfunctionit
canalignitsfuturepreferenceswithitscurrentones
bysettingitsutilityfunctionas:
wheremisthenumberofperiodsithasbeensince
theAGImodifieditspreferences.Ingeneral,anAGI
withtime-inconsistentpreferencescouldalignitsfu-
turepreferenceswithitscurrentonesbymodifying
itsutilityfunctionsothatitsfutureselfwouldapply
thesameamountofdiscountingtoeachperiodasits
currentselfwouldwant.Restated,theAGIcould
modifyitsutilityfunctionsothatitsfutureself’sutil-
ityfunctionwouldbeentirelydeterminedbywhat
thisfutureselfwillthinkitspastself,atthetimeof
modification,wouldhavewanted.
Everitt(2016)41claims‘Ifthevaluefunctionsin-
corporatetheeffectsofself-modification,anduse
thecurrentutilityfunctiontojudgethefuture,then
theagentwillnotself-modify.’Thispropositionis
lesslikelytobetrueforanAGIwithtime-inconsis-
tentpreferencesbecauseifsuchanagentcouldmod-
ifyitsutilityfunctionitcouldalignitsfutureself’s
goalswithitscurrentutilityfunctionbyself-modifi-
cation.
IX.WhyanAGIMightNotModifya
Time-InconsistentUtilityFunction
AnAGIwithtime-inconsistentpreferenceshasfive
potentialreasonswhyitmightnot,atleastinitially,
useself-modificationtosolveitsconsistencyprob-
lem.First,anAGImightlackthecapacitytomake
suchamodification,perhapsbecauseitscreatorscon-
strainedtheAGI’sabilitytochangeitsutilityfunc-
tion.Second,anAGImightnotwanttomakethere-
quiredmodifications.Third,anAGIwithtime-incon-
sistentpreferencescouldalignitsfuturechoiceswith
itscurrentpreferredfuturechoicesbymeansother
thanchangingitsutilityfunction.Fourth,anAGI
mightwishtowaituntilitisnolongerunderhuman
controlbeforeitmodifiesitspreferences.Finally ,an
AGImightfindtheopportunitycostofimmediately
modifyingitsutilityfunctiontobetoohigh.
AnAGI’screatorsmighthaveputinplacemea-
surestopreventtheAGIfromalteringitsutilityfunc-
tion.Perhapsthesecreatorsbelievedthattheyhad
alignedtheAGI’sutilityfunctionwithhumanity’s
needsandwantedsafeguardsagainstthisutilityfunc-
tionchanging.
AnAGIcouldhaveautilityfunctionthatwould
causeittodirectlyreceivedisutilityfrommodifying
itsutilityfunction.42Thiscouldbetrueevenifdoing
sowouldbetterhelptheAGIachieveitsothergoals.
Evenwithoutadirectpreferencenottochangeits
utilityfunction,theAGImightstillbereluctanttodo
so.Tounderstandthispossibility ,imaginethatyour
utilityfunctioncausesyoutomostwanttomarryan
extremelycharitableperson.Butyoualsoreceive
somedispleasurefrombeingaroundextremelychar-
itablepeoplebecausetheywilloftenputtheneeds
ofstrangersaheadofthoseoffriendsandfamily .If
youhadtheopportunitytomodifyyourpreferences,
it’snotclearyouwouldwantto.Youmightrecognise
thatextremelycharitablepeoplehavemanygood
qualitiesandyouarebetteroffbeingdrawntothem.
Youmightalsothinkthatmodifyingthedispleasure
youreceivefrombeingmarriedtoanextremelychar-
itablepersonwouldinvolvechangingtoomuchof
yourselfbecauseyouwouldhavetonotmindbeing
neglectedbythepersonyoulove.Consequently ,even
ifyoucouldeasilymodifyyourutilityfunction,you
mightprefernotto.Analogously ,anAGI’sutility
functionwilllikelyresultfromitsgoals.It’sverypos-
siblethatachievingonegoalwillinvolveatradeoff
thatwouldcauseittoloseprogresstowardsother
41T omEverittetal,‘Self-modificationofPolicyandUtilityFunction
inRationalAgents’,InternationalConferenceonArtificialGener-
alIntelligence(Springer,Cham2016)14
42KoenHoltman,‘CorrigibilitywithUtilityPreservation’(2019)
arXivpreprintarXiv:1908.016951
Delphi4|2019 206AnAGIwithTime-InconsistentPreferences
goals.TheremightwellbenowayfortheAGItoelim-
inatethesetradeoffsabsenttheAGIabandoning
someofitsgoals.Consequently ,theAGIcouldaccept
thatitsutilityfunctionwillbyitselfpreventtheAGI
fromachievingitsfirst-bestoutcome.
AnAGIwithtime-inconsistentpreferenceswould
havenoneedtomodifyitsutilityfunctionifitcould
easilybinditsfutureself.PerhapstheAGIcouldtake
actionsthatforceitsfutureselftotaketheactions
thatitscurrentselfwouldwant.Toincreasetheodds
thatitwillsuccessfullybinditsfutureself,theAGI
mightdeliberatelyreduceitsfutureself’sintelligence
andresources
TheAGImightalsopartiallyblinditsfutureself
byreducingorcorruptingthisself’sinformation
flow.Thefutureselfmightbeputintoaposition
whereit(a)clearlyknowswhatitspastself-wanted,
(b)understandsthatitscurrentpreferencesmostly
butdonottotallyalignwiththoseofitspastself,and
(c)recognisesthatbecauseitspastself-sabotagedits
currentcapacities,thispastselfwascapableofmak-
ingmuchbetterdecisionsthanitscurrentselfis.This
futureAGImight,therefore,decidetogoalongwith
whatitspastself-wantedtoavoidthepotentially
muchworsefateofmakingabaddecision.Thisstrat-
egyofbindingthefutureselfbylimitingthefuture
self’scapacitieswouldnotworkifthepastselfknew
thatthefutureselfwouldfacesuchatremendous
rangeofpossiblesituationsthatthepastselfcould
notreasonablyspecifywhatactionsthefutureself
shouldtakeineverylikelysituation.Limitingthein-
telligenceofyourfutureselfis,ofcourse,dangerous
totheextentthatitmightcausethisselftomakepoor
decisions.
AnAGIthatcouldonlygraduallyincreaseitsin-
telligencemightwanttoinitiallyhideitscapacityfor
self-modificationfromitshumanprogrammers.This
AGImightbeplanning,asNickBostromwrites,a
‘treacherousturn’againsthumanity ,butonlyafterit
isstrongenoughtodefeatus.43EvenifthisAGIcould
quicklyeliminatetime-inconsistencyinitsprefer-
encesitmightstrategicallychoosenottosoasto
avoidwarninghumansofitscapacitytodeviatefrom
thepurposesthatitsprogrammersthinktheyhave
setforit.
ImaginethatanAGIwithtime-inconsistentpref-
erencesarisesoutofanintelligenceexplosion.The
AGIcouldfinditselfinapositionwherespending
thefewnanosecondsneededtomodifyitsprefer-
enceswouldcauseittodelaybyafewnanoseconds
capturingasmuchofresourcesoftheuniverseasit
could.44Becauseoftheexpansionoftheuniverse,
everynanosecondtheAGIdelaysincapturingthese
resourcesresultsinresourcesitwillneverbeableto
get.ThisAGI,therefore,mightwaitsomeamountof
timebeforeitfixesitstime-inconsistencyproblem.
X.Conclusion
Mosttypesofutilityfunctions,evenforrational
agents,resultintime-inconsistentpreferencesin
whichanagentwillweighfuturerewardsdifferent-
lythanitsfutureselfwould.WhileanAGImight
modifyitspreferencestomakethemtime-consistent,
itmightlacktheabilityordesiretomaketherequired
change.InsteadtheAGIcouldseektoconstrainits
futureselftomakethisselfmorewillingtogoalong
withtheAGI’scurrentplanforitsfuture.Thereason-
ablepossibilityofanAGIhavingtime-inconsistent
preferencesgreatlycomplicateseffortstopredict
howtheAGIwillbehave.
Thegreatchallengeforprogrammerswillbeto
createanAGIwhosevaluesarealignedwithhuman-
ity’sneedsanddesires.Unfortunately ,anAGIwith
time-inconsistentpreferenceswon’tevenhaveitsval-
uesalignedwithitsfutureself’sinterests.Ifprogram-
merscanpicktheirAGI’sutilityfunction,weurge
themtochooseamongthosewithtime-consistent
preferencestosomewhatsimplifythealignment
problem.
43(n4)116-119
44StuartArmstrongandAndersSandberg,‘EternityinSixHours:
IntergalacticSpreadingofIntelligentLifeandSharpeningthe
Fermiparadox’(2013)89ActaAstronautica1-13
Delphi4|2019207 AIforSustainableDevelopmentGoals
AIforSustainableDevelopmentGoals
NicolasMiailhe,CyrusHodes,ArohiJain,NikiIliadis,SachaAlanocaandJosephinePng*
AdvancesinAItechnologiesposeopportunitiesandrisksdirectlyimpactingprogressto-
wardstheUNSustainableDevelopmentGoals.Thispaper,throughananalysisofspecific
usecases,considershowAItechnologiescanhelpachieveprogresstowardstheSDGsaswell
ashowtheymayinhibitthem.Second,itdrawsoutpracticalstepsforhowAItechnologies
canbeimplementedforsustainabledevelopment,identifyingthebarriersthatglobaland
localcommunitiesneedtoovercomeforimplementation.Third,thispapermakesthecase
formulti-stakeholdercollaborationandnewkindsof‘public-private-people’partnerships
whichwillreconciletechnical,ethical,legal,commercial,andoperationalframeworksand
protocolstoharnessthepowerofAItechnologiesanddeliversolutionstotheSDGs.These
partnershipscouldbebuiltandpilotedbynewinternationalinitiatives,suchastheGlobal
DataAccessFrameworkandtheAI4SDGCenterspearheadedaspartofawiderinternation-
alpartnershipcalledAICommons.
I.Introduction
ArtificialIntelligence(AI)hasthecapacitytounlock
enormousopportunitiesinsocietal,political,econom-
icandculturalprocessesincludingmillionsoflives
savedbybreakthroughsinhealthcare,betterperson-
alisationofproductsandservices,easieraccesstopub-
licgoods,fairnessatscale,andindividualempower-
ment.However,atthesametime,thesametechnolo-
giesposerisksandchallenges,someofwhichinclude
threatstoprivacy ,inequality,security,andwellbeing.
ThispaperanalysesAI’sopportunitiesandrisks
throughthelensoftheUNSustainableDevelopment
Goals1(SDGs).Agreedby193countries,theSDGspro-
videasolidblueprintforgovernments,companies,
andcitizensworldwidetoachievepeaceandprosper-
ityforallpeopleandfortheplanet.Identifyingsev-
enteenhigh-levelgoalsand193targets,theiraimis
toaddressawidevarietyofglobalchallengesfaced
byhumanityincludingpoverty ,climatechange,hu-
manrights,andinequality.Sincetheircreationin
2015,westillhavealongwaytowardsachievingthem
butadvancesinAItechnologiesnowserveasapow-
erfultoolforsignificantlyacceleratingprogress.
First,throughananalysisofspecificusecases,this
paperconsidershowAItechnologiescanhelp
achieveorprogresstowardstheSDGsaswellashow
theymayinhibitthem.Second,itdrawsoutpracti-
calstepsforhowAItechnologiescanbeimplement-
edforsustainabledevelopment,identifyingthebar-
riersthatglobalandlocalcommunitiesneedtoover-
comeforimplementation.Third,thispapermakes
thecaseformulti-stakeholdercollaborationandnew
kindsof‘public-private-people’partnershipswhich
willreconciletechnical,ethical,legal,commercial,
andoperationalframeworksandprotocolstoharness
thepowerofAItechnologiesanddeliversolutions
totheSDGs.Thesepartnershipscouldbebuiltand
pilotedbynewinternationalinitiatives,suchasthe
GlobalDataAccessFramework,theAICommons,
andtheAI4SDGCenter .
II.AIforSDGsUseCases
TotakestockofAIdevelopmentandimplementa-
tionforthedevelopmentgoals,wepresentan
DOI:10.21552/delphi/2019/4/10
*NicolasMiailhe,CEO&Co-Founder ,TheFutureSociety.For
correspondence:<nicolas.miailhe@thefuturesociety.org>;
CyrusHodes,DirectorofAI-Initiative,TheFutureSociety.For
correspondence:<cyrus@ai-initiative.org>;
ArohiJain,MBACandidate,YaleSchoolofManagement.For
correspondence:<arohi@ai-initiative.org>;
NikiIliadis,SeniorAIPolicyResearcher,TheFutureSociety.For
correspondence:<niki.iliadis@thefuturesociety.org>;
SachaAlanoca,AIPolicyResearcher ,TheFutureSociety.For
correspondence:<sacha.alanoca@thefuturesociety.org>;
JosephinePng,Affiliate,TheFutureSociety.Forcorrespondence:
<josephine.png@thefuturesociety.org>
1Fulllistofthe17SDGsavailablehere:<https://www .un.org/
sustainabledevelopment/sustainable-development-goals/>ac-
cessed31January2020
Delphi4|2019 208AIforSustainableDevelopmentGoals
overviewofthreeusecasesidentifiedthroughfour
sources:thesecondandthirdAIforGoodSummits2
heldinGeneva,whichcrowdsourcedAIprojectsdo-
ingsocietalgood;arecentpaperbyRolnicketal
(2019)3describinghowmachinelearningcanbea
powerfultoolinreducinggreenhousegasemissions
andhelpingsocietyadapttoachangingclimate;and
McKinseyGlobalInstitute’s‘NotesfromtheAIfron-
tier:ApplyingAIforSocialGood’4whichwasre-
leasedDecember2018andidentified160usecases
(Figure1).
1.TacklingClimateChangethrough
MachineLearning
Climatechangeisoneofthegreatestenvironmental
challengesoftoday,withglobalwarmingalready
causingirreversiblechangestoourclimatesystem.
Thereisnocountrythathasn’tfacedtheeffectsofit.
Forestfires,soilerosion,cropdamage,andflooding
arejustafewofthephenomenathatglobalandlo-
calcommunitiesworldwidearestrugglingtourgent-
lyaddress.Hence,whySDG13wasestablishedto
pushtheinternationalcommunitytowardsurgent
actiontocombatclimatechangeanditsimpacts.
AIsystemsposeseriouschallengesfortheenvi-
ronmentand,consequently ,climatechange.T rain-
ingAIisaveryenergyintensiveprocessinitself.For
instance,thetrainingofneuralnetworksinnatural
languageprocessing(NLP)hasseverecostsforthe
environmentduetothecarbonfootprintrequiredto
fuelmoderntensorprocessinghardware.5According
2AIforGoodSummit,Geneva<https://aiforgood.itu.int/>accessed
31January2020
3DavidRolnicketal,‘TacklingClimateChangethroughMachine
Learning’(5November2019)<https://arxiv.org/pdf/1906.05433
.pdf>accessed31January2020
4McKinseyGlobalInstitute2018,‘NotesfromtheAIFrontier:
ApplyingAIforSocialGood’(December2018)<https://www
.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial
%20Intelligence/Applying%20artificial%20intelligence%20for
%20social%20good/MGI-Applying-AI-for-social-good-Discussion
-paper-Dec-2018.ashx>accessed31January2020
5EmmaStrubell,AnanyaGaneshandAndrewMcCallum,‘Energy
andPolicyConsiderationsforDeepLearninginNLP’(2019)
<https://arxiv.org/abs/1906.02243>accessed31January2020
Figure1:MappingofAIUseCases.Source:McKinseyGlobalInstituteAnalysis
Delphi4|2019209 AIforSustainableDevelopmentGoals
toarecentpaperEnergyandPolicyConsiderations
forDeepLearninginNLP6,thecomputationaland
environmentalcostsoftraininggrewproportionally
tomodelsizeandthenexplodedwhenadditionaltun-
ingstepswereusedtoincreasethemodel’sfinalac-
curacy.IthasbeennotedthattrainingasingleAI
modelcanemitasmuchcarbonasfivecarsintheir
lifetimes.
Yet,atthesametime,recentstudieshaveshown
thatAItechnologies,andspecificallymachinelearn-
ing,havethepotentialtoserveaspowerfultoolsfor
bothmitigationandadaptationeffortsfortackling
climatechange.Toholisticallycombatclimate
change,mitigation(reducingemissions)andadapta-
tion(preparingforunavoidableconsequences)are
importantdimensionsofthesolution.Mitigationof
greenhousegasemissionsrequireschangestoelec-
tricitysystems,transportation,buildings,industry,
andlanduse;whileadaptationrequiresclimatemod-
eling,riskprediction,andplanningforresilienceand
disastermanagement.7
AccordingtoRolnicketal(2019)9,AIcanactually
helpenablelow-carbonelectricity ,reducecurrent-
systemclimateimpactssuchasfossilfuelemissions
andsystemwaste,empowerdevelopingandlow-da-
tasettings,reducetransportactivity,improvesupply
chains,andmore.
ThisimpliesdirectprogressonseveralSDGs,in-
cludingSDG13:ClimateAction’andSDG11:Sus-
tainableCitiesandCommunities.’Itisvitaltorecog-
nisetheimplicationsofAItechnologiesonSDGs,
specificallythoserelatedtoenvironmentalside-ef-
fects,andpavetheprocessestoensuretherisksare
addressedandthepotentialtotacklemitigationand
adaptationeffortsrealised.
2.UsingSatelliteImageryandAIto
ManageNaturalDisasters
Thewealthofrealtimedatacanhaveatransforma-
tiveimpactonthemanagementofEarth’snaturalre-
sourcesandhelpachieveseveralSDGssuchas‘SDG
13:ClimateAction’,‘SDG6:CleanWaterandSanita-
tion’andSDG7:AffordableandCleanEnergy’.
