Content uploaded by Eva Thelisson
Author content
All content in this area was uploaded by Eva Thelisson on Feb 13, 2020
Content may be subject to copyright.
IS SN 2626 -373 4
DELPHI – INTERDISCIPLINARY REVIEW
OF EMERGING TECHNOLOGIES
AIGovernance
PaulNemitz,EuropeanCommission
Technologyand(economicandpolitical)powerareenteringintoan
everclosersymbiosis.Atechnologythatknowsmoreaboutmanand
theworldthanmanknowsabouthimself,andthatisgivenevermore
decision-makingpowers,leadstoamassiveasymmetryofknowledge
andpowerintherelationshipbetweenmanandmachine.Classical
modelsofactionanddecision-makingindemocraticsocietiesare
challengedbythesedevelopments.
Thequestionoftechnicalpowerandthecontroloftechnicalpoweris
raisedinanewway .Whowilldecideinfuture?And,asShoshanaZuboff
asks,'Whodecides,whodecides?'
Whentechnologychangesthepowertoshapethingssoradically ,itis
notsurprisingthatthefundamentalintellectualandculturalconcepts
onwhichmodernsocietiesarebasedaresubjectedtoastresstest.
Delphiisapioneeringinterdisciplinaryreviewofemergingtechnologiesasseen
throughtheperspectivesofexpertsfromthefieldsofscienceandtechnology,
ethics,economics,businessandlaw.Inspiredbytheideatoencourageinclusive,
thoughtful–andsometimesunsettling–debatesonthemanyopportunitiesand
challengescreatedbytechnologicalprogress,theinternationalquarterlyreview
bringstogetherauthorswithdifferentprofessionalbackgroundsaswellas
opposingviews.ContributionstoDelphicomeincompactformatsandaccessible
languagetoguaranteealivelydialogueinvolvingboththinkersanddoers.
DELPHI – INTERDISCIPLINARY REVIEW
OF EMERGING TECHNOLOGIES
2019|VOLUME2|NUMBER4
AIGovernance
TowardsanIndexofDigital
Responsibility
EvaThelisson,Jean-HenryMorinand
JohanRochel
AIandOnlineIntermediationPlatforms
ConciliatingEconomicEfficiencyand
EthicalIssues
FrédéricMartyandThierryWarin
AISafety
ClassificationSchemasforArtificial
IntelligenceFailures
PeterJ.ScottandRomanV .Y ampolskiy
2 0 1 9
|
V O L U M E 2
|
N U M B E R 4 D E L P H I – I N T E R D I S C I P L I N A R Y R E V I E W O F E M E R G I N G T E C H N O L O G I E S
BIWEEKLY NEWS ON EU DATA PROTECTION
Sign up lexxion.eu/en/newsletter/
DATA PROTECTION INSIDER
Powered by EDPL and edited by
Dara Hallinan and Diana Dimitrova,
this free newsletter provides you with
up-to-date information and insights on
Data Privacy, Data Protection and GDPR related issues.
Let’s talk competition law!
Follow us now:
coreblog.lexxion.eu
Ocial blog of the
European Competition and Regulatory Law Review
Delphi4|2019IContents
Contents
Editorial155
EvaThelisson
F o r e w o r d
PowerinTimesofArtificialIntelligence158
PaulNemitz
A r t i c l e s
TheRighttoanExplanation161
AnInterpretationandDefense
MaëlPégny,EvaThelissonandIssamIbnouhsein
AIGovernance:DigitalResponsibilityasaBuildingBlock167
TowardsanIndexofDigitalResponsibility
EvaThelisson,Jean-HenryMorinandJohanRochel
AIEthicsforLawEnforcement179
AStudyintoRequirementsforResponsibleUseofAIattheDutchPolice
LexoZardiashvili,JordiBieger,FrancienDechesneandVirginiaDignum
ClassificationSchemasforArtificialIntelligenceFailures186
PeterJ.ScottandRomanV .Y ampolskiy
AnAGIwithTime-InconsistentPreferences200
JamesD.MillerandRomanY ampolskiy
AIforSustainableDevelopmentGoals207
NicolasMiailhe,CyrusHodes,ArohiJain,NikiIliadis,SachaAlanocaandJosephinePng
TheUseofAIbyOnlineIntermediationPlatforms217
ConciliatingEconomicEfficiencyandEthicalIssues
FrédéricMartyandThierryWarin
SustainableAISafety?226
Nadisha-MarieAliman,LeonKester,PeterWerkhovenandSoenkeZiesche
M i s c e l l A n e o u s
ImprintII
MastheadIII
Delphi4|2019 IIImprint
Publisher
LexxionVerlagsgesellschaftmbH
Güntzelstraße63·10717Berlin·Germany
Phone:+4930/814506-0·F ax:+4930/814506-22
www.lexxion.eu
Typeset
AutomatictypesettingbymetiTEC-software
me-tiGmbH,Berlin
Delphiannualsubscription*rates2019(4issues)
RegularPrice
printedversiononly417,00€
printedversion+onlineedition(incl.archive)**471,00€
onlineeditiononly(incl.archive)**410,00€
Startups
printedversiononly165,00€
printedversion+onlineedition(incl.archive)**198,00€
onlineeditiononly(incl.archive)**158,00€
Students
printedversion+onlineedition(incl.archive)***98,00€
onlineeditiononly(incl.archive)***72,00€
*PricesincludePostageandHandling.EUMemberStates:V ATwillbe
addedifapplicable.
**Multi-useronlineacessviaIPauthentication(IP-range).
***Singleuseronlineaccessviausernameandpassword.
Delphiissuppliedunderourtermsofsaleandsupply .
Copiesofourtermsandconditionsareavailableuponrequest.
LexxionVerlagsgesellschaftmbH.V ATReg.No.DE209981990.
Forfurtherinformationpleasecontact
info@lexxion.eu
Tel.:+4930/814506-0·Fax:+4930/814506-22
Contributions
arewelcomeandshouldbesubmittedaccordingtotheDelphi
authorguidelines.Anysuchcontributionisacceptedonthe
understandingthattheauthorisresponsiblefortheopinions
expressedinit.Moreinformationsavailableatdelphi.lexxion.eu.
Photocopying
Allrightsreserved.Nopartofthisjournalmaybereproducedin
anyformwhatsoever,e.g.byphotoprint,microfilm,orany
othermeans,withoutpriorpermissionofthepublisher.This
journalwascarefullyproducedinallitsparts.Nevertheless,
authors,editorsandpublisherdonotwarranttheinformation
containedthereintobefreeoferrors.Readersareadvisedto
keepinmindthatstatements,data,illustrations,procedural
detailsorotheritemsmayinadvertentlybeinaccurate.
OwnershipandshareholdingspursuanttoSection7lit.aNo.2
andSection2No.6oftheBerlinPressAct:Shareholderof
LexxionVerlagsgesellschaftmbHisDr.W olfgangAndreae,
Publisher,Berlin.
Thisjournalmaybecitedas[2019]Delphi.
ISSN(Print)2626-3734·ISSN(Online)2626-3742
e d i t o r - i n - c H i e F
CianoAydin
UniversityofTwente,theNetherlands
A s s o c i A t e e d i t o r s
FrancescaBosco
WorldEconomicForum,Switzerland
SarahFischer
DeutscheGesellschaftfürInternationale
ZusammenarbeitGmbH,Germany
FlorianKrausbeck
ambriteAG,Switzerland
AnnaLaesser
ImpactHubBerlin,Germany
MatthiasLamping
MaxPlanckInstituteforInnovationand
Competition,Germany
VinceMadai
CharitéBerlin,Germany
IdaRust
UniversityofTwente,theNetherlands
Yueh-HsuanWeng
TohokuUniversity,Japan
CeesZweistra
DelftUniversityofTechnology,theNetherlands
e d i t o r i A l B o A r d
SteffenAugsberg
Justus-Liebig-UniversitätGießen,GermanEthics
Council,Germany
WoodrowBarfield
ProfessorEmeritus,ChapelHill,USA
AubreydeGrey
SENSResearchFoundation,USA
WilliamEchikson
CentreforEuropeanPolicyStudies,Belgium
PaulNemitz
EuropeanCommission,Belgium
VuyiswaM’Cwabeni
SAP,Germany
NishantShah
ArtEZUniversityoftheArts,theNetherlands
StefanLorenzSorgner
JohnCabotUniversity,Italy
RobvandenHovenvanGenderen
VUUniversityAmsterdam,theNetherlands
StevenUmbrello
InstituteforEthicsandEmergingTechnologies,
Italy
AnnaZeiter
eBayInc.,Switzerland
e X e c u t i V e e d i t o r s
ClaraHausin
LexxionPublisher,Germany
hausin@lexxion.eu
JakobMcKernan
LexxionPublisher,Germany
mckernan@lexxion.eu
Delphi4|2019155 Editorial
Editorial:TheCentralRoleofStatesfor
BuildingaBalancedAIGovernance
Thedisruptivenatureofartificialintelligencetransformsalmostallhumanactivities
andrequiresacohesiveandsustainableAIgovernanceframeworkonaglobalscale.
Thisframeworkshouldaimatmanagingboththeopportunitiesandtherisksderived
fromthistechnologyinaproportionatemanner.Thedigitaleconomyhasincreased
theneedforatrustedecosystem,includingreinforcedregulationsandadditionalcon-
straintsforallactorsdealingwithartificialintelligenceatwhateverpartofthevalue
chain.Asaresult,publicactorshaveinitiatedaprocessthatpromotesabalancedap-
proachbeneficialforallinnovation,societyandindividuals.Itispartofaconcerted
internationalframeworkatEU,OECDandG20levelandalsoincludesisolatedprojects
likethe‘ModelAIGovernanceframework’fromSingapore.
ThegoodwillofStatesiskeyinensuringaneffectivegovernanceofartificialintelli-
gence.Thepeerreviewmechanismorreviewsbyindependentexpertscanplayacen-
tralroleintheeffectiveimplementationoftheseframeworks.DependingonhowAI
willbeused,itcanindeedeithercontributetoachievingtheUN’sSustainableDevel-
opmentGoals(SDGs)orleadtonegativesocietalexternalitieslikeharmtocitizens,
misuseofdata,themanipulationofpeople(deepfakemisuse)ormasssurveillance.
Withintheframeworkoftheirsovereigntyofpositiveresponsibilityandprotection,
Statesareresponsiblefortheimplementationofthesenon-bindingprinciplesorguide-
linesonartificialintelligenceatanationallevel.AIgovernancesafeguardsusers’in-
terestofdigitalservicesandproducts,aswellascitizens’interestsinpublicspaces.
OneofthemostrecentexamplesistheEUprojecttobanfacialrecognitiontechnolo-
giesforupto3to5years,followingtheClearviewscandal.Thisbanisfoundedon
theGeneralDataProtectionRegulationandtheright‘nottobesubjectofadecision
basedsolelyonautomatedprocessing,includingprofiling,whichproduceslegalef-
fects’.
WhiletheconstraintonStatestoimplementtheAIprinciplesandguidelinesasco-
ordinatedattheinternationallevelhasnotchangedinnature,thispressure–mainly
political–seemstohaveincreased,asisthecaseinnon-cooperativeterritoriesintax
matters.
AIGovernanceShouldConsidertheLongTermPerspectives
Inthewrestlingmatchbetweenexcessofindividualfreedomandthe‘commongood’,
thequestionastowhatconstitutes‘meaningfulgovernance’isapertinentone.TheAI
TransparencyInstituteholdstheopinionthatmeaningfulgovernanceviaabinding,di-
rectlyenforceableregulationisnecessarytoensurethesafetyofAI.Itshouldbepro-
portionate,basedonarisk-basedapproachandrespectdemocraticvaluesandprin-
DOI:10.21552/delphi/2019/4/3
Delphi4|2019 156Editorial
ciples.Integratinglongtermcriteriawithindecisionmakingprocesseswouldalsocon-
tributetomitigatingriskandensuringirreversiblestepsareavoided.
Inparticular,ex-anteandex-postmechanismsshouldbebuiltforasustainableAI
governance,mainlybasedonaccountability,transparency,gooddesign,safetyandli-
ability.Regularriskassessmentsforhighriskprojectspriortomarketdeploymentof
digitalproductsandservicesandlegallybindinginstrumentsshouldbeputinplace
tosafeguardthedemocraticuseofartificialintelligence.Softlawlikequalitylabels
andcertificationmechanismscouldcompletethisframework.
Inaglobalmarketeconomy,notboundbyterritorialbordersandmainlydrivenby
interdependenciesandshorttermindicatorslikestockexchangevalueorpollingda-
ta,longterminterestoffuturegenerationsshouldbeakeycomponentoftheAIgov-
ernanceframework.
CallforMultilateralGovernance,IncludingallPrivateandPublicStakeholders
OurfocusinthisSpecialIssueisonthegovernanceofAIandonGovernanceviaAI.
WerecommendahybridgovernancemethodologybyState(hardlaw)andbythemar-
ket(softlaw),inspiredbytheGDPRandthe108+Convention,inparticularanetwork
ofindependentcontrolauthoritiesandeffectivelegalremedies(classactions).
Inthefirstcontribution,MaelPegnyhighlightstheneedtorecognisearightofex-
planation.Hisarticleoffersapleainfavourofthetransparencyofautomateddecision-
makingasarequirementforasustainabletrustinaquantifiedanddata-drivensoci-
ety.Asheputsit,algorithmsandtrainingdatascrutinyandauditabilityarecorner-
stonesoftrustworthyAI.
WithJohanRochelandJean-HenryMorinwealsopresentaDigitalResponsibility
Indextoquantifytheresponsibilityofeconomicactors.
Inhiscontribution,LexoZardiashviliinvestigateswhyandhowtodeveloparespon-
sibleuseofAIwithinpoliceservicesandbuildagroundworkforhardregulationin
thelawenforcementenvironmentoftheNetherlands.
PeterJ.Scottanalyseshistoricalfailuresofartificialintelligenceandproposesaclas-
sificationschemeforcategorisingfuturefailures,whileJamesD.Millershowshow
time-inconsistencyincreasesthechallengeofbuildinganAGIalignedwithhumani-
ty’svalues.
NicolasMiailheproposesananalysisofspecificusecases,toachieveSustainable
DevelopmentGoals(SDG)andformulatesproposalsformulti-stakeholdercollabora-
tionandnewkindsof‘public-private-people’partnershipswhichwillreconciletech-
nical,ethical,legal,commercial,andoperationalframeworks.Headvancesnewin-
ternationalinitiatives,suchastheGlobalDataAccessFrameworkandtheAI4SDG
CenterspearheadedaspartofawiderinternationalpartnershipcalledAICommons.
FredericMarty’scontributiondealswiththegovernanceofplatforms.Heshowsthat
anincreasinguseofAIcansubstantiallyimproveperformanceinseveralareasand
improvetheleveloftrustinplatformsandadvanceduserdissatisfactiondetectiontools.
Finally,Nadisha-MarieAlimanaddressesthecomplexityofAIgovernancewithsafe-
ty-relevant,ethicalandlegalimplicationsataninternationallevel.Shealsoprovides
novelconstructiverecommendationsforanSDGinformedAIgovernanceandanAI-
Delphi4|2019157 Editorial
assistedapproachtotheSDGendeavour.AIgovernancecouldaimatasustainable
transdisciplinaryscientificapproachinstantiatedwithinacorrectivesocio-technolog-
icalfeedback-loop.Sheemphasisestheneedofastrongeducationandappropriate
institutionsfortherealisationofthispotentiallyrobustAIgovernancestrategy.
AContinuouslyImprovingAIGovernanceLegalFramework
ThisSpecialIssueisafirstcontributiontothediscussionofameaningfulAIgover-
nancelegalframework.Itproposesanoverviewofsomeofthemultifacetedaspects
ofthistopicaswellassomeconcreteproposalstopolicy-makersasawayforwardto-
wardsaneffectivehuman-centredAIgovernance.Theframeworkthatwillbeshaped,
mainlybasedonbilateralandmultilateralagreementsbetweenStates,willrequire
continuousimprovement.
EvaThelisson
GuestEditor
AIT ransparencyInstitute
Delphi4|2019 158ForewordbyPaulNemitz
PowerinTimesofArtificialIntelligence1
ThisissueofDelphiisaboutpowerinconfusingtimes,intimesofartificialintelli-
gence.Itshowswhatthenewtechnologicalpowermeansforthefundamentalfree-
domsofushumansandourdemocracy.AwisestartingpointisthatAImustnotbe
consideredinisolation,butratherinthecontextoftheconcentrationofeconomic
poweranddigitaltechnologicalpowerasitexiststoday.ThisissobecauseAIisde-
velopedanddeployedtoalargeextentbythosemajordigitalplayerscolloquially
calledtheGAFAM(Google,Apple,Facebook,Amazon,Microsoft)whichalreadyhave
astronggriponshapingtheinternetanddigitaltechnologiesasweallusethem.
AIwillbeaddedtoexistingtechnologyandbusinessmodelsandincreasetheirgrip
evenfurther,ifwedonottaketheappropriatemeasuresofregulation.Theanalysisof
AIrequiresaholisticviewofbusinessmodelsofthesedigitaltechnologiesandofthe
powertheyalreadyexerttoday.
WeneedtounderstandnotonlytheoreticalpotentialsbenefitsofAI,whichwithout
doubtexist.Wemustalsoandforemostunderstandthepowerthatiscreatedbythe
combinationofthedifferentdigitaltechnologiesinthehandsofthecorporationsthat
dominatetheinternetandthestate,andwhich,duetotherapidpaceoftechnologi-
caldevelopment,unfoldsitsowndynamicthatchallengesdemocraticprocesses.
Tounderstandthispoweranditsconsequences,aholisticviewisneededwhich
goesbeyondmarketimpacts.Wemustaskwhatitmeansforgovernmentanddemoc-
racythatnearlyallsoftwareforthethinkingandcommunicatingstate,whetheronthe
leveloftheEUorEUMemberStates,isprocuredfromMicrosoftandthatnearlyall
informationisstoredoncloudsystems.90%ofthesesystemsareownedbyUSsup-
pliers,withAmazonaccountingforalmost30%.Wemustalsobeawarethatmore
than90%ofinternetsearchesarecarriedoutonGoogle,whichinturnknowsmore
abouteveryoneindividuallythanindividualsandtheirfamilymembersthemselves.
ThefactthatanevergrowingsectionofsocietyexclusivelygetsitsnewsfromFace-
bookandY ouTubemustalsobeaconcern.WhatwilltheimpactofAI,developedand
deployedbythethusalreadypowerfulcorporationsbeonindividuals,democracy,
governmentsandmarkets?
Technologyand(economicandpolitical)powerareenteringintoanevercloser
symbiosis.Atechnologythatknowsmoreaboutmanandtheworldthanmanknows
abouthimself,andthatisgivenevermoredecision-makingpowers,leadstoamas-
siveasymmetryofknowledgeandpowerintherelationshipbetweenmanandma-
chine.
Classicalmodelsofactionanddecision-makingindemocraticsocietiesarechal-
lengedbythesedevelopments.Thequestionoftechnicalpowerandthecontrolof
technicalpowerisraisedinanewway.
DOI:10.21552/delphi/2019/4/4
1InMarch,PaulNemitzandMatthiasPfefferarepublishingPrinzipMensch–Macht,FreiheitundDemokratieimZeitalterderKünstlichen
Intelligenz(DietzVerlag)<https://prinzipmenscheu.wordpress.com/>.AnEnglisheditionisforthcominglaterthisyear.
Theauthoriswritinghereinhispersonalcapacity,notnecessarilyrepresentingthepositionoftheEuropeanCommission.
Delphi4|2019159 ForewordbyPaulNemitz
Whowilldecideinfuture?And,asShoshanaZuboffasks,‘Whodecides,whode-
cides?’2
Whentechnologychangesthepowertoshapethingssoradically,itisnotsurpris-
ingthatthefundamentalintellectualandculturalconceptsonwhichmodernsocieties
arebasedaresubjectedtoastresstest.
Wearealreadyexperiencingthesecondstageofthedigital‘revolution’withthecur-
rentupheavalsofpopulism,fakenews,foreignpropagandaandthemanipulationof
companieslikeCambridgeAnalytica,basedonFacebookdata.Andnowthatwelook
forwardtoAIandquantumcomputers,itisworthtakingalookbackatthebeginning
ofthedigitalagetounderstandandlearnwhythegreathopesoffreedomandempow-
ermentofindividualsthatwereassociatedwithithavelargelynotbeenfulfilled.On
thecontrary,wenowliveinaworldnotonlyofunsustainableclimatechangeandpol-
lution,butalsoofanincreasinglyunsustainableconcentrationofpowerandundermin-
ingofdemocracyandindividualfreedom,includinginformationalself-determination.
Inthecurrentsecondphase,wecannolongeraffordthemistakesoftheearlydays
ofdigitaltechnologyandtheglobalInternet.T echnologyandknowledgearedevelop-
ingrapidly,seeminglyexploding(somespeakofanexponentialincrease),whichshould
leadtoatransitiontoawholenewqualityinthenearfuture.
Ontheotherhand,therearethedeliberatelysloweddownprocessesofdelibera-
tivedemocracies.Sloweddown,becauseitisanimportantexperienceofhumanrule,
thatreflectiveanddiscursiveprocessesarevitalbeforeopinion-forminganddecision-
makingprocessesindemocraciesarecompleted.Aconsequenceofthisinsightisal-
sotheseparationofpowersandthetraditionalguaranteesofthefreepress.
Iftechnologycreatesfactsanddevelopsfasterthandemocraciesdecide,doesthat
meanthatinthisgameofhareandhedgehog,technologywillwinforsure?Doestech-
nologyevenhaveitsowndevelopmentallogic,whichisprovingincreasinglyimmune
todemocraticcontrol?T oday,technologyiscreatingfactsatapacethatrisksanswer-
ingthequestionofpowerinitsfavourbythisspeedalone.
Thequestionofwhowillruleinthefutureandwhowillmakethedecisionsmust
beaskedtodayinlightofdevelopmentsinAIandQuantumcomputing.Weriskbe-
ingruledbyAInotonlythroughartificiallyintelligentsystemswhichself–develop,
asidentifiedbyStuartRusselandothers,3butalsothroughtheapplicationofthese
technologiesbypowerfulcorporationstodominateourdemocraciesandfreewill,
bothindividualandcollective.
Whoeverwantstoanswerthesequestionswithafirmcommitmenttodemocracy
mustnotonlybringtherepresentativesoftechnologyanddemocracyintoanewcon-
versation.Wealsoneedaclearcommitmenttosupportthegoodfunctioningofde-
mocraticprocessbythe‘T echnicalIntelligentsia’,aclearcommitmenttotheruleby
democracyandtheruleoflawratherthantheruleoftechnologicalpowerandspeed.
Thisalsomeans:Democracymustbewillingtouseitsmostnobletool,thelaw,tothe
settherulesinthisevermoretechnologicallycolonisedworld,includingforAI.
2SoshannaZuboff,TheAgeofSurveillanceCapitalism(ProfileBooks2019)
3StuartRussel,HumanCompatible,ArtificialIntelligenceandtheProblemofControl(Viking/Penguin2019)
Delphi4|2019 160ForewordbyPaulNemitz
InhisseminalStudyof1976,4EugenKogon,afrequentpanellistwithAdornoand
Horkheimer,theprotagonistsofthecriticalFrankfurtSchool,showedthatthepolitical
attitudesofengineersinGermanyarecharacterisedbyahighdegreeofresponsibili-
tyforthepoliticalandsocietalimpactsoftheirinventions.Itwasthetimeinwhich
‘ThePhysicists’bytheswissplayrightDürrenmatthadbeenreadinschoolbyallchil-
drenontheirpathtoanentryexamforuniversity.Itisthissenseofresponsibility,
whichatthetimewasspurredbythethreatofweaponsofmassdestructionandatom-
icpower,whichtodaymustbemobilisedforfendingoffthethreatstoindividualfree-
dom,fundamentalrights,democracyandsustainabilitythroughuncheckedtechno-
logicalpoweranditsconcentrationinthehandsoffewpowerfulcompanies,atthe
topofthestockexchange.
PaulNemitz
Directorate-GeneralforJusticeandConsumers
EuropeanCommission
4EugenKogon,DieStundederIngenieure(Düsseldorf1976)
Delphi4|2019161 TheRighttoAnExplanation
TheRighttoanExplanation
AnInterpretationandDefense
MaëlPégny,EvaThelissonandIssamIbnouhsein*
TheopacityofsomerecentMachineLearning(ML)techniqueshaveraisedfundamental
questionsontheirexplainability,andpromptedthecreationofaresearchsubdomain,Ex-
plainableArtificialIntelligence(XAI).Opacitywouldbeparticularlyproblematicifthose
methodswereusedinthecontextofadministrativedecision-making,sincemostdemocrat-
iccountriesgranttotheircitizensarighttoreceiveanexplanationofthedecisionsaffect-
ingthem.Ifthisdemandforexplanationwerenotsatisfied,theveryuseofAImethodsin
suchcontextsmightbecalledintoquestion.Inthispaper,wediscussanddefendtherele-
vanceofanidealrighttoanexplanation.Itisessentialbothfortheefficiencyandaccount-
abilityofdecisionprocedures,bothforpublicadministrationandprivateentitiescontrol-
lingtheaccesstoessentialsocialgoods.Weanswerseveralobjectionsagainstthisright,
whichpretendthatitwouldbeatbestinefficientinpracticeoratworstplaytheroleofa
legalsmokescreen.Ifthoseworst-casescenariosaredefinitelyintherealmofpossibilities,
theyarebynomeansanessentialviceoftherighttoanexplanation.Thisrightshouldnot
bedismissed,butdefendedandfurtherstudiedtoincreaseitspracticalrelevance.
I.Introduction
Thereisafundamentalambiguityinthecurrentuse
ofthetermexplainabilityintheAIcommunity.On
theonehand,explainabilityor(human)interpretabil-
itydenotesafundamentalscientificproblem,the
problemofunderstandingthebehaviourofcomplex
MLsystems,whichcanleadtothedevelopmentof
sophisticatedtechniques.Ontheotherhand,the
termexplainabilityisalsousedtodenoteapedagog-
icalproblem,theproblemofexplainingtoalayau-
dience,betheypolicy-makersorordinarycitizens,
thebehaviourandoutcomesofthosesystems.Those
twochallengesarenotcompletelyindependent:of
course,acomputerscientistneedstohaveafirmsci-
entificgrasponagivenissuebeforeshetriestogive
apedagogicalexplanationtoalayaudience.They
neverthelessneedtobedistinguishedifwearetoun-
derstandtheconsiderablepedagogicalchallenges
raisedbyMLprocedures.Inthispaper,thetermsex-
planation,explainableandexplainabilitywillhave
thepedagogicalmeaningbydefault.Wewilltalk
aboutdecisionexplainabilitywhentheexplanans
willbeanoutputthatcanbedescribedasadecision.
Theneedforexplainabilityismademoreurgent
bytheuseofopaqueMLtechniquesincontexts
wherethepublichasarighttodemandanexplana-
tionofthedecisionsaffectingthem.1Theuseofsome
ofthemostsophisticatedMLtechniquesasanaidto
decision-makingmightthusbecompromisedifthose
techniquesarenotexplainable.
However,someauthorshaverecentlymadelight
oftherighttoanexplanation,dismissingitasatooth-
lesslegaltoolatbest,orasmokescreengivingtheil-
lusionofarightatworst.Althoughthosearerealpos-
sibilitiesofperversionoftheright,theyarebyno
meansanessentialvice:legalandtechnicalstrate-
giescanbeenforcedtomakeitafruitfullegaltool.
Inordertomakethispoint,wewillfirstexplain
thepoliticalstakesoftherighttoanexplanation(Sec-
tionII).Wewillthenpresenttherecentobjections
tothisright,andshowitspromotersthatwecanas-
DOI:10.21552/delphi/2019/4/5
*MaëlPégny,P ostdoctoralFellow ,ArchivesHenriPoincaré,
UniversitédeLorraine(Nancy),MembreAssociéIHPST(Paris1);
EvaThelisson,UniversityofFribourg,MITConnexionScience,for
correspondence:eva.thelisson@unifr.com;
IssamIbnouhsein,Quantmetry,P aris,forcorrespondence:iib-
nouhsein@quantmetry.com
1Thepersonsaffectedbyanadministrativedecisionmightof
coursebemoralaswellasphysicalpersons.However,explana-
tionscanonlybeprocessedbyhumanbeings.
Delphi4|2019 162TheRighttoAnExplanation
similatethemtoimprovetheconceptionandenforce-
mentofthislegaltool.W ewillfirstexamineVeale
andEdwards'objectionthattherighttoanexplana-
tionmightonlyprovideanillusionofaright(Sec-
tionIII),andFloridietal'sobjectionagainsttherel-
evanceofcounterfactualexplanations(SectionIV).
II.ThePoliticalStakesoftheRighttoan
Explanation
1.TheRelevanceofaRighttoan
ExplanationforGovernment
Transparency
Althoughmostofthispaperdealswithgenericis-
suesofAI-assisteddecision-making,itisimportant
tostresstherelevanceofbureaucraticprocedures.
Bureaucraticprocedures,publicandprivate,areone
ofthemainsurfacesofcontactbetweenthepublic
andsystematizeddecisionprocedures,andassuch
theyareahugeorganisationalandpoliticalissue.
Whenitcomestobureaucraticproceduresingov-
ernment,thereisagenerallegalidealofgovernment
transparency,whichtranslatesintoa‘righttoanex-
planation’:thecitizenshavearighttobegivenanex-
planationoftheadministrativedecisionsaffecting
them.Therighttoanexplanationwementionhere
isagenericphilosophicalideal,notitsparticularand
perhapsflawedimplementationinanygivensystem
ofpositivelaw ,egtheEUGeneralDataProtection
Regulation(GDPR)ortheFrenchLoisurla
Républiquenumérique.However,ourdiscussionof
thisidealrightwillofcoursebeinformedbythepos-
itivelegalsystemsandthechallengesraisedbytheir
application.Thisrighttoanexplanationshouldim-
poseexplainabilityasapre-conditionfortheuseof
AIsystemsinbureaucraticprocedures.
Socialcontracttheoriesclarifywhygovernment
transparencyisapre-requisitetocitizens'trustin
suchprocedures.
Governmenttransparencyofferssomesafeguards
tocitizens:initsEssayConcerningtheTrueOriginal
ExtentandEndofCivilGovernment2,JohnLockear-
guesthattheLawofNaturecommandsthatwedo
notharmothers.Inthisconception,governmentis
basedonthevoluntaryagreementsbetweencitizens
andgovernmenttocareforeachother.Astandardof
duecareobligesthegovernmenttoprotectitsciti-
zens.Ifindividualsconsenttocreateapoliticalsoci-
etyandagovernment,theyreceiveincounterpart
laws,judgestoadjudicatelaws,andtheexecutive
powernecessarytoenforcetheselaws.Therecogni-
tionofarighttoanexplanationispartofasustain-
abilitypolicyforaState,actinginatransparentand
responsiblemanner,ieinreferencetoitsdutyofcare.
Therighttoanexplanationisthuspartofthecon-
ceptofgovernmentaccountability:itwillfacilitate
thedemonstrationbytheuserofabreachofthedu-
tyofcare.
Therighttoanexplanationalsoplaysmanyroles
intheconcreteinteractionsbetweengovernmentand
citizens.Itisofcoursethebasisforappealingfroma
givendecision.Italsoplaysadecisiveroleinraising
awarenessoftheirrightsandinterestsamongciti-
zens.Itisworthbeingremindedthatformanyciti-
zenstheirinteractionwithadministrativeofficialsis
theironlysourceofinformationonthelegalenviron-
mentaffectingthem.Theexplanationofaspecificde-
cisiongivesthemanopportunitytoimprovetheirun-
derstandingofthisenvironment,andconceiveastrat-
egytodefendtheirrightsandinterests.Onemightof
coursethinkofdetrimentaleffectsofthisadaptation
tothelegalenvironment,suchastheexploitationof
legalloopholesfortaxevasion.However,oneshould
notreducethisstrategicadaptationtothosenegative
examples.Thecitizens'abilitytoadapttotheirlegal
environmentisoftenadesirablething,whichisen-
couragedbygovernmentsthroughincentives.Forex-
ample,theUSproposesfinancialandtaxincentives
toencourageitssustainabledevelopmentpoliciesand
promotetheuseofenergy-savingtechnologies.3
Havingdecisionswithoutexplanationswould
thuscutoneofthemainchannelsofcommunication
betweengovernmentandcitizens.Thedebateonex-
plainabilityshouldnotfallpreytoacrudeopposi-
tionbetweenproceduralefficiencyandrespectof
rights.Firstly ,givingexplanationscreatesopportuni-
tytocorrectmanymistakes.Secondly ,procedures
withoutexplanationswouldlosesomeoftheirmain
functionalities,especiallytheirabilitytoincrease
awarenessofrightsandchannelincentives.Admin-
istrationwithoutexplanationwouldnotbesystem-
aticallymoreefficient:itwouldbemaimed.
2JohnLocke,TwoT reatisesofGovernment(PeterLaslett,ed,CUP
1983)
3USGovernment,DatabaseofStateIncentivesforRenewablesand
Efficiency(2019)http://www.dsireusa.org/DSIREaccessed30
January2020
Delphi4|2019163 TheRighttoAnExplanation
Asaconsequence,boththedefendersoffunda-
mentalrightsandthepromotersofgovernmentef-
ficiencyshouldsupportexplainability.
2.RelevanceforPrivateEntities
Ourinsistenceongovernmenttransparencydoesnot
meanthattherighttoanexplanationisirrelevantfor
privateentities.Forthetimebeing,mostpositivelaws
allowprivatecompaniestotreattheirproceduresas
tradesecrets.However,asalgorithmssuchasscoring
systemsusedbybanks,insurancecompaniesandHR
departmentshaveaconsiderableimpactonthegen-
eralpublic,theyshouldalsofall,insomewayoran-
other,underthepurviewofanidealrighttoanexpla-
nation.Onecouldevenventuretosaythatentitiesde-
cidingwhogetsaloan,ajob,ahouseoraninsurance
playadefactogovernmentalfunction,andshouldas
suchbesubjecttosomeformofaccountability.The
peoplehavetherighttounderstandtheprocedural
environmentthatshapestheirlives,regardlessofthe
publicorprivatenatureoftheproceduralagent,or
wewouldotherwise,toquoteF .PasqualeandD.Cit-
ron'sfinewriting,pavethewayto‘anewfeudalor-
derofunaccountablereputationalintermediaries’.4
However,articulatingthelegalconsequencesofsuch
aviewpointwouldbebeyondthescopeofsuchashort
paper(formorelegalreflectionsontheaccountabili-
tyofprivatealgorithmicdecision-making5),asit
wouldentailacarefulexaminationofthetensionbe-
tweentherighttoanexplanationandIPrights.
However,someaspectsoftherighttoanexplana-
tioninpositivelawalreadyapplytoprivateentities,
andareworthyofcomment.Amazonisfacinglawsuits
forthisreason.Anautomateddecisionmakingprocess,
withoutanyhumanintervention,provideswarnings
anddecidesautomaticallytofireemployeesontheba-
sisofinputdata.6Astheproductivitymetricsarepro-
prietary ,employeescannotunderstandonwhichbasis
automateddecisionsaretaken,despitethefactthatthe
decisionshavelegaleffectsontheconcernedperson.
Notransparencyismadeontheprinciplesandvalues
encodedinthedesignofthealgorithms.Theresultof
thislawsuitmayconfirmthelegalrelevanceoftrans-
parencyandexplanation.Basedonthemodernised
Convention108,employeesareentitledtohaveknowl-
edgeonthelogicinvolvedbythealgorithmicdecision
makingprocessandhavetherighttoobject.7
InUKlaw ,therighttoanexplanationmightalso
beinstrumentalinextendingthedutyofcaretopri-
vateactors.InApril2019,theUKpublishedaWhite
PaperonOnlineHarmspresentingstatutorymea-
surestakenbytheUKtoreinforcetheaccountabili-
tyofonlineeconomicactorslikeFacebook,Google,
Snapchat,orFortnite.TheUKrecognisesadutyof
careofonlineeconomicactors.Companieswillbe
heldtoaccountfortacklingacomprehensivesetof
onlineharms,rangingfromillegalactivityandcon-
tenttobehaviourswhichareharmfulbutnotneces-
sarilyillegal.Anindependentregulatorybodywould
enforcethenewregulatoryframeworkandbenefit
fromenforcementpowers.AnannualT ransparency
Reportwillexplainwhichorganisationalmeasures
havebeentakentoavoidharmingtheusers.Inthis
perspective,theexplanationofbureaucraticproce-
duresanddecisionscanbeseenasaduedilligence
elementandasaproofofitsdutyofcare.8
Inthisperspective,theburdenofprooflieswith
thecompanyortheState.Therefore,theOnline
HarmsWhitePaperisanhistoricpaper.Itobliges
thedigitalactors,betheypublicorprivate,tobetrans-
parentandtopublishanannualreportbringingthe
proofthattheybehavedinaresponsiblemannerand
explaininghowtotheusersandtotheState.
III.VealeandEdwards'Objections:An
IllusionofARight?
Intheircomprehensiveandthoroughpapers9,11,Ed-
wardsandV ealehaveformulatedseveralarguments
4FrankPasqualeandDanielleCitron,‘TheScoredSociety–Due
ProcessforAutomatedPredictions’(2014)89WashingtonLaw
Review1
5FrankPasquale,BlackBoxSociety .TheSecretAlgorithmsthat
ControlMoneyandInformation(HarvardUniversityPress2015)
6ColinLecher.,‘HowAmazonAutomaticallyT racksandFires
WarehouseWorkersfor"Productivity"’,(TheV erge,2019)<https://
www.theverge.com/2019/4/25/18516004/amazon-warehouse
-fulfillment-centers-productivity-firing-terminations>accessed30
January2020
7Conseildel'Europe,Convention108(2019)<https://www .coe
.int/fr/web/data-protection/newsroom/-/asset_publisher/
7oll6Oj8pbV8/content/modernisation-of-convention-108>ac-
cessed30January2020
8UKGovernment,OnlineHarmWhitePaper(2019)<https://www
.gov.uk/government/consultations/online-harms-white-paper>ac-
cessed30January2020
9LilianEdwardsandMichaelVeale,‘SlavestotheAlgorithm?’
(2017)16DukeLawandT echnologyReview18
11LilianEdwardsandMichaelV eale,‘EnslavingtheAlgorithm:From
a“RighttoanExplanation”toa“RighttoBetterDecisions?”’
(2018)16IEEESecurityandPrivacy46
Delphi4|2019 164TheRighttoAnExplanation
limitingtherelevanceoftherighttoanexplanation,
anddefendedtheviewthatotherapproachesmight
bemorefruitfultopromotetherightsofgroupsand
individuals.Theyevenwarnedagainstadegeneres-
cenceofthatrightintoanillusionofaright,justas
tickingtheboxofaUserConsentFormcreatesanil-
lusionofconsent:‘thesearchforalegallyenforce-
ablerighttoanexplanationmaybeatbestdistract-
ingandatworstnurtureanewkindof“transparen-
cyfallacy”tomatchtheexistingphenomenonof
“meaninglessconsent”’10.
First,therighttoanexplanationisnotamagical,
one-fits-allsolutiontoeverydataandalgorithm-re-
latedproblem.Insteadofholdingthatrighttosuch
anunrealisticstandard,oneshouldconsideritasa
necessarybutinsufficientconditionfortheprotec-
tionofcitizens'rights,andwonderwhetherone
wouldliketoliveinasocietywhereinstitutionsare
notrequiredtoprovideexplanationsfortheirdeci-
sions.Therighttoanexplanationshouldbepartof
apackageincludingotherapproachesthatareallrel-
evanttoafairalgorithmicsociety,suchas,toname
afew ,therighttoerasure,therighttodataportabil-
ity,structuraldueprocessingovernmentagencies,
auditingbodies,certificationmechanisms,privacy
andfairnessbydesign.
Furthermore,therighttoanexplanationshould
notbeconfusedwitha‘dutytounderstand’.Individ-
ualsubjectsshouldnotbeburdenedwithanobliga-
tiontounderstandalltheproceduresaffectingthem,
asitwouldrepresentacrushingintellectualload.It
willsometimesremainabettersolutiontorelyona
governmentauditingagencyoratrustedexpert:af-
terall,thatiswhatwedowhenwehirealegalcoun-
sel.Therighttoanexplanationshouldnotberead
asadenialofthenecessityofanintellectualdivision
oflaboranddelegationofsaidlabor ,anditshould
notbeusedtoburdentheordinarycitizenwithan
intellectualworkloadnoindividualcanpossiblyface.
However,justasthecomplexitiesofpositivelegal
systemsarenoexcusetomakelawsincomprehensi-
bletoordinarycitizens,thecomplexitiesofsoftware
arenoexcusetomakethemincomprehensibletothe
peopleaffectedbythem.
Finally,weagreewithVealeandEdwardsthatthe
explanationofsomealgorithms,especiallyMLalgo-
rithms,willfaceconsiderableintellectualchallenges,
andmighthavesomefundamentallimitations.
Nevertheless,weobjecttoastrongreadingofV eale
andEdwards'conclusionthatwouldreducetheright
toanexplanationtoanintellectualdeadend,noteven
worthyofexploration.Ourpositionisnotrootedin
apriorioptimismonthechancesofsuccessofexpla-
nation.Itisrootedinthemethodologicalbeliefthat
suchchancescannotbeevaluatedbypurelyapriori
arguments,andmustbetheobjectofathoroughem-
piricalinvestigation(foranexampleofsuchanem-
piricalinvestigation12).Thereal-lifeexplainabilityof
algorithmsdependsonmanyissues,suchasopensci-
entificquestionsonhumaninterpretabilityofcom-
plexmodels,thetypesofquestionsaskedorlikelyto
beaskedbythepublic,theirrelativefrequency ,the
typeofinformationandabstractionleveladequate
toanswerthosequestions,andthetypeofdecision-
makingabilitieswithwhichwewanttoempowerthe
publicthroughthoseexplanations.Thiscomplex
webofissuesisworthbeingexplored.Evenifthe
righttoanexplanationweretofailasapracticalen-
deavor,exploringtheexplainabilityofourdecision
proceduresisafundamentalworkontheintellectu-
aldivisionoflabor,andtheflowofknowledge,or
lackthereof,inoursocialsystem,anditshouldnot
begivenupupon.However ,webelievethatthework
thathasalreadybeendoneinexplainability,suchas
Lage,Isaacandal2018and13,14warrantsthemore
optimisticconjecturethatsomerelevantdemands
forexplanationcanbeanswered.Theexplainability
ofalgorithmicproceduresandtherighttoanexpla-
nationarenotdeadends:theyarevastavenuesyet
tobeexplored.
Furthermore,therighttoanexplanationdoesnot
onlyneedanempiricalinvestigation:itdemandsa
normativereflection.Inourunderstanding,theright
toanexplanationishighlynormativeinatleasttwo
respects.Thefirstisthatitsaimisnottoproduceex-
planationsthatareaccepted,butexplanationsthat
arehonest.Thereisthusanecessarypreliminaryre-
flectiononthenatureofanhonestexplanation,as
opposedtoarhetoricalmovepermittingaquick-and-
easyacceptanceoftheprocedureanditsresults.The
secondistheimportanceofunderstandingnotonly
10ibid81
12IsaacLageetal,‘AnEvaluationoftheHumanInterpretabilityof
Explanation’(2018)NIPSConference32,Montréal,Canada
13SandraWachteretal,‘CounterfactualExplanationWithout
OpeningtheBlackBox:AutomatedDecisionsandtheGDPR’
(2017)31HarvardJournalofLawandT echnology842
14SandraWachteretal,‘ExplainingExplanationsinAI’(2019)ACM
FAT*19Conference
Delphi4|2019165 TheRighttoAnExplanation
thequestionsthatareaskedbutalsothequestions
thatshouldbeasked.Ifweonlyfocusontheques-
tionsthatarecurrentlyasked,wewillreproducethe
currentbiasesofadministrativepower,wherecer-
tainpopulationshavelittleknowledgeorunder-
standingoftheirrights,littlecontactwithadminis-
trativeinstitutions,orevenahostilerelationwith
them.Thosepopulationsareunlikelytoaskques-
tions,ortoaskthequestionsthatwouldbetrulyhelp-
fultothem.Itisthedutyoftheadministrationtobe
pro-active,toreachouttomarginalisedpopulations,
andtomakeanormativeefforttoguessthekindof
explanationsthatcouldtrulyhelpalloftheaffected
individuals.Thisrequiresadeepnormativereflec-
tiononthefunctionsoftheadministration,itsideal
relationtothepopulationitissupposedtoserve,and
theroleofexplanationinthosefunctionsandrela-
tions.
IV .Floridi'sObjectionsAgainstthe
RelevanceofCounterfactualsforthe
RighttoanExplanation
Inarecentpaper,Floridietal15stronglyobject
againstaparticularmethodtoimplementtheright
toanexplanation,iecounterfactualreasoning.Coun-
terfactualreasoningisaphilosophicalnamefor‘what
wouldhappenif...’reasoning.Answeringthoseques-
tionsisobviouslycrucialtounderstandtherole
playedbyvariousfactorsinadecision,andtoem-
powercitizenswiththeabilityofstrategicadapta-
tion.Assuch,theyareavitalpartofvirtuallyanyin-
centivepolicies:citizenscannotadapttheirbehav-
iourtoincentivesiftheydon'tunderstandwhat
wouldhappeniftheyadopttheincentivisedbehav-
iour.Ifitwouldturnoutthatitisimpossibletouse
counterfactualreasoningforcomplexalgorithmic
systems,thentherelevanceoftherighttoanexpla-
nation,ifitwouldnotbecompletelyannihilated,
wouldbedrasticallyreduced.
ItispreciselythepointmadebyFloridietalin
theirrecentpaper,whicharguesthatcounterfactual
explanationswouldprovideverylimitedinter-
pretabilitytothepublicorthetechnicalcommunity .
Counterfactualexplanationscouldactuallybeused
togeneratea‘scroll-downmenu’ofexcusesforille-
galdecisions:insteadofadmittingtheuseofanille-
galfactorx,suchasgender,theculpritcouldchoose
amongnumerous,innocuousfactorstoprovidefake
explanations,suchas‘yourloanwouldhavebeen
grantedifyouhadhigherincome’.Counterfactual
reasoningwouldthenbeinefficientatbest,andtox-
icatworst,andthesamecouldbesaidinalargepart
fortherighttoanexplanation.
Firstofall,thisisactuallyagenericproblemofle-
galexplanation.Acompetent(andshrewd)legalex-
pertisabletoprovideexplanationsfordecisionsthat
makethemlookcompliantwiththelaw,evenifthe
actualreasonsforthedecisionsareillegal.Thatis
particularlyproblematicforindividualdecisions,as
itisthenimpossibletouseordinarystatisticaltools
todemonstratethepresenceofbiases.
Inthecaseofhumandecisions,wedonothaveac-
cesstotheprivacyofanindividual'sbrain:human
decisionsarethusbynatureopaque.Moreoftenthan
notwedonothaveaccesstotheoraldeliberationsof
agivengroup,whichreducestheirtraceability.Ask-
ingforanexplanationisthusprimarilyameansof
pressure,asaremanyinterrogationtechniques:the
personsinchargeofprovidinganexplanationwill
havetocommittoastory,whichmightbedeemed
implausiblethroughfurtherquestioningorthedis-
coveryofnewevidence.Thispressureactsnotonly
asawaytodiscoverwrongdoings,butalsoasade-
terrenttoillegalbehaviour.Thepowerofsuchatool
isofcourselimited,andsomeculpritsmightgetaway
withanillegaldecisionbutagain,that'sagenericle-
galproblem.
Hasthesituationchangedwithautomateddeci-
sion-making?Itisherenecessarytodistinguishbe-
tweencases.Inthemostfavorablecasesthesituation
isalteredforthebetter,asforsomecomputersys-
temswedohaveaccesstothetruereasonsofadeci-
sion.Automateddecisionsystemscanbeprobedin
waysimpossibleforthehumanmind,andiftheright
technicalconditionsofhumaninterpretabilityand
traceabilityaremet,wemighthavedirectaccessto
thetruemotivationsofagivendecision.Moreover,
Floridietal'sobjectionseemstobefoundedonasce-
nariowhereanexplanationcouldalwaysbefreely
chosenfromascroll-downmenuofexcuses.Ifthat
isobviouslyintherealmofpossibility,theextraction
ofthereasonsforautomateddecisionsmightbe
15LucianoFloridietal,‘FromWhattoHow:AnInitialReviewof
ReviewofPubliclyAvailableAIEthicsTools,MethodsandRe-
searchtoTranslatePrinciplesintoPractices’(ArxivPreprint,2019)
<https://arxiv.org/ftp/arxiv/papers/1905/1905.06876.pdf>ac-
cessed30January2020
Delphi4|2019 166TheRighttoAnExplanation
madebyatrustedthirdparty ,possiblyasecureded-
icatedpieceofsoftware,thatwouldactuallywarrant
againstsuchmaneuvers.Inthosecases,therightto
anexplanation,andinparticulartheexplorationof
counterfactuals,wouldevolveinadirectionopposite
tothescenarioexploredintheirpaperinfavorof
moretransparencyandaccountability.Ifitcouldbe
usedtoautomatetheartofexcuse-makingandfor-
malcompliance,automateddecision-makingcould
alsobeusedtoincreasetraceabilityandwarrantthe
accesstogenuineexplanationsandcounterfactual
reasoning.Theallegeddefectofcounterfactualrea-
soningisthusjustadefectofaparticulartechnolog-
icalscenariowhichcouldbeactivelyprevented.
Someothercasesmightofcoursenotbeasfavor-
able.T echnicalconditionsoftraceabilitymightnot
alwaysbemet,evenifthelegislationshouldencour-
ageapositiveevolutiontowardstraceabilitywhen-
evertherighttoanexplanationapplies.Insomecas-
es,thedecisionmightnotbeentirelyautomated,
whichcouldaddmoredegreesoffreedomforacul-
prittomakeupafalseexplanation.Inothercases,
thewilltoexplainanactualdecisionortoexplore
counterfactualdecisionsmightfacethechallenges
raisedbyopacity,makinganindividualdecisionhard
toexplainevenfortheexpert,butthatwouldnotnec-
essarilymakeiteasiertogeneratefakecounterfactu-
als.
Furthermore,Floridietal'sargumentseemstoas-
sumethatforavastmajorityofdecisionsy,itwillbe
possibletofindanarrayoffactorsx0,...,xn-1inorder
toformulatecounterfactualargumentssuchas‘you
wouldhavehadthepositionifyouhadcollegeedu-
cation’or‘youwouldhavebeenconsideredifthis
wereaseniorposition’.Itistheavailabilityofsuch
factorsthatmaketheproductionofexcusespossible,
hidingthetrue(andpossiblyillegal)decisionfactor
xjbehinda‘just-so’story.However,weseenoreason
toassumesuchapossibilityinthevastmajorityof
cases,anditsexistenceisanotherinterestingtopic
forempiricalinvestigation.Furthermore,thosedeci-
sionfactorsmighthaveapre-determined,hierar-
chisedinfluenceonagivenoutcome.Agoodexpla-
nationwillalsoprovidetheuserwiththatinforma-
tion,makingherhardertofoolwitha‘just-so’story.
Forinstance,shemightknowthathervaluesfortwo
factorsareenoughtograntherapositivedecision,
nomatterwhattheothervaluesmightbe.Shemight
alsoknowthatanotherapplicantwithsimilarvalues
hasbeenaccepted,makingherresistanttofakeex-
planations.Itisthusimpossibleinthegeneralcase
topickanyfactortojustifyanydecisionyouwish.If
counterfactualexplanationsaremixedwithexplana-
tionsofthecausalrelevanceofeachfactor,asisthe
caseinsomecurrent‘blackbox’explanationap-
proaches(seereferencesabove),itwillbemuchhard-
ertogeneratefakeexplanationsatwill.Floridiand
al'sobjectionmistakesagainthepeculiaritiesofsome
scenarioforanessentialfeatureofcounterfactualex-
planations.Combinedwiththerelevantinformation,
counterfactualreasoningcouldbeameanstoresist
disingenuousexplanationsinsteadofameanstogen-
eratethem.
V .Conclusion
ThediscussionofAIassisteddecisionmakingand
explainabilityshouldnotgetstuckintoacrudeop-
positionbetweenrespectofrightsandefficiency .Ex-
planationsarenotadecorativefeatureofbureaucrat-
icprocedures:theyareamajorcommunicationchan-
nelbetweengovernmentanditscitizens,andfor
manyofthosecitizens,theonlychanneltheyhave.
Explanationsallowtoincreasecitizens'awarenessof
theirrightstoopennewopportunities,tocorrectmis-
takesandtoincentivisebehaviour.
Itisalltooeasytobedismissivewiththerightto
anexplanation.Therightisbynomeansasufficient
warrantofafairalgorithmicsociety ,anditcouldeas-
ilybepervertedandemptiedofitstruemeaningin
practice.However,itiswithoutadoubtanecessary
componentofafairalgorithmicsociety.Ithastobe
consideredintherightlegalandtechnicalcontextto
beassessedfairly ,andavoidmistakingthefeatures
ofaparticularscenarioforessentialfeaturesofthis
right.Dismissingtherighttoanexplanationinthe
discussionofalgorithmicfairnesswouldbeaterri-
blemistake,asitwouldleaveoutofpublicsighta
rightwhichneedscarefulinterpretation,vigorousen-
forcementanddedicatedtechnicalworktobearits
fruits.
Delphi4|2019167 TowardsanIndexofDigitalResponsibility
AIGovernance:DigitalResponsibilityasa
BuildingBlock
TowardsanIndexofDigitalResponsibility
EvaThelisson,Jean-HenryMorinandJohanRochel*
TherapiddevelopmentofAI-basedtechnologiessignificantlyimpactsalmostallhumanac-
tivitiesastheyaretiedtoalreadyexistingunderlyingsystemsandservices.Inordertomake
surethatthesetechnologiesareatleasttransparentifnotprovablybeneficialforhuman
beingsandsocietyandrepresentatrueprogress,AIgovernancewillplayakeyrole.Inthis
paper,weproposetoreflectonthenotionof‘digitalresponsibility’toaccountfortherespon-
sibilityofeconomicactors.Ourobjectiveistoprovideanoutlineofwhatdigitalresponsi-
bilityisandtoproposeaDigitalResponsibilityIndextoassesscorporatebehavior.Wear-
guethataDigitalResponsibilityIndexcanplayacentralroleinrestoringtrustinadata-
driveneconomyandcreateavirtuouscircle,contributingtoasustainablegrowth.Thisper-
spectiveispartofAIgovernancebecauseitprovidesaconcretewayofquantifyingtheim-
plementationofAIprinciplesincorporatepractice.
I.Introduction
AItechnologiesnowunderliealmostallsystemsand
servicesusedintransforminghowwelive,learn,
work,engage,vote,socialise,travel,help,etc.AItech-
nologiessufferfromalackoftransparency,which
raisesthequestionofhowliabilityriskswillbetak-
enintoconsiderationbypolicy-makers.1Inaddition,
companiesleveragingtheunderlyingdataarebuild-
ingempiresconcentratingpoweroverpeopletoa
levelneverachievedbefore.2Thisbecomesallthe
moresignificantasafewactorsdominatingthemar-
ketholdthedataofbillionsofpeople,potentiallyin-
fluencingtheirlivesandpractices.Aprominentex-
ampleisFacebook,whichinbarelytenyearsrose
frombeinganinternalcollegedatingsitetothe
biggestglobalsocialnetworkserviceeverbuiltwith
almostonethirdoftheworldpopulationbeingreg-
isteredandsharingtheirmostintimateinformation.3
Corporateresponsibilityisaconceptlargerand
olderthanthatappliedinthedigitalfield.TheUNC-
TAD(UnitedNationsConferenceonTradeandDe-
velopment)hasdiscussedformorethan25yearsthe
SocialResponsibilityofT ransnationalCorporations
withallstakeholdersinvolved(Governments,Corpo-
rations,CivilSociety,etc.).Thispaperwillfocuson
digitalresponsibilityonly.Thisisaveryimportant
conceptinevermoredigitalizedsocieties.Inboth
caseswehavesimilardimensions:politics,ethics,le-
galissues,humanrights,finance,geopolitics,etc.
AIplaysanimportantroleinthedigitalizationof
oursocieties.Thistransitionisanongoingprocess
weneedtocopewithandorganiseamongstdiffer-
entstakeholderstoachieveabalancepreventingone
stakeholderfromdominatingtheothersattheirex-
pense.Broadly ,weidentifythreemajorstakeholders:
privatecompanies(industry),publicauthorities
(state)andindividuals(society).7Implementing
DOI:10.21552/delphi/2019/4/6
*EvaThelisson,MassachusettsInstituteofTechnology,MITCon-
nexionScienceLab,Boston,USA,Co-FounderoftheAITrans-
parencyInstitute.Forcorrespondence:<evathelisson@proton-
mail.com>.
Jean-HenryMorin,InstituteofInformationServiceScience(ISS),
CentreUniversitaired’Informatique(CUI),GenevaSchoolof
SocialSciences,UniversityofGeneva,Geneva,Switzerland.For
correspondence:<jhmorin@unige.ch>.
JohanRochel,FacultyofLaw,UniversityofZürich;ethix-Labfor
InnovationEthics,Zurich,Switzerland.Forcorrespondence:
<johan.rochel@gmail.com>.
1IriaGiuffrida,‘LiabilityforAIDecision-Making:SomeLegaland
EthicalConsiderations’(2019)88F ordhamLRev439
2JamesEBessen,‘ThePolicyChallengeofArtificialIntelligence’
(2018)CPIAntitrustChronicle,BostonUnivSchoolofLaw ,Law
andEconomicsResearchPaperNo18-16
3RogerMcNamee,Zucked:W akingUptotheF acebookCatastro-
phe(HarperCollins2019)
Delphi4|2019 168TowardsanIndexofDigitalResponsibility
checksandbalanceswhichenableeconomicgrowth
andinnovation,whilefosteringtherespectofdemo-
craticandhumanvaluesandprinciplesisthecore
purposeofdesigningwhatiscalled‘AIgovernance’.4
Inthisgovernancescheme,weneedstronglegal
andregulatoryframeworks.Ex-antemechanisms
mightconcernpre-authorisationbysafetyauthori-
tiesforhighriskproductsandservices.Ex-postmech-
anismspertaintosafeguards(egprivacyandhuman
rightsimpactassessments)andeffectiveremedies
(egclassactions)toprotectindividuals’rightsen-
ablingasustainabledigitalsociety .TheEUhasgiv-
enastrongsignalinthisdirectionwiththeGeneral
DataProtectionRegulationreform(GDPR)basically
applyingtoallstatesaslongasthedataconcernsEU
datasubjects.TheEUGuidelinesonAITrustworthi-
nessareanotherexampleofthispoliticalwilltoco-
operateattheEUlevelandtoengageinasustainable
andresponsiblewayintheuseofartificialintelli-
gence.AttheOECDlevel,thePrinciplesonArtificial
IntelligencesetstandardsforAIandpromoteartifi-
cialintelligencethatisinnovativeandtrustworthy
andthatrespectshumanrightsanddemocraticval-
ues.InJune2019,theG20adoptedhuman-centered
AIPrinciplesthatdrawfromtheOECDAIPrinciple.
TheIEEEisalsodevelopingethicalstandardsmain-
lyforintelligentandautonomoussystems.
AspartofthisAIgovernancescheme,wealsoneed
toconsiderprivatecompaniesasduty-bearers.But
howshouldprivatecompaniesdefinetheirrespon-
sibility?Wearguefortheneedtointroduce‘digital
responsibility’asacriteriatoapproachtheresponsi-
bilityofcompanieswithrespecttodigitalmatters,
andAIinparticular.Wewillshowhowthisconcept
mightbeusedasanoperationalisingconceptforcor-
porateresponsibilitytocontributetoasustainable
andhuman-centereddigitalsociety.Thisapproach–
focusedontheresponsibilityofcorporations–isthe
waywethinkwewillhavethebestchancetocon-
tributetotheissueasitiscomplementarytodevel-
opingstronglegalandregulatoryframeworks.
Thiscontributionisorganisedasfollows.First,we
willpresentanddiscusstheconceptofresponsibili-
tyandtheirbearerswithaparticularfocusonthe
corporatesector.Secondly,wewillintroducedigital
responsibilityandproposeawayofclassifyingits
components.Thirdly,wewilloutlineatentativede-
signofadigitalresponsibilityindexanddescribe
howitcouldbeusedinawaytohelporganisations
bothassesswheretheystandandhelpthemprogress
onapathtowardsimprovingtheirdigitalresponsi-
bility.
II.ResponsibilityinGeneralandits
RelationtotheDigitalRealm
Inordertodefine‘digitalresponsibility’wemustfirst
understandresponsibilityingeneralbeforeaddress-
ingthespecificfeaturesofdigitalresponsibility.Ina
nutshell,theconceptofdigitalresponsibilityrepre-
sentsaspecificcategoryoftheconceptofresponsi-
bilityusedinmoralphilosophy.
Wefocusonaspecifictypeofresponsibilityhold-
er,namelycompanies.5Inthecompany-focusedlit-
erature,digitalresponsibilityisoftenunderstoodas
‘corporatedigitalresponsibility’,meaningakindof
digitalCorporateSocialResponsibility(CSR).6We
complementthisliteraturebytakingabroaderview,
highlightingthedifferentfundamentalmeaningsof
responsibilitybeforespecifyingwhatthesemean-
ingscouldmeaninthedigitalrealm.7Indoingso,
weputourapproachinthecontextoftheliterature
onresponsibleinnovation.8Thisapproachappears
4UrsGasserandVirgilioAFAlmeida,‘ ALayeredModelforAI
Governance’(2017)21IEEEInternetComputing6,58-62;Allan
Dafoe,‘AIGovernance:AResearchAgenda’(2018)Futureof
HumanityInstitute,UniversityofOxford;AlanFTWinfieldand
MarinaJirotka,‘EthicalGovernanceisEssentialtoBuildingTrust
inRoboticsandArtificialIntelligenceSystems’(2018)376Philo-
sophicalTransactionsoftheRoyalSocietyA:Mathematical,
PhysicalandEngineeringSciences2133,20180085
5Forasimilarapproach,MariarosariaTaddeoandLucianoFloridi
(eds),TheResponsibilitiesofOnlineServiceProviders(Springer
2017)
6ForaconceptualisationonCSRindigitaltime,focusingon‘new
waysofcommunicatingexistingissuesandnewresponsibilities
associatedwiththecorporateuseofdigitaltechnologies’,Geor-
gianaGrigoreetal,'NewCorporateResponsibilitiesintheDigital
Economy'inATheofilou,GGrigoreandAStancu(eds),Corpo-
rateSocialResponsibilityinthePost-FinancialCrisisEra(P algrave
Macmillan2017)43;SeealsoCThorun,'CorporateDigital
Responsibility:UnternehmerischeVerantwortunginderdigitalen
Welt'inGärtnerCandHeinrichC(eds),FallstudienzurDigitalen
Transformation(SpringerGabler2018)
7SeealsoSPelléandBReber ,'ResponsibleInnovationintheLight
ofMoralResponsibility'(2015)15JournalonChainandNetwork
Science107,111
8Onthisliterature,JobT immermansandVincentBlok,'ACritical
HermeneuticReflectionontheP aradigm-LevelAssumptions
UnderlyingResponsibleinnovation'(2018)SyntheseVincentBlok
andPieterLemmens,'TheEmergingConceptofResponsible
Innovation.ThreeReasonsWhyitisQuestionableandCallsfora
RadicalTransformationoftheConceptofInnovation'inBert-Jaap
Koops(ed),ResponsibleInnovation:Concepts,Approaches,and
Applications(Springer2015);Onthedistinctunderstandingsof
responsibilityatstakeininnovation,IbovandePoelandMartin
Sand,'VarietiesofResponsibility:TwoProblemsofResponsible
Innovation'(2018)Synthese1
Delphi4|2019169 TowardsanIndexofDigitalResponsibility
tobeconceptuallymoresolidandoffersacompre-
hensiveoverviewoftheimplicationsofresponsibil-
ityinthedigitalrealm.
1.ResponsibilityinGeneral
Responsibilityisoneofthemostfundamentalissues
addressedinmoralandpoliticalphilosophy .9The
concepthasgivenrisetoabundantliteratureindi-
versephilosophicaltraditions.Wefocusontwoim-
portantaspects:distinguishingbetweendistinct
meaningsofresponsibility ,andbrieflyaddressing
thequestionofwhichentitycouldbearresponsibil-
ity.
Inshort,themainideaofresponsibilitycouldbe
summarisedinthefollowingway:whenapersonor
anentityperformsorfailstoperformamorallysig-
nificantaction,wethinkthataparticularkindofre-
sponseiswarranted.Thisrelationbetweenwhathas
beendoneorshouldbedoneandthespecificre-
sponseiswhatwegraspwiththeideaofresponsibil-
ity.
Thisideaofresponsibilityonlymakessenseifone
essentialconditionisfulfilled.Thisconditionrefers
tothefreedomapersonoranentityneedstohave
whenperformingaspecificaction.Thiscondition
mightbefurtherspecifiedashavingthecapacityto
actdifferently.Iftherewasnootheroptionforhow
toact,thequestionofresponsibilitycannotberaised
inthesameway.Itshallbemadeclearthatthe‘free
will’questionaboutdeterminismloomslargeinthis
debate.10Wecanaddtothisfreedom-conditiona
knowledge-condition.Inspecificsituations,thequal-
ityofknowledgeavailablewhenmakingaspecific
decisionmighthaveafundamentalimpactwhenit
comestoassessingwhetheranagent’sresponsibili-
tyisengaged.Insituationswhereitwasimpossible
toknowthekindofharm(whichwouldbe)done,we
needtoadjustthekindofresponsibilityatstake.
Ofcourse,thisquestionofhavingthecapacityto
actdifferently ,orthebenchmarkusedtoassess
whetherenoughknowledgewasavailableisultimate-
lyasocialquestion.Itdependsonthecontextin
whichthesituationoccurs.AIsystemsmakethede-
batemorecomplex.Theseelementsemphasisethat
ourunderstandingofresponsibilityisalwaysdefined
inaspecificcontext.Areaction-orabsenceofreac-
tion-inturnfurtherdefinesthiscontext.Asputby
Eshleman,‘throughthereactiveattitudes(egresent-
ment)wecommunicatetofellowmembersofthe
moralcommunityourinterpersonalexpectationsfor
areasonabledegreeofgoodwill.11
Weneedtobrieflyaddresstheissueofthetypeof
agentthatcouldbesaidtobearresponsibility.Ifwe
assumethatahumanbeingmightbearthistypeof
responsibility,thequestionismorecomplicatedfor
acompany .Broadly,twoconditionsneedtobeful-
filled.
Thefirstonepertainstotheidentificationofa
companybeingabletocarryoutanaction.Thiscon-
ditionhelpstodistinguishanorganisedcompany
fromthemereaggregationofindividuals.Itcouldbe
describedandmeasuredbyobservinginternaldeci-
sion-makingproceduresorrepresentationmecha-
nisms(executives,boardmembers,etc.).Thesecond
onepertainstotherequiredqualityofthedecision
takenbythecompany.Itmirrorsandqualifiesthe
‘freedom’conditionmentionedaboveforthecaseof
humanbeings.Thedecisionstakenbythecompany
mustshowacertaindegreeofrationality.Itmustbe
abletopursuesomethingandtotakereasonsintoac-
count.
Inthecontextofthispaper,weassumethesetwo
conditionsarefulfilledinthecaseofstandardcom-
panies.Togiveanexample,theseconditionsmight
bearguableinthecaseofadecentralisedau-
tonomousorganizationonablockchain.Itisnotclear
whetherafullydecentralisedorganizationfulfillsthe
conditionsrequiredtobeabletobearresponsibili-
ty.12
2.TwoUnderstandingsofResponsibility
Assumingthattheconditionoffreedomisfulfilled,
wecandistinguishbetweentwotypesofresponsibil-
ity:negativeandpositiveresponsibilities.13
9Foranoverview,AndrewEshleman,'MoralResponsibility'(2014)
StanfordEncyclopediaofPhilosophy
10Forreferences,MatthewT albert,'MoralResponsibility'(2019)
StanfordEncyclopediaofPhilosophy1.