Thankstothewidespreaduseofsatellites,mobile
phones,sensorsandfinancialtransactiontechnolo-
giesthereisnowmoreinformationthaneveronthe
stateoftheplanet.8In2017alone,itisestimatedthat
therewere1,738satellitesinorbitwhichgenerated
5.700scenesperday.
Satelliteimagery ,inparticular,poweredwithAI
capabilitiescanhelp‘design,monitor,andevaluate
effectivepoliciesthatcanachievetheSDGs10.In
countrieswithamediumorlowhumandevelopment
index,uptosixtimesasmanypeoplecanbeimpact-
edbynaturaldisasterscomparedtopopulationsin
moreprosperouscountries.11T ofindthebestre-
sponsestotheseclimaticchallenges,governments
needtohaveacompleteandanticipatoryviewofdis-
asterzonesandsatelliteimagerycoupledwithAI-
basedsystems,enablingquickandeffectivedeci-
sionsintimesofcrisis.12
3.UsingAIforEarlyIllnessDiagnosis:
DetectingSkinCancer
Whendetectedatanearlystage,skincancersurvival
ratescanbeashighas97%butdropto14%withlate
stagedetection13.Today,skincancerispredominant-
lydetectedbydermatologistswholookatmoleswith
adermoscope.Theconsequenceisthatpeopleinrur-
alareasareatparticularriskoflatestagedetection.
Oneofthesolutionsdevelopedwithcomputervision
isanAIsystemabletoidentifyskincancerimages
throughobjectdetectionandimageclassification.Ex-
perimentssuggestthatthisAI-poweredsystemcan
diagnoseskincancerwithgreateraccuracythanhu-
mandermatologists(95%and86%successrate,re-
spectively).Theseresultscreatenewopportunities
todevelopmobileapplicationsusingimagerecogni-
tiontomakecancerdetectionaccessibletoall.Itcould
6ibid
7(n3)
9(n3)
8UNScience-Policy-BusinessForumonEnvironment,‘White
Paper:DigitalEarth:Building,FinancingandGoverningaDigital
EcosystemforPlanetaryData’(Draft1February2018)
10ibid
11HannahRitchieandMaxRoser,NaturalCatastrophes(2018)
<https://ourworldindata.org/natural-disasters>accessed31Janu-
ary2020
12Planet, AnatomyofaCatastrophe:UsingImagerytoAssess
Harvey’sImpactonHouston’https://www .planet.com/insights/
anatomy-of-a-catastrophe/
13T aylorKubota,‘DeepLearningAlgorithmDoesasWellasDerma-
tologistsinIdentifyingSkinCancer’(StanfordNews,25January
2017)<https://news.stanford.edu/2017/01/25/artificial-intelligence
-used-identify-skin-cancer/>accessed31January2020
Delphi4|2019 210AIforSustainableDevelopmentGoals
thereforehelpachieveSDG3:GoodHealthandWell-
Being’.
Apotentialbarriertothewidespreaduseofsuch
applicationsisthelackofaccessibilityforcertain
typesofpopulations.Indeed,artificialneuralnet-
workshavebeentrainedonadatabaseofavailable
skincancerimages.Imagestendtobesourcedfrom
Westerncountries,becausedataavailabilityandAI
developmentoccursintheseregions,andtherefore
lighter-skinnedindividuals.14Theconsequenceof
thislackofdiversityandrepresentationisthatthe
AImodelcannotperformwiththesamelevelofac-
curacywhenaimingtodetectcancerousmoleson
darker-skinnedindividuals.
InascenarioofinappropriatelytrainedAIbeing
usedondifferentpopulationsets,thereisaspillover
effect:eventhoughthisAIsystemcanhelpachieve
SDG3forsomecommunities,ithasanunintention-
alnegativeimpacton‘SDG10:ReducingInequali-
ties’(Figure2).
III.ImplementingAIforSustainable
Development
Severalusecases,includingthesementionedinthis
paper,illustratetheopportunitiesAItechnologies
poseforprogresstowardsSDGs.However,likemost
technologies,AIisadual-purposetool.Ontheone
hand,itprovidessolutionstosustainabledevelop-
14JamesZouandLondaSchiebinger ,‘AICanBeSexistandRacist
It’sT imetoMakeitF air(18July2018)NatureResearchJournal
<https://www.nature.com/articles/d41586-018-05707-8>ac-
cessed31January2020
Figure2:VariancesinSmartphonePenetration
Source:TheMobileEconomy2018,GSMA2018,McKinseyGlobalInstituteAnalysis
Note:Featurephonefiguresassumeequivalentto2Gpenetration,whilesmartphone
figuresassumepenetrationofphonesthatuse3Gorbeyond.Figuresmaynotsum
upto100%becauseofrounding.
Delphi4|2019211 AIforSustainableDevelopmentGoals
ment,and,ontheother,itcanincreasetensionsbe-
tweenandacrossSDGs.Forinstance,inthecurrent
waytheyarebeingdeveloped,AItechnologiesareof-
ten‘skills-biased’ ,requiringhumancapitaland
skilledlabourtooperatethem.Inconsequence,au-
tomationoflow-skilledorroutinejobscanleadto
significantdistributionaleffectsandincreasedin-
equalitythatcouldcreatebarrierstosocialinclusion
andglobalcooperation.15
TomitigatethedownsideeffectsofAIandrecon-
ciletensionsbetweenandacrossSDGs,itisimpor-
tanttoshapetherightpathtowardsthetechnology’s
implementation.Indoingso,thereneedstobeinfra-
structurefornationalinnovationsystems,mapping
fortrajectoriesandinterconnectednessofSDGs,
opendataandarobustpoolofAItalenttoopera-
tionaliseapplicationsforSDGs,andthemitigation
ofmisuseandmalicioususesofAI.
1.BuildingtheInfrastructureforNational
SystemsofInnovation
Establishingaviabletechnicalanddigitalinfrastruc-
turethatisabletosupporttechnologicalchangeis
essentialandenableskeysectorsandindustriesto
grow,startupecosystems,andefficientandim-
provedpublicservices.Forgovernmentstoprogress
towardsSDGs,theyfirstneedtoensuretheycan
buildtheappropriatetechnologicalinfrastructure
suchaselectricitysupply,Internetandbroadband
connectivity,computerhardware,software,and
technicalskillsforsupportandmaintenance.How-
ever,manycountriesacrosstheworldlackthecapa-
bilitytodoso,requiringsignificantupfrontinvest-
mentsandsubsequentlylong-termcommitment,po-
liticalwill,coherentpolicies,andupholdingtherule
oflaw.
Thediffusionofexistingtechnologiesindevelop-
ingcountriestendstolagbecauseofmanytechnical,
economic,institutional,legalandbehavioralbarri-
ers.Theseincludemismatchedneeds,tradetariffs,
privatesectorcapacity,andlimitedaccesstotrusted
information.16Inlinewiththe‘leaveno-onebehind’
maxim,barrierstotechnologydeploymentanddif-
fusionmustberemoved,particularlyfordeveloping
countries,soeconomiescanbuildtheinfrastructure
neededforinnovation.
Althoughtherewillbeconsiderableshortterm
costslinkedtocommittingandinvestinginthein-
frastructurecapableofsupportingAI,countriesthat
willbeabletoupgradetheirinfrastructure,R&D,and
skilldevelopmenttoenableAIhavethechanceto
leapfrogandacceleratetheireconomies.Thiswill
givethemthecrucialfoundationstosucceedintheir
questtoachieveseveraloftheSDGs.17
2.MappingforTrajectoriesand
InterconnectednessofSDGs
Nationalandinternationalroadmapsforachieving
SDGsshouldconsiderparticipationfromgovern-
ment,privatecompanies,academia,andNGOs.Tech-
nologyroadmapsproducedatthenationalandinter-
nationallevelswillidentifyopportunitiestouseAI
technologiesforvariousSDGsandhowbesttoexe-
cuteonthesethroughtime.Forexample,R&D
roadmapswillhelpstructureandbudget,providein-
sightintoR&DandPPPpartnerships,andconduct
scienceandtechnologytrainingefforts.18
Opportunitiesshouldbecreatedforthescience
andengineeringcommunitytoprovidefeedbackon
whatworksanddoesnotworkwell.Policiesencour-
agingscientistparticipationinnationaldecision
makingandinestablishingtechnologytransfer
mechanismscanimprovenationalinnovationcapac-
itiesandestablishconnectionsbetweenresearch
communitiesandeconomicsectorsandcivilsociety.
Forexample,policystemmingfromscience-basedin-
formationandwiththesupportofclimateadapta-
tiontechnologyhasreducedwatershortages,thein-
tensityoffloods,droughts,andheatwaves.19
Assessmentandmetricsareneededtoalignlearn-
ingacrosspracticeareas.Abroadpictureandcross-
sectoralperspectiveoftheSDGsisimportantasthey
15GlobalSustainableDevelopmentReport2016,‘Perspectivesof
ScientistsonT echnologyandtheSDGs’(2016)<https://
sustainabledevelopment.un.org/content/documents/
10789Chapter3_GSDR2016.pdf>accessed31January2020
16CédricPhilibert,‘BarrierstoT echnologyDiffusion:TheCaseof
SolarThermalTechnologies’(2006)InternationalEnergyAgency
(2006)9<https://www.oecd.org/env/cc/37671704.pdf>accessed
31January2020
17JacquesBughin,‘MarryingArtificialIntelligenceandtheSustain-
ableDevelopmentGoals:TheGlobalEconomicImpactof
AI’(2018)<https://www.mckinsey.com/mgi/overview/in-the-news/
marrying-artificial-intelligence-and-the-sustainable>accessed31
January2020
18(n13)
19(n13)
Delphi4|2019 212AIforSustainableDevelopmentGoals
areinterlinkedincomplexandoftensubtleways.Ac-
tionstoprogressononeSDGsectormayenhanceor
diminishperformanceinothersectors,orleadtoun-
intendedconsequences.Therefore,integratedassess-
mentmodelscandesignsustainabledevelopment
policiesthattakethisintoaccountaswellasidenti-
fypossiblemethodstoimproveandovercomebarri-
erstosustainableinnovation.20
Furthermore,nationalAIstrategiesneedtofur-
theraligntotheachievementofSDGs.Globally ,AI
strategiesexhibitawiderangeofobjectivesandpri-
orities,whichareaddressedbyavarietyofpolicy
tools.Forexample,manystrategieshavecomponents
aimingtofosterlocalAItalent&skillsdevelopment,
andcanrelyonacombinationofgovernmentfund-
ingforapprenticeshipsoracademicpositions,train-
ingprogramsledbyforeigntechnologycompanies
ordomesticuniversities,orregionalacademichubs.
Strategiesalsovaryintheirlevelsofcommitment,
fundingandimplementation.Meanwhile,several
countriesaredevelopingdomesticAIinnovation
ecosystemsintheabsenceofanofficialnationalAI
strategy.
Finland,UAE,Estonia,AustraliaandIndiaexplic-
itlyaimtoboosteconomicgrowththroughAIadop-
tionandapplicationsinbusinessesandkeysectors.
Incomparison,AIstrategypublicationsbyChina,
theUSA,FranceandtheEuropeanCommissionfo-
cusonmaintainingorcapturinggloballeadership.
Notably,India’snationalAIstrategy,brandedasAI
forAll’,includesadoptionintosectorswhereAIcan
maximizeinclusionandhumandevelopment,in-
cludinghealthcare,agriculture,education,infra-
structureandtransport.21
AglobalframeworksuchasthatoftheSDGscan
complementthesenationalstrategies,servingasa
thresholdforprogressofAIdevelopmentanddeploy-
ment.
3.OpeningDatafortheRealisationof
theSDGs
OneofthebiggestbottleneckstoharnessAIforso-
cialgoodisdataavailabilityandquality .MostAIca-
pabilitiessuchasneuralnetworksrequireaccessto
high-quality,massive,andreliableopendata.Such
bigdatacanfacilitatestakeholderstorapidlyidenti-
fyproblemareasandcustomisesolutions.However,
thebasisofopendataisdatademocratisation,ensur-
ingdataisavailabletoeveryone,whichrequiressig-
nificantcommitmentfromallstakeholderstoshare
informationandmoveagainstacompetitivedata-
marketenvironment.22
Dataaccessibilityremainsasignificantchallenge
particularlyindevelopingcountries,wheredatamay
beownedbyprivatecompanieswithaprohibitive
costformostlocalgovernmentsandNGOs.23Coop-
erationbetweenthepublicandprivatesectorwillbe
essentialtoovercomesuchchallengeas‘muchofthe
datathatareessentialorusefulforsocialgoodappli-
cationsareinprivatehandsorinpublicinstitutions
thatmightnotbewillingtosharetheirdata.24The
organisationswhichcurrentlycapturemostdataare
telecommunicationandsatellitecompanies,social
mediaplatforms,financialinstitutions,hospitalsand
governments.Thesedatacansometimescontainvery
sensitiveinformationsuchasanindividual’smedical
record,credithistoryortaxdetails.25Forsuchrea-
sons,privateorganisationsasmuchaspublicones
areoftenreluctanttosharethesedatawithNGOsand
socialentrepreneurs.Thedatamayalsohavetoohigh
businessandcommercialvaluetobepotentially
leakedtocompetitors.Itisthereforecrucialtobuild
trustbetweenthesedifferentsetofactorsandbuild
appropriateframeworkstofacilitatedatasharingfor
socialgood.
Atnationallevel,thereisrecognitionofthevalue
ofopendataandatthegloballevel,countriesare
openinguptheirdatasetstoachievetheSDGs.Itis
currentlybeingusedincitiessuchasRiodeJaneiro
forcityplanning,Tanzaniatoaccessschoolperfor-
mance,toimproveaccesstoeducationinKenya,and
tomaptheEbolaoutbreakinW estAfrica.26
Issueswithdatasharingtendtoliewithinstitu-
tionsandcanberesolvediftheyachieveagreater
20(n13)
21NITIAayog,‘NationalStrategyforArtificialIntelligence’Discus-
sionPaper(2018)<https://niti.gov .in/writereaddata/files/document
_publication/NationalStrategy-for-AI-Discussion-P aper.pdf>ac-
cessed31January2020
22AnanyaNarain,‘WhyDataRevolutionisCrucialfortheSuccess
ofSDGs’(GeospatialWorld,1August2017)https://www
.geospatialworld.net/article/data-revolution-for-sustainable
-world/
23(n4)
24(n4)
25(n4)
26(n4)
Delphi4|2019213 AIforSustainableDevelopmentGoals
understandingofthevaluethatdatasharinghasin
helpingachievethebroadermissionoftheSDGs.To
addressaccessibilityandavailabilityofqualitydata
concerns,aglobal,regional,andnationalframework
fordatacouldbedevelopedtoencouragesynergies
betweendataprovidersanddatacollaboratives.This
willensuredataaccessibilityforall,filldatagaps,
generatenewdatasets,createdynamicvisualisations,
thusenablingtimelyandtargeteddecisionmaking
todrivetheSDGs.27
Initiativesandtaskforcesthatseektobringto-
gethermultistakeholderandmultidisciplinary
groupstohelpdesign,build,pilot,andscalenovel
frameworksandprotocolsneededfordatasharing
anddatagovernancemodelsareneeded.Poolingto-
getherappropriatepoolsofdataforspecificusecas-
es,theseinitiativescanserveasa‘trusted’platform
fordatatobeusedforgood.Someinitiativesthat
havebeensetupforthispurposeincludetheGlobal
DataAccessFramework,theUNBigDataPlatform,
theCGIARplatformforBigData,andtheDigitalPub-
licGoodsAlliance.
4.PreparingAIT alent
AnotherimportantchallengeisthelackofAItalent
todevelopandtrainAImodels.Talentshortagesand
braindrainofmachinelearningscientistsconstrain
AIinnovationglobally,andinparticularincountries
lackingAIhubs.AshighlightedbyMcKinseyInsti-
tute’sreportonApplyingAIforSocialGood,inabout
halfoftheusecasesidentifiedahigh-levelAIexper-
tisewasrequiredthatispeoplewithaPhDinthe
fieldorseveralyearsworkingintechcompanies.
SomeotherusecasesrequiredlessAIexpertise,but
stillatleastdatascientistsandsoftwaredevelopers.
WhenAIprojectsrelyonseveralAIcapabilities,the
levelofcomplexitytendstoincreaseanddemand
high-leveltalent.Suchdemandisalsoongoinginthe
privatesectoranditisthereforedifficultforpublic
andnon-profitsectororganizationstocompete.
Moreover,accesstoAItalentcanbeharderinde-
velopingregions.ArecentresearchconductedbyEl-
27(n4)
Figure3:MostVisuallyImpairedPeopleintheWorldLiveinEmergingEconomies.
Source:TheVisionLossExpertGroup,McKinseyGlobalInstituteAnalysis
Delphi4|2019 214AIforSustainableDevelopmentGoals
ementAI’sCEOJean-FrançoisGagnéshowedastrong
imbalancebetweenregionsregardingtheiraccessto
AI’stalentpool(Figure4).Whilecountriessuchas
theUnitedStatescountedmorethan9.000highlev-
elexperts,otherslikeSouthAfricaorArgentina
countedlessthan100.28ThebraindrainofAItalents,
especiallyindevelopingregions,thereforehasaneg-
ativeimpactonequalaccessandglobalimplementa-
tionofAIsystemsforsocialgood.
Highersalariesandresearchopportunitiesrein-
forcetrendsinbraindrainbydrawingtalentedyoung
machinelearningscientistsandresearcherstoAIin-
novationhubs,primarilytowardsmoredeveloped
economies,withgreatermeanstofundsuchtalent.