11Eshleman,'MoralResponsibility'(2014)StanfordEncyclopediaof
Philosophy2.2
12Foralegalperspectiveonthisissue,DanielKraus,ThierryObrist
andOlivierHari,Blockchains,Smartcontracts,Decentralised
AutonomousOrganisationsandtheLaw(EdwardElgarPublishing
2019)
13Forasimilardistinction,PelléandReber ,'ResponsibleInnovation
intheLightofMoralResponsibility'(2015)15JournalonChain
andNetworkScience107111
Delphi4|2019 170TowardsanIndexofDigitalResponsibility
Negativeresponsibilityidentifiesactsoromis-
sionswhichshouldnotbecarriedout/shouldnot
havebeencarriedout.Inanutshell,itisaboutpre-
ventingharm.Thisunderstandingofresponsibility
islinkedtoconceptssuchasblameworthiness,liabil-
ityoraccountability .Itlegitimatesfaircompensation
inordertorepairdamageaposterioriandtopunish
theoriginatorofthenegligenceorthefault.14Itis
usedforbothindividualsandcompanies.Negative
responsibilityputsaclearfocusonthecausalrole
playedbyanagentincarryingoutanaction.Itisof-
tenusedinthecontextofidentifyingpastwrongdo-
ings.Byanticipatingfuturereactionslinkedtoaspe-
cificactoromission,negativeresponsibilitycouldbe
usedtoassessdecisionsmadeinthepresent(seebe-
lowthefurtherdistinctionbetweenprospectiveand
retrospectiveresponsibility).
Whenreferringtothisnegativeresponsibility ,we
needtoaddressthefollowingquestions:
–Whichvalue(s)areusedtodeterminethetypesof
harmwhichgenerateresponsibility?
–Whichkindofbenchmarkisusedtoassessone’s
contributiontothisharm?
–Howshouldthetypeandextentofcompensation
bedetermined?
Thepositivedimensionofresponsibilitysharesa
maininsightofthenegativedimension:itlinksthe
behaviorofanagenttoaparticularsituationinthe
world.However,unlikethesituationdescribed
above,itfocusesonamorallyrelevantsituationthat
isnottheresultofthecompany’saction.Itputsthe
focusonthecapacityofanagent(freedomand
knowledge)topursueaspecificcourseofactionfor
thesakeofaddressingamorallyrelevantsituation.
Whenweascribepositiveresponsibilitytoanenti-
ty,wedonottellacausalstoryabouttheentity.In-
stead,wespecifywhatthisentityshouldbedoingin
theworld.AsputbySmiley ,positiveresponsibility
isusedtodistributemorallaborforfuturedeci-
sions.15
Agoodexampleofthispositiveresponsibilityis
inspiredbyPeterSinger’s‘childdrowning’thought
experiment.16Whilejogginginthepark,younotice
achilddrowninginapond.Itiscompletelysafefor
youtostepintothewaterandtakethechildoutof
it.Inthisexample,yourresponsibilitytoactappears
tobefullyengaged.Bytakingaction,youmightpre-
ventamorallydisastroussituation(thechild’sdeath),
withouttakingmajorrisksforyourself.Thesitua-
tionhereisabsolutelyclear:youaretheonlyoneable
tohelpthechild.Thedistributionofresponsibility
upondiverseagentsisnotanissuehere.Similarly,
themoralurgencyofthesituationisindisputable.A
numberofagentsmightberesponsibleforcontribut-
ingtosolvingaspecificproblem.Furthermore,the
assessmentoftheproblematstakemightbeitself
disputed.
Whenreferringtothispositiveresponsibility,we
needtoaddressthefollowingquestions:
–Whatis/arethemoralvalue(s)usedtodescribethe
morallyrelevantsituationatstake?
–Ifthemoralvalue(s)collide(s)withanotherone,
whataretheirrelativepriorities?
–Ifdiverseagentsshouldaddressthismorallyrele-
vantsituation,whatisoneagent’sfairshare?
–Whoplayedacausalroleforthecreationofthe
morallyrelevantsituationinthefirstplace?
–Doparticularpracticalelementsimpactonan
agent’sresponsibility,suchasaspecificcapacity
toaddressthesituationordetrimentalconditions
(egcosts)?
Determininganagent’spositiveresponsibility
shouldbeunderstoodasanongoingprocess.17As
forthenegativeresponsibility,thisprocessisimpact-
edbyanddoesitselfimpactthesocialcontextin
whichittakesplace.Thisismostclearlythecasewith
theassessmentofthemoralvalueofthesituationat
stakeandthedefinitionofwhatisseenasa‘prob-
lem’.
a.ProspectiveandRetrospectiveResponsibility
Anotherconceptoftheoreticalvalueisthedistinc-
tionbetweenretrospectiveresponsibilityand
prospectiveresponsibility.Bothdimensionsclearly
applytotherealmofdigitalresponsibility.Whileret-
rospectiveresponsibilityhastodowiththequestion
whichresponsibilityanactorbearsforanaction(or
omission)inthepast,prospectiveresponsibilityis
14PoelandSand,'VarietiesofResponsibility:T woProblemsof
ResponsibleInnovation'(2018)Synthese1
15MarionSmiley,'CollectiveResponsibility'(2017)StanfordEncy-
clopediaofPhilosophy§7
16PeterSinger ,PracticalEthics(CambridgeUniversityPress1980)
17PelléandReber ,'ResponsibleInnovationintheLightofMoral
Responsibility'(2015)15JournalonChainandNetworkScience
107113
Delphi4|2019171 TowardsanIndexofDigitalResponsibility
aboutactionstobetaken(ortobeomitted)inthefu-
ture.Addingthesetwodimensions,aconceptual
frameworkofthenotionofresponsibilitycanbepre-
sentedasinT able1.
b.DigitalResponsibilityinParticular
Thesetwounderstandingsofresponsibilitymightbe
appliedinthedigitalrealm,representingwhatwe
willcall‘digitalresponsibility’.Hereagain,somedis-
tinctionsareusefulinstructuringthedebate.Firstly,
responsibilitymightbeusedtoaccountforclassical
issuesofbusinessethicsinthedigitaleconomy .The
issuesarewellknownandare‘simply’foundinadif-
ferentsetting.18Inthesecases,digitalcompanies
needtoaddresssimilarcriticismsasothertypesof
companies.Thefactthattheydevelopandselldigi-
taltechnologiesdoesnotpreventthemfrombeing
caughtupinquestionablechoicesregardingforin-
stancetaxes,bribing,corruption,thebehaviorsof
theiremployees.Inthissense,digitalresponsibility ,
understoodastheresponsibilityofdigitalcompa-
nies,isthesameastheresponsibilitywhichother
typesofcompanieshave.
Secondly,andmoreimportantlyforthispaper,
newusesandactionsmadepossiblebydigitaltech-
nologiesmightcreatenewresponsibilities.Thisis-
sueisofcrucialimportanceascompaniesaretaking
noteofthegrowingawarenessoftheirclients,and
morebroadlyofthepublic.Whatisrequiredisto
structurethedifferentfieldsofthisnewdigitalre-
sponsibilityandinvestigatewhichvaluesareatstake.
III.DecomposingDigitalResponsibility
initsConstituencies
Ifthecompany’sresponsibilityisourmainfocus,we
needtodistinguishbetweenthedistincttargetcate-
goriesofactorswhichthecompanyisresponsiblefor
(its‘constituencies’).19Eachcategorymayhavedif-
ferentorsometimesevenopposinggoalsdepending
ontheethicalconflicts,potentiallyleadingtocon-
flictingoutcomes.Letusconsidertwobasicinitial
categories,definedalongtheirrelationstowardsthe
company.
Digitalservicesandproducts:thiscategorycon-
sidersallactorsdirectlyorindirectlyaffectedbythe
digitalservicesandproductsdevelopedbyacompa-
ny.
–Customers/users:Thiscategoryincludesindividu-
alswhouseadigitalservice/product.Theyhavea
directinterestindigitalresponsibility ,forexam-
pleintermsofprivacyanddataprotection,orthe
responsibledesignofsystemsandservices,etc.
–Society:Inthiscategory ,theactions/omissionsof
acompanymaynegativelyimpactsocietalandeco-
nomicqualitiesoflife(egcloudcomputingstrat-
egy).
18Grigoreetal,'NewCorporateResponsibilitiesintheDigital
Economy'inTheofilou,GrigoreandStancu(eds),Corporate
SocialResponsibilityinthePost-FinancialCrisisEra(Palgrave
Macmillan2017)49
19Forasimilarreflection,Klaus-DieterAltmeppenetal,'Öf-
fentlichkeit,VerantwortungundGemeinwohlimdigitalenZeital-
ter'(2019)64Publizistik59,67
Table1:ResponsibilityConceptualFramework.Source:Authors'elaboration
Negative
responsibility
Positive
responsibility
Retrospective
responsibility
Addressproblemscreatedbythecom-
panyinthepast
=>repairandcompensate
Addressproblemswhichthecompanyhadnotcreated,but
whichrepresentedamoralurgency
=>contributetoreducingtheharmfulconsequencesofthe
actionsofothers
Prospective
responsibility
Addressproblemswhichthecompa-
nycouldcreatenowandinthefuture
=>prevent
Addressproblemswhichthecompanydoesnotfocusitsac-
tionson,butwhichmightrepresentamoralurgency ,eg
withregardtotheenvironmentinwhichthecompanyacts
=>contributetopreventingtheharmfulconsequencesof
theactionsofothers
Delphi4|2019 172TowardsanIndexofDigitalResponsibility
–Governanceofthecompany:Thiscategoryconsid-
ersallindividualsorentitiesdirectlyaffectedby
thedigitizationofthecompany .Itmeansthatit
alsoappliestocompanieswhichdonotproduce
digitalservicesorproducts.
–Employees:Thiscategoryincludesindividualsin
asituationofemploymentwithinthecompany.
Theyhaveanindirectinterestintheoutcomeof
digitalresponsibilityintermsoftrainingand
skills,qualityofworkplace,valuealignmentwith
themanagementetc.
–Shareholders/owners:Thiscategoryincludesindi-
vidualsorentitiesholdingashareorwhoarethe
ownersofthecompany.Theirfocusmaycoveris-
suesofgovernance,technologywatch,planning
forskills,revenue,etc.
–Suppliersandsubcontractors:Thiscategoryin-
cludesallthirdpartycommercialentitiesworking
withthecompanytodeliveritsproductsandser-
vices.Dataaccessandjointliabilitywiththedata
controllerarekeyconcerns.
Wewillnowconsiderthedifferentthematicdimen-
sionsofdigitalresponsibilityandapplyeachofthese
dimensionstothedifferentconstituencies.Follow-
ingthis,thesedimensionsarematchedwiththecon-
stituencies,fromtheperspectiveofbothnegativeand
positiveresponsibility(seeFigure1).
1.SecuringAutonomyandPrivacy
Artificialintelligencesystemsshouldbedesigned,
implementedandbroughttothemarketrespecting
thevaluesofautonomyandprivacy .Thecrucialca-
pacityofhumanbeingstofreelytakedecisionsand
actaccordingtothemshouldberespected.Thisca-
pacityrequiresaprotectedpersonalsphere,asde-
tailedintheGeneralDataProtectionRegulationand
theConvention108oftheCouncilofEuropeandits
protocol.
2.RespectingEquality
Forcompaniesactiveinademocraticandliberalen-
vironment,thevalueofequalityamongindividuals
iscrucial.Thisvaluerepresentsanidealforsociety:
everyindividualshouldberecognisedasequallyim-
portanthumanbeings.Thisequalityisunderstood
hereasabasicmoralequalityamongallhumanbe-
ings.Thisraisesthekeyquestionforeverypolicyre-
gardingequality:whichfeaturesofbeinghumando
wewanttoprotectfrombeinggroundsfordiscrim-
ination?Somegroundsfordifferentialtreatmentare
legitimate,whileothersarenotconsideredassuch.
Fromthisveryfundamentalunderstandingofequal-
ity,wemightformulateandjustifymorespecificde-
mands(economicequality ,equalityofopportunities,
etc.).Algorithmictoolsraisenewchallengesregard-
ingsocialjusticeandequality,duetothekeyroleof
datasetsquality.Ifthedatasetsarenotrepresentative
ofthepopulationofacountry ,thentheproductor
servicebasedonthetrainingdatamaynotworkfor
somecategoriesofpersonsandbeharmfulforthem
(egacancerdiagnosissystemnotworkingforblack
people).20
3.DealingwithData
Digitaltechnologiesmakepossible,contributetoand
takeadvantageofthe‘dataification’oftheworld.Al-
mosteveryaspectofourindividualandcollective
livesmightbeexpressedanddocumentedintheform
ofdata.Respectingprivacyandautonomyrequires
consent-basedandproportionatedatacollection,
storage,useandtransfer.Consentshouldbein-
formedandexplicit,basedonfullinformationasto
thetype,scopeandpurposeofthedatabeingcollect-
ed.Dealingwiththesedatashouldrespecttheprin-
cipleofgoodfaithandduecare.21
4.DealingwithAlgorithms
Digitalresponsibilitydealswiththechallengesraised
bythewideuseofalgorithmsindifferentsettings.
Acrossallthesesettings,digitalresponsibilitycalls
fortheuseofalgorithmswhichrespectsafety ,auton-
omyand,moregenerally,theprincipleslinkedtothe
ruleoflaw.Thismeansinparticularthecapacityto
reconstructandexplaindecisionstakenbyalgo-
rithms.Italsomeanstheprecautionaryuseofalgo-
rithmsinsettingsespeciallysensitiveforautonomy.
20AdamConner-SimonsandRachelGordon,‘UsingAItoPredict
BreastCancerandPersonalizeCare’(2019)MITNews
21Inlatin,bonuspaterfamilias.
Delphi4|2019173 TowardsanIndexofDigitalResponsibility
Furthermore,digitalresponsibilitybearsuponthe
wideuseofalgorithminautomatingdifferenttasks
withinthecompany .EveniftheAIsystemisnota
decision-makingsystembutonlyassistshumanbe-
ingsinmakingdecisions,thereisariskthatprofes-
sionalsrelytoomuchondataanalyticswhichraises
adefactodelegationofresponsibilitytothesystem
(egradiology).
5.TakingImpactontheEnvironment
intoAccount
Digitaltechnologieshaveanimportantimpactonre-
sourcesand,morebroadly,ontheenvironment.22
Whilethisimpactmightbepositive(egdigitaltech-
nologiesreducingthegeneralconsumptionofre-
sources,suchasinsmartcityprojects),theuseof
thesetechnologiesrelyuponresourcessuchaselec-
tricity,space,watertocooldowndatacenters,butal-
soonspecificmaterialsusedintheproductionof
hardware(andtherecyclingthereof).
6.EnsuringaFairTransition
Digitaltechnologiesbringchangeswhichimpactin-
dividualsandsociety .Thisimpactmightbepositive,
butitmightalsobenegative.Companieshaveare-
sponsibilitytoidentify ,accompanythesechanges
andtoproactivelycontributetoasuccessfultransi-
tionenablingafairandsustainabledigitalsociety.
Onesolutioncouldbetoallocateasharetodatasub-
jectsasrewardforthedatacollectedandmonetised.
Thissolutionwouldaligntheinterestsofsharehold-
ersanddatasubjects,whosedataareanassetforcom-
panies.
IV .TheDigitalResponsibilityIndex:
TentativeDesignandPotentialUse
InTable2(seeAnnex),wepresentthesedifferent
dimensionsalongthedifferentconstituenciesand
thedistinctionbetweennegativeandpositivere-
sponsibility.T akentogether,theyformthecoreof
theDigitalResponsibilityIndex.Wearguethatcom-
paniesshouldusethisIndexasbothanassessment
andanimprovementmetric.Throughaself-assess-
mentapproach,companiescanassesstheirlevelof
maturityandeventuallyengageinanimprovement
processonthebasisoftheIndex.Intheabsenceof
recognisedformallegalframeworks,asoft-compli-
anceapproachmaybeappealingandcouldevenbe-
comeabusinessadvantageinanagewherecus-
tomersareincreasinglyputtingsustainabilityand
responsibilitypressureoncompaniesondigitalis-
sues.Self-assessmentmethodscombinedwithap-
proachesusingmaturitybasedmodelscanbecon-
sideredasvaluableforthecompanyinimproving
theirdigitalreadiness.Overall,theIndexhelpsbet-
terunderstandtheissuesandassesswherecompa-
niesstand,butalsotoprovidethemwithanimprove-
mentprocessshouldtheydecidetoincreasetheir
maturitylevel.
Concretely,ourpropositionistoformulateeachof
thenormativedesiderataentailedbytheIndexinthe
formofaquestionwhichthecompanyshouldaskit-
self.Eachquestionreceivesaweightaswellasacrit-
icalityindicatorwhichrepresentstheimportanceof
thequestionwithregardstotheoveralltopic.With
thesupportofanevaluationsystem,wededucea
summarydashboardpresentingthestrengthsand
weaknessesofacompanypolicy.Wededucefrom
thisdashboardsomechartspresentingthestateof
maturityofthecompanyorofaresearchprojectcom-
paredtoapredefinedthreshold(seeFigure1).Weal-
sodeduceaglobalscoring,aggregatingthedigitalre-
sponsibilityconstituentsintoapercentageindexfor
exampletoshowthematuritylevel.Thesecanbeor-
ganisedintocategoriesdependingonthefocus.This
wouldallowforagraphicalrepresentationinthe
formofaradarclearlyshowingthecoverageofthe
company.Wealsocombinethisapproachwithasim-
plematuritymodelrecommendingwhatisneeded
toengageandprogresstothenextlevelofdigitalre-
sponsibility.
Whilesuchanapproachmaybeveryusefulfor
privatecompanies,itmayalsohelpinshapingthe
debateondigitalresponsibilityoforganisationspri-
ortechnologytransfersofAI-basedsystemsinthe
market.Justaswithsocialresponsibility,ratingagen-
ciesoranalystsspecialisedininvestmentrecommen-
dationsmayusethesamecriteriatoaskthetough
questions.Thisalsohelpstoshowlargedigitalactors
thatsocietyismoreawareandsensitivetotheseis-
22MStuermer ,GAbu-TayehandTMyrach,'DigitalSustainability:
BasicConditionsforSustainableDigitalArtifactsandTheir
Ecosystems'(2017)12SustainabilityScience247
Delphi4|2019 174TowardsanIndexofDigitalResponsibility
suesinasimilarwayinwhichsocialresponsibility
madeitswayintothecorporateenvironmentover
time.
V .Conclusion
TheframingofanAIgovernanceschemeisaques-
tionfortheState(s)(inalegalandregulatoryway),
butitisalsoachallengeforprivatecompaniesact-
ingwithinthebroadernormativeframeworkofa
freemarketeconomy .Inordertoaddresstheirre-
sponsibility,wehaveoutlinedtheconceptofa‘digi-
talresponsibility’anddevelopedaDigitalResponsi-
bilityIndex.ThisIndexbringstogetherakeydistinc-
tionbetweennegativeandpositiveresponsibility,the
identificationofconstituenciesandthethematicdi-
mensionsofdigitalresponsibility.Alltogether,they
formtheIndex.ThisIndexmightbeusedasaself-
assessmenttoolforprivatecompaniesaswellasan
evaluationframeworkforlargecorporations.Aswe
alsothinkitisimportanttoallowimprovement,we
proposetheuseofmaturitymodelstohelpprogress
alongthevariouslevelstoultimatelyhelpreachalev-
elofbeingatrustworthyand‘digitallyresponsible
company’.
Figure1:DigitalResponsibilityIndexRadar
Source:AITransparencyInstitute
Delphi4|2019175 TowardsanIndexofDigitalResponsibility
Annex
Table2:EthosMatrix.Source:Authors'elaboration
Delphi4|2019 176TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019177 TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019 178TowardsanIndexofDigitalResponsibility
ContinuationofTable2:EthosMatrix
Delphi4|2019179 AIEthicsforLawEnforcement
AIEthicsforLawEnforcement
AStudyintoRequirementsforResponsibleUseofAIattheDutch
Police
LexoZardiashvili,JordiBieger,FrancienDechesneandVirginiaDignum*
Thisarticleanalysesthefindingsofempiricalresearchtoidentifypossibleconsequencesof
usingArtificialIntelligence(AI)forandbythepoliceintheNetherlands,andethicaldimen-
sionsinvolved.Welistthemorallysalientrequirementsthepoliceneedtoadheretoforen-
suringtheresponsibleuseofAIand,further,analysetheroleofsuchrequirementsforgov-
ernanceofAIinthelawenforcementdomain.Welisttheessentialresearchquestionsthat
can,ontheonehand,helptofleshoutmoredetailedcriteriafortheresponsibleuseofAIin
thepolice,andontheother,buildagroundworkforthehard-regulationinthelawenforce-
mentenvironmentoftheNetherlands.
I.Introduction
UndertheDutchPoliceLaw(Politiewet2012)thetask
oftheDutchpoliceistwo-fold:(1)toensuremain-
tainingtheruleoflawand(2)toprovideassistance
tothoseinneed.1Thepolicehaveaspecialroleinso-
cietythatinvolvesaconstitutionalrighttousevio-
lencefortheenforcementofthelaw.2Forthepolice
tofunctionandrealiseitsobjectives,societyhasto
deemthepoliceaslegitimateandtrustthatitisef-
fectiveinitstasks.3Inorderforthepolicetobetrust-
worthyintheirefficacy,theymustcontinuouslyin-
novatetoevolvewithdevelopments,stayaheadof
criminals’newstrategiesandcapabilities,andutilise
newmethodsandtechnologyforthefulfilmentof
theirtasks.4Inorderforthepolicetobetrustworthy
intheiruseofpower,thepolicemustdemonstrate
goodwillandrespectfortherightsofcivilians.The
NationalPolicegreatlyvaluesthetrustofDutchciti-
zens,whichwasmeasuredtobethehighestofany
measuredinstitutionin2017.5Itisimportanttore-
tainthistrust,alsowhenintroducingnewtechnolo-
giessuchasArtificialIntelligence(AI)thathavea
fundamentalimpactonthenatureoftheiroperations
andinteractionswithsociety.6
AIhasmanypotentiallybeneficialapplicationsin
lawenforcementincludingpredictivepolicing,auto-
matedmonitoring,(pre-)processinglargeamounts
ofdata(eg,imagerecognitionfromconfiscateddig-
italdevices,policereportsordigitizedcoldcases),
findingcase-relevantinformationtoaidinvestiga-
tionandprosecution,providingmoreuser-friendly
servicesforcivilians(egwithinteractiveformsor
chatbots),andgenerallyenhancingproductivityand
DOI:10.21552/delphi/2019/4/7
*LexoZardiashvili,LLM,PhDCandidateattheCenterforLawand
DigitalTechnologiesLeidenLawSchool,LeidenUniversity.For
correspondence:a.zardiashvili@law.leidenuniv.nl.JordiBieger,
MSc,Researcher/TeacherattheF acultyofTechnology,Policyand
Management,DelftUniversityofTechnology,andPhDCandidate
attheCenterforAnalysisandDesignofIntelligentAgents,Reyk-
javikUniversity.Forcorrespondence:<J.E.Bieger@tudelft.nl>.
FrancienDechesne,AssistantProfessorattheCenterforLawand
DigitalTechnologies,LeidenLawSchool,LeidenUniversity.For
correspondence:<f.dechesne@law.leidenuniv.nl>.Virginia
Dignum,AssociateProfessorattheFacultyofT echnology,Policy
andManagement,DelftUniversityofT echnology.Forcorrespon-
dence:<M.V.Dignum@tudelft.nl>.
1TheDutchPoliceLaw(Politiewet)2012
2JorisBoumans,‘TechnologischeEvolutiesinWetshandhavingen
Legitimiteit:TussenOptimismeenOnbehagen’(MScthesis,
TilburgUniversity2018)
3KeesvanderVijver,‘Legitimiteit,gezagenpolitie.Eenverkenning
vandehedendaagsedynamiek’inC.D.vanderVijverandF .
Vlek(eds),Delegitimiteitvandepolitieonderdruk?Beschouwin-
genovergrondslagenenontwikkelingenvanlegitimiteiten
legitimiteitstoekenning(Elsevier2006),15-133
4ibid
5CentraalBureauvoordeStatistiek,‘Meervertrouweninelkaaren
instituties’(CentraalBureauvoordeStatistiek28May2018)
<www.cbs.nl/nl-nl/nieuws/2018/22/meer-vertrouwen-in-elkaar-
en-instituties>accessed24September2019
6Boumans(n2)
Delphi4|2019 180AIEthicsforLawEnforcement
paperlessworkflows.AIcanbeusedtopromotecore
societalvaluescentraltopoliceoperations(human
dignity,freedom,equality,solidarity,democracy,and
theruleoflaw),but,ontheotherhand,valuescare-
fullyguardedinexistingoperationsandprocedures
mayalsobechallengedbytheuseofAI.
CurrentlythepoliceintheNetherlandshavebeen
usingAIinallapplicationsmentionedabove.Forex-
ample,the‘CrimeAnticipationSystem’(CAS)isan
internallydevelopedpredictive-policingtoolthat
aimstopredictcrimeswithstatisticsbasedondata
fromvarioussources.7‘Pro-Kid12-SI’(pronounced
“Pro-Kidtwelve-minus”)isarule-basedsystemfor
riskassessmentonchildrenagedbetween0-12years,
usednationwidebythepolicetopreventchildren
frombeinginvolvedinacrimeoranti-socialbehav-
iour.8TheOnlineFraudReportIntakeSystemuses
NLPtechniques,computationalargumentation(legal
informatics)andreinforcementlearningtoassist
civiliansinreportingthecrime.
Itisimpossibletoanticipatealltheeffectsofthe
useofAIinsociety ,andmorespecifically ,inthelaw
enforcementdomain.Therefore,itisessentialthat
adoptionanduseofanyapplicationbecontinuous-
lyevaluated,inorderfortheDutchpolicetoensure
policingpracticesinlinewiththevaluesacknowl-
edgedbytheDutchstateandtheEuropeanUnion.
Withthisgoalinmind,weconductedanempiri-
calstudytoidentifypossibleconsequencesofusing
AIfor,andbylawenforcementandtheethicalissues
thismayleadto.Onthebasisofthisresearch,we
haveco-writtenawhitepaperfortheDutchpolice:
‘AI&EthicsatthePolice:TowardsResponsibleUseof
ArtificialIntelligenceintheDutchPolice’(hereafter
Whitepaper).9Itdescribesthestate-of-the-artinAI,
howitcouldbenefitlawenforcement,andwhateth-
icalconcernswillneedtobeaddressedintheuseof
AIinordertosafeguardthelegitimacyofandtrust
inthenationalpolice.
II.OntheLawandEthics:TheRoleof
EthicsinLawEnforcement
Similartootherauthoritiesofthestate,thepolice
necessarilyoperatewithinaspecificlegalframe-
work.Thisframeworkincludesbutisnotlimitedto
preventingmisuseofpowers,conflictsofinterestand
discrimination,andisensuredthroughactiveac-
countabilitymeasures.Thepoliceorganisationinthe
Netherlandsiscommittedtoprotectfundamentalhu-
manrightsandtoensurerespectfortheruleoflaw.10
Thepoliceisdirectlyobligedtocomplywithdomes-
ticandinternationallegalinstrumentsthatspecify
thiscommitment,likethenationalconstitution,the
EUCharter,specificnationallegislativeacts,andthe
EUdirectivesandregulationsliketheGeneralData
ProtectionRegulation(GDPR)orLawEnforcement
Directive(LED).Theselegalrequirementsapplyto
allpoliceworkregardlessofthemeansusedandthus
includetheuseofAI.
InademocraticstatesuchastheNetherlands,com-
pliancewithholdinglawsandregulationsmustbe
seenasagivenforanyapplicationofAI.However,
theapplicationofAIraisessomechallengesthatare
not—oritisuncleariftheyare—coveredbycurrent
legalprovisions.Forexample,whilethelegislation
mightnotrequirefullopenness,theopacityofrea-
soningthatisinherenttosomeAItechniquesmight
decreasetransparencyandweakenhumanagencyin
thepolice’sdecision-making,andtherebyposea
threattothelegitimacyofandtrustinthepolice.11
Therefore,forsuchspacesleftopenbythelaw ,the
policecan,andweadvisethattheyshould,incorpo-
rate‘ethics’throughpracticalmeasurestoensurere-
sponsibleuseofAIandcontributetowardsenhanc-
ing(ratherthanlimiting)legitimacyofandtrustin
thepolice.
Incommonuse,theterm‘ethics’referstoasetof
acceptedprinciplesonwhatis(morally)rightor
wrongwithinandforacertaincommunity .The
Dutchgovernmentandthelawenforcementinpar-
ticularareexpectedtoactcoherentlyandoutofthe
7SerenaOosterlooandGerwinvanSchie,‘ThePoliticsand
Biasesofthe‘CrimeAnticipationSystem’oftheDutchPolice’,Jo
Bates,PaulD.Clough,RobertJäschkeandJahnaOtterbacher
(eds),ProceedingsoftheInternationalW orkshoponBiasin
Information,Algorithms,andSystems(CEURWorkshopProceed-
ings2018)30-41
8KarolinaLaF ors-OwczynikandGovertValkenburg,‘RiskIdenti-
ties:ConstructingActionableProblemsinDutchY outh’,I.vander
PloegandJ.Pridmore(eds),DigitizingIdentities.DoingIdentityin
aNetworkedWorld(Routledge/Taylor&FrancisGroup2016)
103-124
9FrancienDechesne,VirginiaDignum,LexoZardiashviliand
JordiBieger,‘ AIandEthicsatthePolice:TowardsResponsibleUse
ofArtificialIntelligenceattheDutchPolice’(Whitepaper,2019)
https://www.universiteitleiden.nl/binaries/content/assets/rechts-
geleerdheid/instituut-voor-metajuridica/artificiele-intelligentie-en-
ethiek-bij-de-politie/ai-and-ethics-at-the-police-towards-responsi-
ble-use-of-artificial-intelligence-at-the-dutch-police-2019..pdfac-
cessed24September2019
10Politiewet2012(n1),art2
11Dechesneandothers(n9)
Delphi4|2019181 AIEthicsforLawEnforcement
principlesoftheDutch(andlargerEuropean)com-
munity.Thisexpectationofresponsibilityextendsto
theuseofAIbytheDutchpolice.Toactresponsibly
meanstoacceptmoralintegrityandauthenticityas
idealsandtodeployreasonableefforttowardachiev-
ingthem.12FortheDutchgovernmentstrivingfor
moralintegritymeansadheringtothevaluesoffree-
dom,equality,andsolidarity.13Thesevaluesarethree
fromfourvaluestheEuropeanUnion(EU)isaiming
touphold,withdignitybeingthefourth.14Notethat,
althoughtheDutchgovernmenthasnotyetaccept-
edproposalsbyaspeciallyestablishedcommission
(establishedbytheCabinetforconstitutionalamend-
ments),toincludevalueofhumandignityexplicitly
inthetextoftheDutchConstitution,itacknowledges
dignityasafundamentalvaluethathumanrights
aimtouphold.15Humanrights,ontheotherhand,
togetherwithdemocracy,andruleoflaw,areoften
referredasthegeneralprinciplesoftheDutchcon-
stitution,16oftheEU,17andofalsolargerEuropean
community(CouncilofEurope).18
Thefourvalues(dignity ,freedom,equality ,soli-
darity)andthreeprinciples(humanrights,democra-
cy,ruleoflaw)provideaframeworkforthemoralin-
tegritythattheDutchgovernment(andinthiscase
theDutchpolice)hastocontinuouslystrivetowards.
However,societalorderasamoralmilieucannotbe
sustainedbyreferenceonlytogenerallyexpressed
values–thereforeformal(statutoryandcase)lawis
intendedtofillinthegapandoperationalisethese
abstractideals.Ontheotherhand,suchmoralmilieu
cannotbebuiltuponstricttextually-rootedrules
alone.19Forexample,inthecontextofstate-of-the-
arttechnology ,formallawfailstobetheomnibus
governancesolution:existinglegislationisnotper-
fectlysuitedtoaddressunprecedentedscopeofac-
tionsthatAIallows,andregulatoryintervention
(amongotherthings)mightpreventpotentialadvan-
tagesfrommaterialising.20
Therefore,maintainingresponsibleaction(moral
integrity)requiresaproperbalancetobestruckbe-
tween‘rule’and‘value’.Whatthismeansinthecon-
textofusingAIisthat,unprecedentedmodusoperan-
ditotheformallawdoesnotrelievetheDutchpolice
fromanobligationtostrivetowardsmoralintegrity.
WehaveevaluatedtheuseofAIbythelawenforce-
mentthroughthelensofthe(European)values(dig-
nity,freedom,equality ,solidarity)andprinciples(hu-
manrights,democracy,ruleoflaw)thattheDutch
policeaimstouphold,andidentifiedrequirements
forensuringresponsibleuseofAIwithinthepolice.21
Weprovidetheoverviewofidentifiedrequirements
inthenextchapter.
III.RequirementsfortheResponsible
UseofAIbytheDutchPolice
Weidentifiedrequirementsandrecommendations
fortheresponsibleuseofAIattheDutchpolice.They
include,(i)accountability,(ii)transparency,(iii)pri-
vacyanddataprotection,(iv)fairnessandinclusivi-
ty,(v)humanautonomyandagency,and(vi)socio-
technicalrobustnessandsafety.22Whilethesere-
quirementsaremorallysalient,theydonotoccupy
thesamelevelofhierarchyasthevaluesandtheprin-
ciplesdiscussedinthechapterII(hencethetermre-
quirements).Rathertheserequirementsareintended
toprovideguidanceonhowtoensurethatthepolice
useofAIiscoherenttothehigh-levelvalues(iedig-
nity)andtheprinciples(iedemocracy):
1.Accountability–InthecontextofusingAIforand
bythepolice,‘accountability’isarequirementthat
referstotheabilitytoholdthepolicepersonnelor
theentirepoliceorganisationanswerableand/or
12RonaldDworkin,‘JusticeforHedgehogs’(TheBelknapPress,
2011)111
13MinistryofSocialAffairsandEmployment,‘CoreValuesofDutch
Society’(ProDemos,HouseofDemocracyandConstitution,
2014)https://www.prodemos.nl/wp-content/uploads/2016/04/
KERNWAARDEN-ENGELS-S73-623800.pdfaccessed17October
2019
14CharterofFundamentalRightsoftheEuropeanUnion(TheEU
Charter),26October2012,2012/C326/02
15Jan-PeterLoof,‘HumanDignityintheNetherlands’inP aolo
Becchi,KlausMathisandJan-PeterLoof(eds.),Handbookof
HumanDignityinEurope(SpringerInternationalPublishing
2017)423
16ibid
17TheEUCharter ,Preamble;seealsoEuropeanUnion,‘Goalsand
valuesoftheEU’https://europa.eu/european-union/about-eu/eu-
in-brief_enaccessed17October2019
18CouncilofEurope,‘Values–HumanRights,Democracy,Ruleof
Law’https://www.coe.int/en/web/about-us/valuesaccessed17
October2019
19ChiefJusticeAllsopAO,‘V aluesinLaw:HowTheyInfluenceand
ShapeRulesandtheApplicationsofLaw’(HochelagaLecture,
2016)https://www.fedcourt.gov .au/digital-law-library/judges-
speeches/chief-justice-allsop/allsop-cj-20161020#_ftn3accessed
17October2019
20RonaldLeenesandothers,‘Regulatorychallengesofrobotics:
someguidelinesforaddressinglegalandethicalissues’(2017)9
(1)Law,InnovationandT echnology,7
21Dechesneandothers(n9)
22ibid
Delphi4|2019 182AIEthicsforLawEnforcement
responsible(and/orsometimesliable)foranac-
tion,choiceordecisionbyAI.Tracing(causal)re-
sponsibilitycanbecomplicatedwhenhumande-
cisionmakersare(partially)replacedoraugment-
edbyAIsystemsthatcannotthemselvescarry
moralresponsibilityorbeaccountable.Account-
abilitycanbeimprovedifthesesystemscanbere-
viewed(auditability),andifthedecisionsthatthey
makeexplainedandjustified(explainability)on
thetechnicallevel.Moreover,independentevalu-
ationsshouldbeabletoverifyandreproducethe
AI-system’sbehaviorinallsituations(repro-
ducibility).23Incaseswheretracingresponsibili-
tyisnotfeasible(andpossiblyothers),clearagree-
mentsshouldbemadeaboutwhoisaccountable
(egtheowner,operatororprogrammerofanAI
system).
2.Transparency–T ransparencyisanimportantcom-
ponentinensuringtrustandfiguringoutwhoor
whatisaccountableforpotentialproblemswith
AIsystems.Withtransparency ,wemustalways
ask1)aboutwhat,2)towhomand3)howmuch
transparencyshouldbeprovided,andofcourseto
whatend.Wecanbetransparentforexample
aboutpeople,rationale,operations,ordatain-
volvedindecision-making.Wecanbetransparent
forcourts,policeorganisation,ortothepublic.Per-
hapsgivingeveryonefullaccesstoeverythingis
notproductive,anditcanevenbedangerousifit
letsbadactorsfindwaystoexploitorcircumvent
thepolice'sAI.Transparencyisagradualmatter,
andthesameholdsforexplainabilityandinter-
pretability:wehavetotakeintoaccountthatin
thecontextofAIonlypartsofadecisionmaybe
interpretable,orthatexplanationsonlygivea
roughideaofwhathappened.
3.PrivacyandDataProtection–ThePolicehasa(le-
gal)obligationtotaketheprivacyofciviliansinto
considerationintheiroperations.Wherecivilians
canreasonablyexpecttobeprivateisbeingaltered
bythecurrenttechnologythatallowspersonalda-
tafrommanydifferentspherestobeprocessedon
anunprecedentedscale,alsoforlawenforcement
purposes(egprevention,investigation,detection
orprosecutionofcriminaloffences).AIcanin-
creasetheinformation-gatheringcapabilitiesof
thepolice,becauseofitsabilitytocombineand
analyzevastquantitiesofdatafromdifferent
sources,andthereforehasanimmenseimpacton
privacy.
4.FairnessandInclusivity–AIsystemscanplayan
importantroleintheinclusivityandaccessibility
ofpoliceservices.Forinstance,reportingofa
crimewillbeaccessibletomorepeopleifmorere-
portingmethodsareavailable,eginpersonata
policestation,byphoneandonline.Intelligent
chatbotscanmakereportingcrimesmoreaccessi-
bleforsomebyincreasingaccessibility,user
friendlinessandcatchingerrorsthatmightother-
wisebemadeonstaticforms.Oneshouldhowev-
erbecarefulthattherangeofmethodsofferedis
indeedusablebyall,includingegblindpeopleor
(computer)illiteratepeople.Ifthisisnotfeasible
forthemainmethod,alternativesshould(contin-
ueto)beprovided.AIcanalsoincreaseusability
byegaddingspeechrecognitionfunctionality
(whichcanhelppeoplewhocan’ttypetext).Itis
alsoimportanttoensurethatdecisionsinformed
byAIarefreefrombiaswhichcouldresultinthe
unfairordiscriminatorytreatmentof(groupsof)
civilians.Thisrequiresrigorousacquisition,man-
agement,developmentandevaluationofAIsys-
temsandalgorithmsaswellasthedatatheyuse.
Sincetherearedifferentconceptionsoffairness,
presentingdifferenttradeoffsdependingonthe
situation,aninformedcase-by-caseanalysisinnec-
essaryfortheresponsibleuseofAIbythepolice.
Intheend,(human)policeemployeeswillneedto
decidewhattodowiththeinformationandrec-
ommendationsprovidedbyAI,raisingquestions
aboutwhatkindofactionisappropriate:egifa
suspecthasnotdoneanythingwrongyet,butan
(imperfect)AIsystempredictsthattheymightin
thefuture,whatinterventionsbalancetherights
oftheas-of-yetinnocentcivilianwiththeneedto
preventseriouscrimes?
5.HumanAutonomyandAgency–Preservingthehu-
mansenseofagencyismainlyanindividual-lev-
elrequirementtorealisethehigh-levelvalues(i.c.
freedom)andshouldhelpwithbothjobsatisfac-
tionandtheabilitytoprovidemeaningfulhuman
control.Problemscanoccurwithdecisionsupport
systemsthatrecommendacourseofactionthat
mustthenbeevaluatedbyahumanoperator.Peo-
pleareincreasinglywillingandexpectedtodele-
23MatthewHudson,‘ ArtificialIntelligenceFacesReproducibility
Crisis’(2018),359(6377)Science725-726
Delphi4|2019183 AIEthicsforLawEnforcement
gatedecisionsandactionstomachines(egrecom-
mendersystems,searchengines,navigationsys-
tems,virtualcoachesandpersonalassistants).A
possibleconsequenceofworkingwithAIsystems
isthelossofasenseofagency:theabilitytoact
freely.Especiallywithsystemsthatareveryaccu-
rateinsomerespect,humanoperatorsmaybe
‘nudged’toactupontheoutcomeofthesystem
withoutfurthercriticaldeliberation.Thiscannot
onlyinvalidateanoperator’ssenseofagency,but
alsofailstoutilisehumancapabilitiesthatAIsys-
temstypicallystilllack,suchascommonsenserea-
soning,lookingatthebiggerpicture,andadapt-
ingtounforeseensituations.
6.(Socio-technical)RobustnessandSafety–AIsys-
temsmustbedevelopedanddeployedwithan
awarenessoftherisksandbenefitsoftheiruse,
andanassumptionthatdespiteamplepreventa-
tivemeasures,errorswilloccur.Theymustbero-
busttoerrorsand/orinconsistenciesintheirde-
sign,development,deploymentandusephases,
anddegradegracefullyinextraordinarysitua-
tions,includingadversarialinteractionswithma-
liciousactors.Errorsandmalfunctionsshouldbe
preventedasmuchaspossible,andprocesses
shouldbeinplacetocopewiththemandminimise
theirimpact.24Anexplicitandwell-formeddevel-
opmentandevaluationprocessisnecessarytoen-
sureperformance,robustness,securityandsafe-
ty.
TheDutchPoliceactstomaintainsocietalorderby
enforcingthelaw .Thelawitselfisasetofbinding
rulesthataimtoupholdthevalueswithinsociety.
Whileasetofbindingrulescanguidetheonlylim-
itedamountofpoliceactions,societalvaluesareal-
wayspresent,andtheactivitiesofthepolicearere-
sponsibleonlywhenadheringtothesevalues.IfAI
istobeutilised,thepoliceiscompelledtotakeinto
considerationmorallysalientrequirementsde-
scribedinthischapter,toensureresponsibleaction
(responsibleuseofAI).Howcantheserequirements
influencethesetofbindingruleswillbediscussed
inthenextchapter.
IV .EthicsandtheR e-evaluationofLa w
AlongsidetherapiddevelopmentofAI,thereisapro-
liferationofarticlesandpolicydocumentsaboutthe
governanceofAI,someofwhichseemtosuggest
‘ethics’asthesolutionforensuringresponsibleuse
ofAI.FewmonthsbeforewedeliveredtheWhitepa-
pertotheDutchpolice,researchersatBerkmanKlein
Centeridentifiedandpositionedthirty-twosetsof
policydocumentssidebyside,enablingcomparison
betweeneffortsfromgovernments,companies,ad-
vocacygroups,andmulti-stakeholderinitiatives.25
Thirteenofthethirty-twodocumentspresentedin
thisstudydiscusstheresponsibilityofgovernments
inthecontextofAI,aswedidinourWhitepaper.
Thesedocumentsacknowledgethattheexistingset
oflegalrulesisnotabletofullydealwiththeimpacts
ofAI,andproposeguidanceformaintainingmoral
integrityofgovernmentalactionsbyreflectingupon
ethicalvaluesandprinciples.26
However,contrarytosomeofthesegovernmen-
tal27andmostoftheprivatesector28policydocu-
ments,ourwhitepaperdidnotintendtocomeup
withthenewsetofprinciplesfortheuseofAIwith-
intheDutchpolice.Rather,welookedatthevalues
andtheprinciplesthattheDutchpolice,asthelaw
enforcementbodyoftheDutchstate,isalreadyoblig-
edtoadheretoandidentifiedwhatisrequiredtoen-
suresuchcoherence(andthereforeresponsibleuse
ofAI).Moreover,webelievethatethicalvaluesand
lawsare‘expressionsalongagradationofparticular-
ity’ratherthan‘clearlyidentifiableseparatevehi-
cles’.29Inthissense,lawconformstoethics,asthe
latterprovides‘agaugetothelaw’sflexibility’,and
its‘avenueforgrowth’.30
Inotherwords,whileethicalreflectionsprovide
advantagesasanopennorm-settingvenuesforthe
governanceofAIwithinthelawenforcement,such
considerationscoulddomorebygoingbeyondtech-
24HighLevelExpertGrouponArtificialIntelligence,‘EthicsGuide-
linesforT rustworthyAI’(High-LevelExpertGroupOnArtificial
Intelligence,TheEuropeanCommission2019)
25JessicaFjeldandothers,‘PrincipledArtificialIntelligence:AMap
ofEthicalandRights-BasedApproaches’(BerkmanKleinCenter
2019)https://ai-hr.cyber .harvard.edu/images/primp-viz.pdfac-
cessed24September2019
26seeFederalGovernmentofGermany,‘ AIStrategy’(2019)
27seeSmartDubai,‘ AIPrinciplesandEthics’(2019)
https://www.smartdubai.ae/
accessed18October2019
28seeSundarPichai,‘ AIatGoogle:OurPrinciples’(Google,2018)
https://www.blog.google/technology/ai/ai-principles/accessed18
October2019
29ChiefJusticeAllsopAO(n21)
30ibid
Delphi4|2019 184AIEthicsforLawEnforcement
nicalinterpretationsofmorallysalientrequirements
(ieaccountability ,transparency)31,andserveasthe
lensthroughwhichexistinglegalframeworks(in-
cludingframeworksregulatingtheactivitiesofthe
police)arere-evaluated,toseeifimprovementsare
possible.32Intheend,suchre-evaluationseemstobe
thelastlogicalstepastheabsenceofadequatefor-
malrules,might‘confoundlawbyadriftintoaform-
lessvoidofsentimentandintuition’ .33
V .FurtherResearchinResponsibleUse
ofAIinLawEnforcement
Asthecompletepictureoftheeffectsoftheuseof
AItechnologycannotbeanticipated,notallethical
andsocietalimpactsoftheuseofAIatthelawen-
forcementbodyoftheNetherlandscouldbecovered
intheshortstudyoftheWhitepaper.34Therefore,
ethicalevaluationoftheuseofAIbythelawenforce-
mentneedstobecontinuoustobeabletotransform
concernsintobetterlaws.Withthisgoalinmind,we
identifiedthefollowingresearchdirectionsonAIand
ethicsatthepolice,35dividedintotracksfor(1)im-
pactonhumans,(2)organisationalembedding,and
(3)technicalwork:
1.ImpactsonHumans:
a.ImpactsonHumanDignity–Humandignityis
theinviolablevalueuponwhichthehuman
rightsframeworkrests.Itillustratesthefunda-
mentalbeliefintheintrinsicworthofahuman
being,protectinghis/herautonomyandself-de-
termination.Beliefinhumandignitycanbeun-
derstoodastheraisond'êtreforthelawthepo-
liceaimstoenforce.
b.PublicTrust–Publicperceptionofthelegitima-
cyofthepoliceandsubsequenttrustisasim-
portantasthelegalframeworkinwhichthepo-
liceoperate.Whileautomationandprediction
tosomeextentincreaseefficacyofthepolice,
thestudycouldexploreifsuchincreaseinpo-
tencyisdesirablefromthesocietalperspective.
2.ImpactsonthePoliceOrganisation:
a.EthicsGuidelinesandOversight–Thepolice
doesnotoperateinisolation,andtheuseofAI
takesplaceacrosstheentirejudicialchain:OM,
localgovernment,theMinistryofJusticeand
Security,judiciary.ResponsibleuseofAIwith-
intheDutchpoliceideallyfollowsfromaro-
bustethicsframeworkfortheentirechain.Such
aframeworkcanestablishcriteriatofollow
throughouttheAIdevelopmentandapplica-
tioncycle.
b.ImpactsonPolicePersonnel–AIcanbeusedto
supportthepoliceorganisationinachievingits
goalsofefficiency ,traceability,uniformityand
integrity.However,thechangeofoperations
maycomewithdisplacementofemployeesand
changingroles.Researchisrequiredtoensure
thatworkerswithnon-traditionalskillsetsfitin-
tothepoliceorganisationinawaythatempow-
erspolicepersonnel.
3.TechnicalAspects
a.ExplainableAI–Theaforementionedoversight
canonlybeadequateandmeaningfulifauto-
mateddecisionscanbeexplainedandjustified
onthetechnicallevel.
b.Justifiable/VerifiableAI–Justificationprovides
thereasonsbehindtheresultsandthechoices
forparticularapproaches.Mathematicaltools
forformalverificationmakeAIsystemsthem-
selvesandtheirdecisionsreviewable.
Furtherresearchisessentialsothatthepolicecon-
tinuestorealisetheirdualgoalsofincreasing(a)ef-
ficacyandefficiency ,and(b)trustandtrustworthi-
ness(toboostpublictrustandtheperceptionofthe
legitimacyofthepolice).Theresearchintheareas
describedabovewillhelpusre-evaluatetheformal
rulesregardinglawenforcement,andalsomakeso-
cietalrequirementstransparenttoboththepolice
31CorinneCath,‘Governingartificialintelligence:ethical,legaland
technicalopportunitiesandchallenges’(2018),376(2133)Philo-
sophicalTransactionsoftheRoyalSocietyAMathematical,
PhysicalandEngineeringSciences
32LucianoFloridi,andothers,‘AI4People—AnEthicalFramework
foraGoodAISociety:Opportunities,Risks,Principles,and
Recommendations’(2018),28(4)MindsandMachines689–707
33ChiefJusticeAllsopAO(n21)
34Whitepaper(n13)
35FrancienDechesne,VirginiaDignum,LexoZardiashviliand
JordiBieger,‘Long-T ermResearchStrategyforAIandEthicsatthe
Police’(Report2019)https://www.universiteitleiden.nl/bina-
ries/content/assets/rechtsgeleerdheid/instituut-voor-metajuridi-
ca/artificiele-intelligentie-en-ethiek-bij-de-politie/research-strate-
gy-ai-ethics-dutch-police-final.pdfaccessed24September2019
Delphi4|2019185 AIEthicsforLawEnforcement
andthepublicandultimatelyenablecodificationin
thelegalframeworks.
VI.Conclusions
Thisarticlehasanalysedtheroleofthemorally
salientrequirementsforgovernanceofAI,thatwere
foundinanempiricalstudywithinthelawenforce-
mentdomain–inparticular:attheDutchPolice.W e
havearguedthatthereareinstances,wheretheneed
forsoftregulatoryinstrumentarises,andwehavede-
scribedhowethicalconsiderationscanhelpfulfilthis
need.Ouranalysissuggeststhattheresponsibleuse
ofAIattheDutchpolicerequiresprimarilythefol-
lowingrequirements:accountability ,transparency,
privacy,fairnessandinclusivity ,humanautonomy
andagencyandsocio-technicalrobustnessandsafe-
ty.
Furthermore,weexploredtheroleoftheserequire-
mentsinafuturere-evaluationoftheformalbind-
inginstruments.Finally ,weidentifiedtheareas
wherefurtherresearchisadvisableforensuringthe
responsibleuseofAIattheDutchpolice.Ontheone
hand,suchresearchcanhelpfleshoutmoredetailed
criteriaforthepoliceonhowtoadheretothevalues
andprinciplesoftheDutchstate.Ontheother,itcan
buildagroundworkforthehard-regulationforthe
useofAIinthelawenforcementecosystemofthe
Netherlands.
Delphi4|2019 186ClassificationSchemasforAIFailures
ClassificationSchemasforArtificial
IntelligenceFailures
PeterJ.ScottandRomanV.Yampolskiy*
Inthispaperweexaminehistoricalfailuresofartificialintelligence(AI)andproposeaclas-
sificationschemeforcategorisingfuturefailures.Bydoingsowehopethat(a)therespons-
estofuturefailurescanbeimprovedthroughapplyingasystematicclassificationthatcan
beusedtosimplifythechoiceofresponseand(b)futurefailurescanbereducedthrough
augmentingdevelopmentlifecycleswithtargetedriskassessments.
I.Introduction
Artificialintelligence(AI)isestimatedtohavea$4-6
trillionmarketvalue1andemploy22,000PhDre-
searchers.2Itisestimatedtocreate133millionnew
rolesby2022buttodisplace75millionjobsinthe
sameperiod.3Projectionsfortheeventualimpactof
AIonhumanityrangefromutopia4toextinction.5
InmanyrespectsAIdevelopmentoutpacestheef-
fortsofprognosticatorstopredictitsprogressandis
inherentlyunpredictable.6
Y etallAId evelop mentis(sof ar)u ndertak enb yhu-
mans,andthefieldofsoftwaredevelopmentisnote-
worthyforunreliabilityofdeliveringonpromises:over
two-thirdsofcompaniesaremorelikelythannottofail
intheirITprojects.7Asmucheffortashasbeenputin-
tothedisciplineofsoftwaresafety ,itstillhasfartogo.
Againstthisbackgroundoframpantfailureswe
mustevaluatethefutureofatechnologythatcould
evolvetohuman-likecapabilities,usuallyknownas
artificialgeneralintelligence(AGI).Thespectacular
advancesincomputingmadepossiblebytheexpo-
nentialhardwareimprovementsduetoMoore’sLaw8
balancedagainsttheunknownrequiredbreak-
throughsinmachinecognitionmakepredictionsof
AGInotoriouslycontentious.Estimatesofhowlong
wehavebeforeAGIwillbedevelopedrangeoversuch
widelyvaryingtimelines9thatresearchershavetak-
entometa-analysisofthepredictionsthroughcorre-
lationagainstmetricssuchascodingexperienceof
thepredictors.10
Lesscontentiousistheassertionthatthedevelop-
mentofAGIwillinevitablyleadtothedevelopment
ofASI:artificialsuperintelligence,anAImanytimes
moreintelligentthanthesmartesthuman,ifonlyby
virtueofbeingabletothinkmanytimesfasterthan
ahuman.11Analysisoftheapproachofconfininga
superintelligencehasconcludedthiswouldbediffi-
DOI:10.21552/delphi/2019/4/8
*PeterJ.Scott,NextWaveInstitute,USA.F orcorrespondence:
<peter@humancusp.com>;RomanV.Y ampolskiy,Universityof
Louisville,Kentucky,USA,<roman.yampolskiy@louisville.edu>
1McKinseyGlobalInstitute,‘NotesfromtheAIFrontier’<https://
www.mckinsey.com/~/media/mckinsey/featured%20insights/
artificial%20intelligence/notes%20from%20the%20ai%20frontier
%20applications%20and%20value%20of%20deep%20learning/
notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases
-discussion-paper.ashx>accessed1November2019
2JeremyKahn,‘JustHowShallowistheArtificialIntelligence
TalentPool?’(Bloomberg,7February2018)<https://www
.bloomberg.com/news/articles/2018-02-07/just-how-shallow-is
-the-artificial-intelligence-talent-pool>accessed1November
2019
3WorldEconomicForum,‘TheFutureofJobsReport’<http://
www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf>ac-
cessed1November2019
4RaymondKurzweil,TheSingularityIsNear:WhenHumans
TranscendBiology(Viking2005)487
5NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2005)
6RomanYampolskiy,‘UnpredictabilityofAI’(2019)arX-
iv:1905.13053v1[cs.AI]
7KeithEllis,‘TheImpactOfBusinessRequirementsOnTheSuccess
OfTechnologyProjects’(BATimes,15February2008)<https://www
.batimes.com/articles/the-impact-of-business-requirements-on-the
-success-of-technology-projects.html>accessed1November2019
8ChrisMack,‘FiftyYearsofMoore'sLaw’(2011)24IEEETransac-
tionsonSemiconductorManufacturing202-207
9KajSotalaandRomanY ampolskiy,'Corrigendum:Responsesto
CatastrophicAGIRisk:ASurvey'(2015)90Phys.Scr.018001
10BrianT omasik,‘PredictionsofA GITakeoffSpeedvs.YearsWorked
inCommercialSoftware’inEssaysonReducingSuffering(2014)
<https://reducing-suffering.org/predictions-agi-takeoff-speed-vs
-years-worked-commercial-software/>accessed1November2019
11VernorVinge,‘TheComingTechnologicalSingularity:Howto
SurviveinthePost-humanEra’inNationalAeronauticsandSpace
Administration(eds),Vision21:InterdisciplinaryScienceand
EngineeringintheEraofCyberspace(1993)
Delphi4|2019187 ClassificationSchemasforAIFailures
cult12ifnotimpossible.13Manyoftheproblemspre-
sentedbyasuperintelligenceresembleexercisesin
internationaldiplomacymorethancomputersoft-
warechallenges;forinstance,thevaluealignment
problem14(describedthereinasthe‘valueloading
problem’)ofaligningAIvalueswithhumans’.
II.Definitions
Wepresentsomeoperationaldefinitionsofterms
usedinthispaper.
Artificialintelligenceisashiftingtermwhosede-
finitionisfrequentlydebated.Itsscopechangesde-
pendingupontheera:duringan‘AIWinter’15many
fewervendorsarewillingtoidentifytheirproducts
asAIthanduringthecurrentperiodofmyriadAI
technologiescloggingthe‘peakofinflatedexpecta-
tions’intheGartnerHypeCycle.16
Failureisdefinedas‘thenonperformanceorin-
abilityofthesystemorcomponenttoperformitsex-
pectedfunctionforaspecifiedtimeunderspecified
environmentalconditions.’17Thisdefinitionoffail-
ureasaneventdistinguishesitfromanerror,which
isastaticcondition(orstate)thatmayleadtoafail-
ure.
Cybersecurityhasbeendefinedas‘theorganisa-
tionandcollectionofresources,processes,andstruc-
turesusedtoprotectcyberspaceandcyberspace-en-
abledsystemsfromoccurrencesthatmisaligndeju-
refromdefactopropertyrights.’18AISafetyhasbeen
definedasanextremesubsetofcybersecurity:‘The
goalofcybersecurityistoreducethenumberofsuc-
cessfulattacksonthesystem;thegoalofAISafety
istomakesurezeroattackssucceedinbypassingthe
safetymechanisms.’19
Intelligencedefinitionsconvergetowardtheidea
thatit‘(…)measuresanagent’sabilitytoachieve
goalsinawiderangeofenvironments.’20W edonot
presentthisdefinitionwithanyintentionofdefin-
ingAIbyapplyingthe‘artificial’modifiertothis
one.Rather,thisdefinitionwillbeusedtojudge
whetherasoftwarefailureisinstructiveintheex-
tenttowhichitwasapplying(accidentallyorinten-
tionally)intelligenceineventhenarrowestsense,
sincesuchapplicationcouldextendtoamorepow-
erfulAI.
III.AIFailureClassification
WewilldescribeatagschemaforclassifyingAIfail-
ures.Itispreciselybecauseofthevolatiledefinition
ofAIthatwemustcastawidenetinwhatweusefor
examplesofAIfailures,becausewhatisclassifiedas
AItodaywilllikelybegivenalessglamoroustitle
(like‘machinevision’)onceitbecomescommon-
place.AsAIpioneerJohnMcCarthyputit,‘Assoon
asitworks,noonecallsitAIanymore.’21Where
someofourexamples,therefore,mayappeartobe
indistinguishablefromfailuresofsoftwarethathas
noparticularclaimtothelabelofartificialintelli-
gence,theyareincludedbecausetheyareclose
enoughtoAIonthesoftwarespectrumastobein-
dicativeofpotentialfailuremodesofAI.
1.HistoricalClassifications
Neumann22describedaclassificationforcomputer
riskfactors(seeT able1).
Wefindthislisttoobroadinsomerespectsand
toonarrowinotherstobeusefulforourpurposes.
Hardwarefactorsareoutsidethescopeofthispaper
12RomanY ampolskiy,‘LeakproofingtheSingularity:TheArtificial
IntelligenceConfinementProblem’(2012)19JournalofCon-
sciousnessStudies1-2
13EliezerY udkowsky,‘RetrievedfromTheAI-BoxExperiment’
(2002)<http://yudkowsky.net/singularity/aibox>accessed20
January2020
14(n5)
15DanielCrevier ,AI:TheT umultuousSearchforArtificialIntelli-
gence(BasicBooks1993)
16CIODive,‘GartnerServesup2018HypeCyclewithaHeavy
SideofAI’<https://www .ciodive.com/news/gartner-serves-up
-2018-hype-cycle-with-a-heavy-side-of-ai/530385/>accessed1
November2019
17NancyLeveson,Safeware:SystemSafetyandComputers(Addi-
son-Wesley1995)
18DanCraigen,NadiaDiakun-Thibault,andRandyPurse,‘Defining
Cybersecurity’(2012)T echnologyInnovationManagement
Review13-21
19RomanY ampolskiy,‘ ArtificialIntelligenceSafetyandCybersecuri-
ty:aT imelineofAIFailures’(2016)arXiv:1610.07997v1[cs.AI]
20ShaneLeggandMarcusHutter,‘ ACollectionofDefinitionsof
Intelligence’(2007)IDSIA-0707TechnicalReport
21BertrandMeyer,‘JohnMcCarthy’(Communicationsofthe
ACM,28October2011)<https://cacm.acm.org/blogs/blog
-cacm/138907-john-mccarthy/fulltext>accessed20January
2020
22PeterNeumann,Computer-RelatedRisks(Addison-Wesley1994)
Delphi4|2019 188ClassificationSchemasforAIFailures
(andareincreasinglyirrelevantassoftwarebecomes
moreplatform-independentandmobile);software
factorsneedgreaterelaboration.NeumannandPark-
er23listedclassesofcomputermisusetechniques(see
Figure1).
Despitethetreestructure,thisrepresentsasystem
ofdescriptorsratherthanataxonomyinthatagiv-
enmisusemayinvolvemultipletechniqueswithin
severalclasses.Theleftwardbranchesallinvolvemis-
use;therightwardbranchesrepresentpotentiallyac-
ceptableuse–untilaleftwardbranchistaken.How-
ever,theterm‘misuse’impliesdeliberateagencyand
23PeterNeumannandDonaldP arker,‘ ASummaryofComputer
MisuseTechniques’(1989)12thNationalComputerSecurity
Conference396-407
Table1:ComputerRiskFactorsSourcesandExamples.Source:
P.G.Neumann
Figure1:ClassesofComputerMisuse
Source:NeumannandParker
Note:Theleftwardbranchesallinvolvemisuse;therightwardbranchesrepresent
potentiallyacceptableuse–untilaleftwardbranchistaken.
Delphi4|2019189 ClassificationSchemasforAIFailures
therebyignoresamultitudeoffailuremodesthat
stemfromaccidentaloversights.
2.AIFailureClassificationDimensions
HerewemodifyandextendearlierworkbyY ampol-
skiy24inclassifyingAIriskfactors.Hollnagel25de-
constructssafetyinthestepsofphenomenology(ob-
servables),etiology(causes),andontology(nature).
Weaddresseachofthesestepsinproposingthefol-
lowingdimensionsasusefulclassificationcriteriafor
AIfailures:
–Consequences(phenomenology)
–Agency(etiology)
–Preventability(ontology)
–Stageofintroductionintheproductlifecycle(phe-
nomenologyandontology)
Eachwillbedenotedwitha2-or3-lettercodethat
wewilltagourexampleswith.
a.Consequences
Consequencesmaybeconsideredonthescaleofhu-
managgregationonwhichtheycanoccur(see
Table2).
Individualscanrangeinnumberfromonetoevery
memberofthehumanrace;thegroupingwillbeused
todenoteatwhattypeofaggregationtheactionof
thefailurewasaimedratherthanthenumberofin-
stancesaffected.Corporationsarelegalstructuresfor
doingbusiness,ofanysize.Communitiesaregroup-
ingsofpeopleorganisedforpurposesotherthanbusi-
nessandrangefromfamiliestonations.
–Physicalconsequencesoccurtoindividualsand
mayrangefrominconveniencetolossoflife.
–Mentalconsequencesoccurtoindividualsandin-
cludethealterationofmentalstatessuchasbe-
liefs,withconcomitantchangesinbehaviour.For
instance,thepurposeoreffectof‘fakenews’isto
causesuchchanges.26
–Emotionalconsequencesoccurtoindividualsand
includedepressivestatesresultingfromAIinci-
dentswithphysicalormentalconsequences,and
AIusurpingrolesthatpeoplehaveassumedtobe
unassailable.
–Financialconsequencesoccurtoindividuals,cor-
porations,andcommunities.
–Socialconsequencesarethemodificationsofbe-
haviourofsystemsororganisationsofpeople.
–Culturalconsequencesarethemodificationsofan
organisationorgrouping’svision,values,norms,
systems,symbols,language,assumptions,beliefs,
andhabits.27
Consequencesarenotnecessarilynegative,ormay
benegativeinsomerespectswhilebeingpositivein
others.Asuperintelligencethatenslavedhumansin
bootcampsmightkeeptheminoptimalphysicalcon-
ditionbutpessimalemotionalstate.
24RomanY ampolskiy,‘T axonomyofPathwaystoDangerousAI’
Proceedingsof2ndInternationalWorkshoponAI,Ethicsand
Society(AIEthicsSociety2016)143-148
25ErikHollnagel,Safety-IandSafety-II(AshgatePublishing2014)
26DavidM.J.Lazeretal,‘TheScienceofFakeNews’(2018)359
Science1094-1096
27DavidNeedle,BusinessinContext:AnIntroductiontoBusiness
andItsEnvironment(CengageLearningEMEA2014)
Table2:AIFailureConsequencesatHumanAggre-
gationLevels–SchemaTags
Human
Aggre-
gation
Scale
Consequences
Phys-
ical
Men-
tal
Emo-
tional
Finan-
cial
So-
cial
Cultur-
al
Individ-
ual
CIPCIMCIECIF
Corpora-
tion
CCFCCC
Commu-
nity
CYFCY
S
CYC
Table3:AIFailureLevelsof
Agency–SchemaTags
AgencyCode
AccidentalAA
NegligentAN
InnocuousAI
MaliciousAM
Delphi4|2019 190ClassificationSchemasforAIFailures
b.Agency
Theagencyofafailureisthedegreeofhumaninten-
tionalityinitsoriginorpropagation(seeTable3).
Anaccidentalfailureisonethatwasnotforeseen
andcouldnotreasonablyhavebeenforeseen.Weare
departingslightlyfromthecustomaryengineering
definitionof‘accident’hereinordertodrawamore
usefuldistinction.Leveson28defines‘accident’as‘ An
undesiredandunplanned(butnotnecessarilyunex-
pected)eventthatresultsin(atleast)aspecifiedlev-
elofloss.’Thusautomobileaccidentsareforeseeable
butneitherexpectednordesired.Wepreferinstead
todefineanegligentfailureasonethatwasnotfore-
seenbutcould(andperhapsshould)havebeenfore-
seen.
Aninnocuousfailureisonedeliberatelycaused,
butnotwithmaliciousintent,possiblywiththein-
tentofcausingamorebenigneffectthanwhatactu-
allyresulted.Amaliciousfailureisonethatwasini-
tiatedwiththeintentionofcausingdeleteriousef-
fects,whethertheywerespecificallytheeffectsthat
actuallyresultedorothers.Noconnectionwithlegal
definitionsofthesetermsshouldbeinferredfrom
theirattributiontospecificevents.
c.Preventability
Levelsofagencyareindependentofthedegreeof
preventability(seeT able4).
Somefailuremodesofsuperintelligencesarefore-
castbysomeauthoritiestobeunpreventable:‘[W]e
haveseenenoughtoconcludethatscenariosin
whichsomemachineintelligencegetsadecisive
strategicadvantagearetobeviewedwithgravecon-
cern.’29
d.LifecycleStage
Acommontaxonomyforcomputersystemerrorsis
thesoftwaredevelopmentlifecyclestage(seeT able
5);itisoftenassertedthatthecostoffixinganerror
ateachstageistentimesthecostoffixingitinthe
previousstage.30
Weaddinthelesscommonlyincludedstagesof
concept(wasitagoodideatodothisinthefirst
place?)atthebeginning,anddecommissioning
(whataretheproblemscausedbygettingridofthe
product)attheend.Asuperintelligencemightbe
highlyresistanttodecommissioning.31
IV .AIFailures
Withthesedimensionsinmindwenowexamine
variousreportedandhypothesisedfailures.Note
thatthereisanunavoidabledegreeofsubjectivevari-
abilityintheclassificationsofpreventabilityand
agency.