Asaresult,thevastmajorityofcountriesfaceachal-
lengingproblemofnotonlydeveloping,butalsore-
taining,localAItalent.
IV .TheCaseforanIntegratedand
CoordinatedApproach
WhileAItechnologiesoffersignificantopportuni-
tiesforprogresstowardstheSDGs,theyalsocome
withrisksleadingtoa‘moretogain,moretolose’
paradigm.Theneedforurgentintegratedactionto
fosterpositiveusecasesandmitigatethetensionsof
adual-purposetechnologyisclear.However,current-
lythistopicremainsinanexploratoryphasewith
severalactorsfragmentedaroundtheworldtryingto
makeprogress.
Thispaperarguesthattodevelopcoordinated
pathwaystowardsimplementationofAIforsustain-
abledevelopment,aglobalmulti-stakeholderpartner-
shipincludingthepublicsector,theprivatesectorand
thecivicsocietyisneeded.Suchaplatformisessen-
tialtoenablestakeholderstoleverageandshareeach
other’suniqueresources,expertiseandexperiences
forthecreationofeffectivedevelopmentsolutions.
Amulti-stakeholderinitiativecurrentlybeing
builtthatcantaketheformofthisglobalallianceis
AICommons.’29TheAICommonsisenvisionedas
asolidplatformtodemocratizeaccesstoAIsoa
broaderrangeofactorswillbeabletopartakeinthe
AIRevolutionandprogresstowardstheSDGs.Itwill
helpenableaccesstorelevantdata,computingpow-
er,algorithms,talentandapplieddomainexpertise
(usecaseandmethodologies),bylinkingproblem
ownersandproblemsolvers.
AICommonscouldmapandtrackcurrent
progressbeingmadeontheSDGsusingAItechnolo-
28JFGagné,‘TheGlobalAIT alentPoolGoinginto2018’(7Febru-
ary2018)<https://jfgagne.ai/talent/>accessed31January2020
29see<https://ai-commons.org/>accessed31January2020
Figure4:GlobalAITalentPoolHeatMap.Source:JFGagné
Delphi4|2019215 AIforSustainableDevelopmentGoals
gies,identifygapsonregionsorgoalsthatarebeing
underserved,andpoolresourcestoaddresssuchun-
derservedareas.Furthermore,AICommonscouldal-
lowthecommunityofdevelopers,entrepreneurs,
users,andorganizationstoworktogether,toidenti-
fyandenablebroaderapplicationsofAIinresponse
toactualneeds.
TheGlobalDataAccessFramework,30sittingwith-
intheAICommons,willhelpreconcileframeworks
andprotocolsfordatasharingandgovernanceinor-
dertohelpenablesuchAIsystemstoflourish.Itwill
bringawarenesstogovernmentsoftheactualwork
undertakentoprogresstheSDGs,especiallythoseat
thegrassrootlevel.Itwillunitethosewithpolitical
cloutandtheimplementersofSDGsatthesamelev-
el.31
TheresponsibilitytoachievetheSDGs,ofcourse,
willremainintherealmofindividualcountries,but
internationalsupportandpartnershipssuchasAI
Commonsarecriticalforunifiedprogress.Under
‘SDG17:PartnershipstoAchievetheGoals’,national
governments,theinternationalcommunity,civilso-
ciety,theprivatesectorandotheractorshaverecog-
nizedtheneedtocometogethertostrengthenthe
meansofimplementationandrevitalisetheGlobal
PartnershipforSustainableDevelopment.32
Indoingso,newtypesof‘public-private-people
partnerships’(PPPPs)mustbebuiltandpiloted.Pub-
lic-PrivatePartnerships(PPPs)arecrucialtoacceler-
aterealprogresstowardstheSDGsusingAI.AIde-
velopmentandimplementationrequiresphenome-
nalamountsofcapitaltofundthetransformations
neededtoachievetheSDGs.Thiscannotbedone
withouttheprivatesector,whichcanprovidesignif-
icantcapacityandfueltransformation.Atthesame
time,thepublicsectoralsoplaysamonumentalrole,
servingasanenabler,afacilitator,andawatchdogto
ensuretheprocessofAIimplementationissocio-eco-
nomicallyandethicallybeneficial.
Thispaperaddsathirdlayertothetraditionalpub-
lic-privatepartnership,arguingfortheneedtoin-
volvepeopleinthesealliancesaswellthroughcivil
societyorganisations.Giventheincreasingneedfor
peoples’datatomakeAItechnologiespossibleand
alsotheimpactAIcanhaveonanindividuallevel,
peoplehaveapowerfulvoicetomakePPPPsamech-
anismtowardsachievingtheSDGs.Involvingpeople
throughouttheentirelifecyclecouldhelppreventun-
intendedconsequencessuchasbiaseddatainputor
unfairlydistributedoutput.Inabsenceofclearinsti-
tutionsthatcanprovideaccountabilityandoversight,
peoplecanserveastheinstrumenttosafeguardso-
cietyfromthepotentialnegativeconsequencesofAI
andbarrierstowardsachievementoftheSDGs.Last-
ly,asthedeploymentofAIsystemsisrelativelyin
itsearlystages,peopleshouldbeproactivelyinvolved
tobuildacultureoftrust.IfpeopledonottrustAI
systems,thesetechnologieswillnotreachtheirpo-
tential.
WithintheAICommonspartnership,newinter-
nationalcenterstobenamedtheAIforSustainable
DevelopmentGoals(‘AI4SDG’)Centerscanserveas
factoriestobuildthesePPPPs.Withbranchesactive
indifferentregionsoftheworld(tofactordifferent
prioritiesandcontexts)andindifferentknowledge
settingsfromacademiatogovernment(tofactordif-
ferentknowledgebackgroundandpractice),thepur-
poseofanAI4SDGcentrewillbetoconveneglobal
stakeholdersfromgovernment,privatesectorand
civilsocietytocollaborateanduseAItechnologies
tomonitor,simulateandpredictprogresstowards
theSDGs.Thecenterwillaimtoserveasanengine
forpracticalexperimentationofgovernanceand
businessmodelsforAI,embeddingethicsanddesir-
ablehumanvaluesintorealworldprojectsthatfos-
terinclusiveAIdevelopment.
Increatingpilotprojects,considerationswillbe
giventowhatconstitutesasaneffectivepilotproject
tobuildasharedunderstandingontheuses,misus-
esand‘missed-uses’ofAIforSDGs,andhowtosi-
multaneouslybuildadynamicandcomprehensive
policyframeworktomitigatethedownsiderisksof
AIthatcouldhamperthedevelopmentgoals.Build-
inganiterativemodelforapplyingAItoeachofthe
SDGsisanimportantfeaturebecauseitwillallow
forcorrigibilityinthetechnologyandlimitthedown-
sideeffects,suchasbias,amplifyingforourmostvul-
nerablecommunities.Furthermore,devisinganag-
ilepolicyframeworkparalleltotestingAItechnolo-
giesforSDGswillhelpforgeatimelyanddynamic
feedbackloopbetweenimpactofAIandpolicyto
30see<https://thefuturesociety.org/2019/09/25/the-global-data
-commons-gdc/>accessed31January2020
31Narain(n20)
32UnitedNations,‘High-LevelPoliticalForumGoalsinFocus
Goal17:StrengthentheMeansofImplementationandRevitalize
theGlobalP artnershipforSustainableDevelopment’(2018)
<https://unstats.un.org/sdgs/report/2018/goal-17/>accessed31
January2020
Delphi4|2019 216AIforSustainableDevelopmentGoals
managesuchimpact,makingitmorefeasibleforpol-
icymakersandgovernancemodelstokeepapacewith
technologicalchange.
ThesenewstructurestheAICommons,theGlob-
alDataAccessFrameworkandtheAI4SDGCenters
canhelptheinternationalcommunityreconcile
technical,ethical,commercial,legalandoperational
frameworksandprotocolstotakepowerofAItech-
nologiesandsuccessfullymakeunifiedprogressto-
wardstheachievementoftheSDGs.
Delphi4|2019217 AIandOnlineIntermediationPlatforms
TheUseofAIbyOnlineIntermediation
Platforms
ConciliatingEconomicEfficiencyandEthicalIssues
FrédéricMartyandThierryWarin*
Thispaperfocusesontheeffectsoftheimplementationofartificialintelligence-basedalgo-
rithmsbyonlineintermediationplatformsintermsofbotheconomicefficiencyandfairness
orethicaldimensions.Itaddressesthreemainissues:theconsumersegmentationandthe
capacitytodiscriminate;thestrategicuseofartificialintelligencebydominantplatformsin
co-opetitivedigitalecosystems;andtheroleofartificialintelligence-basedtoolstoguaran-
teetrustworthyuser-reviewsone-commerceplatforms.Thispaperemphasisestheimportance
ofhavingstrongguaranteesforplatformusersintermsoftransparencyandaccountability.
I.Introduction
Althoughstillinitsinfancy,theacademicliterature
intheeconomicsdisciplineinsistsonthepromises
ofArtificialIntelligence(hereafterAI).1Ourfocus
hereliesinthefieldofIndustrialOrganization.In
thecaseofelectronicplatforms,anincreasinguseof
AIcansubstantiallyimproveperformanceinsever-
alareas.Forinstance,forsearchormatchingpurpos-
es,AIcanbeusedtorefinetherecommendations
providedtoInternetusers,hencereducingthesearch
costsaswellasthecoordinationcosts.2Anotherex-
ampleisthatAIcanalsocontributetoimprovethe
leveloftrustintheplatform.Similarly,AIcanpro-
videtheplatformwithadvanceduserdissatisfaction
detectiontools.AIcanalsohelpsolvethe‘coldstart’
problemfornewplatformsenteringthemarketby
providingincentivesforconsumerstogivetrustwor-
thyreviews.3
Wewillalsorelyonthefollowingdefinitionofan
onlineintermediationplatform:aplatformisconsti-
tutedofusersconsumersandsupplierswhose
transactionsaresubjecttodirectand/orindirectnet-
workeffects.4
However,thisgreatpowercomesalsowithgreat
challenges.AIcouldindeedexacerbateconsumerma-
nipulationsorgenerate/worsencertainbiasesaspre-
dictionsmadeaboutconsumerpreferencesmight
haveaself-fulfillingeffect.5Thehighdegreeofcon-
sumersegmentationallowedbyAIcouldalsoleadto
discriminatorypractices.6Suchdiscriminationmay
taketheformofpricediscriminationbutalsoofdif-
ferencesinthequalityoftheproductsbeingoffered.7
Similarly,AI-basedadvancedindicatorssetupby
theplatformtomeasurethequalityoftheservice
providedbyitscomplementorscanbemanipulat-
edtoimposeunbalancedcontractualterms.Finally,
theroleofAIinencouragingconsumeropinionsmay
DOI:10.21552/delphi/2019/4/11
*F rédéricMarty,CNRSGREDEGUniversitéted’Azur;CIRA-
NO,Montréal.F orcorrespondence:<frederic.marty@gredeg.cnrs.fr>
ThierryWarin,SKEMABusinessSchool;CIRANO,Montréal.For
correspondence:<thierry.warin@skema.edu>
1CatherineTucker,‘Privacy,Algorithms,andArtificialIntelligence’
inAjayAgrawal,JoshuaGans,andAviGoldfarb(eds)TheEco-
nomicsofArtificialIntelligence:AnAgenda(UniversityofChica-
goPress2018)423–37
2ThierryWarinandDanielLeiter,‘HomogenousGoodsMarkets:
AnEmpiricalStudyofPriceDispersionontheInternet’(2012)4
InternationalJournalofEconomicsandBusinessResearch514–29
3PaulMilgromandStevenT adelis,‘HowArtificialIntelligenceand
MachineLearningCanImpactMarketDesign’(2018)NBER
WorkingPapern°24282
4Broekhuizenetal,'DigitalPlatformOpenness:Drivers,Dimen-
sionsandOutcomes'(July2019)JournalofBusinessResearch;
JeanRochetandJeanTirole,'PlatformCompetitioninT wo-Sided
Markets'(2003)1JournaloftheEuropeanEconomicAssociation
990–1029
5PelleGuldborgHansenandAndreasMaaløeJespersen,‘Nudge
andtheManipulationofChoice:AFrameworkfortheResponsi-
bleUseoftheNudgeApproachtoBehaviourChangeinPublic
Policy’(2013)4EuropeanJournalofRiskRegulation3–28
6MarcBourreauandAlexandredeStreel,‘TheRegulationof
PersonalisedPricingintheDigitalEra’SSRNScholarlyPaperID
3312158,SocialScienceResearchNetwork<https://papers.ssrn
.com/abstract=3312158>accessed20January2020
7PrestonMcAfee2007,‘PricingDamagedGoods’(2007)1Eco-
nomics:TheOpen-Access,Open-AssessmentE-Journal.
Delphi4|2019 218AIandOnlineIntermediationPlatforms
haveadarksideifusedtogeneratefakereviews.
Thus,theeffectsofusingAIinonlineplatformsmay
bemoredebatablethaninitiallyexpected.
Therefore,thepurposeofthiscontributionisto
proposeaframeworktostudytheopportunitiesand
risksassociatedwiththeuseofAIinthespecificcon-
textofonlineintermediationplatforms.Inparticu-
lar,wehighlightthreepriorityareasthatweconsid-
eroftheutmostimportanceintermsofrisksposed
tothenatureofcompetition.Thesepriorityareasare
keysincetheyareactualthreatstoahealthymarket
system.Indeed,whilelawmakershaveconsidered
someoftheethicalissuesrelatedtoAI,attentionmust
alsobepaidtoitsconsequencesoncompetition.AI
canaffectthecompetitivedynamicsofmarketsby
increasingthemarketpowerofdominantfirmsat
theexpenseoftheircompetitors,tradingpartners,
andconsumers.8WhiletheuseofAIcanaddress
someofthekeycompetitiveissuesintheplatform
economy ,suchascoldstartandcontestability ,itmay
alsoincreaseimbalancesbetweenoperatorsandfa-
cilitatemanipulation.Theseissuesarenotonlylinked
toefficiencybutalsotothedynamicsofcompetition
itself.Adominantoperator(oragatekeeper)might
controlcompetitiveforcesandimpairconsumers’
freedomofchoiceandcompetitors’accesstomarket.
Forinstance,Hemphill(2019)underlinesthatthe
incumbent’sadvantagesondigitalmarketscanbeex-
acerbatedbythedevelopmentofmachinelearning.
Dominantplatformsbenefitfromeconomiesofscale
andscopeandfromanaccesstousers’datathatthe
newentrantcannoteasilyreplicateorovercome.
Suchpotentialbarrierstoentrymaysignificantlyin-
creasedbyAIimplementation.Suchtechnologies
mayexacerbatetheincumbents’competitiveadvan-
tagesbecauseoftheirhighfixedcosts,theirdata-
basedperformancenatureandthehugeinvestments
realisedbybothinternalandexternalgrowth(merg-
ersandacquisitions).
Afterpresentingthecurrentstateofregulatory
conversations,ourconclusionisthattherisksposed
toahealthymarketsystemareatbestunderestimat-
ed,atworsttotallyignored.Inwhatfollows,first,we
analysetheproposalsandregulationsmadebypub-
licauthoritiesaimingatguaranteeingatrustworthy
AIandsecond,weproposethreeexamplesofAI-
basedalgorithmstoillustrateethicalandeconomic
trade-offs.IftheinvisiblehandentersanAIblack
box,itisnecessarytobalanceefficiencygainsand
risksforsoundcompetitionandeconomicfreedom.
II.AIAccountabilityintheFaceof
EconomicandEthicalRisks
Tothebestofourknowledge,nowhereintheregu-
lationsdowefindareferencetothepotentiallydis-
ruptiveimpactofAIonthemarketeconomy.Accord-
ingtotheFrenchNationalConventionin1793:great
responsibilityfollowsinseparablyfromgreatpower’.
Sucharequirementisstilloftheutmostimportance
inthisAIage.Whatisknownasthe AIrevolution’
isanincrediblypowerfultoolbutitalsoposesalot
ofquestions.Forthefirsttimeinourhistory,au-
tonomoussystemscanperformcomplextasksequiv-
alenttonaturalintelligence.ThetermArtificialIn-
telligencewascoinedbyJohnMcCarthyin1956ina
proposalforasummerresearchprojecttobeheldin
Dartmouthin1957.9AIconstitutesamajorformof
scientificandtechnologicalprogress,whichcangen-
erateconsiderablesocialaswellaseconomicbene-
fits.10
AIcanbeunderstoodasageneral-purposetech-
nology.11Weproposetousethefollowingupdated
definitionofAIfromtheEuropeanUnionHigh-Lev-
elExpertGrouponAI:
Artificialintelligence(AI)systemsaresoftware
(andpossiblyalsohardware)systemsdesignedby
humansthat,givenacomplexgoal,actinthephys-
icalordigitaldimensionbyperceivingtheirenvi-
ronmentthroughdataacquisition,interpreting
thecollectedstructuredorunstructureddata,rea-
soningontheknowledge,orprocessingtheinfor-
mation,derivedfromthisdataanddecidingthe
bestaction(s)totaketoachievethegivengoal.AI
systemscaneitherusesymbolicrulesorlearna
numericmodel,andtheycanadapttheirbehavior
byanalysinghowtheenvironmentisaffectedby
theirpreviousactions.Asascientificdiscipline,
8SyprosMakridakis,'TheForthcomingArtificialIntelligence(AI)
Revolution:ItsImpactonSocietyandFirms'(2017)90Futures
46–60<https://doi.org/10.1016/j.futures.2017.03.006>accessed
30January2020
9J.McCarthyetal,AProposalfortheDartmouthSummerResearch
ProjectonArtificialIntelligence’(1956)13http://jmc.stanford
.edu/articles/dartmouth/dartmouth.pdfaccessed30January2020
10AjayAgrawal,JoshuaGans,andAviGoldfarb,PredictionMa-
chines:TheSimpleEconomicsofArtificialIntelligence(Harvard
BusinessReviewPress2018)
11ErikBrynjolfsson,DanielRockandChadSyverson, Artificial
IntelligenceandtheModernProductivityP aradox:AClashof
ExpectationsandStatistics’inAjayAgrawal,JoshuaGans,andA vi
Goldfarb(eds)TheEconomicsofArtificialIntelligence:AnAgen-
da(UniversityofChicagoPress2018)23–57
Delphi4|2019219 AIandOnlineIntermediationPlatforms
AIincludesseveralapproachesandtechniques,
suchasmachinelearning(ofwhichdeeplearning
andreinforcementlearningarespecificexam-
ples),machinereasoning(whichincludesplan-
ning,scheduling,knowledgerepresentationand
reasoning,search,andoptimization),androbotics
(whichincludescontrol,perception,sensorsand
actuators,aswellastheintegrationofallother
techniquesintocyber-physicalsystems)’.12
ThedevelopmentofAIdoesposemajorethicalchal-
lengesandsocialrisks.Indeed,AIcanrestrictthe
choicesofindividualsandgroups,disrupttheorgan-
isationoflaborandthejobmarket,orinfluencepol-
iticstonamebutafew .Scientificprogressbringsin-
crediblebenefitswhilecarryingnewrisks.Citizens
mustdeterminethemoralandpoliticalendsthatgive
meaningtotherisksencounteredinanuncertain,
andcomplexworld.