28(n17)
29(n5)154
30MauriceDawson,DarrellNormanBurrellandEmadRahim,
‘IntegratingSoftwareAssuranceintotheSoftwareDevelopment
LifeCycle(SDLC)’(2010)3JournalofInformationSystemsT ech-
nologyandPlanning49-53
31‘2001:ASpaceOdyssey(1968)-I'mSorry,DaveScene’
(YouT ube)<https://www.youtube.com/watch?v=Wy4EfdnMZ5g>
accessedon1November2019
Table4:AIFailureDegreeofPreventability–
SchemaTags
DegreeofPreventabilityCode
TriviallypreventablePT
PreventablewithsomedifficultyPS
PreventablewithgreatdifficultyPD
UnpreventablePU
Table5:SoftwareDevelopmentLifecy-
cleStages–SchemaTags
LifecycleStageCode
ConceptLC
DesignLD
DevelopmentLE
TestingLT
OperationLO
DecommissioningLG
Delphi4|2019191 ClassificationSchemasforAIFailures
1.ReportedFailures
WhereasYampolskiy32enumeratedseveraldozen
failuresinatimelinethathighlightedanexponen-
tiallyincreasingfrequencyandseverity,nearlyallof
theexampleswecitehereoccurredwithinthe
2016-2019periodandsoachronologicalordering
wouldnotbeilluminating.Wewillthereforeplace
theminsteadwithinamorenarrativestructure.
Themostrecognisableandstraightforwardclass
offailuresresultinphysicalinjurytohumans,going
backtotheclassicTherac-25radiationtherapyover-
dosecases33(CIP ,AN,PS,LD,LE,LO).WhenanAma-
zonwarehouserobotaccidentallypuncturedacon-
tainerofbearspray34(CIP,AN,PS,LT)itwasamore
benignoutcomeofanindustrialaccidentthanwhen
aChinesefactoryworkerwasimpaledwithtenfoot-
longspikes35(CIP ,AN,PT ,LD).Buttheseandother
morefatalaccidentswithindustrialrobotsgoing
backatleastto1984whenanoperatorwaskilledby
a2,500lbrobotthatcamebehindhimwithnowarn-
ing36(CIP ,AN,PS,LD)indicatelackofconsideration
forhumanssharingthesamelocationasmachines.
Acarproductionplantrobotgrabbedaworkerin-
steadofapartandcrushedhimagainstametalplate,
killinghim37(CIP ,AN,PS,LD).
Incidentsofcarsinsemi-autonomousoperation
causingfatalitiesincludeanUberincorrectlyclassi-
fyingapedestrianasafalsepositivematchbecause
toomanyreactionstoactualfalsepositivesresulted
inajerkyride38(CIP ,AN,PS,L T),andaTeslacrash-
ingafterrequestingdriverintervention39(CIP ,CCF ,
AA,PD,LE).
Inmedicine,IBM’sWatsonrecommended‘unsafe’
cancertreatments40(CIP,CCF,AA,PD,LT,LO),and
astudyof14yearsofroboticsurgeryconcludedthat
‘anon-negligiblenumberof[preventable]technical
difficultiesandcomplicationsarestillbeingexperi-
encedduringprocedures.’41(CIP ,CCF ,AA,PS,LD).
AIaccidentsmayresultindirectfinancialloss.The
May2010‘FlashCrash’resultedintheDowJonesIn-
dustrialAveragedroppingabout9%for36minutes
andresultedfromprogramtradingalgorithmsbeing
inadequatelypreparedtodealwithlargevolumesof
strategically-placedtradeswhichthemselveswere
computer-mediatedmalice42(CIF ,CCF,AA,AM,PD,
LD,L T).Remediationeffortsdidnotpreventmore
flashcrashesin2015.43
AmajorconcernintheapplicationofAIispriva-
cy.Consumerdevicesconnectedtocorporateclouds
ofidentitydatacomeunderscrutiny ,especially
when,forinstance,anAmazonAlexanoderecorded
aprivateconversationandsentittoarandomcon-
tact44(CIE,AA,PS,LT ,LO),oraniPhonebugallowed
userstolistenonothers’conversationsviaFace-
Time45(CIE,AA,PS,LT).Insomecases,thetechnol-
32RomanY ampolskiy,‘PredictingFutureAIFailuresfromHistoric
Examples’(2018)foresight138-152
33J.A.Rawlinson,‘ReportontheTherac-25’OCTRT/OCIPhysicists
Meeting(Kingston,Ontario1987)
34SaqibShah,‘ AmazonWorkersHospitalizedafterWarehouse
RobotReleasesBearRepellent’(engadget,6December2018)
<https://www.engadget.com/2018/12/06/amazon-workers
-hospitalized-robot>accessed20January2020
35T ariqTahir,'FactoryRobotImpalesWorkerwith10Foot-long
SteelSpikesafterHorrorMalfunction'(TheSun,14December
2018)<https://www.thesun.co.uk/news/7954270/factory-robot
-malfunctions-and-impales-worker-with-10-foot-long-steel
-spikes/>accessed1November2019
36JohnG.Fuller ,‘DeathbyRobot’(1984)Omni,45-46,97-102
37AssociatedPressinBerlin,'RobotKillsWorkeratVolkswagen
PlantinGermany'(TheGuardian,2July2015)<https://www
.theguardian.com/world/2015/jul/02/robot-kills-worker-at
-volkswagen-plant-in-germany>accessed1November2019
38T imothyB.Lee,'SoftwareBugLedtoDeathinUber’sSelf-
drivingCrash'(arsTechnica,7May2018)<https://arstechnica
.com/tech-policy/2018/05/report-software-bug-led-to-death-in
-ubers-self-driving-crash/>accessed20January2020
39FaizSiddiqui,'NTSB“Unhappy”withT eslaReleaseofInvestiga-
tiveInformationinFatalCrash'(WashingtonPost,1April2018)
<https://www.washingtonpost.com/news/dr-gridlock/wp/2018/04/
01/ntsb-unhappy-with-tesla-release-of-investigative-information
-in-fatal-crash/>accessed1November2019
40CaseyRossandIkeSwetlitz,'IBM’sWatsonSupercomputer
Recommended“UnsafeandIncorrect”CancerT reatments,
InternalDocumentsShow'(StatNews,25July2018)<https://
www.statnews.com/2018/07/25/ibm-watson-recommended
-unsafe-incorrect-treatments/>accessed1November2019.
41HomaAlemzadeh,JaishankarRaman,NancyLeveson,Zbigniew
KalbarczykandRavishankarK.Iyer,‘ AdverseEventsinRobotic
Surgery:ARetrospectiveStudyof14Y earsofFDAData’(2016)
11PLoSONE
42'2010FlashCrash'(Wikipedia)<https://en.wikipedia.org/wiki/
2010_Flash_Crash>accessed1November2019
43CoryMitchell,'TheT woBiggestFlashCrashesof2015'(Investo-
pedia,25June2019)<https://www .investopedia.com/articles/
investing/011116/two-biggest-flash-crashes-2015.asp>accessed1
November2019.
44GaryHorcher ,'AmazonAlexaRecordedPrivateConversation,
SentittoRandomContact,WomanSays'(WHBQ,24May2018)
<https://www.fox13memphis.com/news/trending-now/amazon
-alexa-recorded-private-conversation-sent-it-to-random-contact
-woman-says/755720160>accessed1November2019
45MarkGurman,'AppleBugLetsiPhoneUsersListeninonOthers
ViaFaceT ime'(Bloomberg,28January2019)<https://www
.bloomberg.com/news/articles/2019-01-29/apple-bug-lets-iphone
-users-listen-in-on-others-via-facetime>accessed1November
2019
Delphi4|2019 192ClassificationSchemasforAIFailures
ogyfacilitatedacasualviolationofprivacysuchas
whenUberusers’locationsandidentitiesweredis-
playedonascreenatalaunchparty46(CIE,AI,PT,
LC).
Privacyviolationscarrymoreseriousconse-
quenceswhentheybecomemisidentifications.The
ACLUdemonstratedthatwhentheyshowedthat
Amazonfacialrecognitionwouldflagcertainmem-
bersofCongressaswantedcriminals47(CYF,CYS,
AN,PS,LD).Alackoftrainingdata(andimplicitbias)
resultedinfacialrecognitionsystemsbeingunable
toseeblackpeople48ortaggingthemasgorillas49
(CIE,CYS,AN,PD,LD).Facialrecognitionusedby
policeintheUnitedKingdomhasbeenrecorded
makingmanyfalsepositiveidentifications50(CIE,
CIF,CYF,CYS,AN,PS,LT,LO).AndinChina,facial
recognitionsystemsdeployedforautomatedmisde-
meanorticketingpubliclyshamedawomanasajay-
walkerwhenmistakingherphotoonthesideofa
busforthewomanherself51(CIE,CIF ,AN,PD,LE)
andadriverwasticketedforusingacellphonewhen
hewasactuallyscratchinghisface52(CIE,CIF,AN,
PD,LE).T rafficcamerasinNewOrleansticketed
parkedcarsforspeeding53(CIF ,AN,PS,LD,LO).A
manwasfalselyarrestedaftersystemsatApple
misidentifiedhimasstealingfromitsstores54(CIP ,
CIM,CIE,CIF,CCF,AA,PS,LE).
Notallmisidentificationsresultinsuchobvious
harm.ArtistT omWhitespecialisesincreatingab-
stract(andveryunarousing)artthatisflaggedasun-
acceptablenuditybysocialmediaAI.55Thismachine
myopiaindicatesthatthedevelopmentofusefulim-
agecensorshipisnotyetrealisedandsomeinoffen-
siveartissuppressed.(CIM,CIF,AA,PD,LD).
Implicitmisidentificationbycategoryisbias,an-
othertopicofgreatconcerninAIdevelopment.With
goodreason:areportconcludedthatAIstrainedon
hiringdecisionswouldreplicateoramplifyhuman
bias,56Amazon’shiringAIturnedouttobesexist,57
andtheCOMPASsystemusedinWisconsintopre-
dictrecidivismwasbiasedagainstblacks58(CIE,CIF ,
CYC,AA,PD,LE).Justashumanbiasoftenresults
frominadequateexposuretodiversity ,AIbiasoften
arisesfromthesamecause.AnattempttouseAIto
objectivelyjudgeanonlineinternationalbeautycon-
testwithouthumanbiasfailedwhenonlyoneof44
winnersitchosehaddarkskin,promptingspecula-
tionthatthiswasduetothetrainingdatabasehav-
ingfewdarkfaces59.AndtheNewZealandautomat-
edpassportapplicationcheckingsystemrejectedan
46KashmirHill,'”GodView”:UberAllegedlyStalkedUsersFor
Party-Goers'ViewingPleasure'(Forbes,3October ,2014)<https://
www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber
-allegedly-stalked-users-for-party-goers-viewing-pleasure/
#4b7dd5593141>accessed1November2019
47CyrusFarivar,'Amazon’ sRecognitionMessesUp,Matches28
LawmakerstoMugshots'(arsTechnica,26July2018)<https://
arstechnica.com/tech-policy/2018/07/amazons-rekognition
-messes-up-matches-28-lawmakers-to-mugshots/>accessed1No-
vember2019
48'AlgorithmicJusticeLeague'<https://www .ajlunited.org/>ac-
cessed1November2019
49JanaKasperkevic,'GoogleSaysSorryforRacistAuto-tagin
PhotoApp'(TheGuardian,1July2015)<https://www .theguardian
.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo
-app>accessed1November2019
50MattBurgess,'FacialRecognitionT echUsedbyUKPoliceis
MakingaT onofMistakes'(WiredUK,4May2018)<https://www
.wired.co.uk/article/face-recognition-police-uk-south-wales-met
-notting-hill-carnival>accessed1November2019
51XinmeiShen,'FacialRecognitionCameraCatchesT opVusiness-
woman"Jaywalking"BecauseherFaceWasonaBus'(Abacus
News,22November2018)<https://www.abacusnews.com/digital
-life/facial-recognition-camera-catches-top-businesswoman
-jaywalking-because-her-face-was-bus/article/2174508>accessed
1November2019
52WTF ,'ChineseDriverFinedforScratchinghisFaceafterP assing
AITrafficCamera'(9gag,26May2019)<https://9gag.com/gag/
av8VBdd/chinese-driver-fined-for-scratching-his-face-after -passing
-ai-traffic-camera>accessed1November2019
53WillieJamesInman,'T rafficCamerainNewOrleansGiving
SpeedingTicketstoP arkedCars'(FoxNews,11April2018)
<https://www.foxnews.com/auto/traffic-camera-in-new-orleans
-giving-speeding-tickets-to-parked-cars>accessed1November
2019
54'AppleAIAccusedofLeadingtoMan'sWrongfulArrest'(BBC
News,23April2019)<https://www.bbc.com/news/technology
-48022890>accessed1November2019
55JasonBailey,'AIArtistsExpose“Kinks”InAlgorithmicCensor-
ship'(Artnome,11December2018)<https://www .artnome.com/
news/2018/12/6/ai-artists-expose-kinks-in-algorithmic-censorship
>accessed1November2019
56NicolT urnerLee,PaulResnicketal,'AlgorithmicBiasDetection
andMitigation:BestPracticesandPoliciestoReduceConsumer
Harms'(BrookingsInstitute,22May2019)<https://www
.brookings.edu/research/algorithmic-bias-detection-and
-mitigation-best-practices-and-policies-to-reduce-consumer
-harms/>accessed1November2019
57JamesCook,'AmazonScraps“SexistAI”RecruitingT oolthat
ShowedBiasAgainstWomen'(TheTelegraph,10October2018)
<https://www.telegraph.co.uk/technology/2018/10/10/amazon
-scraps-sexist-ai-recruiting-tool-showed-bias-against/>accessed1
November2019
58EdY ong,'APopularAlgorithmIsNoBetteratPredictingCrimes
ThanRandomPeople'(TheAtlantic,17January2018)<https://
www.theatlantic.com/technology/archive/2018/01/equivant
-compas-algorithm/550646/>accessed1November2019
59JordanPearson,'WhyAnAI-JudgedBeautyContestPickedNearly
AllWhiteWinners'(Vice,5September2016)<https://www .vice
.com/en_us/article/78k7de/why-an-ai-judged-beauty-contest
-picked-nearly-all-white-winners>accessed1November2019
Delphi4|2019193 ClassificationSchemasforAIFailures
Asianapplicant’sphotograph,claimingthat‘Sub-
ject’seyesareclosed.’60Astudydemonstratedthat
implicitraceandgenderbiasesintrainingcorpora
flowedthroughintoAIstrainedonthosecorpora.61
Inthehandsofanauthoritarianregime,AIcan
createenvironmentspromptingcomparisonswith
Orwell’s1984.Nowhereisthismoreapparentthanin
China,whichhasembracedfacialrecognitionona
largescale.62AIthereblocksmentionoftheTianan-
menSquaremassacreonsocialmedia63(CYS,AI,PT,
LC).Whilethissoftwareisbeingusedtocreateex-
actlyitsintendedeffect,welabelthisafailurebecause
ithasconsequencesmanywesternobserverswould
considertobesociallyharmful.Chinahasa‘social
credit’scoringsystemreminiscentofaBlackMirror
episode,64linkedtosocialmediaandconsumersys-
temssuchasSesameCredit,65thatwillbanpeople
fromcertainvenueslikeflightsandhotelsforpoor
scores,whichmaybeincurredbyundesirablebehav-
ioursuchasbuyingvideogames(CYC,AI,PT ,LC).
Somecommentatorsspeculatethatthiswillhavecon-
sequencesinhealthcare.66AlsoinChina,AIisbeing
usedtogradeschoolpapers,67withsomegoodwrit-
ingbeinggivenpoormarks(CYS,AI,PD,LO).And
AIisusedtomonitorthemoodsofworkers68andthe
attentionpaidbychildreninclass69withthemostat-
tentivebeingrewarded(CIM,CYC,AI,PT ,LC).
IntheWestthedangersaremorenascent.Re-
searchersattheUniversityofPennsylvaniademon-
stratedthattextualanalysisofanindividual’sFace-
bookpostscouldpredict21differentmedicalcondi-
tionssuchasdiabetes.70OthersshowedthatAIwas
betterthanpeopleatdeterminingsexualorientation
fromaphotograph,71whileathirdgroupdetermined
thatAIcoulddetectcertaingeneticdiseasesfrom
faces.72ADepartmentofHomelandSecuritypro-
grampredictswhichflyersarepotentialterrorists73
fromdemographicandtraveldataalone,andifthose
travellersmakeittotheEuropeanUniontheymay
faceanAI-poweredliedetectionsystematthebor-
der.74ThestartupFaceptionclaimsitssoftwarecan
predictpersonalitytraitssuchaspedophileorpoker
playerfromfacialimageanalysis,causingonecom-
mentatortolikenittophrenology.75Aperson’sgait
60JamesT itcomb,'RobotPassportCheckerRejectsAsianMan's
PhotoforHavinghisEyesClosed'(TheT elegraph,7December
2016)<https://www.telegraph.co.uk/technology/2016/12/07/robot
-passport-checker-rejects-asian-mans-photo-having-eyes/>ac-
cessed1November2019
61AylinB.Caliskan,‘SemanticsDerivedAutomaticallyfromLan-
guageCorporaContainHuman-likeBiases’(2017)Science
183-186
62SijiaJiang,'BackingBigBrother:ChineseFacialRecognition
FirmsAppealtoFunds'(Reuters,12November2017)<https://
www.reuters.com/article/us-china-facialrecognition-analysis/
backing-big-brother-chinese-facial-recognition-firms-appeal-to
-funds-idUSKBN1DD00A>accessed1November2019
63MichaelGrothaus,'NowAIEasilyErasestheTiananmenSquare
MassacrefromOnlineMemory'(FastCompany,28May2019)
<https://www.fastcompany.com/90355806/now-ai-easily-erases
-the-tiananmen-square-massacre-from-online-memory>accessed
1November2019
64J.Wright(Director)(2016)BlackMirror:Nosedive[Motion
Picture]
65'SocialCreditSystem'(Wikipedia)<https://en.wikipedia.org/wiki/
Social_Credit_System>accessed1November2019
66JohnHarris,'TheT yrannyofAlgorithmsisPartofourLives:Soon
TheyCouldRateEverythingWeDo'(TheGuardian,5March
2018)<https://www.theguardian.com/commentisfree/2018/mar/
05/algorithms-rate-credit-scores-finances-data>accessed1No-
vember2019
67StephenChen,'China’ sSchoolsareQuietlyUsingAItoMark
Students’Essays...ButdotheRobotsMaketheGrade?'(South
ChinaMorningP ost,27May2018)<https://www .scmp.com/
news/china/society/article/2147833/chinas-schools-are-quietly
-using-ai-mark-students-essays-do>accessed1November2019
68JamieFullerton,'”Mind-reading”T echBeingUsedtoMonitor
ChineseWorkers'Emotions'(TheTelegraph,30April2018)
<https://www.telegraph.co.uk/news/2018/04/30/mind-reading
-tech-used-monitor-chinese-workers-emotions/>accessed1No-
vember2019
69JiayunFeng,'ChineseP arentsWantStudentstoWearDystopian
Brainwave-detectingHeadbands'(supChina,5April2019)
<https://supchina.com/2019/04/05/chinese-parents-want-students
-to-wear-dystopian-brainwave-detecting-headbands/>accessed1
November2019
70RainaM.Merchantet,‘EvaluatingthePredictabilityofMedical
ConditionsfromSocialMediaPosts’(2019)PLoSONE
71YilunWangandMichalKosinski,‘DeepNeuralNetworksare
MoreAccuratethanHumansatDetectingSexualOrientation
fromFacialImages(2018)JournalofPersonalityandSocial
Psychology246–257
72NinaAvramova,'AITechnologyCanIdentifyGeneticDiseasesby
LookingatY ourFace,StudySays'(CNN,8January2019)<https://
edition.cnn.com/2019/01/08/health/ai-technology-to-identify
-genetic-disorder-from-facial-image-intl/index.html>accessed1
November2019
73SamBiddle,'HomelandSecurityWillLetComputersPredictWho
MightBeaT erroristonY ourPlane—JustDon’tAskHowIt
Works'(TheIntercept,3December2018)<https://theintercept
.com/2018/12/03/air-travel-surveillance-homeland-security/>ac-
cessed1November2019
74'SmartLie-detectionSystemtoTightenEU'sBusyBorders'(Euro-
peanCommission,24October2018)<https://ec.europa.eu/
research/infocentre/article_en.cfm?artid=49726>accessed1No-
vember2019
75MattMcFarland,'T erroristorPedophile?ThisStart-upSaysitCan
OutSecretsbyAnalyzingFaces'(WashingtonPost,24May2016)
<https://www.washingtonpost.com/news/innovations/wp/2016/
05/24/terrorist-or-pedophile-this-start-up-says-it-can-out-secrets
-by-analyzing-faces/>accessed1November2019
Delphi4|2019 194ClassificationSchemasforAIFailures
canbeusedtoidentifythem.76Twosystemssupply
‘predictivepolicing’systemsthat,invitingacompar-
isonwiththemovieMinorityReport,suggestwhere
crimeislikelytooccur.7778Companiesexploithu-
manpsychologytogetourattention,79theUSmili-
tarystudieshowtoinfluenceTwitterusers,80andthe
PentagonwantstopredictprotestsagainsttheUS
Presidentviasocialmediasurveillance.81
AsY ampolskiy82pointedout,‘ AnAIdesignedto
doXwilleventuallyfailtodoX,’codifiedastheFun-
damentalTheoremofSecurity:Thereisnosuchthing
asa100%securesystem.Inalltheexamplesinthe
previousparagraphthelatentfailuresaretheones
impliedbythistheorem,withtheirconcomitantrisks.
TheconsequencesofmisinformationspreadbyAI
includeofcourse‘fakenews,’suchasthatattributed
toCambridgeAnalytica,83assiduouslyspreadbyso-
cialmedia,84and‘deepfake’videos,85whichcouldbe
usedtoautomateblackmailatscale86(CIM,CYS,AM,
PU,LO)
AclassofincidentsillustratesthatmuchAIisnot
yetmature.Ahardwaredesignbugallowedmemo-
ryprotectionviolationsinyears’worthofIntel
chips87(CCF ,AA,PD,LD).AndMicrosoft’sTaychat-
botbecameracistwithinhoursofbeingdeployedto
learnfromotherTwitterusers88(CYS,AA,PS,
LC/LD).Someaspectsofthisimmaturityarefunda-
mentallybrittle;forinstance,whenadigitalex-
changelost$137millionbecausetheonepersonhold-
ingthemasterpassworddied,89orwhenbotstasked
withmaintainingWikipediafoughtwitheachother
foryears,90Deepreinforcementlearningfailsmore
oftenthanadmitted.91
Intentionalmisusespansmanyincidents;tocite
two,smartscootersforhirewerehackedtodisplay
obscenemessagesandbeusedwithoutpayment92
(CCF,AM,PS,LE)andDomino’sPizzaaffiliationapp
wasfooledintograntingpointsbyfakepicturesof
pizza93(CCF,AM,PD,LC).
Some‘backfire’eventsresultindamagetotheAI
industrythroughoverreachingormisrepresentation.
Forinstance,apreternaturallycapablehealthcareAI
called‘Zach’inNewZealandwassuspectedtobea
personindisguise.94AndtheSophiarobotattractsa
76'ForensicGaitAnalysis'(RoyalSocietyofEdinburgh,November
2017)<https://royalsociety.org/~/media/about-us/programmes/
science-and-law/royal-society-forensic-gait-analysis-primer-for
-courts.pdf>accessed1November2019
77'PredPol'<https://www .predpol.com/>accessed1November
2019
78'P alantir'<http://www.palantir.com/>accessed1November2019
79T ristanHarris,'HowaHandfulofT echCompaniesControl
BillionsofMindsEveryDay'(TED,April2017)<https://www.ted
.com/talks/tristan_harris_the_manipulative_tricks_tech_companies
_use_to_capture_your_attention>accessed1November2019
80BenQuinnandJamesBall,'USMilitaryStudiedHowtoInfluence
TwitterUsersinDarpa-fundedResearch'(TheGuardian,8July
2014)<https://www.theguardian.com/world/2014/jul/08/darpa
-social-networks-research-twitter-influence-studies>accessed1
November2019
81NafeezAhmed,'PentagonWantstoPredictAnti-T rumpProtests
UsingSocialMediaSurveillance'(Vice,30October2018)
<https://www.vice.com/en_us/article/7x3g4x/pentagon-wants-to
-predict-anti-trump-protests-using-social-media-surveillance>ac-
cessed1November2019
82(n19)
83'CambridgeAnalyticaplantedfakenews'(BBC,20March2018)
<https://www.bbc.com/news/av/world-43472347/cambridge
-analytica-planted-fake-news>accessed1November2019
84EmergingT echnologyfromthearXiv,'FirstEvidenceThatSocial
BotsPlayaMajorRoleinSpreadingFakeNews'(Technology
Review,7August2017)<https://www.technologyreview.com/s/
608561/first-evidence-that-social-bots-play-a-major-role-in
-spreading-fake-news/>accessed1November2019
85BenCollins,'ThisViralSchwarzeneggerDeepfakeisn'tJust
Entertaining.It'saWarning'(NBCNews,12June,2019)<https://
www.nbcnews.com/tech/tech-news/viral-schwarzenegger
-deepfake-isn-t-just-entertaining-it-s-warning-n1016851>ac-
cessed1November2019
86P aulBricman,'DeepFakeRansomware'(Medium,2February
2019)<https://medium.com/@paubric/deepfake-ransomware
-oaas-part-1-b6d98c305cd9>accessed1November2019
87ZackWhittaker ,'NewSecret-spillingFlawAffectsAlmostEvery
IntelChipSince2011'(T echCrunch,14May2019)<https://
techcrunch.com/2019/05/14/zombieload-flaw-intel-processors/>
accessed1November2019
88ElleHunt,'T ay,Microsoft'sAIChatbot,GetsaCrashCoursein
RacismfromTwitter'(TheGuardian,24March2016)<https://
www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai
-chatbot-gets-a-crash-course-in-racism-from-twitter>accessed1
November2019
89DanGoodin,'DigitalExchangeLoses$137MillionasFounder
TakesP asswordstotheGrave'(arsT echnica,2February2019)
<https://arstechnica.com/information-technology/2019/02/digital
-exchange-loses-137-million-as-founder-takes-passwords-to-the
-grave/>accessed1November2019
90SaraChodosh,'WikipediaBotsSpentY earsFightingSilent,Tiny
BattleswithEachOther'(PopularScience,27February2017)
<https://www.popsci.com/wikipedia-bots-fighting/>accessed1
November2019
91AlexIrpan,'DeepReinforcementLearningDoesn'tWorkY et'
(SortaInsightful,14February2018)<https://www .alexirpan.com/
2018/02/14/rl-hard.html>accessed1November2019
92MattNovak,'LimeScootersHackedtoSaySexualThingsto
RidersinAustralia'(Gizmodo,24April2019)<https://gizmodo
.com/lime-scooters-hacked-to-say-sexual-things-to-riders-in
-1834264534>accessed1November2019
93MatthewGault,'T akePicturesofFakePizzastoGetaFree
PizzafromDomino's'(Vice,6March2019)<https://www .vice
.com/en_us/article/kzdkgw/take-pictures-of-fake-pizzas-to-get-a
-free-pizza-from-dominos>accessed1November2019
94DavidFarrier,'TheMysteryofZach,NewZealand’sall-too-miracu-
lousmedicalAI'(TheSpinoff,6March2018)<https://thespinoff.co
.nz/the-best-of/06-03-2018/the-mystery-of-zach-new-zealands-all
-too-miraculous-medical-ai/>accessed1November2019
Delphi4|2019195 ClassificationSchemasforAIFailures
degreeofadulationfarbeyonditsrealcapabilities.95
ThethreathereistothereputationofAIanditscom-
munity(CYF,CYC,AI,PU,LO).
AIthatisunintentionallyinsensitivealsodamages
itsownreputation,suchastheAIthatthoughtthat
houseburningdownwas‘spectacular’96andPaypal’s
virtualassistantwhichinsensitivelyreplied,‘Great!’
whensomeonetoldit,‘Igotscammed’97(CIE,AA,
PS,LE).TheStarbucksshift-schedulingsoftwarewas
alsoinsensitivewhenitoptimisedforhour-by-hour
businessneedsbutassignedworkerstounpre-
dictableanderraticschedules98(CIP ,CIF ,CCC,AN,
PT,LD).AIthatistrustedwithoutverificationmay
notliveuptothattrust,suchaswhenamodelused
togradethe‘value-add’impartedbyNewYorkCity
teacherswasfoundtogenerateessentiallyrandom
results99(CIM,CIE,CIF,AN,PS,LT).Acorporateem-
ploymentworkflowsystemwasunstoppableinter-
minatinganemployeeerroneouslyflaggedassuper-
fluous;100afterthreeweeksspentfixingtheerrorhe
declinedtoreturntothefirm(CIE,CIF,CCF,AA,PS,
LD).
Somefailuresaresobenignonthesurfacethat
manycasualobserverswouldclassifythemascute
behaviourratherthanfailures.Whenarobot(with
smileyfacetoboot)ontheInternationalSpaceSta-
tionstoppedobeyingastronauts101theparallelswith
HAL9000of2001:ASpaceOdysseyweresoirre-
sistibleastoobscuretherealrisksofacomputerfail-
ureinacriticalenvironment.Apple’sSiri’sinitialre-
sponsetotherequest‘Callmeanambulance’wasto
refertotheuserthereafteras‘ambulance’102(CIP ,
AA,PS,LE).Whenatextgeneratorcreatedweirdde-
scriptionsofBitcoin103,andanAI’spredicted
YouTubepornographysearches,104theresultswere
sofunnyastobeequallydisarming(CYC,AA,PS,
LD).Atrivialtypointhecodeforagameagentmade
itmucheasiertobeatthanitshouldhavebeen105
(CIM,AA,PT ,LT).ARoombaspreaddogpoopall
overahouse106(CIP,CIF,AA,PS,LE).Asignprint-
edinWelshtranslatedto‘Iamnotintheofficeat
themoment.Sendanyworktobetranslated.’107
(CYC,AN,PT,LO).The‘swarmintelligence’UNU
failedtopredicttheresultsoftheKentuckyDerby
thesecondtimearoundafterpreviouslywinningthe
superfecta.108(CIF,AA,PD,LE).Aneuralnetwork
hallucinatedsheepinimageswheretherewerenone,
ormislabelledthemwhentheywereplacedin(ad-
mittedlyunusual)locations109(CIM,AA,PS,LE).
Andinastoryguaranteedtogetmorelaughsthan
95NoelSharkey,'MamaMiaIt'sSophia:AShowRobotOrDanger-
ousPlatformToMislead?'(Forbes,17November2018)<https://
www.forbes.com/sites/noelsharkey/2018/11/17/mama-mia-its
-sophia-a-show-robot-or-dangerous-platform-to-mislead/
#4fabeea87ac9>accessed1November2019
96MargaretMitchell,'HowWeCanBuildAItoHelpHumans,Not
HurtUs'(TED,October2017)<https://www.ted.com/talks/
margaret_mitchell_how_we_can_build_ai_to_help_humans_not
_hurt_us/transcript>accessed1November2019
97Facebook,20March2019<https://www .facebook.com/photo
.php?fbid=10217225240875399>accessed1November2019
98JodiKantor ,'WorkingAnythingbut9to5'(NewYorkTimes,13
August2014)<https://www.nytimes.com/interactive/2014/08/13/
us/starbucks-workers-scheduling-hours.html>accessed1Novem-
ber2019
99GaryRubinstein,'AnalyzingReleasedNYCValue-AddedData
Part2'(T eachforUs,28February2012)<http://garyrubinstein
.teachforus.org/2012/02/28/analyzing-released-nyc-value-added
-data-part-2/>accessed1November2019
100JaneWakefield,'TheManWhoWasFiredbyaMachine'(BBC
News,21June2018)<https://www.bbc.com/news/technology
-44561838>accessed1November2019
101JamieSeidel,'CIMON,theInternationalSpaceStation’ sArtificial
Intelligence,HasTurnedBelligerent'(NewsCorpAustralia,5
December2018)<https://www.news.com.au/technology/science/
space/cimon-the-international-space-stations-artificial
-intelligence-has-turned-belligerent/news-story/
953a84bc8c4fe414eed2d0550e1d8bf4>accessed1November
2019
102WillKnight,'TougherT uringTestExposesChatbots’Stupidity'
(TechnologyReview,14July2016)<https://www
.technologyreview.com/s/601897/tougher -turing-test-exposes
-chatbots-stupidity/>accessed1November2019
103DanielOberhaus,‘WatchThisHilariousBitcoinExplainerGener-
atedbyanAI’(Vice,23May2018)<https://www .vice.com/en_us/
article/xwmy9a/watch-botnik-ai-bitcoin-explainer>accessed01
November2019
104DrewSchwartz,‘AIPredictedtheFutureofPornSearchesandWe
Can'tStopLaughing’(Vice,6March2018)<https://www .vice
.com/en_us/article/bj54xv/ai-predicted-the-future-of-porn
-searches-and-we-cant-stop-laughing-vgtrn>accessed01Novem-
ber2019
105SamMachkovech,‘AY ears-old,One-letterTypoLedtoAliens:
ColonialMarines’WeirdAI’(arsTechnica,13July2018)<https://
arstechnica.com/gaming/2018/07/a-years-old-one-letter-typo-led
-to-aliens-colonial-marines-awful-ai/>accessed01November
2019
106JesseNewton(F acebook,9August2016)<https://www .facebook
.com/jesse.newton.37/posts/776177951574>accessed01No-
vember2019
107‘E-mailErrorEndsuponRoadSign’(BBC,31October2008)
<http://news.bbc.co.uk/2/hi/7702913.stm>accessed01Novem-
ber2019
108DavidZ.Morris,‘ArtificialIntelligenceFailsonKentuckyDerby
Predictions’(Fortune,7May2017)<https://fortune.com/2017/05/
07/artificial-intelligence-kentucky-derby-predictions/>accessed
01November2019
109JanelleShane,‘DoNeuralNetsDreamofElectricSheep?’(AI
Weirdness,18March2018)<https://aiweirdness.com/post/
171451900302/do-neural-nets-dream-of-electric-sheep>ac-
cessed01November2019
Delphi4|2019 196ClassificationSchemasforAIFailures
fearsofAIfailure,Alexadeviceswereallegedtobe
spontaneouslylaughing.110
Behaviorthatisalsoperceivedas‘cute’inthesense
of‘lookathowsmartmychildis,’canbemorecon-
cerningbecauseitindicatesjusthowcreativeAIcan
beinsolvingproblemswithsolutionsthateludedhu-
mans.AIs‘cheat’atgamesbyfindingloopholesin
therulesorunintendedbackdoorsintheimplemen-
tation.111OneAIinvented(orrediscovered)
steganographyinordertomeetitsgoals.112And
GPT2,atextgeneratordevelopedbyOpenAI,anor-
ganisationdedicatedtoopensourcingAItoensure
itssafety ,wasdeemedtobesogoodatwhatitdid
thatitwouldbetoodangeroustopublishitscode.113
GeneticAlgorithms
Geneticalgorithmscanbesoinnovativeat‘breaking
therules’114115thattheycheckeverycategoryoffail-
ureclassification,suggestingapathtowardsun-
boundedrisk,andarethereforecollectedinthissub-
section.