On8April2019,theHigh-LevelExpertGroupon
AIpresentedtheirEthicsGuidelinesforT rustworthy
ArtificialIntelligence.Accordingtotheguidelines,
themainprinciplesforatrustworthyAIarethree-
fold:(1)lawful(abidingbyallapplicablelawsand
regulations),(2)ethicalegrespectingethicalprinci-
plesandvalues,and(3)robustbothfromatechnical
andasocialperspective.13Inits‘EUguidelineson
ethicsinartificialintelligence:Contextandimple-
mentation’report,theEuropeanCommission’sHigh-
LevelExpertGrouponAIproposes7keyguidelines
forAIsystemsshouldmeetinordertobedeemed
trustworthy:Humanagencyandoversight,T echni-
calRobustnessandsafety ,Privacyanddatagover-
nance,T ransparency ,Diversity ,non-discrimination
andfairness,Societalandenvironmentalwell-be-
ing,andAccountability .14Suchconcernsresonate
withtheprincipleslaiddownbytheMontrealDec-
laration(2018)15:W ell-being,respectforautonomy,
privacyandintimacy,solidarity ,democraticpartici-
pation,equity,diversityinclusion,prudence,respon-
sibility,sustainabledevelopment.
Thequestionofhealthymarketsreliesondatagov-
ernanceasmuchasonsustainabledevelopment,two
topicsinHELGandtheDeclarationofMontreal.Da-
tagovernanceisalsotobefoundinarticle25of
GDPR16,alongtheUNESCO’s7thprinciplewithin
theBeijingConsensus:the‘impactofAIonpeople
andsocietyshouldbemonitoredandevaluated
throughoutthevaluechain’17.
Thefocusontheguaranteesrelatedtotheuseof
AIisalsoreflectedbytheOECD’sRecommendation
oftheCouncilonArtificialIntelligence.18Itsfirstsec-
tionsetsupthe‘Principlesforresponsiblesteward-
shipoftrustworthyAI’.Theprinciplesadvocatedby
theOECDarebasedonareviewofpotentialrisksfor
thesocietywhileenablinganAIdigitalecosystem.
Althoughallthesepointsarerelevantandofthe
utmostimportance,thesereportsgivelittleattention
tothespecificcompetitiverisksassociatedtodigital
oligopolies.Thereisnomentionabouttheorganisa-
tionofthemarketeconomyinthisAIage.However,
drawingfromtheOECDAIPrinciples,theG20adopt-
edhuman-centeredAIPrinciplesinJapaninJune
2019.Thisismaybetheonlytextthatgetsascloseas
wecanimaginetothenotionofAIbeingdisruptive
forthemarketeconomy.
Ifwefocusonintermediationplatforms,therisks
associatedwiththeuseofAIcanbeconsideredfrom
theperspectiveofcompetitionorconsumerprotec-
tionlaws,aswellastheprotectionofpersonaldata.
Eveniftheselegalresourcescanaddressasignificant
partoftherisks,theycannotansweralltheethical
issuesraised.Itwillthereforebeuptothelawmak-
erstostrikeabalancebetweenpotentialefficiency
gainsandderivedrisks.Weillustratethesetrade-offs
inthenextthreesectionsthroughexamplesofAIim-
plementationbyonlineplatforms.W einsistforeach
ofthemonthepotentialefficiencygainsthatcan
stemfromAIbutalsoontheethicalrisksraised.
12HLEG-AI,EuropeanCommission,‘EthicsGuidelinesforTrustwor-
thyAI’(8April2019)<https://ec.europa.eu/digital-single-market/
en/news/ethics-guidelines-trustworthy-ai>accessed20January
2020
13ibid
14T ambiamaMadienga,‘EUGuidelinesonEthicsinArtificial
Intelligence:ContextandImplementationThinkT ank’(2019)
<http://www.europarl.europa.eu/thinktank/en/document.html
?reference=EPRS_BRI(2019)640163>accessed20January2020
15MontrealDeclaration,‘TheDeclarationMontrealResponsible
AI’(2018)<https://www.montrealdeclaration-responsibleai.com/
the-declaration>accessed20January2020
16Regulation(EU)2016/679oftheEuropeanParliamentandofthe
Councilof27April2016ontheProtectionofNaturalPersons
withRegardtotheProcessingofPersonalDataandontheFree
MovementofSuchData,andRepealingDirective95/46/EC
(GeneralDataProtectionRegulation)(TextwithEEARelevance)
OJL.V ol.119.http://data.europa.eu/eli/reg/2016/679/oj/eng
accessed30January2020
17UNESCO,'BeijingConsensusonArtificialIntelligenceand
Education-UNESCODigitalLibrary'(2019)<https://unesdoc
.unesco.org/ark:/48223/pf0000368303>accessed30January
2020
18OECD,‘OECDLegalInstruments’(2019)<https://legalinstruments
.oecd.org/en/instruments/OECD-LEGAL-0449>accessed20Janu-
ary2020
Delphi4|2019 220AIandOnlineIntermediationPlatforms
III.UsingAIforaFinerConsumer
Segmentation:EfficiencyattheRisk
ofDiscrimination?
Theperformanceofanintermediationplatformora
searchengineisbasedontheabilityofitsalgorithms
todeliverrecommendationstailoredtotheneedsof
itsusers.19AIallowsamorerefinedunderstanding
ofthelatterbyattachingeachusertoanarrowlyde-
finedsegment.Attheveryleast,theproposedresult
isdedicatedtoeachuserbasedonthepredictionthat
ismadeaboutherexpectationsorherabilitytopay.
Theseareundoubtedlypro-efficiencyeffects.Search
costsaresubstantiallyreducedforconsumers.How-
ever,theuseofAIinsearchenginesandmatching
platformsmaybeaccompaniedbyarisingriskfor
consumers:channelingtoonarrowlyherchoiceto-
wardstheoptionforwhichtheadequacyprediction
isstrongest.Inthiscontext,theuseofAImayhelp
perpetuatebiases.Forinstance,inanexperiment
aboutjobdiscriminations,jobadsforhigher-paidpo-
sitionsweredisplayed6timesmoretomenthanto
women.20
Inaddition,risksofaself-fulfillingprophecy(and
ofunduerestrictionofconsumerfreedomofchoice)
mustbetakenintoaccount.Isthedevelopmentof
AIinthisarealikelytoleadtoconfirmationandre-
inforcementofsocialbiases?Theassignmentofa
consumertoaparticularpatterncertainlymakesit
possibletosendherofferscorrespondingtoher
needsbutalsohasaperformativeeffectbylocking
herupinarestrictedspaceofchoice.Thealgorithm
hastheeffectofclosingoptionstoherandthuscon-
strainingherfutureoptions.InsofarAIisonlyapre-
dictivetool,wecanarriveattheparadoxinwhich
thealgorithmoptionswouldbeverifiedex-postsim-
plybecausetheveryconsequenceoftheprediction
istherestrictionofthespanofpossiblechoices.In
thesamevein,theAIoriginatedproposalisallthe
morelikelytobeacceptedsinceitreinforcesthecon-
sumer'sdecision-makingbias.
Itshouldalsobenotedthattheabilitytostatisti-
callyinferfromtheobserveddatathemaximum
amountthattheconsumeriswillingtopaycould
leadtotheimplementationofpersonalisedprices.
Withoutgoingasfarasperfectdiscriminationin
which,thepricewouldbeequalforeachconsumer
toherpropensitytopay ,AIcanleadtoaveryeffi-
cientpricesegmentation.21Theeconomiceffectsof
pricediscriminationareambiguous.22Itisfavorable
intermsoftotalefficiencyandcanallowthrough
cross-subsidiesforcertainconsumerstoaccessthe
product.However,discriminatorypricesresultina
transferofwelfarefromtheconsumerstotheplat-
form.23
Thealgorithmcanalsoplayontherangeofprod-
uctsofferedtotheInternetuser.Dependingonits
anticipateddegreeofexpertiseortheneedsassigned
toher,thetechnicalperformanceoftheproposed
productmayvary .Thediscriminationthroughver-
sioningcanrelynotonpricesbutperformanceor
quality.Forasameprice,thecharacteristicsofthe
productofferedmightdifferfromausertoanother.
Attheextreme,incaseofanon-demandproduction
(ina4.0industryworld),theproductcanbededicat-
edtoaspecificuser.Suchanapproachmayleadto
deceptivecommercialpracticesandharmfuldiscrim-
inationamongconsumers.W ecouldeasilyimagine
thatnaïveorcaptiveonesmightonlyaccesstoprod-
uctscharacterizedbydeterioratedperformancesas
aresultofmachinelearningmethodsappliedtocon-
sumersegmentation.24
Aburgeoningfieldoftheeconomicsliteraturein-
vestigatesthepossibleexploitativeabusesthatcould
affectthemorenaïveconsumers.25Firmsincreasing-
lyhavethecapacitytodiscriminateamongtheircon-
sumers.Theever-increasingflowofinformation,the
enhancedcapacitiestoprocessthedatacollectedand
theobfuscationofon-linepricesandoffersmaylead
toaquasi-perfectdiscriminationexposingnaïvecon-
sumertopayunexpectedcharges26ortoaccesstoin-
feriorqualitygoodsorservices.
19(n3)
20T omSimonite,‘StudySuggestsGoogle’sAd-TargetingSystemMay
Discriminate’(MITTechnologyReview ,6July2015)<https://
www.technologyreview .com/s/539021/probing-the-dark-side-of
-googles-ad-targeting-system/>accessed20January2020
21SalilMehra, AntitrustandtheRobo-Seller:Competitioninthe
TimeofAlgorithms’(2016)100MinnesotaLawReview
1323-1375
22HalVarian, ArtificialIntelligenceandIndustrialOrganization’
(2018)NBERWorkingPaper
23J.-P .DubéandSanjongMisra,‘ScalablePriceTargeting’(2017)
WorkingPaperUniversityofChicago
24NiladriSyamandArunSharma,'WaitingforaSalesRenaissance
intheF ourthIndustrialRevolution:MachineLearningandArtifi-
cialIntelligenceinSalesResearchandPractice'(2018)69Indus-
trialMarketingManagement135–46.
25P aulHeidhuesandBotondKőszegi,'Naïveté-BasedDiscrimina-
tion'(2017)132QuarterlyJournalofEconomics1019-1054
26XavierGabaixandDavidLaibson,'ShroudedAttributes,Con-
sumerMyopia,andInformationSuppressioninCompetitive
Markets'(2006)121QuarterlyJournalofEconomics505-540
Delphi4|2019221 AIandOnlineIntermediationPlatforms
Perverseeffectsresultingfromalgorithm-based
discriminationcanalsostemfromamplificationsof
socialbiases.Actually,matchingorpricealgorithms
mayconfirmoraggravatesomediscriminational-
readyexistinginsociety .Twodifficultiescanbecon-
sidered.Thefirstdifficultyechoesasituationin
whichthealgorithmisbasedonreinforcingself-di-
rectedlearning.Assuch,itlearnsfromavailableda-
taandevolvesthroughinteractions.Indoingso,it
risksreproducingsocialbiasesand,muchworse,am-
plifyingthem.Theseconddifficultyisrelatedtothe
worseningoftheeconomicconsequencesofdiscrim-
inations.Manystudiesemphasisethisimpactonthe
incomeofagentsofferingtheirservicesonplatforms
orontheopportunitiesavailabletothem.27
Consumersmayreactnegativelytopersonalised
pricespricesorpricestrategiesgeneratingrandom
prices.28Forinstance,Amazonhadtoabandonran-
dompricevariationinitiativesin2000.29Thus,the
reputationaldamagecanbesignificantifthecon-
sumerhasaperceptionoftheplatform'sbehavioras
manipulative,misleadingorunfair.Inthatcase,the
potential‘market-based’sanctioncanplayasaprice
signalincentivisingtheplatformtomonitorcareful-
lyitspractices.However,suchaself-disciplinaryef-
fectcanonlybeeffectiveifthemarketpositionof
theplatformremainscontestable(ifthecompetition
isstilloneclickaway)andiftheconsumeriseffec-
tivelyawareofthesepractices.
Consumersmayadverselyreacttonewmarketing
practicesbasedonAIasthepossibleshiftfroma
shopping-then-shippingmodeltoashipping-to-shop-
pingmodel.30Asretailerscanmoreandmorepre-
ciselypredictconsumers’futureneeds,theycansend
theproductbeforeanyformalorder,allowingthecon-
sumertofreelyreturntheitem.31However,anunde-
siredshipping,notmandatoryresultingfromafalse
predictionaboutaconsumer’sneedsandpreferences,
mayleadtoanegativereaction.Forinstance,acon-
sumer’scurrentpreferencemaydifferfromtheones
inferredfromherpastbehavior.Theproposedprod-
uctmayputherinanuncomfortablesituation.32The
consumermayalsoreactnegativelytoaperceived
lossinautonomyintermsofconsumptionchoices.33
OneofthemainconcernsraisedbyAIimplemen-
tationformarketingrecommendationsintermsof
consumers’reactionscanbeillustratedwiththe‘pri-
vacy-personalisationparadox’.34Ontheonehand,
consumersaskfordedicatedoffersbut,ontheother
hand,theywanttopreservetheirprivacy.Theirtrade-
offmightbedistortedconsideringimperfectratio-
nality.AccordingtoAcquisti(2004)35,consumers
maybe‘privacymyopic’.Inotherwords,theymay
divulgeasubstantialamountofinformationinre-
turnforanotsosubstantialcounterpart.36
Theplatformmonitoringbythirdpartiescanbe
helpful.Distributedsurveillanceschemescanbea
waytoprovideguaranteestoconsumersandtopro-
videtheproperincentivestopromoteacompetition
throughquality(orthroughcommitmentsonfair
practices)amongplatforms.
Symmetrically,market-basedincentivesmightbe
insufficienttoguaranteethatfirmsproperlycontrol
theeffectsoftheiralgorithmic-baseddecisionsin
termsoffairness.Despitetheirownbias,consumers
mayreactnegativelyassoonastheyperceivethe
27BenjaminEdelman,MichaelLucaandDanSvirsky,‘Racial
DiscriminationintheSharingEconomy:Evidencefromafield
experiment’(2017)9AmericanEconomicJournalApplied
Economics1-22;
AlexRosenblatetal,‘DiscriminatingT astes:Uber’sCustomer
RatingsasV ehiclesforWorkplaceDiscrimination’(2017)9
PolicyandInternet256-279;
MingmingChengandCarmelFoley,TheSharingEconomyand
DigitalDiscrimination:TheCaseofAirbnb’(2018)International
JournalofHospitalityManagement95-98;
GraziaCecereetal,‘STEMandT eens:AnAlgorithmicBiason
SocialMedia’(2018)WorkingP aperSSRN3176168
28ThierryWarinandDanielLeiter ,'HomogenousGoodsMarkets:
AnEmpiricalStudyofPriceDispersionontheInternet'(2012)4
InternationalJournalofEconomicsandBusinessResearch
514–29;AkivaMiller,'WhatDoWeWorryAboutWhenWe
SorryAboutPriceDiscrimination?TheLawandEthicsofUsing
PersonalInformationforPricing'(2014)19JournalofTechnology
LawandPolicy41-104
29MatthewEdwards,‘PriceandPrejudice:TheCaseagainstCon-
sumerEqualityintheInformationAge’(2006)10LewisandClark
LawReview559
30ThomasDavenportetal,'HowArtificialIntelligenceWillChange
theFutureofMarketing'(2020)48JournaloftheAcademyof
MarketingScience24-42
31(n10)
32(n30)
33QuentinAndréetal,'ConsumerChoiceandAutonomyinthe
AgeofArtificialIntelligenceandBigData'(2018)5Consumers
NeedsandSolutions28-37
34ElizabethAguireetal,'UnravellingthePersonalizationParadox:
TheEffectofInformationCollectionandTrust-buildingStrategies
inOnlineAdvertisementEffectiveness'(2015)9JournalofRetail-
ing34-49
35AlessandroAcquisti,'PrivacyinElectronicCommerceandthe
EconomicsofImmediateGratification'(2004)5thConferenceon
ElectronicCommerce,NewYork
36JoshuaGerlickandStephanLiozu,'EthicalandLegalConsidera-
tionsofArtificialIntelligenceandAlgorithmicDecision-makingin
PersonalizedPricing'(2020)JournalofRevenueandPricing
Management.
Delphi4|2019 222AIandOnlineIntermediationPlatforms
firm’sbehaviorasunfairormanipulative.Theper-
ceived(un)fairnessechoeswithdistributivejustice-
relatedconcernsandmayleadtosalelosses.37
TheuseofAI-basedrecommendationssystems
raisesreputation-relatedconcernsforfirmsaswellas
ethicalandlegalones.Ifanalgorithmmakesitspre-
dictionsasanon-accountableblackbox,itsdevelop-
ersandthefirmusingitcanbeliableaboutitspoten-
tialdiscriminatoryorunfaireffects.Martin(2019)38
explainsthatafirmmaybeaccountableifitdevelops
orimplementsaninscrutablealgorithm.Shedefines
suchanalgorithmasonethatlimitsorexcludes
anyhumaninterventioninthedecisionprocessand
makesthisalgorithmimpossibletoobjectivelyex-
plainexpost.Inthisframework,afirmengagesits
corporateresponsibilitybyrelyingon‘toodifficultto
explain’decisionprocesses.Inotherwords,thelack
ofaccountabilitymaybeseenastheoppositeofan
ethical-by-designapproach.Asaconsequence,
opaqueandnon-accountablealgorithmsrequireasu-
pervision,fromathird-partyoraregulatoryagency .39
TheconfidencetowardsAI-baseddecisionsmaybe
reinforcedbytherecoursetoXAI,egexplainableAI.40
Wecanalsoinsistonasecondpotentialadvantage
ofAIinthefieldofsearchengines.AI-basedsearch
recommendationscanbecustomisedaccordingto
theperson'snaturalsearchprocess(broadfirstand
progressiverefinement).Indeed,consumers’search
behaviourevolvesduringitssuccessivestages.AI-
basedalgorithmscanadjusttheirresultstofitwith
suchaprocess.Basedonananalysisperformedone-
Bayusers,Blakeandal(2015)41showthatthecon-
sumerspreferatthefirststepsverybroad-rangere-
sultstoscreentheavailableoptionsandprogressive-
lyconvergetowardmorenarrowlytargetedresults.
Asearchormatchingalgorithmmayreproducesuch
pathandreviseateachiterationthescopeandthe
characteristicsoftheresultsdisplayed.However,
suchatoolhastwosides;itcanbothsupportanddis-
torttheconsumer'schoices.Again,ethicalconcerns
mustbeaddressed.
IV .UsingAItoFacilitateT rustin
Transactions:CorrectingInformation
AsymmetriesorIncreasingTrading-
Partners'Vulnerability?
Trustinonlineplatformsisacomplexmatter.Itde-
pendsonthenatureoftheplatform(proprietaryvs
open-source),theindustry ,thetechnology
(blockchainvshttps),thecompany ,etc.42
Oneofthedigitalintermediationplatforms’key
factorsofsuccesshasbeentheirabilitytosecure
transactions.Thistrustisnotonlyaboutsecuring
paymentsbutalsointermsofreducinginformation-
alimperfectionsthatcouldpreventtheactofpur-
chase.Forconsumers,theseimperfectionsweredue
toincompleteandasymmetricinformationaboutthe
qualityofproductsandsellersactiveinonlinemar-
ketplaces.Theopinionssubmittedonlinehave
playedasignificantroleincorrectingtheseinforma-
tionalbiases.AIcanbeaninterestingrelaytoaddress
thisissue:forinstance,bypredictingthequalityof
agivensellerbyinterpretingonlineexchangeswrit-
teninnaturallanguageinprevioustransactions.The
analysisofexchangesbetweencustomersandinde-
pendentsellers(throughnaturallanguageprocess-
ing)canmakeitpossibletoconstructadvancedindi-
catorsofunderperformanceandthereforetointer-
venetoremedyitveryearlyon.Assuch,theplatform
protectsitsconsumersevolvinginincompleteand
asymmetricinformationconditions.
Puttinginplacemechanismstocreateanenviron-
mentthatwouldincreaseparticipants'confidenceis
oneofthekeysoftheplatforms’businessmodel.43
37T imothyRichards,JuraLiaukonyteandNadiaStretskaya,'Person-
alizedPricingandPriceFairness'(2016)44InternationalJournal
ofIndustrialOrganization138-153
38KirstenMartin,'EthicalImplicationsandAccountabilityof
Algorithms'(2019)160JournalofBusinessEthics835-850
39FrankP asquale,TheBlackBoxSociety:TheSecretAlgorithmsthat
ControlMoneyandInformation(HarvardUniversityPress2015)
40(n36)
41ThomasBlake,ChrisNoskoandStevenT adelis,'Consumer
HeterogeneityandP aidSearchEffectiveness:ALargeScaleField
Experiment'(2015)83Econometrica155-174
42CarinvanderCruijsen,MauriceDollandFrankvanHoenselaar ,
'TrustinOtherPeopleandtheUsageofPeerPlatformMarkets'
(2019)166JournalofEconomicBehaviorandOrganization
751–66<https://doi.org/10.1016/j.jebo.2019.08.021>accessed
30January2020;
ImeneBenY ahia,NasserAl-NeamaandLaoucineKerbache,
'InvestigatingtheDriversforSocialCommerceinSocialMedia
Platforms:ImportanceofT rust,SocialSupportandthePlatform
PerceivedUsage'(2018)41JournalofRetailingandConsumer
Services11–19<https://doi.org/10.1016/j.jretconser.2017.10.021
>accessed30January2020;
NuanLuoetal,'IntegratingCommunityandE-Commerceto
BuildaT rustedOnlineSecond-HandPlatform:Basedonthe
PerspectiveofSocialCapital'(2020)153TechnologicalForecast-
ingandSocialChange119913<https://doi.org/10.1016/j.techfore
.2020.119913>accessed30January2020
43LiYfanMacinnesIanandY urcikWilliam,'ReputationandDis-
puteineBayT ransactions'(2005)10InternationalJournalof
ElectronicCommerce27-54
Delphi4|2019223 AIandOnlineIntermediationPlatforms
Suchacharacteristicwasnotaforegoneconclusion
sincetrustcouldnotbebasedoninterpersonalrela-
tionships,theexperienceofpasttransactionsorthe
collectivecontrolexercisedbyagivencommunityor
corporation.Norcouldtrustcomefromtechnicalde-
vicesasisthecase,forexample,throughblockchain
technologiesinwhichcryptographicevidencecanre-
placetrust.Thesuccessofthefirstonlinemarket-
placeswasensuredbytheimplementationofbuyer
feedbacks.Theseopinionsmadeitpossibletobene-
fitfromanex-anteandnotonlyanex-postevaluation
ofthequalityoftheproducts.Inotherwords,the
sharingofinformationmeantthatthegoodsandser-
vicesconsumeddidnotfall,foreachsuccessivecon-
sumer,withinthecategoryofexperiencegoods.Even
beforeenteringintoatransactionwithaformerlyun-
triedmerchant,buyersonaplatformbenefitfrom
theassessmentsoftheseller’spreviousconsumers.
However,thissuccessisthesubjectofincreasing
challenges.First,consumershavenoincentivesto
spendtimetowritereviewsandcanindividuallybe-
haveasfreeriders.Second,theirconfidenceincon-
sumers’reviewavailableonlinetendstobedecreas-
ing.Suchmistrustisduetobiasesinassessments,rat-
inginflation44andrisksofopinionmanipulation45.
Someusersmayalsocolludetoartificiallyincrease
theratingsbyrelyingonpuppetconsumersposting
falseopinionscorrespondingtofalsetransactions.46
Theuseofartificialintelligencecanbealeverto
restorethistrust.47Theideaistousethemessages
exchangedontheplatformbetweensellersandbuy-
ersbeforeandafterthetransaction.Thesupportof
NLP(NaturalLanguageProcessing)allowssuchan
evaluation.Thealgorithmaimsatpredictingwhich
characteristicseachconsumerislikelytoappreciate
inthelightofherinterestsandneeds.
SuchamethodwasimplementedbyMasterovet
al(2015)48oncommentsleftontheeBayplatform.It
isamatteroffindinganelementthatcanpredictan
unsatisfactorytransaction.Theauthorsreliedon
messagesandinternaldatawithintheplatformthat
couldindicatethatthetransactionwasnotsatisfac-
tory(complaint,non-receiptorreturnoftheobject).
Theindicatorofbadexperienceisthedependentvari-
able.Thealgorithmwillaimtopredictthisresult
fromthemessagesexchanged.Afteratransaction,
nomessagescanbeexchanged,negativemessages
canbelisted,andfinally‘neutral’messagescanbe
recorded.85%ofthetransactionsstudieddonotgen-
erateanymessages.Whenthereisnomessage,the
numberofunsatisfactorytransactionsis4%.When
aneutralmessageissent,thisrateis13%.Whenat
leastonenegativemessageissent,thisrateincreas-
esto30%.Apriori,thehighertheproportionofneg-
ativemessagesasellerreceives,thelessqualityhe
canbeconsideredas.Thisfrequencymakesitpossi-
bletocalculateaqualityscorethatappearstobea
goodpredictoroffutureperformance.
AIallowsthisindicatortobeinferredfromlarge
databasesofemailexchangeswritteninnaturallan-
guagetopreventtheconsumerdisappointedbya
sellerfromturningawayfromtheplatform.49In
thepresentcase,‘thefractionofaseller'smessage
trafficthatwasnegativepredictswhetherabuyer
whotransactswiththissellerwillstoppurchasing
oneBay’.Thisultimatelyallowstheplatformtosanc-
tionanon-performingselleronobjectivegroundsor
tohaveleadingindicatorsofthedeteriorationinthe
qualityoftheserviceprovided.Thesemonitoring
methodsmayalsoraiseconcernsassoonaswecon-
siderinformationandpowerasymmetriesbetween
theplatformanditscomplementors.Althoughthese
toolsultimatelyprotectconsumers,theyplaceinde-
pendentsellersunderevenclosercontroloftheplat-
form.BydoingsoAIincreasestheirdependenceand
vulnerability.Whatisgoodforconsumersisnotal-
waysgoodforplatforms’tradingpartners.
Therefore,therearealsoethicalconsiderations
withsomealgorithmspunishingnon-performing
sellers.Itisevenmorerelevantinthecontextofthe
potentialblack-boxeffect,butsolutionsexistwith-
outopeningtheblackbox.50Explainablemodelscan
44GeorgiosZervas,DavideProserpioandJohn,Byers, AFirstLook
atOnlineReputationonAirbnb,WhereEveryStayisAbove
Average’(2015)WorkingP aperBostonUniversity
45DinaMayzlin,Y anivDoverandJudithChevalier,‘Promotional
Reviews:AnEmpiricalInvestigationofOnlineReviewManipula-
tion’(2014)104AmericanEconomicReview2421-2455
46WeijiaY ouetal,'ReputationInflationDetectioninaChinese
C2CMarket'(2011)10ElectronicCommerceResearchand
Applications510-519
47(n3)
48DimitriyMasterov ,UweMayerandStevnTadelis,‘Canaryinthe
E-commerceCoalMine:DetectingandPredictingPoorExperi-
encesUsingBuyer-to-sellerMmessages’(2015)Proceedingsofthe
16thACMConferenceonEconomicsandComputation81-93
49ChrisNoskoandStevenT adelis,‘TheLimitsofReputationin
PlatformMarkets:AnEmpiricalAnalysisandFieldExperiment’
(2015)NBERworkingpapern°20830
50SandraWachter,BrentMittelstadtandChrisRussell,‘Counterfac-
tualExplanationswithoutOpeningtheBlackBox:Automated
DecisionsandtheGDPR’(2017)ArXiv:1711.00399[Cs]<http://
arxiv.org/abs/1711.00399>accessed20January2020
Delphi4|2019 224AIandOnlineIntermediationPlatforms
bedetectedareoftenproposedasasolutiontothe
potentialblackboxissue.51Algorithmshavetobeac-
countablewithoutopeningtheblackbox,mainlyfor
competitivereasonsrelatedtotradesecrecy .52
V .UsingAItoCreateaMarketfor
OnlineEvaluations:InSearchof
Objectivity
Creatingorreinforcingthetrustgrantedtoanonline
intermediaryimpliesprovidingconsumerswitha
largenumberofreviewsonitsproducts.Suchopin-
ionsareessentialtoreduceconsumers’information-
alasymmetriesandbydoingsoaddressingthecold
startissueforanewentrant,forinstance,aninde-
pendentsellerproposingitsitemsforthefirsttime
onaplatform.Thislastonecannoteasilytransferits
reputationfromaplatformtoanotherbecauseofthe
barrierstodataorreviewportability .Anewentrant
hasstrongincentivestorewarditsuserstowritere-
views;inthiscontext,thequestionistoknowhow
toconciliatetheseincentiveswithguaranteesin
termsofobjectivity.AImaybeusedasatoolallow-
ingtheprovisionofunbiasedincentivesforonline
notifications.
AImayaddresstheissueofthecoldstartofplat-
formsorsitespublishingeditorialcontentonline.In
thecaseofmarketplaces,commentsareneededto
createtrust,butthesecommentsmustbetrustwor-
thy!Badcommentscanbefakeonesbywhichcom-
paniespunishtheircompetitors.53Goodcomments,
ontheotherside,canbepaidtospecialisedcompa-
niesinwritingfalseconsumerreviews.AImaybe
usedtocreateamarketforonlineassessments.A
largemajorityofbuyersononlinemarketplacesleave
noopinion.Inabsoluteterms,theconsumerhasno
reasontodoso:itconsumestimeandforfuturepur-
chases,shecanadoptastowawaystrategyusingthe
opinionsofothers.Theproblemisnotjustaboutin-
dividualincentives.AsMilgromandTadelis(2018)54
note,thisisalsoanindustrialorganizationproblem:
thelownumberofthird-partyevaluationsonanew
platformmakesbuyingfromitlesssecurethanbuy-
ingfromaplatformwithalarge‘stock’ofopinions.
TheEuropeanCommission'sJune2019Regula-
tiononrelationshipsbetweensellersandplatforms
stressedthispoint:thelackofdataandreviewporta-
bilitydoesnotallowthesellertotransferherrepu-
tationfromamarketplacetoanother.55Hindering
consumers’reviewsportabilityhastwopotentialan-
ti-competitiveeffects.First,itincreasestheseller's
dependenceontheplatform(byincreasingswitch-
ingcosts).Secondly,itconstitutesabarriertoentry
fornewplatforms(whichalsohastheindirectcon-
sequenceofdeprivingsellersofexitoptionscom-
paredtoexistingplatformsandthusfurtherincreas-
ingtheirdependence).
HowtouseAItosolvethisproblem?Lietal.
(2016)56analysefromacasestudyontheChinese
Taobaoplatformthepossibilitytochargemerchants
fortheoptionofhavingbuyersleaveanotice.The
ideaisnottobuygoodreviews.Theproblemisal-
waysoneoftrust.Itisaquestionofentrustinganal-
gorithm,andnotthesellerhimself,withthetaskof
decidingwhethertheopinionisrelevant.Theexper-
imentbeganinMarch2012withan‘evaluationdis-
count’scheme(takingtheformofex-postreimburse-
mentsordiscountcoupons).Paymentismade
whethertheopinionispositiveornegative.Itison-
lytheinformationalqualityofitscontentthatistak-
enintoaccount.Theinterestistwofold.First,it
makesitpossibletodistinguishbetweengoodand
badsalesmen.Indeed,thepurchaseofappraisalsis
aninvestmentthatwillonlybeprofitableifandon-
lyifthesellerisofgoodquality.Asthesellerknows
herowntype,thismechanismactsasarevealingcon-
tract.Second,itallowsthesellertosolvetheprob-
lemofthecold-startissue.Investmentinreputation
canbeacceleratedbypurchasing‘objective’assess-
ments.
Thesamecold-startissueappliesforonlinenews
publishers.AsY angetal(2019)57stress,thevalueof
51(n39)
52JuliaDresselandHanyFarid,‘TheAccuracy,Fairness,andLimits
ofPredictingRecidivism’(2018)4ScienceAdvanceseaao5580
<https://doi.org/10.1126/sciadv.aao5580>accessed20January
2020
53JustinJohnsonandD.DanielSokol,‘UnderstandingAICollusion
andCompliance’forthcominginD.DanielSokolandBenjamin
vanRooi(eds)CambridgeHandbookofCompliance<https://
papers.ssrn.com/sol3/papers.cfm?abstract_id=3413882>accessed
30January2020
54(n3)
55EuropeanCommission,Regulation(EU)2019/1150onPromoting
FairnessandTransparencyforBusinessUsersofOnlineInterme-
diationServices
56LingfangLi,StevenT adelisandXiaolanZhou,‘BuyingReputation
asaSignalofQuality:EvidencefromanOnlineMarketPlace’
(2016)NBERWorkingPaper22584
57ZeY angetal,‘Read,AttendandComment:ADeepArchitecture
forAutomaticNewsCommentGeneration’(2019)arXiv.org>cs
>arXiv:1909.11974
Delphi4|2019225 AIandOnlineIntermediationPlatforms
anarticlecloselydependsonthenumberandthe
qualityofthecommentsitgenerates.Commentaries
provideadditionalinformationtoreadersandim-
provetheirengagementonthewebsite.Editorshave
strongincentivestoencouragesuchcommentsand
debatesamongusers.However,theuseofAI-based
technologymightraiseethicalissues.Opinionscan
bewrittenbyAIsandusethereactionsofInternet
userstocreateartificialfixingpointsorevenguide
debates.Suchautomaticnewscommentingsystems
mightalsoaimatgeneratingneutralandreliable
commentsenhancingthereaders’experiencebyus-
ing‘read-attend-procedures’basedonmachineread-
ingcomprehension(MRC)devices.58Itremainstrue,
however,thattheethicalguaranteesrequiredby
firmsareessentialinguaranteeingthemodelintegri-
ty.