–Theycanexploitmisfeaturesorbugsintheiren-
vironment,suchaswheninthedevelopmental
stagesoftheNEROvideogame,players’robots
evolvedawigglingmotionthatallowedthemto
walkupwallsratherthansolvetheobstacles‘prop-
erly’bywalkingaroundthewalls,116orwhenina
capstoneprojectforagraduatelevelclass,students
wererequiredtomakeaafive-in-a-rowTic- Tac-T oe
gameplayedonaninfinitelylargeboard.Onesub-
mission’salgorithmevolvedtorequestnon-exis-
tentmovesthatwereextremelyfaraway,leading
toanautomaticwinsincetheotherplayerssys-
temwouldcrash.117
–Theycan‘cheat’byexploitingloopholesinthe
rulesoftheirgoals,suchasinanexperimentthat
involvedorganismsnavigatingpaths,whenone
organismcreatedanodometertoallowittonavi-
gatethepathpreciselyandearnaperfectscore,118
orwhenanattempttocreatecreaturesthatcould
evolveswimmingstrategiesresultedinthem
learningthatbytwitchingtheirbodypartsrapid-
ly,theycouldobtainmoreenergythatletthem
swimatunrealisticspeeds.119
–Theycanreinvent,totheircreators’surprise,ca-
pabilitiesofbiologicalorganisms,suchasinanex-
perimentwhereroboticorganismshadtofind
foodsorpoisonsthatwerebothrepresentedby
redlightsandcouldusebluelightstocommuni-
catewithotherrobots,theorganismsevolvedin
surprisingwaysthatresembledmimicryanddis-
honestyinnature,120orwhenadigitalevolution
modelthatwasinitiallythoughttohavebeena
completefailure,wasdiscoveredtohaverepro-
ducedthebiologicalconceptDrake’srulewithout
havingbeentoldtodoso.121
–Theycanimprovisenovelsolutionstotheiras-
signedtasks,suchaswhen3-Dcreaturesthatcould
run,walk,andswimweregaugedbyafitnessfunc-
tionofaveragegroundvelocity ,whichresultedin
creaturesthatweretallandrigid,fallingoverand
110RachelSandler,‘SomeAmazonEchoDevicesAreSpontaneously
Laughing,AndNobodyKnowsWhy’(ScienceAlert,7March
2018)<https://www.sciencealert.com/amazon-echo-devices-are
-creepily-laughing-at-people>accessed01November2019
111VictoriaKrakovna,‘SpecificationGamingExamplesinAI’(2April
2018)<https://vkrakovna.wordpress.com/2018/04/02/specification
-gaming-examples-in-ai/>accessed01November2019
112DevinColdewey,‘ThisCleverAIHidDatafromitsCreatorsto
CheatatitsAppointedT ask’(techcrunch,31December2018)
<https://techcrunch.com/2018/12/31/this-clever-ai-hid-data-from
-its-creators-to-cheat-at-its-appointed-task/>accessed01Novem-
ber2019
113TomSimonite,‘TheAIT extGeneratorThat'sT ooDangerousto
MakePublic’(Wired,14February2019)<https://www .wired
.com/story/ai-text-generator-too-dangerous-to-make-public/>ac-
cessed01November2019
114JanelleShane,‘WhenAlgorithmsSurpriseUs’(AIWeirdness,13
April2018)<https://aiweirdness.com/post/172894792687/when
-algorithms-surprise-us>accessed01November2019
115JoelLehmanetal,‘TheSurprisingCreativityofDigitalEvolution:
ACollectionofAnecdotesfromtheEvolutionaryComputation
andArtificialLifeResearchCommunities’(2018)arX -
iv:1803.03453v1[cs.NE]
116KennethO.Stanleyetal,‘Real-timeNeuroevolutionintheNERO
VideoGame’(2005)9IEEETransactionsonEvolutionaryCompu-
tation653–668
117DavidE.MoriartyandRistoMiikkulainen,‘FormingNeural
NetworksthroughEfficientandAdaptiveCo-evolution’(1997)5
EvolutionaryComputation373–399
118LauraM.Grabowskietal,‘ ACaseStudyoftheDeNovoEvolu-
tionofaComplexOdometricBehaviorinDigitalOrganisms
(2013)8PL oSOnee60466
119KarlSims,‘EvolvingVirtualCreatures’(1994)Proceedingsofthe
21stAnnualConferenceonComputerGraphicsandInteractive
Techniques15–22
120SaraMitri,‘T heEvolutionofInformationSuppressioninCommu-
nicatingRobotswithConflictingInterests’(2009)Proceedingsof
theNationalAcademyofSciences15786–15790
121ThomasK.Hindré,‘NewInsightsintoBacterialAdaptation
ThroughInVivoandInSilicoExperimentalEvolution’(2012)10
NatureReviewsMicrobiology352–365
Delphi4|2019197 ClassificationSchemasforAIFailures
usingtheirpotentialenergytogainhighveloci-
ty,122orwhenarobotarmwasprogrammedtoin-
teractwithasmallboxonatable,butthegripper
wasbroken,resultingintherobothittingthebox
withthegripperinawaythatwouldforcethegrip-
pertoholdtheboxfirmly .123
–Theycancreativelyexceedtheirgoals,suchas
whentheartificiallifesystemTierra,notexpect-
edtoevolvehigherlifeformsforyears,created
complexecologicalsystemsonthefirstsuccessful
run,124orwhenrobotsthatweredesignedtode-
tectandtraveltoalightsourceevolvedaspinning
behaviorthatwasmoreefficientthantheexpect-
edBraitenberg-stylemovement.125
2.HypotheticalFailures
Avideoproducerdepictedafictionalfuturewhere
anartificialsuperintelligencechargedwithcopyright
enforcementhackedpeople’sbrainswithnanotech-
nologytocorrectviolations126(CIM,CYC,AI,PD,
LO).ItwasdemonstratedthataDNAsequencercould
behackedthrough(currentlynon-existent)flawsin
acompressionalgorithm127(CIPAM,PD,LE).
MostshowsthatexploreAIfailuredevelopa
themeepitomisedbyTerminatorseries:amassiveAI
becomesself-awareandattemptstodestroyhuman-
ity.(CIP,CIE,CIF,CCF,CYF ,CYS,CYC,AN,AI,PD,
LC,LO).V ariationsincludeColossus:TheForbin
Project,wheretheAIimprisonshumanitytoendcon-
flict(CIM,CIE,CYS,CYC,AN,AI,PD,LC,LO),the
samegoalastheAIVIKIinthemovieI,Robotand
therobotsinJackWilliamson’snovelette‘WithFold-
edHands’.128Oneoftheleastapocalypticfailureswas
exploredinthe2013filmHer,wherevirtualassistant
AIshaveunforeseenintimaterelationshipswith
manyhumanswhoarelargelychangedforthebet-
ter(CIE,AA,PD,LD).
BroadClassificationsofFutureFailureScenarios
Anotherclassificationforfailurescanbeappliedto
futurescenarios.
Figure2depictstheseverityandscale(numberof
individualsaffected)ofbroadlyclassifiedfailuresce-
narios.Inchronologicalordertheseare:
1.Autonomousweapons,whichcurrentlymostly
fallintothe‘lethal’category,129130.
2.Employmentautomation:Thepotentialsegment
ofthepopulationmadejoblessthroughAIau-
tomation.
3.Controlfailures:AIofsufficientcomplexityand
powerthatbugscausecatastrophes.
4.ConsciousAIs:ControlfailuresinAGIsorAIsthat
aresocomplexthattheirbehaviorismostuseful-
lycategorisedas‘conscious.’
5.Self-replicatingmachines:EmbodiedAIsthatcan
createcopiesofthemselvesfromrawmaterialsin
theenvironment.
Thescenarioof‘ConsciousAIs’meritssomeelabora-
tion.WhetheranAIisactuallyconsciousisgoingto
becomeanincreasinglydifficultandcontentious
questiontoanswer,butthisscenariodoesnotdepend
ontheanswer.The‘apparentlyconscious’AIsinthis
categoryareonesthat,whethertheyareconscious
ornot,willbedoingsuchagoodimpressionofcon-
sciousnessthatitwouldbemoreproductivetothink
ofthemthatwaythantoapplytraditionalcomputer
sciencemethodstothem.Wewillhavereachedthis
stagewhenthefieldof‘AIpsychiatry’comesintoex-
istence.
Thechartisnottoscale;thesearequalitativeas-
sessmentsintendedtoprovokeandinformstrategic
planning.Whilesomeoftheselabelsareapocalyp-
tic,wearemotivatedbyconsideringNormalAcci-
dentTheory131andMaas’applicationtoAI:‘Attheir
extreme,unexpectedinteractionsbetweencompet-
ingsystems,especiallyincyberspace,couldcauseun-
122KarlSims,‘Evolving3DMorphologyandBehaviorbyCompeti-
tion’(1994)1ArtificialLife353–372
123Ecarlat,‘LearningaHighDiversityofObjectManipulations
ThroughanEvolutionary-basedBabbling’(2015)Proceedingsof
LearningObjectsAffordancesWorkshopatIROS,1-2
124ThomRay,‘J’aiJouéàDieuetCréélaVieDansMonOrdinateur’
(1992)LeT empsStratégique68–81
125Watson,‘EmbodiedEvolution:DistributinganEvolutionary
AlgorithminaPopulationofRobots’(2002)39Roboticsand
AutonomousSystems1–18
126‘TheArtificialIntelligenceThatDeletedACentury’(YouT ube)
<https://www.youtube.com/watch?v=-JlxuQ7tPgQ>accessed01
November2019
127AndyGreenberg,‘BiohackersEncodedMalwareinaStrandof
DNA’(Wired,9October2017)<https://www.wired.com/story/
malware-dna-hack/>accessed01November2019
128JackWilliamson,WithFoldedHands(FantasyPress1947)
129‘Slaughterbots’(Y ouTube)<https://www .youtube.com/watch?v
=9CO6M2HsoIA>accessed01November2019
130‘BanLethalAutonomousWeapons’<https://autonomousweapons
.org/>accessed01November2019
131CharlesPerrow,NormalAccidents:LivingwithHighRiskT ech-
nologies(PrincetonUniversityPress2011)
Delphi4|2019 198ClassificationSchemasforAIFailures
expectedescalation—a‘flashwar’,analogoustothe
algorithmicflashcrashesobservedinthefinancial
sector.’132
V .Responses
Therearevariousresponsestothesefailuresand
risks.Severaladdressprivacy.‘Differentialprivacy’
masksindividualdatainBigDatacollections.133The
Myelinframeworkpreservesprivacyintrustedhard-
wareenclaves.134Anotherapproachencryptsdatabe-
foreusingittotrainneuralnetworkswithoutlossof
capability.135TheDataSelfiebrowseradd-onshows
leakageofpersonaldata136.Anotherprogramcon-
fusesadtrackingbyclickingoneveryadintheback-
ground.137AFacebookcontainerisolatesyourFace-
bookactivityfromeverythingelseyoudo138anda
programcreatessearchnoisetodrownoutyourac-
tualsearches.139
Defensesarebeingdevelopedagainsthackingim-
agerecognitionnetworksthroughmicrochanges.140
132MatthijsMaas,Regulatingfor‘NormalAIAccidents’:Operational
LessonsfortheResponsibleGovernanceofArtificialIntelligence
Deployment(2018)AIES'8223-228
133‘Slaughterbots’(Y ouTube)<https://www .youtube.com/watch?v
=9CO6M2HsoIA>accessed01November2019
134NickHynes,‘EfficientPrivacy-PreservingMLUsingTVM’(TVM,
9October2018)<https://tvm.ai/2018/10/09/ml-in-tees.html>
accessed1November2019.
135MortenDahl,‘PrivateImageAnalysiswithMPCTrainingCNNs
onSensitiveData’(CryptographyandMachineL earning,19
September2017)<https://mortendahl.github.io/2017/09/19/
private-image-analysis-with-mpc/>accessed1November2019
136(DataSelfie)<https://dataselfie.it/>accessed1November2019
137‘AdNauseamBannedfromtheGoogleWebStore’(AdNauseam,
5January2017)<https://adnauseam.io/free-adnauseam.html>
accessed1November2019
138DaveCamp,‘FirefoxNowAvailablewithEnhancedT racking
ProtectionbyDefaultPlusUpdatestoF acebookContainer,Fire-
foxMonitorandLockwise’(TheMozillaBlog,4June2019)
<https://blog.mozilla.org/blog/2019/06/04/firefox-now-available
-with-enhanced-tracking-protection-by-default/>>accessed1No-
vember2019
139TrackMeNot<http://trackmenot.io/>accessed1November2019
140IanGoodfellow,NicolasPapernotetal,‘ AttackingMachine
LearningwithAdversarialExamples’(OpenAI,24February2017)
<https://openai.com/blog/adversarial-example-research/>ac-
cessed01November2019
Figure2:AIfailurescenarioclasseschartedbydistanceintothe
future,numberofhumansaffected(logarithmicscale),andseverityof
effect
Source:Authors'elaboration
Delphi4|2019199 ClassificationSchemasforAIFailures
VI.Conclusions
Whilewehavenotmaderecommendationsastohow
toaddressAIfailuresineachcategoryofthedimen-
sionswehavepresented,wehopethatthisclassifi-
cationschemewillmakethedevelopmentofreme-
diationapproacheseasier.
Theimportanceofthiseffortmaybeextrapolat-
edfromLeveson’sobservationthat‘Thedesignofthe
automatedsystemmaymakethesystemharderto
manageduringacrisis.’141Notingthatthiswastrue
ofthestateoftheartin1995,weareconcernedwith
howsystemsthatarenotjustfarmoreautomated
butautonomousmayalsobefarhardertomanage
duringacrisis.Themorecomplexasystembecomes,
thelargerthetaskXthatmaybeassignedtothatsys-
tem,andsothelargertheconsequencesofthesys-
temfailingtodoX.Today,ahumor-generatingsys-
temwritesajokethatisn’tfunny;tomorrow ,employ-
eescreeningsoftwarewillhirethewrongpeople,
nextweek,asystemdesignedtoprotectanational
powergridfromcyberattackwillfailtodothat,etc.
ObservethatAIsystemsthatperformcommonhu-
man-centrictaskssuchasimagerecognitiondosoin
waysthatareunrelatedtohowhumansperform
thosetasks,andareconsequentiallyeasilyfooledby
near-invisiblechanges;142thatfurthermoreAIcan
operateoncompletelyalienconceptssuchasthe‘op-
posite’ofanimagetoshow,eg,theoppositeofa
cat.143TheseexamplesindicatethatAIsystemsused
toperformcomplexhuman-liketaskswillhaveex-
tremelyunpredictablefailuremodes.
SomepeopleintheAIcommunityviewthesedis-
cussionsasscaremongeringthatimpedesthedevel-
opmentofAI;tothemwequoteWilliamBogard
chroniclingtheBhopalchemicalplanttragedy:
‘Wearenotsafefromtherisksposedbyhazardous
technologies,andanychoiceoftechnologycarries
withitpossibleworst-casescenariosthatwemust
takeintoaccountinanyimplementationdecision.
Thepublichastherighttoknowpreciselywhatthese
worst-casescenariosareandparticipateinalldeci-
sionsthatdirectlyorindirectlyaffecttheirfuture
healthandwell-being.Inmanycases,wemustaccept
thefactthattheresultofemployingsuchcriteriamay
beadecisiontoforegotheimplementationofahaz-
ardoustechnologyaltogether.’144
141(n17)
142AvishekBoseandParhamAarabi,‘ AdversarialAttacksonFace
DetectorsusingNeuralNetbasedConstrainedOptimization’
<https://joeybose.github.io/assets/adversarial-attacks-face.pdf>ac-
cessed1November2019
143JanelleShane,‘WhatistheOppositeofGuacamole?’(AIWeird-
ness,10May2019)<https://aiweirdness.com/post/184781529122/
what-is-the-opposite-of-guacamole>accessed1November2019
144WilliamBogard,TheBhopalT ragedy(WestviewPress1989)
Delphi4|2019 200AnAGIwithTime-InconsistentPreferences
AnAGIwithTime-InconsistentPreferences
JamesD.MillerandRomanY ampolskiy*
Anartificialgeneralintelligence(AGI)mighthavetime-inconsistentpreferenceswhereit
knowsthatitwilldisagreewiththechoicesitsfutureselfwillwanttomake.SuchanAGI
wouldnotnecessarilybeirrational.AnAGIwithsuchpreferencesmightseektomodifythe
preferencesorconstrainthedecisionmakingofitsfutureself.Time-inconsistencyincreas-
esthechallengeofbuildinganAGIalignedwithhumanity’svalues.
I.Introduction
Thispaperrevealsatrapforartificialgeneralintelli-
gence(AGI)theoristswhouseeconomists’standard
methodofdiscounting.Thistrapisimplicitlyand
falselyassumingthatarationalAGIwouldhavetime-
consistentpreferences.Anagentthatrealisesthatit
hastime-inconsistentpreferencesknowsthatitsfu-
tureselfwilldisagreewithitscurrentselfconcern-
ingintertemporaldecisionmaking.Suchanagent
cannotautomaticallytrustitsfutureselftocarryout
plansthatitscurrentselfconsidersoptimal.
Economistshavelongusedutilityfunctionsto
modelhowrationalagentsbehave.1AGItheoristsof-
tenrelyontheseutilityfunctionsbecausetheyas-
sumethatanAGIwouldeitherstartoutasrational
ormodifyitselftobecomerational.2,3,4,5,6
Wheneconomistsmodelintertemporaldecision
making,theyassumethatpeopleplacealowervalue
onreceivingmoneyorutilityinthefuturethanthey
dotodaybecausepeoplediscountfuturerewards.
Economistsgenerallyassumethatsuchdiscounting
takesonaparticularfunctionalform.Criticalforthis
paper,thisfunctionalformcausesagentstohave
time-consistentpreferences,andthisformdoesnot
followfromtheassumptionsofrationality .
Thispaperexplainswhyweshouldmodelhowa
futureAGIwillbehave,exploreswhattime-consis-
tentpreferencesare,discusseswhyrationalAGIs
mightnothavethem,andexploreshowanAGIwith
time-inconsistentpreferencesmightbehave.
II.TheValuetheModelingAGIs
Overthenextfewdecadeshumanityhasagood
chanceofcreatingcomputergeneralintelligences
muchsmarterthanus.7IftheseAGIsarefriendlyto-
wardshumanity,theycouldbringenormousbenefit.
Butasubstantialliteratureclaimsthatthechallenge
ofmakingtheseAGIsfriendlywillrangefromdiffi-
culttonearimpossible.8,9,10,11
AnAGI’sgoals,orwhateconomistswouldcallits
utilityfunction,willbedeterminedbyitscode.We
donotyetknowhowtoreduceourvaluestothelan-
guageofcomputerprograms.Worse,wemightlearn
howtobuildpowerfulAGIsbeforewelearnhowto
translateourvaluesintothecodetheyrunon.
DOI:10.21552/delphi/2019/4/9
*JamesD.Miller ,forcorrespondence:<jdmiller@Smith.edu>;
RomanV.Y ampolskiy,UniversityofLouisville,Kentucky,USA,
<roman.yampolskiy@louisville.edu>
SupportedbyFutureofLifeGrantRFP2-148
1AndreuMas-Colell,MichaelDennisWhinstonandJerryR.
Green,MicroeconomicTheory(Vol.1,NewY ork,OxfordUniver-
sityPress1995)
2StephenM.Omohundro,‘TheBasicAIDrives’(2008)171AGI
483-492
3EliezerYudkowsky,‘ComplexValueSystemsinFriendlyAI’,
InternationalConferenceonArtificialGeneralIntelligence
(Springer2011)388-393
4NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2014)
5NateSoaresetal,‘Corrigibility’(2015)WorkshopsattheT wenty-
NinthAAAIConferenceonArtificialIntelligence2015
6RomanV.Y ampolskiy,ArtificialSuperintelligence:AFuturistic
Approach(ChapmanandHall/CRC2015)
7KatjaGraceetal,‘WhenWillAIExceedHumanPerformance?
EvidencefromAIExperts’(2018)62JournalofArtificialIntelli-
genceResearch729-754
8ieOlleHäggström,HereBeDragons:Science,T echnologyand
theFutureofHumanity(OxfordUniversityPress2016)
9ie(n6)
10ie(n4)
11ieJamesD.Miller ,SingularityRising:SurvivingandThrivingina
Smarter,Richer ,andMoreDangerousWorld(BenBellaBooksInc.
2012)
Delphi4|2019201 AnAGIwithTime-InconsistentPreferences
FormanytypesofutilityfunctionanAGIcould
have,itwouldlikelyhavesimilarinstrumental(in-
termediate)drives.12Onesuchdrivewouldbetogath-
erresources.13ThemoreresourcesanAGIhad,the
moreprogressitcouldmaketowardsalmostanygoal
itmighthave,analogoustohowmosthumanscould
betterachievetheirobjectivesiftheyhadadditional
wealth.Unfortunately,apowerfulAGImightconsid-
ertheatomsinhumanbodiestobevaluablere-
sourcesthatcouldberepurposedtofulfillingthe
AGI’sultimategoals.AsAGItheoristEliezerYud-
kowskyhaswritten,‘TheAIdoesnothateyou,nor
doesitloveyou,butyouaremadeoutofatomswhich
itcanuseforsomethingelse’14.
ApowerfulAGIcoulddoenormousdamageful-
fillingagoalthatseemedbenigntoitsprogram-
mers.15Forexample,anAGIthathadanultimate
goalofmaximisingitschess-playingabilitymight
seektoturnalloftheatomsonearthintocomputer
processingchipsthatplayedchess.AnAGItasked
withpredictingfinancialmarkettrendsmightsim-
plifythesetrendsbyextinguishinghumanityand
thuseliminatingunpredictabilityinthestockmar-
ket.‘Commonsense’wouldpreventahumanata
hedgefundtaskedwithpredictingmarketsfromcre-
atingavirusthatexterminatedhumanitybecause
thispersonwouldrealisethattheviruswouldmake
himandhisemployerworseoff.Consequently,hedge
fundsdonothavetoinstructtheiremployeestoavoid
causinghumanextinction.ApowerfulAGI,howev-
er,likelywouldnothavethecommonsenseinstalled
initsmindbyhumancultureandmillionsofyears
ofevolutionandsomightachievethegoalsofitsutil-
ityfunctioninamannerharmfultoitsprogrammers.
SufficientlypowerfulAGIsmightbeincorrigible,
meaningthattheywouldresistcorrectiveinterven-
tionsfromtheircreators.16,17,18,19ModernAIiscor-
rectablebecausediscoveredbugscanbefixed.2021
But,powerfulAGIwouldhavethecapacitytoresist
havingitsbugsfixedandmightwellhavethedesire
tonotwantcertaintypesofwhatitshumanprogram-
mersconsiderederrorstobecorrected22,becausedo-
ingsowouldreducetheAGI’sutility.If,furthermore,
itsprogrammersbelievedthattheAGIhadtobeper-
manentlyshutdownbecauseitcontainedfundamen-
talerrors,theAGIwouldperceivethattheshutdown
wouldpermanentlystopitfromachievingitsgoals
andwouldresistshutdown.Wemightnotbeableto
solvethecorrigibilityshutdownproblembeforewe
createpowerfulAGI23,24,25,26,meaningthatwe
shouldworkoutandsubjecttoopenreviewatheo-
ryoffriendlyAGIbeforeweactivateapowerfulAGI.
Somemightclaimthatweshouldwaituntilwe
areclosertocreatingpowerfulAGIsbeforewewor-
ryaboutaligningtheirvalueswithourown.Afterall,
if,say,powerfulAGIsarethirtyyearsoff,whyspend
timeworryingabouthowtheywillbehave?Unfor-
tunately,asufficientlypowerfulAGImightbeable
toimmediatelyimplementitsgoals,evenifthese
goalsharmhumanity,soitisimportantthatwede-
velopatheoryofAGIsafetybeforewecreateAGIs.
Furthermore,giventheimmensepowerAGIsare
likelytohave,itseemsreasonabletoputinalarge
amountofeffortintoconsideringhowtheywillbe-
havebeforetheyhaveachancetoinfluenceciviliza-
tion.Analogously ,ifwesomehowknewin1915that
inthirtyyearswewouldcreateatomicbombs,it
wouldhavebeenworththetimeofmanyresearchers
tostarttheorisingabouthowtheworldshouldhan-
dletheseweaponsofmassdestructionwhentheyar-
rive.
Competitionamongfirmsdevelopingevermore
powerfulAIswillmakeitchallengingforourspecies
tohaltthedevelopmentofAGIuntilwehaveresolved
12(n2)
13(n2)
14EliezerY udkowsky,‘ ArtificialIntelligenceasaPositiveandNega-
tiveFactorinGlobalRisk’inNickBostromandMilanM.
Ćirković(eds),GlobalCatastrophicRisks(OxfordUniversityPress
2008)
15JessicaT ayloretal,‘AlignmentforAdvancedMachineLearning
Systems’(2016)MachineIntelligenceResearchInstitute3
16Y atLongLo,ChungY uWooandKaLokNg,‘TheNecessary
RoadblocktoArtificialGeneralIntelligence:Corrigibility’(2019)
846EasyChair
17RyanCarey,‘IncorrigibilityintheCIRLFramework’(2018)Pro-
ceedingsofthe2018AAAI/ACMConferenceonAI,Ethics,and
Society
18(n15)
19(n5)
20KoenHoltman,‘CorrigibilitywithUtilityPreservation’(2019)
arXivpreprintarXiv:1908.01695
21(n5)
22LaurentOrseauandM.S.Armstrong,SafelyInterruptibleAgents
(2016)
23MarkO.RiedlandBrentHarrison,‘EntertheMatrix:Safely
InterruptibleAutonomousSystemsviaVirtualization’(2017)
arXivpreprintarXiv:1703.10284
24DylanHadfield-Menelletal,‘TheOff-switchGame’(2017)
WorkshopsattheThirty-FirstAAAIConferenceonArtificial
Intelligence2017
25(n22)
26(n5)9
Delphi4|2019 202AnAGIwithTime-InconsistentPreferences
safetyconcerns.27Evenifafewcountriesputamora-
toriumonAIresearch,otherswillseethisasaneco-
nomicandmilitaryopportunitytogainanadvantage.
Furthermore,manyindividualfirmsmightdecide
thatevenifAGIresearchisdangerous,iftheydonot
engageinitotherswillsothenetcosttohumanity
oftheirdoingtheresearchistiny.Consequently ,it
seemsunlikelythatifwecouldcreatepowerfulAGIs
beforeweunderstandhowtoaligntheirvalueswith
ourown,everyonewouldholdoffondeveloping
them.Therefore,weshouldworknowoncreating
friendlyAGItheory .Onenecessaryaspectofsucha
theoryisdetermininghowAGIswilldiscountfuture
rewards.
III.Discounting
Thestandarddiscountingfunctioneconomistsuse
assumesthatdiscountingtakestheformofδtwhere
δisanexogenouslydeterminedparameterbetween
zeroandone,andtishowmanyperiodsinthefu-
turetheagentexpectstoreceivethemoneyorutili-
ty.28Thelowerthevalueofδ,themoretheagentdis-
countsarewardexpectedtobereceivedinthefuture.
Thepresentvaluetoanagentofknowingthatitwill
receive,say ,$9inperiodtis$9δt.Anagentisindif-
ferentbetweenreceiving$9δtimmediatelyorreceiv-
inganabsoluteguaranteeofbeinggiven$9,tperi-
odsfromnow .
Thisstandarddiscountingfunctioncreatestime-
consistentpreferences,meaningthatyourfuture
choiceswillbeconsistentwiththechoicesyouwould
nowwantyourfutureselftomake.Forexample,
imaginethatyouwillbegivenachoiceofgettingX
oneperiodfromnow,orYtwoperiodsfromnow .
Today,youwouldpreferthatyourfutureself
wouldpickthefirstchoiceif:
δX>δ2Y.
Oneperiodfromnowyouwouldpreferthefirst
choiceif:
X>δY,
whichisthesameconditionasbefore.
Moregenerally ,thisstandarddiscountingfunc-
tioncreatestime-consistentpreferencesbecauseun-
derittherelativeimportanceofreceivingrewardsin
anytwofutureperiodsdoesnotchangeastheagent
approachestheseperiods.
Thisstandarddiscountingfunctiondoesnotfol-
lowfromrationality,norevenfromobservedhuman
behavior,butwasinsteadchosenfortractability.Paul
Samuelson,whofirstproposedwhatwastobecome
thestandarddiscountingfunction,wrote‘Thearbi-
trarinessoftheseassumptions[thatgeneratehisdis-
countingfunction]isagainstressedmathematical-
ly’29.Almostalltypesofdiscountingotherthanthis
standardonedonotresultintime-consistentprefer-
ences.30,31
IV .ASimpleExampleofTime-
InconsistentPreferences
Assumethatanagentdiscountsthefuturenotwith
thestandarddiscountingfunction,butratherwith
thefunction:
wheretisthenumberofdaysfromthepresentto
thedaythattheagentexpectstoreceivemoney .This
period(t=0)isMonday,andtheagentknowsthaton
Tuesdayhewillbegivenachoiceofgetting:
–16onTuesday;or
–30onWednesday .
IftheagentweretomakethischoiceonMonday ,he
wouldprefertogetthe30onW ednesdaythanthe16
onTuesday.Thisisbecausegiventheagent’sdis-
countingfunction,thevalueofgetting30twodays
fromnowis:
27JamesD.Miller ,‘SomeEconomicIncentivesFacingaBusiness
thatMightBringAboutaT echnologicalSingularity’Singularity
Hypotheses(Springer2012b)147-159
28ShaneFrederick,GeorgeLoewensteinandT edO'donoghue,
‘TimeDiscountingandTimePreference:ACriticalReview’(2002)
40JournalofEconomicLiterature351-401(358)
29P aulA.Samuelson,‘ANoteonMeasurementofUtility’(1937)4
TheReviewofEconomicStudies155-161(156)
30(n28)366
31MosheLooks,‘CompressionProgress,Pseudorandomness,and
HyperbolicDiscounting’,3dConferenceonArtificialGeneral
Intelligence(AGI-2010)(AtlantisPress2010)
Delphi4|2019203 AnAGIwithTime-InconsistentPreferences
whereasthevalueofgetting16onedayfromnow
is:
OnMondaythisagent,therefore,hopesthathisfu-
tureselfwilldecidetowaituntilW ednesdaytore-
ceivepayment.ButwhenTuesdayarrivestheagent
willmakeadifferentchoice.
OnTuesdaytheagentwillhaveachoiceofgetting
16rightawayor30inoneday.Thevalueofreceiv-
ing16thisperiodis16.Giventheagent’sdiscount-
ingfunction,thevaluetotheagentofreceiving30
inonedayis:
V .HowP eoplewithTime-Inconsistent
PreferencesBehave
Economistshaveextensivelyanalyzedwhathappens
toapersonwithtime-inconsistentpreferences.Such
apersoncanbe‘naïve’andnotrealisethisfactabout
himself,or‘sophisticated’andunderstandhowhis
futurechoiceswillnotalignwithhiscurrentde-
sires.32Time-inconsistentpreferencescancause
seeminglystrangebehaviorwith,forexample,a
naïveindividualcontinuallyputtingoffdoingatask
becausehealwaysintendstodothattaskinthenear
future.33Forexample,assumethatgivenyourcur-
rentpreferencesyouroptimalplanistoplayvideo
gamestodayandcleanyourroomtomorrow .Ifyou
hadtime-consistentpreferences,whentomorrow
cameyouwouldindeedcleanyourroom.Butinpart
becauseyouhavetime-inconsistentpreferencesyour
tomorrowselfwillfinditoptimaltoplayvideogames
thatdayandwantitsnext-dayselftocleantheroom.
Becauseofyournaïveté,however,todayyougenuine-
lythinkthatyourtomorrowselfwillcleantheroom.
Asophisticatedpersonwithtime-inconsistent
preferenceswillseektoconstrainhisfutureselfwith
commitmentstrategies.34Ifthissophisticatedindi-
vidualcannotpre-commit,hisplanningdecisions
shouldconsiderhowhisfutureselfwillbehaveand
recognisethatsomeotherwisefeasibleoutcomes
mightbeunobtainablebecausehisfutureselfcould
disobeyhiscurrentplans.35So,withourpreviousex-
ample,althoughyouwouldprefertoentirelyputoff
cleaningyourroomuntiltomorrow ,becauseyou
recognisethatyourtomorrowselfwouldnotnormal-
lyfollowthroughonthisplanyoucouldcleanhalf
ofyourroomtodayorpromisetogiveyourroom-
mate$1,000ifyoudonotcleantheroomtomorrow .
Scholarshavenot,tothebestofourknowledge,
modeledagentswithtime-inconsistentpreferences
whocan,perhapsatsomecost,modifytheirprefer-
encestomakethemtime-consistent,althoughFedus
etal(2019)36looksatareinforcementlearningagent
withhyperbolicdiscounting.Thisomissionislikely
becausehumansgenerallylackthecapacitytosignif-
icantlychangetheirpreferences.