VI.Conclusion
Whatarethepossibleprinciplesforguaranteesas-
sociatedwithAIineconomics?Cantransparencybe
required59andbesufficienttomakemarketplayers
accountable?Allowingthirdpartiestoaccessthe
codemightconflictwithtradesecrecyrulesandin-
creasetherisktoseeitsalgorithmsfooled.How,then,
canex-postaccountabilityforchoicesbeensured?
Accountabilitydemandstheidentificationofthree
elements:(1)thepeopleinvolved,(2)thedecision
processand(3)theinputsusedtoformthisdeci-
sion.60TheincreasingroleofAIinplatformeconom-
icssupposestoprovideguaranteesthatefficiency
gainsforfirmswillnotbepaidbyincreasedinfor-
mationasymmetriesandmanipulationcapacitiesat
theexpenseofconsumersandtradingpartners.The
useofAIbyelectronicplatformsmustnotfacilitate
exclusionaryorexploitativeabuses.Enhancingdis-
criminationpossibilitieswouldbealsoproblematic
inthat,aswehaveseen,theeffectofpricediscrimi-
nationonconsumerwelfarecanbediscussed.Such
potentialabusesmaycompromisetheconfidencein
thedigitaleconomy .Thesearenottheonlycompeti-
tionriskspointedoutbytheacademicliterature.Con-
cernsaboutbot-ledtacitcollusionequilibriaarealso
stressed.Self-reinforcingmachinelearningmight
favourspontaneousconvergenceofcompetitorsto-
wardcollusivepriceswithoutanyexplicitintentand
informationexchangedevices.61
Moreover,someadditionalandevenmoreprob-
lematicdimensionsshouldbeconsidered.Thefirst
oneconcernsthefreedomofchoiceforconsumers
andforproducers,theaccesstothemarket.AIcan,
tosomeextent,constrainandmanipulatechoices
withouttheaccountabilityofalgorithmsbeingobvi-
ousatthistime.Thesecondoneisrelatedtotheis-
sueoftheonlinereputationmonitoring.AIcanbea
powerfultooltoassessthenatureandbehaviorofa
selleronamarketplaceandincentivehimtoprovide
agoodservice(throughscoringsorthreatsofaccount
suspensionorsuppression).Thisevaluationmecha-
nismdoesnotfocusononlyoneofthesidesofthe
platform.Theconsumerhimselfcanbegivenascore
inherdigitaljourney .Thisuseofartificialintelli-
genceraisesquestionsinanareathatisnotexclu-
sivelytheresponsibilityofthemarketbutofindivid-
ualfreedoms.Itoffersnewresourcesformonitoring
individualbehaviorfarbeyondthesphereofonline
markettransactions.
58ibid
59(30)
60StephenKosackandArchonFung,‘DoesT ransparencyImprove
Governance?’(2014)17AnnualReviewofPoliticalScience
65–87.
61EmilioCalvanoetal, AlgorithmicPricing:WhatImplicationsfor
CompetitionPolicy?’(2019)55ReviewofIndustrialOrganization
155-171
Delphi4|2019 226SustainableAISafety?
SustainableAISafety?
Nadisha-MarieAliman,LeonKester,PeterWerkhovenandSoenke
Ziesche*
Inrecentyears,theneedtoaddressthemulti-facetedissueofAIgovernancewithsafety-rel-
evant,ethicalandlegalimplicationsataninternationallevelisbecomingincreasinglycrit-
ical.Simultaneously,theinternationalcommunityisfacingawidearrayofglobalchallenges
forwhichtheUnitedNationsinitiatedanagendawith17ambitiousSustainableDevelop-
mentalGoals(SDGs).Inthisarticle,weanalysepotentialsynergiesbetweenmethodologies
totackleboththeAIgovernancechallengeandtheSDGchallengeandworkoutnovelcon-
structiverecommendationsforanSDG-informedAIgovernanceandanAI-assistedapproach
totheSDGendeavour.However,wealsoexpoundmultipleopenissuesandcontextuallimi-
tationsthatmightplayarole.Overall,ouranalysissuggeststhatwhilesustainableAISafe-
tycannotbeguaranteedandthegoalsandvaluesoftheinternationalcommunitymay
changewithtime,AIgovernancecouldaimatasustainabletransdisciplinaryscientificap-
proachinstantiatedwithinacorrectivesocio-technologicalfeedback-loop.Finally,weelab-
orateontheimportanceoftheSDGsrelatedtoeducationandstronginstitutionsforthere-
alisationofthispotentiallyrobustAIgovernancestrategy.
I.SynergiesBetweentheChallengesof
UNSustainableDevelopmentalGoals
andAIValueAlignment
AsZieschehasproposed,1itmightbehighlyvalu-
abletoidentifysynergiesbetweentheso-calledAI
valuealignmentproblemandtheSustainableDevel-
opmentalGoals(SDGs)challengewhichhavesofar
largelybeentreatedseparatelydespiteapotential
mutualbenefit.Thereby,theAIsafetyrelevantprob-
lemofAIvaluealignmentrepresentsacrucialsub-
taskforAIgovernanceandaimsatidentifyingmeth-
odsonhowtoimplementAIsystemsactinginaccor-
dancewithhumanvalues.Thisproblemofsocietal
relevancehasbeenacknowledgedtobeofhighly
complexnatureduetotheabsenceofsufficientlyspe-
cificaswellasuniversalhumangoals.2Complemen-
tarily,theSDGscouldbeforinstanceinterpretedas
representingatypeofcondensedcompendiumof
certainkeyhumanvaluessharedinternationally
across193statesandthusofferingabasisforAIgov-
ernance.Inaddition,sufficientlyvalue-alignedAI
systemscouldbeutilisedassupporttoachievethe
SDGsinatargetedwayincludingsupportinpolicy
making.Infact,thesebidirectionalsynergiescould
bevitalgiventheurgencytoaddressAIgovernance
issuesandsincetheSDGshavebeenadoptedin2015
bytheUNGeneralAssemblyinorderto‘stimulate
actionoverthenext15yearsinareasofcriticalim-
portanceforhumanityandtheplanet’.3
However,theUNSDGframework,whichstates
that17SDGsshouldbeachievedby2030,revealscer-
taincaveatsthatneedtobeconsideredaprioriinor-
dertobeabletoharnessitforAIvaluealignmentor
todesignAIsystemsdirectlysupportingtheframe-
work.The17SDGs,includingthoserelatedtopover-
ty,environmentalpollutionorinequalityarefurther
subdividedinto169targetswhoseachievementis
DOI:10.21552/delphi/2019/4/12
*Nadisha-MarieAliman,M.Sc.,PhDcandidateatUtrechtUnivesi-
ty,DepartmentofInformationandComputingSciences.For
correspondence:<nadishamarie.aliman@gmail.com>;
Dr.LeonKester ,SeniorResearchScientistonethicalintelligent
systems,TNONetherlands;
Dr.SoenkeZiesche,IndependentResearcher ,India.
1SoenkeZiesche,‘PotentialSynergiesBetweenTheUnitedNations
SustainableDevelopmentGoalsAndT heValueLoadingProblem
InArtificialIntelligence’(2018)MaldivesNationalJournalof
Research47-56
2NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2014)
3UNGeneralAssembly,‘ResolutionAdoptedbytheGeneral
Assemblyon25September2015;70/1:T ransformingourWorld:
The2030AgendaforSustainableDevelopment’(2015)
Delphi4|2019227 SustainableAISafety?
monitoredvia232indicatorswithvaryingquality.
Thedifferencesinqualityarepartlyreflectedinthe
subdivisionoftheindicatorsintothreedifferent
tiers.Asof26September2019,countriesdonotreg-
ularlyproducedatafor89(so-calledtierIIindicators)
outofthe232indicators,whilenointernationallyes-
tablishedmethodologyisyetavailableforafurther
33indicators(so-calledtierIIIindicators).45Oneof
themainissuesisthatseveraltargetsarenotquan-
tifiedandtospecifyindicatorsforsuchtargetsispar-
ticularlychallenging.Despitethesenotablechal-
lenges,weproposeconsideringtheUNSDGsascom-
plementaryapproachtowardstheAIV alueAlign-
mentproblem.Inordertoachievethat,thesetof
SDGshastobeformulatedinamachineunderstand-
ableversiontofacilitategoal-orientedAI-basedsolu-
tions.InordertoidentifyforAIvaluealignmentpur-
poseswhatasocietywants(ethicalself-assessment)
andinasecondstepwhatasocietyshouldwant(eth-
icaldebiasing),ithasbeensuggestedtocombinea
scientificallygroundedassessmentofhumanethics
withtechnologicalmethodssuchasvirtualreality
studiesforexperiencesfromafirst-personperspec-
tive.6Thereby ,webelievethattheSDGscouldserve
asaheuristicabletosupplementethicalself-assess-
mentbyqualitativelyspecifyingcandidatehuman
values.Moreover,certainmorepreciseSDGindica-
torsmightprovidehelpfulquantitativetargetsin
somecases.Beyondthat,wewillalsodiscusshowthe
SDGsrelatedtostronginstitutionsandqualityedu-
cationareexpedientforarobustdynamicapproach
toAIgovernancewhichisnotonlyproactivebutal-
soforeseestheneedforreactivecorrectionsleading
toasocio-technologicalfeedback-loop.7
InSectionIIwediscusspossiblecontributionsof
SDGsforAIvaluealignmentbytakingtheexample
ofvaluealignmentforintelligentautonomoussys-
temsandmorepreciselytheautonomousvehiclecase
forillustrativepurposes.InSectionIII,wecomment
onlimitationsandemergingsustainabilitychal-
lengesinthiscontextandformulateasetofrecom-
mendationswhichalsoencompassestheotherdirec-
tionofthesynergy,namelyAIsystemsforUNSDGs.
Finally ,inSectionIV ,weconc ludeanddiscussfuture
prospects.Inanutshell,wedonotclaimthatthe
SDGsareacomprehensivesolutionforAIgover-
nance,butratherapromisingcomplementarytool
giventheurgencyoftheproblemaswellasthefact
thattheSDGscanbeseenasthemostdetailedaswell
asinclusivevisionforhumandevelopmentevercom-
piled.8
II.ComplementingValueAlignmentfor
IntelligentAutonomousSystemswith
UNSDGs
Afterhavingtheoreticallymotivatedthepotential
usefulnessofUNSDGsforAIvaluealignment,we
discusstheapplicationofthispropositioninthecon-
textofintelligentautonomoussystemsutilisingthe
usecaseofautonomousvehicles(AV s)ashelpfultoy
modelwithethical,legalandenvironmentaldimen-
sionspertainingtotherealisationoftheSDGendeav-
ouritself.9(Inthefollowing,wewillrefertointelli-
gentautonomoussystemswiththeexpression‘arti-
ficialintelligentsystem’instead,sincewewantto
stressthatthegoalsfordecision-makinginthiscon-
textarespecifiedbyhumansandirrespectiveofthe
levelofautomation,itisnottheartificialsystemthat
craftsitsowngoalsautonomouslyasoftenmistak-
enlyassumed.)WeusevaluealignmentwithAVsas
toymodelduetothefactthattheusecaseexhibits
domain-generalimportantsafety-critical,ethicaland
legalfeaturesmanyofwhichwouldpertaintothe
valuealignmentofawiderangeofartificialintelli-
gentsystemsdeployedinreal-worldenvironments.
Firstly,itrevealstheneedtomakehumanvaluesex-
plicitforriskassessmentandplanningwhichrepre-
sentsasocietalchallengeofethicalself-assessment
sincehumansareoftenreluctanttoclearlyexpress
whattheywant.Secondly,theusecasepointstoan-
otherchallengeofscientificnaturewhichistode-
signsuitablemachine-readableframeworksthatcan
4UnitedNations,‘TierClassificationforGlobalSDGIndicators’
(2019)
5AnexemplarytierIIindicatoris14.1.1(indexofcoastaleutrophi-
cationandfloatingplasticdebrisdensity)whiletheindicator
12.4.2(hazardouswastegeneratedpercapitaandproportionof
hazardouswastetreated,bytypeoftreatment)representsan
exampleforatierIIIindicator .
6Nadisha-MarieAlimanandLeonKester,‘ExtendingSocio-Techno-
logicalRealityforEthicsinArtificialIIntelligentSystems’(2019)
IEEEAIVR
7Nadisha-MarieAliman,LeonKester,PeterWerkhovenand
RomanYampolskiy,Orthogonality-BasedDisentanglementof
ResponsibilitiesforEthicalIntelligentSystems.InInternational
ConferenceonArtificialGeneralIntelligence(Springer2019)
22-31
8(n1)
9RicardoVinuesaetal,‘TheRoleofArtificialIntelligencein
AchievingtheSustainableDevelopmentGoals’(2019)arXiv
preprintarXiv:1905.00501
Delphi4|2019 228SustainableAISafety?
serveasscaffoldsandtemplatesfortheidentifiedhu-
manethicalvaluesandlegalconceptions.Thirdly ,it
mightnecessitateasocietal-levelaggregationofhet-
erogeneousandoftenconflictingviewswithinthis
typeofethicalframeworks.Fourthly ,duetoitscom-
plexity,itmightrequireacognitive-affectiveexten-
sionofsociety(egusingtargetedvirtualrealitystud-
ies10)facilitatingahigh-qualityethicalself-assess-
mentandethicaldebiasingwhichconstitutesasci-
entificandtechnologicalchallenge.Fifthly,whilethe
casemightseemtocorrespondtoarathernarrowdo-
main,ithasimplicationsthatextendbeyonditand
willneedasupportivecontextwhichcanbecharac-
terisedasaninstitutional,legalandsocietalchal-
lenge.
SincetheUNSDGsthemselves,aswellasitstar-
gets,mightbetooabstracttoidentifyhowtheycan
bedirectlyappliedtotheAVcase,itishelpfultoscan
theSDGindicators11inabottom-upfashion.Inthe
following,weonlymentionanon-comprehensive
exemplarysetofsomeofthemoststraightforward
relatedindicators.Regardingenvironmentalaware-
nessforAVs,onecanforinstanceidentifytheindi-
cators9.4.1(CO2emissionperunitofvalueadded)
and11.6.2(annualmeanlevelsoffineparticulate
matter(egPM2.5andPM10)incities(population
weighted)).Theseindicatorsmightberelevantfor
hybrid-electricAVsbutalsoelectricAVsthatobtain
theirenergyfromcorrespondinglypolluting
sources.Atthetop-level,theindicator9.4.1isrelat-
edtotheSDG9whichseekstobuildresilientinfra-
structure,promoteinclusiveandsustainableindus-
trializationandfosterinnovation’,whileindicator
11.6.2stemsfromtheSDG11whichaimsto‘make
citiesandhumansettlementsinclusive,safe,re-
silientandsustainable’.Concerningethicalandlegal
aspects,onecanforinstancenameindicator3.6.1
(deathrateduetoroadtrafficinjuries),5.1.1(whether
ornotlegalframeworksareinplacetopromote,en-
forceandmonitorequalityandnon-discrimination
onthebasisofsex),16.7.2(proportionofpopulation
whobelievedecision-makingisinclusiveandre-
sponsive,bysex,age,disabilityandpopulation
group)asgermaneinthiscontext.Theseindicators
arerelatedtoSDG3whichaimstoensurehealthy
livesandpromotewell-beingforallatallages’,SDG
5achievegenderequalityandempowerallwomen
andgirlsandSDG16onpeace,justiceandstrongin-
stitutionsrespectively.Allmentionedindicatorsare
tierIindicators(ierelativelyclearlyformulated,re-
spectinginternationalstandardsandwithregular
updatesondataavailable)exceptfor5.1.1and16.7.2
whicharetierIIindicators.Independentlyofthespe-
cifictypeofethicalframeworkenvisagedformean-
ingfulcontrolofAV s,thepresentedindicatorsrelat-
edto5SDGscouldbehelpfuleventhoughcertain-
lynotinisolation.Toexplainhowtheycouldbehar-
nessedforanethicalframeworkforAVs,wefirstde-
scribearecentlyintroducedscientificallygrounded
non-normativeframeworkforethicsinartificialin-
telligentsystemsdenotedaugmentedutilitarian-
ism12beforelinkingitbacktotheSDG-relatedsyn-
ergy.
Recently,augmentedutilitarianismhasbeenpro-
posedasscaffoldandtemplatetofillinhumanval-
uesandasinstrumenttocontrolartificialintelligent
systemsinanovelutility-basedmanner.Augmented
utilitarianismisinaccordancewithmoderninsights
inconstructionistaccountsofmoralpsychology13
andcognitiveneuroscience14accordingtowhich
mentalstates(alsomoraljudgements)15areembod-
iedconstructionsbasedondomain-generalprocess-
esofcontext-sensitive,perceiver-dependent,time-de-
pendentandaffectivenature.16Forthispurpose,aug-
mentedutilitarianismintroducesatypeofcontext-
sensitiveandperceiver-dependentutilityfunction
thatextendsbeyondtheclassicalconsequentialist
andutilitarianutilityfunctionswhicharefocused
solelyontheoutcomeofactions.Inthisway,ital-
lowsacoalescenceoftheclassicalnormativeethical
viewsrelatedtovirtueethics,deontologyandconse-
quentialismwhichseemtoallpossiblyplayarole
10(n6)
11UnitedNationsStatisticalCommission,‘GlobalIndicatorFrame-
workfortheSustainableDevelopmentGoalsandT argetsofthe
2030AgendaforSustainableDevelopment;UNResolution
A/RES/71/313'(2017)<https://unstats.un.org/sdgs/indicators/
Global%20Indicator%20Framework_A.RES.71.313%20Annex
.pdf>accessed20January2020
12Nadisha-MarieAlimanandLeonKester ,‘RequisiteVarietyin
EthicalUtilityFunctionsforAIValueAlignment’IJC AIAISafety
Workshop2019
13ChelseaScheinandKurtGray,‘TheTheoryofDyadicMorality:
ReinventingMoralJudgmentbyRedefiningHarm’(2018)Person-
alityandSocialPsychologyReview32-70
14IanR.Kleckneretal,‘EvidenceforaLarge-scaleBrainSystem
SupportingAllostasisandInteroceptioninHumans’(2017)Na-
tureHumanBehaviour0069;SuzanneOosterwijketal,‘Statesof
Mind:Emotions,BodyFeelings,andThoughtsShareDistributed
NeuralNetworks’(2012)NeuroImage2110-2128
15(n12)
16LisaFeldmanBarrett,HowEmotionsareMade:TheSecretLifeof
theBrain(HoughtonMifflinHarcourt2017)
Delphi4|2019229 SustainableAISafety?
inhumanmoraljudgements.17Toachievethis,aug-
mentedutilitarianismoffersaperceiver-dependent
templateallowingthejointconsiderationofagent,
actionandpatient.Forameaningfulcontrolofarti-
ficialintelligentsystemsusingthisframework,peo-
plewouldnotneedtoagreeonwhattheyvalueand
howtheyweighwhattheyvalue.Themainnecessary
preconditionwouldbetoconsenttoanacceptable
supersetofparametersallowinganaggregationof
theperceiver-dependentandcontext-sensitiveutili-
tyfunctionsrespectinglegalconstraints.(Notethat
thesemachine-readableutilityfunctionswouldfacil-
itateinterpretabilityofreasoning/planningatthelev-
elofthedecision-makingcomponentviathetrans-
parenthuman-craftedformulationofparameters
andweightsenablingconcretecounterfactualcom-
parisons.18However,interpretabilityatthesensor-
levelremainsanimportantoutstandingchallenge.)
Thenecessaryethicalself-assessmentandethicalde-
biasingtocrafttheseutilityfunctionscanbeassist-
edbyexpertsfromthelegislativeandbesupported
bytechnologysuchasvirtualoraugmentedreality19
providingarichcounterfactualexperientialtestbed
foraresponsiblehuman-centreddecision-making.To
makejusticetothetime-dependencyofhumaneth-
icalconceptions,onewouldalsoneedtoupdatethese
augmentedutilityfunctions.Thisindispensablecor-
rectionofutilityfunctionspairedwiththeneedto
updatetheworldmodelsoftheAIsystemsthem-
selvesinstantiatesadynamicsocio-technological
feedback-loop.
However,itbecomesclearthatsuchageneral
mechanismofcorrectionoferrorwithinasocio-tech-
nologicalfeedback-loopwhichishighlyrelevantfor
AIvaluealignmentcannotsucceedifthementioned
SDG16relatedtopeace,justiceandstronginstitu-
tionsisnotrealisedtoasufficientdegree.Thisisag-
nosticoftheethicalframeworkconsidered,sincethe
factthathumanknowledgeispronetoerrorsmakes
acorrectionprocessmandatory.Therefore,one
mightcategoriseSDG16asameta-goalforAIgover-
nance.Furthermore,theSDGsidentifiedcanalso
providemoredetailedinformationrelatedtocon-
creteparametersspecificallyappliedtotheAVcase.
Sincesocietywouldneedtospecifyasupersetofcan-
didateparametersthatareadmittedforconsidera-
tion,theSDGindicatorsspecifiedcanhelptoextend
orfilterthissuperset.Forinstance,itmightberec-
ommendabletoaddCO2andfineparticulatematter
relatedparametersintheaugmentedutilityfunc-
tionsoftheAV sifsuited(eveniftheprovidedindi-
cators9.4.1and11.6.2areratherrestrictedwithre-
gardtoallclimatechangerelevantmeasures)which
isinthespiritofsustainablemobility.Anobvious
additionalimportantparameterisrelatedtoroad
trafficinjuriesasencodedintheSDGindicator3.6.1.
Finally,onemustaddressriskassessmentparame-
terswhicharenecessarybecausecollisionscanin
practicenotbeavoidedwithabsolutecertaintyat
anytime20andthereisno100%securesystem21even
ifAVsaremeanttodrasticallyimprovethesecurity
ofmobility.Obviously,theUNSDGsdonotallowa
directconsiderationofthiscasesincecraftedfora
fullydifferentpurpose,althoughmoregenerally,the
indicator5.1.1.and16.7.2reflectrecommendations
ongender-inclusivelegalenforcementandnon-dis-
criminatorydecision-making.However,thisindica-
tiondoesnotdirectlysolvethecomplexproblemof
identifyingparametersthatcouldberelevantfor
dilemmaticsituationsinthecontextofriskassess-
ment,animportantpartofAIValuealignment.We
applyacloseranalysistothismissingpieceofcru-
cialimportanceinSectionIII.However,theseindi-
catorsmightemphasisethegeneralnecessitytocom-
petentlyaddressdiscriminationbasedonalgorith-
micbiaseswhichwewilltouchuponinSectionIII.
Lastly,onedrawbackoftheSDGframeworkisthat
itdoesnotallowtheidentificationofpreciseweights
andtheestablishmentofconcreteprioritiesinthe
pursuitoftheSDGs.Intotal,itcanbesummarised
thattheUNSDGsallowapowerfulsupplementto
valuealignmentwithAVs(andmoregenerallyarti-
ficialintelligentsystems)whichaddimportantqual-
itativeandquantitativecontributions.However,itis
notmeantasastandalonesolutionandshouldbe
utilisedinconjunctionwithanethicalframework
abletomodelethicalandlegaldimensionsandbe
extendedbyscientificallygroundedandtechnology-
assistedethicalself-assessmentanddebiasingmea-
sures.
17VeljkoDubljević,SebastianSattlerandEricRacine,‘Deciphering
MoralIntuition:HowAgents,Deeds,andConsequencesInflu-
enceMoralJudgment’(2018)PloSonee0204631
18(n7)
19(n6)
20SixianLietal,‘InfluencingFactorsofDrivingDecision-Making
UndertheMoralDilemma’(2019)IEEEAccess104132-104142
21RomanV .Y ampolskiyandM.S.Spellchecker, ArtificialIntelli-
genceSafetyandCybersecurity:AT imelineofAIFailures’(2016)
arXivpreprintarXiv:1610.07997
Delphi4|2019 230SustainableAISafety?
III.SustainabilityChallengesinthe
ContextofAIValueAlignment
Itishighlyimportanttoaddressthementionedpoint
ofdecision-makingunderdilemmaticcircum-
stances,sincewhileweexemplarilyrefertotheAV
caseastoymodel,thetopicisgenerallyrelevantfor
artificialintelligentsystemsandartificialdecision
supportsystemsincriticaldomainswherethelives
andthewell-beingofpeopleareinherentpartofthe
decisionprocess.Conceivablerelevantapplicationar-
easmaybeegjustice,medicineandbureaucracybut
couldalsopertaintofuturehuman-machinecollab-
orationformssuchashuman-robotrescueteams,hy-
bridfirebrigadesorevenadvanceddomesticrobots.
ComingbacktotheAVcase,itisalsonoteworthy
thatfailingtoaddressthisissuecouldhavenon-triv-
ialrepercussionsonafewSDGindicatorsthemselves.
Ifthesatisfactionofsocietywithproposedethical
guidelinesforAV sislow ,itmight(ceterisparibus)
slowdowntheacceptanceofthetechnologyandpeo-
plewouldbelesswillingtoswitchtoAVs.Inturn,
thisreservationcouldpossiblyhinderanoptimal
overallreductionofairpollution(relatedtoSDGin-
dicators9.4.1and11.6.2)andimportantly ,itisthink-
ablethatthenumberofdeathsduetoroadtrafficin-
juries(seeSDGindicator3.6.1)whichAVsaresup-
posedtodecreasecouldthereforenotbedecreased
optimally.Infact,accordingtoastudyanalysingthe
socialdilemmaencounteredwithAV s,22whilepeo-
plewouldintheoryapproveAV sequippedwitha
utilitarianapproachtodilemmaticscenarios,they
wouldnotliketoridesuchanAVthemselves.More-
over,peopleexpressedtheirunwillingnesstoaccept
regulationsmandatingautilitarianself-sacrificeof
AVpassengersandexpressedtheiraversiontobuy
AVsinthepresenceofsuchregulations.Thistypeof
mechanismscouldleadtothementionedundesirable
repercussionsonsomeSDGindicators.Inthefollow-
ing,weportraywhytheutilitarianapproachtoethi-
caldilemmasinAVsasegsuggestedbyGermaneth-
icalguidelinesstatingthatinunavoidableaccident
scenariospersonalfeatures(egage)shouldnotbe
considered23posesadditionalproblemsofdifferent
nature.Thereafter,weprovideasetofrecommenda-
tionsonhowtoaddresssuchsocio-technologicalis-
suesbyinitiatinganactivesocietaldebatesupport-
edbyscienceandtechnologyincludingAIsystems
themselvesfinallylinkingittotheotherdirection
ofthesynergyofAIsforUNSDGs.
Onecandistinguishtwomaintypesofproblems
thatcanarisewhenadoptingapurelyutilitariande-
cision-makingforAVsbutalsomoregenerallyforar-
tificialintelligentsystemsincriticaldomains:the
firstoneisrelatedtothediscrepancybetweenthe
(oftenculture-dependent)24ethicalintuitionsofmost
peopleandtheutilitarianapproachandthesecond
oneconcernsafundamentalproblem25relatedtoim-
possibilitytheoremsforclassicalutilitarianutility
functions.First,multipleexperimentsassessingeth-
icaldilemmaswithAVshavebeenperformedegin
textformorvirtualrealityenvironments.Depending
onthetypeofconstellationandthefocusofdiffer-
entrecentvirtualreality-basedexperiments,26the
moraljudgementsormoralactionsofparticipants
(denotedasperceiversinthefollowing)werehetero-
geneousandpartlycontradictoryoverall.Intheseex-
perimentselementsthatweredecisiveincludedfor
instance:theperceivednatureandtransparencyof
theagent,thelegalliabilityoftheagent,whetherthe
accidenthappenedbyactionorbyinaction,whether
theactioninvolvesaself-sacrifice,thenumberofpa-
tients,theageofpatients,thepersonalitytraitsofthe
perceiver,thecultureoftheperceiverandtheamount
oftimetheperceiverhadforadecision27.Thisisnot
surprising,sincemoraljudgmentsarerelatedtoa
perceiver-dependentdyadiccognitivetemplateen-
codingacontinuumalongwhichanintentionalagent
isperceivedtocauseharmtoavulnerablepatient28.
Themorethisseemstobethecase,themoreimmoral
doestheactseemtotheperceiver.Thereby,thevul-
nerabilitypeopleascribetopatientscanvaryex-
tremely.Generallyspeaking,thewaypeopleperceive
theagent,theactionandthepatientcanvarywith
regardtoapluralityofparametersofegcultural,so-
22Jean-FrançoisBonnefon,AzimShariff,andIyadRahwan,‘The
SocialDilemmaofAutonomousVehicles’(2016)Science
1573-1576
23NoaKallioinenetal,‘MoralJudgementsontheActionsofSelf-
drivingCarsandHumanDriversinDilemmaSituationsfrom
DifferentPerspectives’(2019)FrontiersinPsychology<https://
www.frontiersin.org/articles/10.3389/fpsyg.2019.02415/full>>ac-
cessed20January2020
24EdmondAwadetal,‘TheMoralMachineExperiment’(2018)
Nature59-64
25PeterEckersley,‘ImpossibilityandUncertaintyTheoremsinAI
ValueAlignment(OrWhyY ourAGIShouldnotHaveaUtility
Function)’(2018)arXivpreprintarXiv:1901.00064
26(n6)
27(n6)
28(n13)
Delphi4|2019231 SustainableAISafety?
cial,temporal,psychologicalandaffectivenature.
Therefore,whilethenumberofvictimsinanun-
avoidablecollisioncertainlyisanimportantfactorto
considerinethicalguidelines,humanethicalintu-
itionstendtoencompassarichersetofinformation.
Finally,itisimportanttonotethatclassicalconse-
quentialistandutilitarianutilityfunctionshavebeen
showntorepresentasafetyriskifusedincriticaldo-
mainswithfuturehumanwell-beingandhuman
livesaspartofthedecision-makingifusedwithout
moreado.29
AsintroducedinSectionII,augmentedutilitari-
anismallowsacontext-sensitiveandperceiver-de-
pendentaccountofhumanethicalintuitionswhich
isnotaffectedbythelimitationsencounteredbyutil-
itarianutilityfunctions.Thus,AIV alueAlignment
couldprofitfromharnessingthisframeworkinad-
ditiontothementionedSDGindicatorsandinitiate
asocietal-leveldebateonthechoiceofasuitablesu-
persetofvaluesthatmatterindilemmaticcircum-
stancesandhowtheyneedtobeweighted.Howev-
er,whilethiswouldservetotacklevaluealignment
atthelevelofthedecision-makingcomponent,arti-
ficialintelligentsystemsalsoneedtoexhibitvalue-
alignedpropertiesatthesensor-level.IntheAVcase,
thiswouldmapbywayofexampletotheproblem
ofdiscriminationviaalgorithmicbiasesatthelevel
ofimageclassification.NexttothementionedSDG
indicators5.1.1,16.7.2ongender-inclusivelegalen-
forcementandnon-discriminatorydecision-making,
onecouldaddthetierIIindicator16.b.1(Proportion
ofpopulationreportinghavingpersonallyfeltdis-
criminatedagainstorharassedintheprevious12
monthsonthebasisofagroundofdiscrimination
prohibitedunderinternationalhumanrightslaw).
Whileitisimportanttostrivefordatasetswitha
largevarietytoforestallsuchoftenunintentionally
arisingdiscriminations,westressthatthiscanand
shouldbecomplementedbyanexplicitformulation
withinthealgorithmitself.Duetothenatureofhu-
manethicalintuitions,autilityfunctionthatdoes
notencodeaffectiveanddyadicparametersofthe
currentsocietycannotbeagoodmodelforanethi-
calframeworkandcanthusnotinstantiateavalue
alignmenteffort.30Inmanycases,thiscanmanifest
itselfbyleadingtoinput-to-outputmappingsthat
peoplecategoriseasdiscriminatory.Anexamplefor
suchdiscriminatorymappingsisthecasewherethe
pictureofpersonswhosephenotypewasunderrep-
resentedinthedatasetwaslabelledwiththeclass‘go-
rilla’byGooglePhotos.Anotherexampleisastudy
whichwasrelatedtotheAVcontextinwhichre-
searchersanalysedmultipleimagerecognitionsys-
temsandfoundthattheimagesofpedestrianswith
darkerskintonesweredetectedwithaloweraccura-
cy.31Nexttomorediversedatasets,itisindispens-
abletoegexplicitlyweighmisclassificationserrors
ofthealgorithmsaffectively.Notallmisclassifica-
tionsareequallyimportant.Insimplifiedterms,itis
easilyconceivablethatforhumansitmakesadiffer-
encewhetheranimagerecognitionsystemmisclas-
sifiesachimpanzeeimageasagorillaincomparison
tothecaseofahumanbeingmistakenforagorilla.
However,manyalgorithmsnowadaysareimple-
mentedagnostictoanalogiesofsuchnuances.(As
‘solution’forthementionedincident,GooglePhotos
optedtocensorthegorillalabel32aswellasafewre-
latedlabelsincludingchimpanzee’.)Ifmachine
learningsystemsorartificialintelligentsystemsop-
timiseonlossfunctions,objectivefunctionsorutili-
tyfunctionsdevoidofrelevantaffective,contextual
andsocietalfactors,undesireddiscriminatoryside
effectscouldoccurcontinuously .(Notethatthisanal-
ogouslyappliestorule-basedsystemsandothers.)
Thiswouldrepresentnegativerepercussionsonboth
AIValueAlignmentandUNSDGs.Seenfromadif-
ferentangle,itcanbesaidthatresearchondiscrim-
inationstemmingfromalgorithmicbiaseswould
unifythedirectionsUNSDGsforAIvaluealignment
andAIforUNSDGs.Anadditionalimportantaspect
tocoverforthistypeofresearchareso-calledethical
adversarialexampleswhichrepresentadversarialat-
tacksonAIsystemsattemptingtoenticeAIsystems
‘toaction(s)oroutput(s)thatareperceivedasviolat-
inghumanethicalintuitions.’33
Asalreadydescribed,theSDGframeworkunfor-
tunatelyexhibitsalackofprecisionformultiplein-
dicators.Furthermore,certainofthemareunderspec-
ified.Thismakesitdifficulttotrackprogresstowards
29(n26)
30(n12)
31BenjaminWilson,JudyHoffmanandJamieMorgenstern,‘Predic-
tiveInequityinObjectDetection’arXivpreprintarX-
iv:1902.11097(2019)
32T omSimonite,‘WhenitcomestoGorillas,GooglePhotosRe-
mainsBlind’Wired1November2018<https://www.wired.com/
story/when-it-comes-to-gorillas-google-photos-remains-blind/>
accessed17October2019
33(n12)
Delphi4|2019 232SustainableAISafety?
specificindicatorsandtop-levelSDGs.However,it
hasbeenpostulatedthatmachinelearningapplica-
tionscouldextendtheSDGindicatorsbyutilising
multimodaldatafromdiversesourcesforabetteras-
sessmentofprogress.34Thiscouldalsoberelevantif
oneusesAIasdecision-supportforpolicy-making
thatshouldbeinlinewiththeSDGs.Moreover,aded-
icatedtypeofpositivecomputingcouldtargetSDG
3inabroadersense(ensurehealthylivesandpro-
motewell-beingforallatallages)35.However,sofar,
notmanysystematicAIattemptstowardstheSDGs
andtheirtargetshavebeenreportedyet36.Fromthe
perspectiveofAIvaluealignmentforartificialintel-
ligentsystems,theidentificationofprecisecriteria
basedonwhichonewouldinthefirstplaceselect
SDGsorSDGindicatorsgivenagenericdomainis
non-trivial,sincetheSDGshavebeenmotivatedand
formulatedfromaninternationalperspective.While
fortheAVtoymodelweheuristicallyscannedthe
indicatorsinabottom-upfashionsearchingforob-
viousmatches,futureworkcoulddevelopamoreso-
phisticatedmethodology.Forinstance,animportant
SDGthatmightasfirstglanceseemunrelatedtoval-
uealignmentintheAVcaseinparticularortoarti-
ficialintelligentsystemsingeneral,istheSDG4(en-
sureinclusiveandequitablequalityeducationand
promotelifelonglearningopportunitiesforall).As
onecanalreadyextractfromthearticlesofar,itis
highlyrecommendabletoapplyatransdisciplinary
methodologytobothAIvaluealignmentandtothe
SDGchallengetoavoidblindspotsandanegligent
approachtofutureglobalchallenges.Inthefollow-
ing,wecommentontheimportanceofSDG4forAI
governanceandfinallylinkittoSDG16onpeace,
justiceandstronginstitutions.