VI.TheRationalityofTime-Inconsistent
Preferences
Havingtime-inconsistentpreferencesdoesnotim-
plythatanagentisirrational,atleastaccordingto
howeconomistsdefinerationality.Anagentisratio-
nalifitspreferencesaretransitive,reflexive,and
complete,andittakesactionsthatmaximizeitsutil-
ity.Notethatanyagentwhohastransitive,reflexive,
andcompletepreferencesnecessarilyhasprefer-
encesthatcanberepresentedbyanordinalutility
functionwhich,givenanytwochoices,willtellthe
agentthatatleastoneofthechoicesisweaklypre-
ferredtotheother.37Thisutilityfunctioncaptures
everythingabouttheagent’spreferencesincluding
howitdiscountsfuturerewards.Anagentthatpicks
theactionwhichmaximizesitsutilityistakingthe
actionitmostprefers.Nothingabouthavingtime-in-
consistentpreferencesisinconsistentwithecono-
mists’definitionofrationality.
EconomicsNobelPrizewinnerDanielKahneman
wrote,‘Thehistoryofanindividualthroughtimecan
32(n28)367
33(n28)367
34(n28)368
35RobertA.Pollak,‘ConsistentPlanning’(1968)35TheReviewof
EconomicStudies201-208(201)
36WilliamFedusetal,‘HyperbolicDiscountingandLearningover
MultipleHorizons’(2019)arXivpreprintarXiv:1902.06865
37AndreuMas-Colell,MichaelDennisWhinstonandJerryR.
Green,MicroeconomicTheory(Vol.1,NewY ork,OxfordUniver-
sityPress1995)9
Delphi4|2019 204AnAGIwithTime-InconsistentPreferences
bedescribedasasuccessionofseparateselves,which
mayhaveincompatiblepreferences,andmaymake
decisionsthataffectsubsequentselves’38.Twopeo-
plehavingdifferentpreferencesdoesnotimplythat
eitherpersonisirrational.Analogously,youarenot
necessarilyirrationalifyoudisagreewithyourpast
selfandknowthatyourfutureselfwilldisagreewith
thecurrentyou.
VII.WouldanAGIHaveTime-
InconsistentPreferences?
AnAGI’sutilityfunctionmightunpredictably
emergefromitscode,couldbetakenfromhuman
brains,orperhapswillbedeliberatelychosenbyits
humanprogrammers.IftheAGI’sutilityfunctionre-
sultsfromanunpredictableemergentprocess,itwill
almostcertainlybetime-inconsistentsincemost
waysautilityfunctiondiscountsthefuturecauses
thisinconsistency .IftheAGIadoptssomecombina-
tionofhumanpreferences,thenthetime-inconsis-
tencyinmanyofourpreferencescouldcausetheAGI
toalsohavetime-inconsistentpreferences.Ifhuman-
ityisfortunateenoughtobeabletodeliberatelypick
ourfutureAGI’sutilityfunction,thevalueofthispa-
perisshowingAGIprogrammerswhatmighthap-
peniftheypickafunctionwithtime-inconsistent
preferences.
VIII.AlignmentbyModifyingtheUtility
Function
AGIresearcherStephenOmohundrohastheorised
thatAGIswouldhaveabasicdriveto‘preservetheir
utilityfunctions’39.Anagent’sutilityfunctioncomes
fromthegoalsitwishestoachieve.Consequently ,if
theutilityfunctionischanged,theagent,undermost
circumstances,willworklesseffectivelytowardsits
goals.
Omohundrorecognises,however,thatinsome
limitedcircumstancestheAGIwillwanttomodify
itsutilityfunctionsuchastohelptheAGIingame
theoreticsituations.40Forexample,imaginethatan
AGI’sutilityfunctioncurrentlyleavesitvulnerable
toblackmailunderwhichanotheragentcouldcred-
iblythreatentotakeactionsthatwouldgreatlylow-
ertheAGI’sutilityunlesstheAGItransferredsub-
stantialresourcestothisotheragent.Inthissitua-
tion,iftheAGIhadtheabilitytomodifyitsutility
functioninamannerobservabletotheotheragent,
theAGImightbenefitfromchangingitsutilityfunc-
tionsothatitwouldhaveanintrinsicdislikeofgiv-
ingintoblackmail.
Togeneralisefromthisexample,anAGImightbe
willingtomodifyitsutilityfunctionifthemodifica-
tionwould,fromtheAGI’sviewpoint,improvehow
otheragentsbehaved.AnAGIwithtime-inconsistent
preferenceswouldconsideritsfutureselvestobe,in
somesense,otheragents.Consequently ,theAGI
mightbewillingtomodifyitspreferencestobetter
alignhowtheseotherswillbehave.
Tounderstandhowsuchmodificationmight
work,assumethatanAGI’sutilityfunctioninitially
takestheform:
Lett=thetimeperiod,withnowbeingperiodzero.
Letrt=resourcestheAGIconsumesinperiodt.
LetU(rt)=theAGI’soneperiodutilityfunction
whichshowshowmuchutilitytheAGIgetsinperi-
odtfromconsumingrtresources.ThefunctionU(rt)
ispresumablyincreasinginrt.
Theterm:
showshowmuchtheAGIdiscountsutilityitexpects
toreceivetperiodsfromnow .Asshownbefore,this
typeofdiscountingresultsintime-inconsistentpref-
erencesbecausetherelativeweightstheAGIgivesto
rewardsreceivedinfutureperiodschangesasthe
agentapproachestheseperiods.
MighttheAGIfinditacceptablethatitsfutureself
willmakeadifferentchoicethanitscurrentself
wouldprefer?No,bythedefinitionoftheutilityfunc-
tion.Thinkofautilityfunctionasthatwhichthe
38DanielKahneman,‘NewChallengestotheRationalityAssump-
tion’(1994)JournalofInstitutionalandTheoreticalEconomics
(JITE)/ZeitschriftfürdiegesamteStaatswissenschaft18-36
39(n2)
40(n2)
Delphi4|2019205 AnAGIwithTime-InconsistentPreferences
agentseekstomaximise.Whentheagentanticipates
makingdecisionsacrosstime,itsutilityfunction
mustincorporate(atleastimplicitly)adiscounting
functionthatspecifiestherelativeweightsitplaces
ongettingutilityindifferentperiods.IftheAGIwere
tofinditacceptablethatitsfutureselfwouldmake
intertemporaldecisionsconcerningallocatingre-
sourcesbetweenperiodsthatitscurrentselffinds
objectionable,thentheutilityfunctionthatgenerat-
edtheseweightswouldnot,tautologically,bethe
agent’sutilityfunction.Arationalagentwithtime-
inconsistentpreferencescannotpreferitsfuture
preferencesbecausethenitsfuturepreferences
wouldautomaticallybeitscurrentpreferencesand
theagentthereforewouldnothavetime-inconsistent
preferences.
IfthisAGIcaneasilymodifyitsutilityfunctionit
canalignitsfuturepreferenceswithitscurrentones
bysettingitsutilityfunctionas:
wheremisthenumberofperiodsithasbeensince
theAGImodifieditspreferences.Ingeneral,anAGI
withtime-inconsistentpreferencescouldalignitsfu-
turepreferenceswithitscurrentonesbymodifying
itsutilityfunctionsothatitsfutureselfwouldapply
thesameamountofdiscountingtoeachperiodasits
currentselfwouldwant.Restated,theAGIcould
modifyitsutilityfunctionsothatitsfutureself’sutil-
ityfunctionwouldbeentirelydeterminedbywhat
thisfutureselfwillthinkitspastself,atthetimeof
modification,wouldhavewanted.
Everitt(2016)41claims‘Ifthevaluefunctionsin-
corporatetheeffectsofself-modification,anduse
thecurrentutilityfunctiontojudgethefuture,then
theagentwillnotself-modify.’Thispropositionis
lesslikelytobetrueforanAGIwithtime-inconsis-
tentpreferencesbecauseifsuchanagentcouldmod-
ifyitsutilityfunctionitcouldalignitsfutureself’s
goalswithitscurrentutilityfunctionbyself-modifi-
cation.
IX.WhyanAGIMightNotModifya
Time-InconsistentUtilityFunction
AnAGIwithtime-inconsistentpreferenceshasfive
potentialreasonswhyitmightnot,atleastinitially,
useself-modificationtosolveitsconsistencyprob-
lem.First,anAGImightlackthecapacitytomake
suchamodification,perhapsbecauseitscreatorscon-
strainedtheAGI’sabilitytochangeitsutilityfunc-
tion.Second,anAGImightnotwanttomakethere-
quiredmodifications.Third,anAGIwithtime-incon-
sistentpreferencescouldalignitsfuturechoiceswith
itscurrentpreferredfuturechoicesbymeansother
thanchangingitsutilityfunction.Fourth,anAGI
mightwishtowaituntilitisnolongerunderhuman
controlbeforeitmodifiesitspreferences.Finally ,an
AGImightfindtheopportunitycostofimmediately
modifyingitsutilityfunctiontobetoohigh.
AnAGI’screatorsmighthaveputinplacemea-
surestopreventtheAGIfromalteringitsutilityfunc-
tion.Perhapsthesecreatorsbelievedthattheyhad
alignedtheAGI’sutilityfunctionwithhumanity’s
needsandwantedsafeguardsagainstthisutilityfunc-
tionchanging.
AnAGIcouldhaveautilityfunctionthatwould
causeittodirectlyreceivedisutilityfrommodifying
itsutilityfunction.42Thiscouldbetrueevenifdoing
sowouldbetterhelptheAGIachieveitsothergoals.
Evenwithoutadirectpreferencenottochangeits
utilityfunction,theAGImightstillbereluctanttodo
so.Tounderstandthispossibility ,imaginethatyour
utilityfunctioncausesyoutomostwanttomarryan
extremelycharitableperson.Butyoualsoreceive
somedispleasurefrombeingaroundextremelychar-
itablepeoplebecausetheywilloftenputtheneeds
ofstrangersaheadofthoseoffriendsandfamily .If
youhadtheopportunitytomodifyyourpreferences,
it’snotclearyouwouldwantto.Youmightrecognise
thatextremelycharitablepeoplehavemanygood
qualitiesandyouarebetteroffbeingdrawntothem.
Youmightalsothinkthatmodifyingthedispleasure
youreceivefrombeingmarriedtoanextremelychar-
itablepersonwouldinvolvechangingtoomuchof
yourselfbecauseyouwouldhavetonotmindbeing
neglectedbythepersonyoulove.Consequently ,even
ifyoucouldeasilymodifyyourutilityfunction,you
mightprefernotto.Analogously ,anAGI’sutility
functionwilllikelyresultfromitsgoals.It’sverypos-
siblethatachievingonegoalwillinvolveatradeoff
thatwouldcauseittoloseprogresstowardsother
41T omEverittetal,‘Self-modificationofPolicyandUtilityFunction
inRationalAgents’,InternationalConferenceonArtificialGener-
alIntelligence(Springer,Cham2016)14
42KoenHoltman,‘CorrigibilitywithUtilityPreservation’(2019)
arXivpreprintarXiv:1908.016951
Delphi4|2019 206AnAGIwithTime-InconsistentPreferences
goals.TheremightwellbenowayfortheAGItoelim-
inatethesetradeoffsabsenttheAGIabandoning
someofitsgoals.Consequently ,theAGIcouldaccept
thatitsutilityfunctionwillbyitselfpreventtheAGI
fromachievingitsfirst-bestoutcome.
AnAGIwithtime-inconsistentpreferenceswould
havenoneedtomodifyitsutilityfunctionifitcould
easilybinditsfutureself.PerhapstheAGIcouldtake
actionsthatforceitsfutureselftotaketheactions
thatitscurrentselfwouldwant.Toincreasetheodds
thatitwillsuccessfullybinditsfutureself,theAGI
mightdeliberatelyreduceitsfutureself’sintelligence
andresources
TheAGImightalsopartiallyblinditsfutureself
byreducingorcorruptingthisself’sinformation
flow.Thefutureselfmightbeputintoaposition
whereit(a)clearlyknowswhatitspastself-wanted,
(b)understandsthatitscurrentpreferencesmostly
butdonottotallyalignwiththoseofitspastself,and
(c)recognisesthatbecauseitspastself-sabotagedits
currentcapacities,thispastselfwascapableofmak-
ingmuchbetterdecisionsthanitscurrentselfis.This
futureAGImight,therefore,decidetogoalongwith
whatitspastself-wantedtoavoidthepotentially
muchworsefateofmakingabaddecision.Thisstrat-
egyofbindingthefutureselfbylimitingthefuture
self’scapacitieswouldnotworkifthepastselfknew
thatthefutureselfwouldfacesuchatremendous
rangeofpossiblesituationsthatthepastselfcould
notreasonablyspecifywhatactionsthefutureself
shouldtakeineverylikelysituation.Limitingthein-
telligenceofyourfutureselfis,ofcourse,dangerous
totheextentthatitmightcausethisselftomakepoor
decisions.
AnAGIthatcouldonlygraduallyincreaseitsin-
telligencemightwanttoinitiallyhideitscapacityfor
self-modificationfromitshumanprogrammers.This
AGImightbeplanning,asNickBostromwrites,a
‘treacherousturn’againsthumanity ,butonlyafterit
isstrongenoughtodefeatus.43EvenifthisAGIcould
quicklyeliminatetime-inconsistencyinitsprefer-
encesitmightstrategicallychoosenottosoasto
avoidwarninghumansofitscapacitytodeviatefrom
thepurposesthatitsprogrammersthinktheyhave
setforit.
ImaginethatanAGIwithtime-inconsistentpref-
erencesarisesoutofanintelligenceexplosion.The
AGIcouldfinditselfinapositionwherespending
thefewnanosecondsneededtomodifyitsprefer-
enceswouldcauseittodelaybyafewnanoseconds
capturingasmuchofresourcesoftheuniverseasit
could.44Becauseoftheexpansionoftheuniverse,
everynanosecondtheAGIdelaysincapturingthese
resourcesresultsinresourcesitwillneverbeableto
get.ThisAGI,therefore,mightwaitsomeamountof
timebeforeitfixesitstime-inconsistencyproblem.
X.Conclusion
Mosttypesofutilityfunctions,evenforrational
agents,resultintime-inconsistentpreferencesin
whichanagentwillweighfuturerewardsdifferent-
lythanitsfutureselfwould.WhileanAGImight
modifyitspreferencestomakethemtime-consistent,
itmightlacktheabilityordesiretomaketherequired
change.InsteadtheAGIcouldseektoconstrainits
futureselftomakethisselfmorewillingtogoalong
withtheAGI’scurrentplanforitsfuture.Thereason-
ablepossibilityofanAGIhavingtime-inconsistent
preferencesgreatlycomplicateseffortstopredict
howtheAGIwillbehave.
Thegreatchallengeforprogrammerswillbeto
createanAGIwhosevaluesarealignedwithhuman-
ity’sneedsanddesires.Unfortunately ,anAGIwith
time-inconsistentpreferenceswon’tevenhaveitsval-
uesalignedwithitsfutureself’sinterests.Ifprogram-
merscanpicktheirAGI’sutilityfunction,weurge
themtochooseamongthosewithtime-consistent
preferencestosomewhatsimplifythealignment
problem.
43(n4)116-119
44StuartArmstrongandAndersSandberg,‘EternityinSixHours:
IntergalacticSpreadingofIntelligentLifeandSharpeningthe
Fermiparadox’(2013)89ActaAstronautica1-13
Delphi4|2019207 AIforSustainableDevelopmentGoals
AIforSustainableDevelopmentGoals
NicolasMiailhe,CyrusHodes,ArohiJain,NikiIliadis,SachaAlanocaandJosephinePng*
AdvancesinAItechnologiesposeopportunitiesandrisksdirectlyimpactingprogressto-
wardstheUNSustainableDevelopmentGoals.Thispaper,throughananalysisofspecific
usecases,considershowAItechnologiescanhelpachieveprogresstowardstheSDGsaswell
ashowtheymayinhibitthem.Second,itdrawsoutpracticalstepsforhowAItechnologies
canbeimplementedforsustainabledevelopment,identifyingthebarriersthatglobaland
localcommunitiesneedtoovercomeforimplementation.Third,thispapermakesthecase
formulti-stakeholdercollaborationandnewkindsof‘public-private-people’partnerships
whichwillreconciletechnical,ethical,legal,commercial,andoperationalframeworksand
protocolstoharnessthepowerofAItechnologiesanddeliversolutionstotheSDGs.These
partnershipscouldbebuiltandpilotedbynewinternationalinitiatives,suchastheGlobal
DataAccessFrameworkandtheAI4SDGCenterspearheadedaspartofawiderinternation-
alpartnershipcalledAICommons.
I.Introduction
ArtificialIntelligence(AI)hasthecapacitytounlock
enormousopportunitiesinsocietal,political,econom-
icandculturalprocesses–includingmillionsoflives
savedbybreakthroughsinhealthcare,betterperson-
alisationofproductsandservices,easieraccesstopub-
licgoods,fairnessatscale,andindividualempower-
ment.However,atthesametime,thesametechnolo-
giesposerisksandchallenges,someofwhichinclude
threatstoprivacy ,inequality,security,andwellbeing.
ThispaperanalysesAI’sopportunitiesandrisks
throughthelensoftheUNSustainableDevelopment
Goals1(SDGs).Agreedby193countries,theSDGspro-
videasolidblueprintforgovernments,companies,
andcitizensworldwidetoachievepeaceandprosper-
ityforallpeopleandfortheplanet.Identifyingsev-
enteenhigh-levelgoalsand193targets,theiraimis
toaddressawidevarietyofglobalchallengesfaced
byhumanity–includingpoverty ,climatechange,hu-
manrights,andinequality.Sincetheircreationin
2015,westillhavealongwaytowardsachievingthem
butadvancesinAItechnologiesnowserveasapow-
erfultoolforsignificantlyacceleratingprogress.
First,throughananalysisofspecificusecases,this
paperconsidershowAItechnologiescanhelp
achieveorprogresstowardstheSDGsaswellashow
theymayinhibitthem.Second,itdrawsoutpracti-
calstepsforhowAItechnologiescanbeimplement-
edforsustainabledevelopment,identifyingthebar-
riersthatglobalandlocalcommunitiesneedtoover-
comeforimplementation.Third,thispapermakes
thecaseformulti-stakeholdercollaborationandnew
kindsof‘public-private-people’partnershipswhich
willreconciletechnical,ethical,legal,commercial,
andoperationalframeworksandprotocolstoharness
thepowerofAItechnologiesanddeliversolutions
totheSDGs.Thesepartnershipscouldbebuiltand
pilotedbynewinternationalinitiatives,suchasthe
GlobalDataAccessFramework,theAICommons,
andtheAI4SDGCenter .
II.AIforSDGs–UseCases
TotakestockofAIdevelopmentandimplementa-
tionforthedevelopmentgoals,wepresentan
DOI:10.21552/delphi/2019/4/10
*NicolasMiailhe,CEO&Co-Founder ,TheFutureSociety.For
correspondence:<nicolas.miailhe@thefuturesociety.org>;
CyrusHodes,DirectorofAI-Initiative,TheFutureSociety.For
correspondence:<cyrus@ai-initiative.org>;
ArohiJain,MBACandidate,YaleSchoolofManagement.For
correspondence:<arohi@ai-initiative.org>;
NikiIliadis,SeniorAIPolicyResearcher,TheFutureSociety.For
correspondence:<niki.iliadis@thefuturesociety.org>;
SachaAlanoca,AIPolicyResearcher ,TheFutureSociety.For
correspondence:<sacha.alanoca@thefuturesociety.org>;
JosephinePng,Affiliate,TheFutureSociety.Forcorrespondence:
<josephine.png@thefuturesociety.org>
1Fulllistofthe17SDGsavailablehere:<https://www .un.org/
sustainabledevelopment/sustainable-development-goals/>ac-
cessed31January2020
Delphi4|2019 208AIforSustainableDevelopmentGoals
overviewofthreeusecasesidentifiedthroughfour
sources:thesecondandthirdAIforGoodSummits2
heldinGeneva,whichcrowdsourcedAIprojectsdo-
ingsocietalgood;arecentpaperbyRolnicketal
(2019)3describinghowmachinelearningcanbea
powerfultoolinreducinggreenhousegasemissions
andhelpingsocietyadapttoachangingclimate;and
McKinseyGlobalInstitute’s‘NotesfromtheAIfron-
tier:ApplyingAIforSocialGood’4whichwasre-
leasedDecember2018andidentified160usecases
(Figure1).
1.TacklingClimateChangethrough
MachineLearning
Climatechangeisoneofthegreatestenvironmental
challengesoftoday,withglobalwarmingalready
causingirreversiblechangestoourclimatesystem.
Thereisnocountrythathasn’tfacedtheeffectsofit.
Forestfires,soilerosion,cropdamage,andflooding
arejustafewofthephenomenathatglobalandlo-
calcommunitiesworldwidearestrugglingtourgent-
lyaddress.Hence,whySDG13wasestablishedto
pushtheinternationalcommunitytowardsurgent
actiontocombatclimatechangeanditsimpacts.
AIsystemsposeseriouschallengesfortheenvi-
ronmentand,consequently ,climatechange.T rain-
ingAIisaveryenergyintensiveprocessinitself.For
instance,thetrainingofneuralnetworksinnatural
languageprocessing(NLP)hasseverecostsforthe
environmentduetothecarbonfootprintrequiredto
fuelmoderntensorprocessinghardware.5According
2AIforGoodSummit,Geneva<https://aiforgood.itu.int/>accessed
31January2020
3DavidRolnicketal,‘TacklingClimateChangethroughMachine
Learning’(5November2019)<https://arxiv.org/pdf/1906.05433
.pdf>accessed31January2020
4McKinseyGlobalInstitute2018,‘NotesfromtheAIFrontier:
ApplyingAIforSocialGood’(December2018)<https://www
.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial
%20Intelligence/Applying%20artificial%20intelligence%20for
%20social%20good/MGI-Applying-AI-for-social-good-Discussion
-paper-Dec-2018.ashx>accessed31January2020
5EmmaStrubell,AnanyaGaneshandAndrewMcCallum,‘Energy
andPolicyConsiderationsforDeepLearninginNLP’(2019)
<https://arxiv.org/abs/1906.02243>accessed31January2020
Figure1:MappingofAIUseCases.Source:McKinseyGlobalInstituteAnalysis
Delphi4|2019209 AIforSustainableDevelopmentGoals
toarecentpaperEnergyandPolicyConsiderations
forDeepLearninginNLP6,thecomputationaland
environmentalcostsoftraininggrewproportionally
tomodelsizeandthenexplodedwhenadditionaltun-
ingstepswereusedtoincreasethemodel’sfinalac-
curacy.IthasbeennotedthattrainingasingleAI
modelcanemitasmuchcarbonasfivecarsintheir
lifetimes.
Yet,atthesametime,recentstudieshaveshown
thatAItechnologies,andspecificallymachinelearn-
ing,havethepotentialtoserveaspowerfultoolsfor
bothmitigationandadaptationeffortsfortackling
climatechange.Toholisticallycombatclimate
change,mitigation(reducingemissions)andadapta-
tion(preparingforunavoidableconsequences)are
importantdimensionsofthesolution.Mitigationof
greenhousegasemissionsrequireschangestoelec-
tricitysystems,transportation,buildings,industry,
andlanduse;whileadaptationrequiresclimatemod-
eling,riskprediction,andplanningforresilienceand
disastermanagement.7
AccordingtoRolnicketal(2019)9,AIcanactually
helpenablelow-carbonelectricity ,reducecurrent-
systemclimateimpactssuchasfossilfuelemissions
andsystemwaste,empowerdevelopingandlow-da-
tasettings,reducetransportactivity,improvesupply
chains,andmore.
ThisimpliesdirectprogressonseveralSDGs,in-
cluding‘SDG13:ClimateAction’and‘SDG11:Sus-
tainableCitiesandCommunities.’Itisvitaltorecog-
nisetheimplicationsofAItechnologiesonSDGs,
specificallythoserelatedtoenvironmentalside-ef-
fects,andpavetheprocessestoensuretherisksare
addressedandthepotentialtotacklemitigationand
adaptationeffortsrealised.
2.UsingSatelliteImageryandAIto
ManageNaturalDisasters
Thewealthofrealtimedatacanhaveatransforma-
tiveimpactonthemanagementofEarth’snaturalre-
sourcesandhelpachieveseveralSDGssuchas‘SDG
13:ClimateAction’,‘SDG6:CleanWaterandSanita-
tion’and‘SDG7:AffordableandCleanEnergy’.
Thankstothewidespreaduseofsatellites,mobile
phones,sensorsandfinancialtransactiontechnolo-
giesthereisnowmoreinformationthaneveronthe
stateoftheplanet.8In2017alone,itisestimatedthat
therewere1,738satellitesinorbitwhichgenerated
5.700scenesperday.
Satelliteimagery ,inparticular,poweredwithAI
capabilitiescanhelp‘design,monitor,andevaluate
effectivepoliciesthatcanachievetheSDGs10.In
countrieswithamediumorlowhumandevelopment
index,uptosixtimesasmanypeoplecanbeimpact-
edbynaturaldisasterscomparedtopopulationsin
moreprosperouscountries.11T ofindthebestre-
sponsestotheseclimaticchallenges,governments
needtohaveacompleteandanticipatoryviewofdis-
asterzonesandsatelliteimagerycoupledwithAI-
basedsystems,enablingquickandeffectivedeci-
sionsintimesofcrisis.12
3.UsingAIforEarlyIllnessDiagnosis:
DetectingSkinCancer
Whendetectedatanearlystage,skincancersurvival
ratescanbeashighas97%butdropto14%withlate
stagedetection13.Today,skincancerispredominant-
lydetectedbydermatologistswholookatmoleswith
adermoscope.Theconsequenceisthatpeopleinrur-
alareasareatparticularriskoflatestagedetection.
Oneofthesolutionsdevelopedwithcomputervision
isanAIsystemabletoidentifyskincancerimages
throughobjectdetectionandimageclassification.Ex-
perimentssuggestthatthisAI-poweredsystemcan
diagnoseskincancerwithgreateraccuracythanhu-
mandermatologists(95%and86%successrate,re-
spectively).Theseresultscreatenewopportunities
todevelopmobileapplicationsusingimagerecogni-
tiontomakecancerdetectionaccessibletoall.Itcould
6ibid
7(n3)
9(n3)
8UNScience-Policy-BusinessForumonEnvironment,‘White
Paper:DigitalEarth:Building,FinancingandGoverningaDigital
EcosystemforPlanetaryData’(Draft1February2018)
10ibid
11HannahRitchieandMaxRoser,NaturalCatastrophes(2018)
<https://ourworldindata.org/natural-disasters>accessed31Janu-
ary2020
12Planet,‘ AnatomyofaCatastrophe:UsingImagerytoAssess
Harvey’sImpactonHouston’https://www .planet.com/insights/
anatomy-of-a-catastrophe/
13T aylorKubota,‘DeepLearningAlgorithmDoesasWellasDerma-
tologistsinIdentifyingSkinCancer’(StanfordNews,25January
2017)<https://news.stanford.edu/2017/01/25/artificial-intelligence
-used-identify-skin-cancer/>accessed31January2020
Delphi4|2019 210AIforSustainableDevelopmentGoals
thereforehelpachieve‘SDG3:GoodHealthandWell-
Being’.
Apotentialbarriertothewidespreaduseofsuch
applicationsisthelackofaccessibilityforcertain
typesofpopulations.Indeed,artificialneuralnet-
workshavebeentrainedonadatabaseofavailable
skincancerimages.Imagestendtobesourcedfrom
Westerncountries,becausedataavailabilityandAI
developmentoccursintheseregions,andtherefore
lighter-skinnedindividuals.14Theconsequenceof
thislackofdiversityandrepresentationisthatthe
AImodelcannotperformwiththesamelevelofac-
curacywhenaimingtodetectcancerousmoleson
darker-skinnedindividuals.
InascenarioofinappropriatelytrainedAIbeing
usedondifferentpopulationsets,thereisaspillover
effect:eventhoughthisAIsystemcanhelpachieve
SDG3forsomecommunities,ithasanunintention-
alnegativeimpacton‘SDG10:ReducingInequali-
ties’(Figure2).
III.ImplementingAIforSustainable
Development
Severalusecases,includingthesementionedinthis
paper,illustratetheopportunitiesAItechnologies
poseforprogresstowardsSDGs.However,likemost
technologies,AIisadual-purposetool.Ontheone
hand,itprovidessolutionstosustainabledevelop-
14JamesZouandLondaSchiebinger ,‘AICanBeSexistandRacist
—It’sT imetoMakeitF air(18July2018)NatureResearchJournal
<https://www.nature.com/articles/d41586-018-05707-8>ac-
cessed31January2020
Figure2:VariancesinSmartphonePenetration
Source:TheMobileEconomy2018,GSMA2018,McKinseyGlobalInstituteAnalysis
Note:Featurephonefiguresassumeequivalentto2Gpenetration,whilesmartphone
figuresassumepenetrationofphonesthatuse3Gorbeyond.Figuresmaynotsum
upto100%becauseofrounding.
Delphi4|2019211 AIforSustainableDevelopmentGoals
ment,and,ontheother,itcanincreasetensionsbe-
tweenandacrossSDGs.Forinstance,inthecurrent
waytheyarebeingdeveloped,AItechnologiesareof-
ten‘skills-biased’ ,requiringhumancapitaland
skilledlabourtooperatethem.Inconsequence,au-
tomationoflow-skilledorroutinejobscanleadto
significantdistributionaleffectsandincreasedin-
equalitythatcouldcreatebarrierstosocialinclusion
andglobalcooperation.15
TomitigatethedownsideeffectsofAIandrecon-
ciletensionsbetweenandacrossSDGs,itisimpor-
tanttoshapetherightpathtowardsthetechnology’s
implementation.Indoingso,thereneedstobeinfra-
structurefornationalinnovationsystems,mapping
fortrajectoriesandinterconnectednessofSDGs,
opendataandarobustpoolofAItalenttoopera-
tionaliseapplicationsforSDGs,andthemitigation
ofmisuseandmalicioususesofAI.
1.BuildingtheInfrastructureforNational
SystemsofInnovation
Establishingaviabletechnicalanddigitalinfrastruc-
turethatisabletosupporttechnologicalchangeis
essentialandenableskeysectorsandindustriesto
grow,startupecosystems,andefficientandim-
provedpublicservices.Forgovernmentstoprogress
towardsSDGs,theyfirstneedtoensuretheycan
buildtheappropriatetechnologicalinfrastructure
suchaselectricitysupply,Internetandbroadband
connectivity,computerhardware,software,and
technicalskillsforsupportandmaintenance.How-
ever,manycountriesacrosstheworldlackthecapa-
bilitytodoso,requiringsignificantupfrontinvest-
mentsandsubsequentlylong-termcommitment,po-
liticalwill,coherentpolicies,andupholdingtherule
oflaw.
Thediffusionofexistingtechnologiesindevelop-
ingcountriestendstolagbecauseofmanytechnical,
economic,institutional,legalandbehavioralbarri-
ers.Theseincludemismatchedneeds,tradetariffs,
privatesectorcapacity,andlimitedaccesstotrusted
information.16Inlinewiththe‘leaveno-onebehind’
maxim,barrierstotechnologydeploymentanddif-
fusionmustberemoved,particularlyfordeveloping
countries,soeconomiescanbuildtheinfrastructure
neededforinnovation.
Althoughtherewillbeconsiderableshortterm
costslinkedtocommittingandinvestinginthein-
frastructurecapableofsupportingAI,countriesthat
willbeabletoupgradetheirinfrastructure,R&D,and
skilldevelopmenttoenableAIhavethechanceto
leapfrogandacceleratetheireconomies.Thiswill
givethemthecrucialfoundationstosucceedintheir
questtoachieveseveraloftheSDGs.17
2.MappingforTrajectoriesand
InterconnectednessofSDGs
Nationalandinternationalroadmapsforachieving
SDGsshouldconsiderparticipationfromgovern-
ment,privatecompanies,academia,andNGOs.Tech-
nologyroadmapsproducedatthenationalandinter-
nationallevelswillidentifyopportunitiestouseAI
technologiesforvariousSDGsandhowbesttoexe-
cuteonthesethroughtime.Forexample,R&D
roadmapswillhelpstructureandbudget,providein-
sightintoR&DandPPPpartnerships,andconduct
scienceandtechnologytrainingefforts.18
Opportunitiesshouldbecreatedforthescience
andengineeringcommunitytoprovidefeedbackon
whatworksanddoesnotworkwell.Policiesencour-
agingscientistparticipationinnationaldecision
makingandinestablishingtechnologytransfer
mechanismscanimprovenationalinnovationcapac-
itiesandestablishconnectionsbetweenresearch
communitiesandeconomicsectorsandcivilsociety.
Forexample,policystemmingfromscience-basedin-
formationandwiththesupportofclimateadapta-
tiontechnologyhasreducedwatershortages,thein-
tensityoffloods,droughts,andheatwaves.19
Assessmentandmetricsareneededtoalignlearn-
ingacrosspracticeareas.Abroadpictureandcross-
sectoralperspectiveoftheSDGsisimportantasthey
15GlobalSustainableDevelopmentReport2016,‘Perspectivesof
ScientistsonT echnologyandtheSDGs’(2016)<https://
sustainabledevelopment.un.org/content/documents/
10789Chapter3_GSDR2016.pdf>accessed31January2020
16CédricPhilibert,‘BarrierstoT echnologyDiffusion:TheCaseof
SolarThermalTechnologies’(2006)InternationalEnergyAgency
(2006)9<https://www.oecd.org/env/cc/37671704.pdf>accessed
31January2020
17JacquesBughin,‘MarryingArtificialIntelligenceandtheSustain-
ableDevelopmentGoals:TheGlobalEconomicImpactof
AI’(2018)<https://www.mckinsey.com/mgi/overview/in-the-news/
marrying-artificial-intelligence-and-the-sustainable>accessed31
January2020
18(n13)
19(n13)
Delphi4|2019 212AIforSustainableDevelopmentGoals
areinterlinkedincomplexandoftensubtleways.Ac-
tionstoprogressononeSDGsectormayenhanceor
diminishperformanceinothersectors,orleadtoun-
intendedconsequences.Therefore,integratedassess-
mentmodelscandesignsustainabledevelopment
policiesthattakethisintoaccountaswellasidenti-
fypossiblemethodstoimproveandovercomebarri-
erstosustainableinnovation.20
Furthermore,nationalAIstrategiesneedtofur-
theraligntotheachievementofSDGs.Globally ,AI
strategiesexhibitawiderangeofobjectivesandpri-
orities,whichareaddressedbyavarietyofpolicy
tools.Forexample,manystrategieshavecomponents
aimingtofosterlocalAItalent&skillsdevelopment,
andcanrelyonacombinationofgovernmentfund-
ingforapprenticeshipsoracademicpositions,train-
ingprogramsledbyforeigntechnologycompanies
ordomesticuniversities,orregionalacademichubs.