Wethinkthateducationandlife-longlearning
egtransdisciplinaryfurthereducationforAISafety
andAIresearchersaswellasforauthoritiesinvolved
inAIregulation,andeducationfosteringanaware-
nessofsocio-technologicalchallengesforthegener-
alpublicarehighlypowerfultoolsforbothchal-
lenges.First,itprovidesabasisforthegenerationof
novelapproachestoAIgovernance.Infact,while
somepeoplebelievethatthegoalinAIgovernance
shouldbetoachieveaconsensus,abroadvariation
ofscientificapproachesrepresentsanidealbreeding
groundforprogress.Second,aproactiveAIgover-
nanceapproachisnotenoughduetoerrorsand
changesinhumanvaluesthatwilloccur,which
meansthatonecannotsolelyrelyoncurrentstrate-
gies.Thus,itwillbeconvenienttoaccumulatebroad
knowledgethatmightbehelpfulinthefaceofnov-
elunpredictedproblemsthatarise.AnyAIgover-
nanceapproachthereforeneedstobeupdatableby
designinordertoallowacorrectivesocio-technolog-
icalfeedback-loop.Unfortunately,theSDGframe-
workisnotmeanttobesteadilyupdatedwhichrep-
resentsaclearlimitationthatshouldbethoroughly
takenintoconsiderationwhenattemptingtoachieve
itsfixedgoals.Forinstance,newunforeseeablechal-
lengesmayberelatedtodevelopmentsinAIitself
(andothernewtechnologies)ascanbeseenwhen
consideringthecurrentSDGtarget8.5,whichaims
toachievefullandproductiveemploymentandde-
centworkforallwomenandmen’whichagainst
thebackgroundoftechnologicaladvancesmightbe
neitherrealisticnorworthwhileanymore37.Third,
aneducationofthegeneralpublicmightbeimpor-
tant,sincemanypeopleexhibitethicalbiasesbased
onincorrectassumptions.IntheAVcase,thiscould
forinstanceincludeanthropomorphism,presumed
levelofintentionalityandagencyormisconceptions
onthefunctioningofAVs.38Theseepistemicgaps
canbeaddressedviaamorein-deptheducationlead-
ingtoamoreinformedexperienceandethicaldebi-
asingwhichrespectsthemanifestationofmoralplu-
ralismknownfrompsychology .39Overall,webelieve
thatascientificallygroundedapproachtoAIgover-
nancesupplementedbyeducationisabsolutelynec-
essarygivenfuturechallenges.However,wewantto
re-emphasisethatwithoutstronginstitutionsascap-
turedinSDG16whichwetermedanimportantmeta-
goalforAIvaluealignment,thementionedstrategies
wouldbehighlylimitedintheirfieldofaction.On
theotherhand,failingtoaddressAIgovernance
couldleadtoAISafetyriskswithnegativerepercus-
sionstotheSDGframeworkrangingforinstance
34NiheerDasandiandSlavaJankin.Mikhaylov, AIforSDG-16on
Peace,Justice,andStrongInstitutions:TrackingProgressand
AssessingImpact’(2019)PositionPaperfortheIJCAIWorkshopon
ArtificialIntelligenceandUnitedNationsSustainableDevelop-
mentGoals
35(n1)
36SoenkeZiesche,‘InnovativeBigDataApproachesforCapturing
andAnalyzingDatatoMonitorandAchievetheSDGs’(2017)
ReportoftheUnitedNationsEconomicandSocialCommission
forAsiaandtheP acific:SubregionalOfficeforEastandNorth-
EastAsia(ESC AP-ENEA)
37(n1)
38(n6)
39(n13)
Delphi4|2019233 SustainableAISafety?
fromcompromisinghumanwell-beingtoexistential
risksinsomecases40.
IV .ConclusionandFutureProspects
Overall,onecanconcludethatitisexpedienttoem-
bracetheSDGsandtheirgeneralintentionasacom-
plementaryfoundationfortheAIV alueAlignment
problem,yetoneneedstoacknowledgegivenlimita-
tionsincludingtheneedforarevised/specialversion
oftheindicatorstobecomefit-for-purpose.Against
thebackgroundofouranalysis,onecanestablishthat
theSDGframeworkexhibitstwomainweaknesses
whenappliedtotheAIvaluealignmentchallenge.
First,theSDGsdonotmentionartificialintelligence
atall,neitheritssignificantopportunities,noritssig-
nificantrisks,althoughbothweretoanextentknown
atthetimewhentheSDGswereformulated.Onerea-
sonforthisisthatthesediscussionsweresiloedin
academiccircles,andonlyrecentlythe(noweven
moreurgent)needforAIGovernancehasbeenac-
knowledged41.Second,humanchallengesandvalues
changeovertimeandunforeseeablefactorsmight
emerge,whiletheSDGshavenomechanismforan
amendmentuntil2030,whichisonlyjustifiedby
pragmaticreasons.Thiscanbealsoillustratedbythe
predecessoroftheSDGs,theMillenniumDevelop-
mentGoals,whichhadpartlydifferentambitions.
Importantly,theaboveissuesareintertwined.Forex-
ample,newunforeseeablechallengesmayaswellbe
relatedtodevelopmentsinAIitselfandothernew
technologies.
AsstatedbyKarlPopper,‘nosocietycanpredict,
scientifically ,itsownfuturestatesofknowledge.42
Hence,AISafetycannotbeguaranteedtobesustain-
ableinthelongrunnorwillthegoalspursuedbythe
UNnecessarilyremainunchanged.Nevertheless,we
believethatitisasustainabletransdisciplinarysci-
entificapproachthatoneshouldstriveforinorder
toefficientlytackleAIGovernanceandexploitthe
describedbeneficialsynergieswiththeSDGs.Forse-
curityandsafety,oneneedsrequisiteknowledgeat
therighttime.Forthisreason,onecanarguethatthe
SDG4onqualityeducationandlife-longlearningcon-
tainsakeyelement.However,inthelightoftheabove,
itseemsimperativetoadditionallyaspiretoacorrec-
tivesocio-technologicalfeedback-loopenablingboth
proactiveandreactivemeasuresandforwhichSDG
16onstronginstitutionsrepresentsapre-condition.
40SoenkeZiesche,AI&GlobalGovernance:ASeatattheNegotiat-
ingTableforAI?OpportunitiesandRisks,UnitedNationsUniver-
sity2August2019<https://cpr .unu.edu/a-seat-at-the-negotiating
-table.html>accessed17October2019
41AllanDafoe,AIGovernance:AResearchAgenda’Governanceof
AIProgram,FutureofHumanityInstitute(UniversityofOxford
2018)
42KarlR.Popper,ThePovertyofHistoricism(Routledge1957)
era.int
Artifi cial Intelligence (AI)
and Human Rights
Brussels, 12-13 March 2020
Key topics
AI technology
Issue of responsibility and transparency of AI systems
European Commission Ethics Guidelines for
Trustworthy AI
Relevant ECtHR case law
Council of Europe Guidelines on Artifi cial Intelligence
and Data Protection
Impact of AI on selected human rights
Event number: 420D77 Language: English
Artifi cial Intelligence (AI)
and the Criminal Justice
System
London, 4-5 June 2020
Key topics
AI and its implications for the criminal justice system
Using AI in criminal intelligence
AI to predict crimes
The internet industry approach to AI
AI, ethics and privacy
Event number: 320D61 Language: English
Summer Course on
European Information
Technology Law
Trier, 14-18 September 2020
Key topics
Internet regulation in the European Union
Role, responsibility and accountability of online
platforms
Regulating e-commerce in Europe
Information technologies and intellectual property law
EU legal framework applicable to data: sui generis
protection of databases, trade secrets protection, free
ow of data, access to data, data privacy in the digital
world, data concentration
Online and smart contracts
Private international law and information technologies
Digital identity and electronic payments
Cybersecurity
Visit to the European Court of Justice
Participants in this summer course will also have
the opportunity to attend a hearing at the CJEU in
Luxembourg.
Who should attend?
Practitioners seeking an introduction to European IT law
Event number: 220B17 Language: English
For more information, please visit our website
www.era.int
Academy of European Law
Contact
Academy of European Law
Philipp Gonder
Tel. +49 (0) 651 937 37-811
E-mail pgonder@era.int
www.era.int
February
27 – 28 Fundamentals of State Aid Law | Amsterdam
27 – 28 Public Procurement Requirements for ESI Funds | Paris
March
03 – 04 State Aid Requirements for Services of General Economic Interest | Brussels
12 – 13 State Aid Procedures - The Legal Obligations and Rights of the Parties Involved | Lisbon
19 – 20 How to Most Effectively Use Technical Assistance for ESI Funds Now and in 2021-2027 | Florence
25 – 26 Indicators, Monitoring and Evaluation in ESIF Programme and Project Management | Milan
25 – 27 Spring Course: Public Procurement from A-Z | Milan
26 – 27 Programme and Financial Management of ESI Funds 2021 – 2027 | Nice
26 – 27 Effective Programming and Implementation of Financial Instruments | Malaga
30.3.–1.4. Spring Course: Simplified Cost Options for ESI Funds | Catania
April
01 – 03 Real-life On-the-spot Visits: How to Detect and Combat Irregularities & Fraud in ESI Funds | Maastricht
02 – 04 Verwaltung und Prüfung der Europäischen Struktur- und Investitions-Fonds (in German) | Hamburg
02 – 04 EStAL Seminar | Catania
22 – 24 Spring Course: Concept & Principles of State Aid | Athens
22 – 24 Advanced Spring Course: Innovative Approaches to Risk Analysis, Verifications and Audits in ESI Funds | Nice
23 – 24 Migration and Security Funds: How to Effectively Manage, Audit and Control AMIF & ISF Now and in 2021-2027 | Nice
23 – 24 Essentials of e-Procurement | Rome
28 – 29 State Aid for Agriculture, Forestry, and Rural Areas | Brussels
May
12 – 13 State Aid for Research, Development and Innovation Projects | Brussels
14 – 15 How to Conduct Management Verifications Most Effectively | Bologna
27 – 29 Summer Course: Financial Control and Audit in ESI Funds Now and in 2021-2027 | Sicily
28 – 29 Risk Management and Anti-Fraud Game of Jo Kremers (Edition 2020) | Sicily
28 – 29 Essentials of Public Procurement | Florence
June
09 – 10 State Aid: Assessment and Evaluation | Brussels
09 – 10 How to Successfully Manage, Control and Audit IPA Funds | Amsterdam
11 – 12 ESI Funded Agriculture Programmes and Projects | Catania
11 – 12 EStALI Interactive Forum on EU State Aid Law | Brussels
17 – 19 Summer Course: Irregularities and Fraud in ESI Funds and Public Procurement | Athens
17 – 19 Summer Course: Effective Usage of EU Financial Instruments Now and in 2021-2027 | Lake Como
18 – 19 Master Class: Probity and Public Procurement | Madrid
30.6. – 1.7. Master Class - “State Aid Uncovered” with Prof. Dr. Phedon Nicolaides | Florence
Events Spring/Summer 2020
For more information
and registration please
visit our website
www.lexxion.eu
NEW
European State Aid Law
European Structural and Investment Funds
European Procurement and Public Private Partnership Law
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Purpose The purpose of this paper is to explain to readers how intelligent systems can fail and how artificial intelligence (AI) safety is different from cybersecurity. The goal of cybersecurity is to reduce the number of successful attacks on the system; the goal of AI Safety is to make sure zero attacks succeed in bypassing the safety mechanisms. Unfortunately, such a level of performance is unachievable. Every security system will eventually fail; there is no such thing as a 100 per cent secure system. Design/methodology/approach AI Safety can be improved based on ideas developed by cybersecurity experts. For narrow AI Safety, failures are at the same, moderate level of criticality as in cybersecurity; however, for general AI, failures have a fundamentally different impact. A single failure of a superintelligent system may cause a catastrophic event without a chance for recovery. Findings In this paper, the authors present and analyze reported failures of artificially intelligent systems and extrapolate our analysis to future AIs. The authors suggest that both the frequency and the seriousness of future AI failures will steadily increase. Originality/value This is a first attempt to assemble a public data set of AI failures and is extremely valuable to AI Safety researchers.
Article
Full-text available
There has been much discussion of the right to explanation in the EU General Data Protection Regulation, and its existence, merits, and disadvantages. Implementing a right to explanation that opens the black box of algorithmic decision-making faces major legal and technical barriers. Explaining the functionality of complex algorithmic decision-making systems and their rationale in specific cases is a technically challenging problem. Some explanations may offer little meaningful information to data subjects, raising questions around their value. Explanations of automated decisions need not hinge on the general public understanding how algorithmic systems function. Even though such interpretability is of great importance and should be pursued, explanations can, in principle, be offered without opening the black box. Looking at explanations as a means to help a data subject act rather than merely understand, one could gauge the scope and content of explanations according to the specific goal or action they are intended to support. From the perspective of individuals affected by automated decision-making, we propose three aims for explanations: (1) to inform and help the individual understand why a particular decision was reached, (2) to provide grounds to contest the decision if the outcome is undesired, and (3) to understand what would need to change in order to receive a desired result in the future, based on the current decision-making model. We assess how each of these goals finds support in the GDPR. We suggest data controllers should offer a particular type of explanation, unconditional counterfactual explanations, to support these three aims. These counterfactual explanations describe the smallest change to the world that can be made to obtain a desirable outcome, or to arrive at the closest possible world, without needing to explain the internal logic of the system.
Article
Full-text available
The nature of harm—and therefore moral judgment—may be misunderstood. Rather than an objective matter of reason, we argue that harm should be redefined as an intuitively perceived continuum. This redefinition provides a new understanding of moral content and mechanism—the constructionist Theory of Dyadic Morality (TDM). TDM suggests that acts are condemned proportional to three elements: norm violations, negative affect, and—importantly—perceived harm. This harm is dyadic, involving an intentional agent causing damage to a vulnerable patient (A→P). TDM predicts causal links both from harm to immorality (dyadic comparison) and from immorality to harm (dyadic completion). Together, these two processes make the “dyadic loop,” explaining moral acquisition and polarization. TDM argues against intuitive harmless wrongs and modular “foundations,” but embraces moral pluralism through varieties of values and the flexibility of perceived harm. Dyadic morality impacts understandings of moral character, moral emotion, and political/cultural differences, and provides research guidelines for moral psychology.
Article
Full-text available
Large-scale intrinsic brain systems have been identified for exteroceptive senses (such as sight, hearing and touch). We introduce an analogous system for representing sensations from within the body, called interoception, and demonstrate its relation to regulating peripheral systems in the body, called allostasis. Employing the recently introduced Embodied Predictive Interoception Coding (EPIC) model, we used tract-tracing studies of macaque monkeys, followed by two intrinsic functional magnetic resonance imaging samples (N = 280 and N = 270) to evaluate the existence of an intrinsic allostatic–interoceptive system in the human brain. Another sample (N = 41) allowed us to evaluate the convergent validity of the hypothesized allostatic–interoceptive system by showing that individuals with stronger connectivity between system hubs performed better on an implicit index of interoceptive ability related to autonomic fluctuations. Implications include insights for the brain’s functional architecture, dissolving the artificial boundary between mind and body, and unifying mental and physical illness.
Conference Paper
Full-text available
Reputation and feedback systems in online marketplaces are often biased, making it difficult to ascertain the quality of sellers. We use post-transaction, buyer-to-seller message traffic to detect signals of unsatisfactory transactions on eBay. We posit that a message sent after the item was paid for serves as a reliable indicator that the buyer may be unhappy with that purchase, particularly when the message included words associated with a negative experience. The fraction of a seller's message traffic that was negative predicts whether a buyer who transacts with this seller will stop purchasing on eBay, implying that platforms can use these messages as an additional signal of seller quality.
Article
Full-text available
Firms' incentives to manufacture biased user reviews impede review usefulness. We examine the differences in reviews for a given hotel between two sites: Expedia.com (only a customer can post a review) and TripAdvisor.com (anyone can post). We argue that the net gains from promotional reviewing are highest for independent hotels with single-unit owners and lowest for branded chain hotels with multiunit owners. We demonstrate that the hotel neighbors of hotels with a high incentive to fake have more negative reviews on TripAdvisor relative to Expedia; hotels with a high incentive to fake have more positive reviews on TripAdvisor relative to Expedia.