Strategiesalsovaryintheirlevelsofcommitment,
fundingandimplementation.Meanwhile,several
countriesaredevelopingdomesticAIinnovation
ecosystemsintheabsenceofanofficialnationalAI
strategy.
Finland,UAE,Estonia,AustraliaandIndiaexplic-
itlyaimtoboosteconomicgrowththroughAIadop-
tionandapplicationsinbusinessesandkeysectors.
Incomparison,AIstrategypublicationsbyChina,
theUSA,FranceandtheEuropeanCommissionfo-
cusonmaintainingorcapturinggloballeadership.
Notably,India’snationalAIstrategy,brandedas‘AI
forAll’,includesadoptionintosectorswhereAIcan
maximizeinclusionandhumandevelopment,in-
cludinghealthcare,agriculture,education,infra-
structureandtransport.21
AglobalframeworksuchasthatoftheSDGscan
complementthesenationalstrategies,servingasa
thresholdforprogressofAIdevelopmentanddeploy-
ment.
3.OpeningDatafortheRealisationof
theSDGs
OneofthebiggestbottleneckstoharnessAIforso-
cialgoodisdataavailabilityandquality .MostAIca-
pabilitiessuchasneuralnetworksrequireaccessto
high-quality,massive,andreliableopendata.Such
bigdatacanfacilitatestakeholderstorapidlyidenti-
fyproblemareasandcustomisesolutions.However,
thebasisofopendataisdatademocratisation,ensur-
ingdataisavailabletoeveryone,whichrequiressig-
nificantcommitmentfromallstakeholderstoshare
informationandmoveagainstacompetitivedata-
marketenvironment.22
Dataaccessibilityremainsasignificantchallenge
particularlyindevelopingcountries,wheredatamay
beownedbyprivatecompanieswithaprohibitive
costformostlocalgovernmentsandNGOs.23Coop-
erationbetweenthepublicandprivatesectorwillbe
essentialtoovercomesuchchallengeas‘muchofthe
datathatareessentialorusefulforsocialgoodappli-
cationsareinprivatehandsorinpublicinstitutions
thatmightnotbewillingtosharetheirdata.’24The
organisationswhichcurrentlycapturemostdataare
telecommunicationandsatellitecompanies,social
mediaplatforms,financialinstitutions,hospitalsand
governments.Thesedatacansometimescontainvery
sensitiveinformationsuchasanindividual’smedical
record,credithistoryortaxdetails.25Forsuchrea-
sons,privateorganisationsasmuchaspublicones
areoftenreluctanttosharethesedatawithNGOsand
socialentrepreneurs.Thedatamayalsohavetoohigh
businessandcommercialvaluetobepotentially
leakedtocompetitors.Itisthereforecrucialtobuild
trustbetweenthesedifferentsetofactorsandbuild
appropriateframeworkstofacilitatedatasharingfor
socialgood.
Atnationallevel,thereisrecognitionofthevalue
ofopendataandatthegloballevel,countriesare
openinguptheirdatasetstoachievetheSDGs.Itis
currentlybeingusedincitiessuchasRiodeJaneiro
forcityplanning,Tanzaniatoaccessschoolperfor-
mance,toimproveaccesstoeducationinKenya,and
tomaptheEbolaoutbreakinW estAfrica.26
Issueswithdatasharingtendtoliewithinstitu-
tionsandcanberesolvediftheyachieveagreater
20(n13)
21NITIAayog,‘NationalStrategyforArtificialIntelligence’Discus-
sionPaper(2018)<https://niti.gov .in/writereaddata/files/document
_publication/NationalStrategy-for-AI-Discussion-P aper.pdf>ac-
cessed31January2020
22AnanyaNarain,‘WhyDataRevolutionisCrucialfortheSuccess
ofSDGs’(GeospatialWorld,1August2017)https://www
.geospatialworld.net/article/data-revolution-for-sustainable
-world/
23(n4)
24(n4)
25(n4)
26(n4)
Delphi4|2019213 AIforSustainableDevelopmentGoals
understandingofthevaluethatdatasharinghasin
helpingachievethebroadermissionoftheSDGs.To
addressaccessibilityandavailabilityofqualitydata
concerns,aglobal,regional,andnationalframework
fordatacouldbedevelopedtoencouragesynergies
betweendataprovidersanddatacollaboratives.This
willensuredataaccessibilityforall,filldatagaps,
generatenewdatasets,createdynamicvisualisations,
thusenablingtimelyandtargeteddecisionmaking
todrivetheSDGs.27
Initiativesandtaskforcesthatseektobringto-
gethermultistakeholderandmultidisciplinary
groupstohelpdesign,build,pilot,andscalenovel
frameworksandprotocolsneededfordatasharing
anddatagovernancemodelsareneeded.Poolingto-
getherappropriatepoolsofdataforspecificusecas-
es,theseinitiativescanserveasa‘trusted’platform
fordatatobeusedforgood.Someinitiativesthat
havebeensetupforthispurposeincludetheGlobal
DataAccessFramework,theUNBigDataPlatform,
theCGIARplatformforBigData,andtheDigitalPub-
licGoodsAlliance.
4.PreparingAIT alent
AnotherimportantchallengeisthelackofAItalent
todevelopandtrainAImodels.Talentshortagesand
braindrainofmachinelearningscientistsconstrain
AIinnovationglobally,andinparticularincountries
lackingAIhubs.AshighlightedbyMcKinseyInsti-
tute’sreportonApplyingAIforSocialGood,inabout
halfoftheusecasesidentifiedahigh-levelAIexper-
tisewasrequired–thatispeoplewithaPhDinthe
fieldorseveralyearsworkingintechcompanies.
SomeotherusecasesrequiredlessAIexpertise,but
stillatleastdatascientistsandsoftwaredevelopers.
WhenAIprojectsrelyonseveralAIcapabilities,the
levelofcomplexitytendstoincreaseanddemand
high-leveltalent.Suchdemandisalsoongoinginthe
privatesectoranditisthereforedifficultforpublic
andnon-profitsectororganizationstocompete.
Moreover,accesstoAItalentcanbeharderinde-
velopingregions.ArecentresearchconductedbyEl-
27(n4)
Figure3:MostVisuallyImpairedPeopleintheWorldLiveinEmergingEconomies.
Source:TheVisionLossExpertGroup,McKinseyGlobalInstituteAnalysis
Delphi4|2019 214AIforSustainableDevelopmentGoals
ementAI’sCEOJean-FrançoisGagnéshowedastrong
imbalancebetweenregionsregardingtheiraccessto
AI’stalentpool(Figure4).Whilecountriessuchas
theUnitedStatescountedmorethan9.000highlev-
elexperts,otherslikeSouthAfricaorArgentina
countedlessthan100.28ThebraindrainofAItalents,
especiallyindevelopingregions,thereforehasaneg-
ativeimpactonequalaccessandglobalimplementa-
tionofAIsystemsforsocialgood.
Highersalariesandresearchopportunitiesrein-
forcetrendsinbraindrainbydrawingtalentedyoung
machinelearningscientistsandresearcherstoAIin-
novationhubs,primarilytowardsmoredeveloped
economies,withgreatermeanstofundsuchtalent.
Asaresult,thevastmajorityofcountriesfaceachal-
lengingproblemofnotonlydeveloping,butalsore-
taining,localAItalent.
IV .TheCaseforanIntegratedand
CoordinatedApproach
WhileAItechnologiesoffersignificantopportuni-
tiesforprogresstowardstheSDGs,theyalsocome
withrisks–leadingtoa‘moretogain,moretolose’
paradigm.Theneedforurgentintegratedactionto
fosterpositiveusecasesandmitigatethetensionsof
adual-purposetechnologyisclear.However,current-
lythistopicremainsinanexploratoryphasewith
severalactorsfragmentedaroundtheworldtryingto
makeprogress.
Thispaperarguesthattodevelopcoordinated
pathwaystowardsimplementationofAIforsustain-
abledevelopment,aglobalmulti-stakeholderpartner-
shipincludingthepublicsector,theprivatesectorand
thecivicsocietyisneeded.Suchaplatformisessen-
tialtoenablestakeholderstoleverageandshareeach
other’suniqueresources,expertiseandexperiences
forthecreationofeffectivedevelopmentsolutions.
Amulti-stakeholderinitiativecurrentlybeing
builtthatcantaketheformofthisglobalallianceis
‘AICommons.’29TheAICommonsisenvisionedas
asolidplatformtodemocratizeaccesstoAIsoa
broaderrangeofactorswillbeabletopartakeinthe
AIRevolutionandprogresstowardstheSDGs.Itwill
helpenableaccesstorelevantdata,computingpow-
er,algorithms,talentandapplieddomainexpertise
(usecaseandmethodologies),bylinkingproblem
ownersandproblemsolvers.
AICommonscouldmapandtrackcurrent
progressbeingmadeontheSDGsusingAItechnolo-
28JFGagné,‘TheGlobalAIT alentPoolGoinginto2018’(7Febru-
ary2018)<https://jfgagne.ai/talent/>accessed31January2020
29see<https://ai-commons.org/>accessed31January2020
Figure4:GlobalAITalentPoolHeatMap.Source:JFGagné
Delphi4|2019215 AIforSustainableDevelopmentGoals
gies,identifygapsonregionsorgoalsthatarebeing
underserved,andpoolresourcestoaddresssuchun-
derservedareas.Furthermore,AICommonscouldal-
lowthecommunityofdevelopers,entrepreneurs,
users,andorganizationstoworktogether,toidenti-
fyandenablebroaderapplicationsofAIinresponse
toactualneeds.
TheGlobalDataAccessFramework,30sittingwith-
intheAICommons,willhelpreconcileframeworks
andprotocolsfordatasharingandgovernanceinor-
dertohelpenablesuchAIsystemstoflourish.Itwill
bringawarenesstogovernmentsoftheactualwork
undertakentoprogresstheSDGs,especiallythoseat
thegrassrootlevel.Itwillunitethosewithpolitical
cloutandtheimplementersofSDGsatthesamelev-
el.31
TheresponsibilitytoachievetheSDGs,ofcourse,
willremainintherealmofindividualcountries,but
internationalsupportandpartnershipssuchasAI
Commonsarecriticalforunifiedprogress.Under
‘SDG17:PartnershipstoAchievetheGoals’,national
governments,theinternationalcommunity,civilso-
ciety,theprivatesectorandotheractorshaverecog-
nizedtheneedtocometogetherto‘strengthenthe
meansofimplementationandrevitalisetheGlobal
PartnershipforSustainableDevelopment.’32
Indoingso,newtypesof‘public-private-people
partnerships’(PPPPs)mustbebuiltandpiloted.Pub-
lic-PrivatePartnerships(PPPs)arecrucialtoacceler-
aterealprogresstowardstheSDGsusingAI.AIde-
velopmentandimplementationrequiresphenome-
nalamountsofcapitaltofundthetransformations
neededtoachievetheSDGs.Thiscannotbedone
withouttheprivatesector,whichcanprovidesignif-
icantcapacityandfueltransformation.Atthesame
time,thepublicsectoralsoplaysamonumentalrole,
servingasanenabler,afacilitator,andawatchdogto
ensuretheprocessofAIimplementationissocio-eco-
nomicallyandethicallybeneficial.
Thispaperaddsathirdlayertothetraditionalpub-
lic-privatepartnership,arguingfortheneedtoin-
volvepeopleinthesealliancesaswellthroughcivil
societyorganisations.Giventheincreasingneedfor
peoples’datatomakeAItechnologiespossibleand
alsotheimpactAIcanhaveonanindividuallevel,
peoplehaveapowerfulvoicetomakePPPPsamech-
anismtowardsachievingtheSDGs.Involvingpeople
throughouttheentirelifecyclecouldhelppreventun-
intendedconsequencessuchasbiaseddatainputor
unfairlydistributedoutput.Inabsenceofclearinsti-
tutionsthatcanprovideaccountabilityandoversight,
peoplecanserveastheinstrumenttosafeguardso-
cietyfromthepotentialnegativeconsequencesofAI
andbarrierstowardsachievementoftheSDGs.Last-
ly,asthedeploymentofAIsystemsisrelativelyin
itsearlystages,peopleshouldbeproactivelyinvolved
tobuildacultureoftrust.IfpeopledonottrustAI
systems,thesetechnologieswillnotreachtheirpo-
tential.
WithintheAICommonspartnership,newinter-
nationalcenterstobenamedtheAIforSustainable
DevelopmentGoals(‘AI4SDG’)Centerscanserveas
factoriestobuildthesePPPPs.Withbranchesactive
indifferentregionsoftheworld(tofactordifferent
prioritiesandcontexts)andindifferentknowledge
settingsfromacademiatogovernment(tofactordif-
ferentknowledgebackgroundandpractice),thepur-
poseofanAI4SDGcentrewillbetoconveneglobal
stakeholders–fromgovernment,privatesectorand
civilsociety–tocollaborateanduseAItechnologies
tomonitor,simulateandpredictprogresstowards
theSDGs.Thecenterwillaimtoserveasanengine
forpracticalexperimentationofgovernanceand
businessmodelsforAI,embeddingethicsanddesir-
ablehumanvaluesintorealworldprojectsthatfos-
terinclusiveAIdevelopment.
Increatingpilotprojects,considerationswillbe
giventowhatconstitutesasaneffectivepilotproject
tobuildasharedunderstandingontheuses,misus-
esand‘missed-uses’ofAIforSDGs,andhowtosi-
multaneouslybuildadynamicandcomprehensive
policyframeworktomitigatethedownsiderisksof
AIthatcouldhamperthedevelopmentgoals.Build-
inganiterativemodelforapplyingAItoeachofthe
SDGsisanimportantfeaturebecauseitwillallow
forcorrigibilityinthetechnologyandlimitthedown-
sideeffects,suchasbias,amplifyingforourmostvul-
nerablecommunities.Furthermore,devisinganag-
ilepolicyframeworkparalleltotestingAItechnolo-
giesforSDGswillhelpforgeatimelyanddynamic
feedbackloopbetweenimpactofAIandpolicyto
30see<https://thefuturesociety.org/2019/09/25/the-global-data
-commons-gdc/>accessed31January2020
31Narain(n20)
32UnitedNations,‘High-LevelPoliticalForumGoalsinFocus–
Goal17:StrengthentheMeansofImplementationandRevitalize
theGlobalP artnershipforSustainableDevelopment’(2018)
<https://unstats.un.org/sdgs/report/2018/goal-17/>accessed31
January2020
Delphi4|2019 216AIforSustainableDevelopmentGoals
managesuchimpact,makingitmorefeasibleforpol-
icymakersandgovernancemodelstokeepapacewith
technologicalchange.
Thesenewstructures–theAICommons,theGlob-
alDataAccessFrameworkandtheAI4SDGCenters
–canhelptheinternationalcommunityreconcile
technical,ethical,commercial,legalandoperational
frameworksandprotocols–totakepowerofAItech-
nologiesandsuccessfullymakeunifiedprogressto-
wardstheachievementoftheSDGs.
Delphi4|2019217 AIandOnlineIntermediationPlatforms
TheUseofAIbyOnlineIntermediation
Platforms
ConciliatingEconomicEfficiencyandEthicalIssues
FrédéricMartyandThierryWarin*
Thispaperfocusesontheeffectsoftheimplementationofartificialintelligence-basedalgo-
rithmsbyonlineintermediationplatformsintermsofbotheconomicefficiencyandfairness
orethicaldimensions.Itaddressesthreemainissues:theconsumersegmentationandthe
capacitytodiscriminate;thestrategicuseofartificialintelligencebydominantplatformsin
co-opetitivedigitalecosystems;andtheroleofartificialintelligence-basedtoolstoguaran-
teetrustworthyuser-reviewsone-commerceplatforms.Thispaperemphasisestheimportance
ofhavingstrongguaranteesforplatformusersintermsoftransparencyandaccountability.
I.Introduction
Althoughstillinitsinfancy,theacademicliterature
intheeconomicsdisciplineinsistsonthepromises
ofArtificialIntelligence(hereafterAI).1Ourfocus
hereliesinthefieldofIndustrialOrganization.In
thecaseofelectronicplatforms,anincreasinguseof
AIcansubstantiallyimproveperformanceinsever-
alareas.Forinstance,forsearchormatchingpurpos-
es,AIcanbeusedtorefinetherecommendations
providedtoInternetusers,hencereducingthesearch
costsaswellasthecoordinationcosts.2Anotherex-
ampleisthatAIcanalsocontributetoimprovethe
leveloftrustintheplatform.Similarly,AIcanpro-
videtheplatformwithadvanceduserdissatisfaction
detectiontools.AIcanalsohelpsolvethe‘coldstart’
problemfornewplatformsenteringthemarketby
providingincentivesforconsumerstogivetrustwor-
thyreviews.3
Wewillalsorelyonthefollowingdefinitionofan
onlineintermediationplatform:aplatformisconsti-
tutedofusers–consumersandsuppliers–whose
transactionsaresubjecttodirectand/orindirectnet-
workeffects.4
However,thisgreatpowercomesalsowithgreat
challenges.AIcouldindeedexacerbateconsumerma-
nipulationsorgenerate/worsencertainbiasesaspre-
dictionsmadeaboutconsumerpreferencesmight
haveaself-fulfillingeffect.5Thehighdegreeofcon-
sumersegmentationallowedbyAIcouldalsoleadto
discriminatorypractices.6Suchdiscriminationmay
taketheformofpricediscriminationbutalsoofdif-
ferencesinthequalityoftheproductsbeingoffered.7
Similarly,AI-basedadvancedindicators–setupby
theplatformtomeasurethequalityoftheservice
providedbyitscomplementors–canbemanipulat-
edtoimposeunbalancedcontractualterms.Finally,
theroleofAIinencouragingconsumeropinionsmay
DOI:10.21552/delphi/2019/4/11
*F rédéricMarty,CNRS–GREDEG–UniversitéCôted’Azur;CIRA-
NO,Montréal.F orcorrespondence:<frederic.marty@gredeg.cnrs.fr>
ThierryWarin,SKEMABusinessSchool;CIRANO,Montréal.For
correspondence:<thierry.warin@skema.edu>
1CatherineTucker,‘Privacy,Algorithms,andArtificialIntelligence’
inAjayAgrawal,JoshuaGans,andAviGoldfarb(eds)TheEco-
nomicsofArtificialIntelligence:AnAgenda(UniversityofChica-
goPress2018)423–37
2ThierryWarinandDanielLeiter,‘HomogenousGoodsMarkets:
AnEmpiricalStudyofPriceDispersionontheInternet’(2012)4
InternationalJournalofEconomicsandBusinessResearch514–29
3PaulMilgromandStevenT adelis,‘HowArtificialIntelligenceand
MachineLearningCanImpactMarketDesign’(2018)NBER
WorkingPapern°24282
4Broekhuizenetal,'DigitalPlatformOpenness:Drivers,Dimen-
sionsandOutcomes'(July2019)JournalofBusinessResearch;
JeanRochetandJeanTirole,'PlatformCompetitioninT wo-Sided
Markets'(2003)1JournaloftheEuropeanEconomicAssociation
990–1029
5PelleGuldborgHansenandAndreasMaaløeJespersen,‘Nudge
andtheManipulationofChoice:AFrameworkfortheResponsi-
bleUseoftheNudgeApproachtoBehaviourChangeinPublic
Policy’(2013)4EuropeanJournalofRiskRegulation3–28
6MarcBourreauandAlexandredeStreel,‘TheRegulationof
PersonalisedPricingintheDigitalEra’SSRNScholarlyPaperID
3312158,SocialScienceResearchNetwork<https://papers.ssrn
.com/abstract=3312158>accessed20January2020
7PrestonMcAfee2007,‘PricingDamagedGoods’(2007)1Eco-
nomics:TheOpen-Access,Open-AssessmentE-Journal.
Delphi4|2019 218AIandOnlineIntermediationPlatforms
haveadarksideifusedtogeneratefakereviews.
Thus,theeffectsofusingAIinonlineplatformsmay
bemoredebatablethaninitiallyexpected.
Therefore,thepurposeofthiscontributionisto
proposeaframeworktostudytheopportunitiesand
risksassociatedwiththeuseofAIinthespecificcon-
textofonlineintermediationplatforms.Inparticu-
lar,wehighlightthreepriorityareasthatweconsid-
eroftheutmostimportanceintermsofrisksposed
tothenatureofcompetition.Thesepriorityareasare
keysincetheyareactualthreatstoahealthymarket
system.Indeed,whilelawmakershaveconsidered
someoftheethicalissuesrelatedtoAI,attentionmust
alsobepaidtoitsconsequencesoncompetition.AI
canaffectthecompetitivedynamicsofmarketsby
increasingthemarketpowerofdominantfirmsat
theexpenseoftheircompetitors,tradingpartners,
andconsumers.8WhiletheuseofAIcanaddress
someofthekeycompetitiveissuesintheplatform
economy ,suchascoldstartandcontestability ,itmay
alsoincreaseimbalancesbetweenoperatorsandfa-
cilitatemanipulation.Theseissuesarenotonlylinked
toefficiencybutalsotothedynamicsofcompetition
itself.Adominantoperator(oragatekeeper)might
controlcompetitiveforcesandimpairconsumers’
freedomofchoiceandcompetitors’accesstomarket.
Forinstance,Hemphill(2019)underlinesthatthe
incumbent’sadvantagesondigitalmarketscanbeex-
acerbatedbythedevelopmentofmachinelearning.
Dominantplatformsbenefitfromeconomiesofscale
andscopeandfromanaccesstousers’datathatthe
newentrantcannoteasilyreplicateorovercome.
Suchpotentialbarrierstoentrymaysignificantlyin-
creasedbyAIimplementation.Suchtechnologies
mayexacerbatetheincumbents’competitiveadvan-
tagesbecauseoftheirhighfixedcosts,theirdata-
basedperformancenatureandthehugeinvestments
realisedbybothinternalandexternalgrowth(merg-
ersandacquisitions).
Afterpresentingthecurrentstateofregulatory
conversations,ourconclusionisthattherisksposed
toahealthymarketsystemareatbestunderestimat-
ed,atworsttotallyignored.Inwhatfollows,first,we
analysetheproposalsandregulationsmadebypub-
licauthoritiesaimingatguaranteeingatrustworthy
AIandsecond,weproposethreeexamplesofAI-
basedalgorithmstoillustrateethicalandeconomic
trade-offs.IftheinvisiblehandentersanAIblack
box,itisnecessarytobalanceefficiencygainsand
risksforsoundcompetitionandeconomicfreedom.
II.AIAccountabilityintheFaceof
EconomicandEthicalRisks
Tothebestofourknowledge,nowhereintheregu-
lationsdowefindareferencetothepotentiallydis-
ruptiveimpactofAIonthemarketeconomy.Accord-
ingtotheFrenchNationalConventionin1793:‘great
responsibilityfollowsinseparablyfromgreatpower’.
Sucharequirementisstilloftheutmostimportance
inthisAIage.Whatisknownasthe‘ AIrevolution’
isanincrediblypowerfultoolbutitalsoposesalot
ofquestions.Forthefirsttimeinourhistory,au-
tonomoussystemscanperformcomplextasksequiv-
alenttonaturalintelligence.ThetermArtificialIn-
telligencewascoinedbyJohnMcCarthyin1956ina
proposalforasummerresearchprojecttobeheldin
Dartmouthin1957.9AIconstitutesamajorformof
scientificandtechnologicalprogress,whichcangen-
erateconsiderablesocialaswellaseconomicbene-
fits.10
AIcanbeunderstoodasageneral-purposetech-
nology.11Weproposetousethefollowingupdated
definitionofAIfromtheEuropeanUnionHigh-Lev-
elExpertGrouponAI:
‘Artificialintelligence(AI)systemsaresoftware
(andpossiblyalsohardware)systemsdesignedby
humansthat,givenacomplexgoal,actinthephys-
icalordigitaldimensionbyperceivingtheirenvi-
ronmentthroughdataacquisition,interpreting
thecollectedstructuredorunstructureddata,rea-
soningontheknowledge,orprocessingtheinfor-
mation,derivedfromthisdataanddecidingthe
bestaction(s)totaketoachievethegivengoal.AI
systemscaneitherusesymbolicrulesorlearna
numericmodel,andtheycanadapttheirbehavior
byanalysinghowtheenvironmentisaffectedby
theirpreviousactions.Asascientificdiscipline,
8SyprosMakridakis,'TheForthcomingArtificialIntelligence(AI)
Revolution:ItsImpactonSocietyandFirms'(2017)90Futures
46–60<https://doi.org/10.1016/j.futures.2017.03.006>accessed
30January2020
9J.McCarthyetal,‘AProposalfortheDartmouthSummerResearch
ProjectonArtificialIntelligence’(1956)13http://jmc.stanford
.edu/articles/dartmouth/dartmouth.pdfaccessed30January2020
10AjayAgrawal,JoshuaGans,andAviGoldfarb,PredictionMa-
chines:TheSimpleEconomicsofArtificialIntelligence(Harvard
BusinessReviewPress2018)
11ErikBrynjolfsson,DanielRockandChadSyverson,‘ Artificial
IntelligenceandtheModernProductivityP aradox:AClashof
ExpectationsandStatistics’inAjayAgrawal,JoshuaGans,andA vi
Goldfarb(eds)TheEconomicsofArtificialIntelligence:AnAgen-
da(UniversityofChicagoPress2018)23–57
Delphi4|2019219 AIandOnlineIntermediationPlatforms
AIincludesseveralapproachesandtechniques,
suchasmachinelearning(ofwhichdeeplearning
andreinforcementlearningarespecificexam-
ples),machinereasoning(whichincludesplan-
ning,scheduling,knowledgerepresentationand
reasoning,search,andoptimization),androbotics
(whichincludescontrol,perception,sensorsand
actuators,aswellastheintegrationofallother
techniquesintocyber-physicalsystems)’.12
ThedevelopmentofAIdoesposemajorethicalchal-
lengesandsocialrisks.Indeed,AIcanrestrictthe
choicesofindividualsandgroups,disrupttheorgan-
isationoflaborandthejobmarket,orinfluencepol-
iticstonamebutafew .Scientificprogressbringsin-
crediblebenefitswhilecarryingnewrisks.Citizens
mustdeterminethemoralandpoliticalendsthatgive
meaningtotherisksencounteredinanuncertain,
andcomplexworld.
On8April2019,theHigh-LevelExpertGroupon
AIpresentedtheirEthicsGuidelinesforT rustworthy
ArtificialIntelligence.Accordingtotheguidelines,
themainprinciplesforatrustworthyAIarethree-
fold:(1)lawful(abidingbyallapplicablelawsand
regulations),(2)ethicalegrespectingethicalprinci-
plesandvalues,and(3)robustbothfromatechnical
andasocialperspective.13Inits‘EUguidelineson
ethicsinartificialintelligence:Contextandimple-
mentation’report,theEuropeanCommission’sHigh-
LevelExpertGrouponAIproposes7keyguidelines
forAIsystemsshouldmeetinordertobedeemed
trustworthy:Humanagencyandoversight,T echni-
calRobustnessandsafety ,Privacyanddatagover-
nance,T ransparency ,Diversity ,non-discrimination
andfairness,Societalandenvironmentalwell-be-
ing,andAccountability .14Suchconcernsresonate
withtheprincipleslaiddownbytheMontrealDec-
laration(2018)15:W ell-being,respectforautonomy,
privacyandintimacy,solidarity ,democraticpartici-
pation,equity,diversityinclusion,prudence,respon-
sibility,sustainabledevelopment.
Thequestionofhealthymarketsreliesondatagov-
ernanceasmuchasonsustainabledevelopment,two
topicsinHELGandtheDeclarationofMontreal.Da-
tagovernanceisalsotobefoundinarticle25of
GDPR16,alongtheUNESCO’s7thprinciplewithin
theBeijingConsensus:the‘impactofAIonpeople
andsocietyshouldbemonitoredandevaluated
throughoutthevaluechain’17.
Thefocusontheguaranteesrelatedtotheuseof
AIisalsoreflectedbytheOECD’sRecommendation
oftheCouncilonArtificialIntelligence.18Itsfirstsec-
tionsetsupthe‘Principlesforresponsiblesteward-
shipoftrustworthyAI’.Theprinciplesadvocatedby
theOECDarebasedonareviewofpotentialrisksfor
thesocietywhileenablinganAIdigitalecosystem.
Althoughallthesepointsarerelevantandofthe
utmostimportance,thesereportsgivelittleattention
tothespecificcompetitiverisksassociatedtodigital
oligopolies.Thereisnomentionabouttheorganisa-
tionofthemarketeconomyinthisAIage.However,
drawingfromtheOECDAIPrinciples,theG20adopt-
edhuman-centeredAIPrinciplesinJapaninJune
2019.Thisismaybetheonlytextthatgetsascloseas
wecanimaginetothenotionofAIbeingdisruptive
forthemarketeconomy.
Ifwefocusonintermediationplatforms,therisks
associatedwiththeuseofAIcanbeconsideredfrom
theperspectiveofcompetitionorconsumerprotec-
tionlaws,aswellastheprotectionofpersonaldata.
Eveniftheselegalresourcescanaddressasignificant
partoftherisks,theycannotansweralltheethical
issuesraised.Itwillthereforebeuptothelawmak-
erstostrikeabalancebetweenpotentialefficiency
gainsandderivedrisks.Weillustratethesetrade-offs
inthenextthreesectionsthroughexamplesofAIim-
plementationbyonlineplatforms.W einsistforeach
ofthemonthepotentialefficiencygainsthatcan
stemfromAIbutalsoontheethicalrisksraised.
12HLEG-AI,EuropeanCommission,‘EthicsGuidelinesforTrustwor-
thyAI’(8April2019)<https://ec.europa.eu/digital-single-market/
en/news/ethics-guidelines-trustworthy-ai>accessed20January
2020
13ibid
14T ambiamaMadienga,‘EUGuidelinesonEthicsinArtificial
Intelligence:ContextandImplementation–ThinkT ank’(2019)
<http://www.europarl.europa.eu/thinktank/en/document.html
?reference=EPRS_BRI(2019)640163>accessed20January2020
15MontrealDeclaration,‘TheDeclaration–MontrealResponsible
AI’(2018)<https://www.montrealdeclaration-responsibleai.com/
the-declaration>accessed20January2020
16Regulation(EU)2016/679oftheEuropeanParliamentandofthe
Councilof27April2016ontheProtectionofNaturalPersons
withRegardtotheProcessingofPersonalDataandontheFree
MovementofSuchData,andRepealingDirective95/46/EC
(GeneralDataProtectionRegulation)(TextwithEEARelevance)
OJL.V ol.119.http://data.europa.eu/eli/reg/2016/679/oj/eng
accessed30January2020
17UNESCO,'BeijingConsensusonArtificialIntelligenceand
Education-UNESCODigitalLibrary'(2019)<https://unesdoc
.unesco.org/ark:/48223/pf0000368303>accessed30January
2020
18OECD,‘OECDLegalInstruments’(2019)<https://legalinstruments
.oecd.org/en/instruments/OECD-LEGAL-0449>accessed20Janu-
ary2020
Delphi4|2019 220AIandOnlineIntermediationPlatforms
III.UsingAIforaFinerConsumer
Segmentation:EfficiencyattheRisk
ofDiscrimination?
Theperformanceofanintermediationplatformora
searchengineisbasedontheabilityofitsalgorithms
todeliverrecommendationstailoredtotheneedsof
itsusers.19AIallowsamorerefinedunderstanding
ofthelatterbyattachingeachusertoanarrowlyde-
finedsegment.Attheveryleast,theproposedresult
isdedicatedtoeachuserbasedonthepredictionthat
ismadeaboutherexpectationsorherabilitytopay.
Theseareundoubtedlypro-efficiencyeffects.Search
costsaresubstantiallyreducedforconsumers.How-
ever,theuseofAIinsearchenginesandmatching
platformsmaybeaccompaniedbyarisingriskfor
consumers:channelingtoonarrowlyherchoiceto-
wardstheoptionforwhichtheadequacyprediction
isstrongest.Inthiscontext,theuseofAImayhelp
perpetuatebiases.Forinstance,inanexperiment
aboutjobdiscriminations,jobadsforhigher-paidpo-
sitionsweredisplayed6timesmoretomenthanto
women.20
Inaddition,risksofaself-fulfillingprophecy(and
ofunduerestrictionofconsumerfreedomofchoice)
mustbetakenintoaccount.Isthedevelopmentof
AIinthisarealikelytoleadtoconfirmationandre-
inforcementofsocialbiases?Theassignmentofa
consumertoaparticularpatterncertainlymakesit
possibletosendherofferscorrespondingtoher
needsbutalsohasaperformativeeffectbylocking
herupinarestrictedspaceofchoice.Thealgorithm
hastheeffectofclosingoptionstoherandthuscon-
strainingherfutureoptions.InsofarAIisonlyapre-
dictivetool,wecanarriveattheparadoxinwhich
thealgorithmoptionswouldbeverifiedex-postsim-
plybecausetheveryconsequenceoftheprediction
istherestrictionofthespanofpossiblechoices.In
thesamevein,theAIoriginatedproposalisallthe
morelikelytobeacceptedsinceitreinforcesthecon-
sumer'sdecision-makingbias.
Itshouldalsobenotedthattheabilitytostatisti-
callyinferfromtheobserveddatathemaximum
amountthattheconsumeriswillingtopaycould
leadtotheimplementationofpersonalisedprices.
Withoutgoingasfarasperfectdiscriminationin
which,thepricewouldbeequalforeachconsumer
toherpropensitytopay ,AIcanleadtoaveryeffi-
cientpricesegmentation.21Theeconomiceffectsof
pricediscriminationareambiguous.22Itisfavorable
intermsoftotalefficiencyandcanallow–through
cross-subsidies–forcertainconsumerstoaccessthe
product.However,discriminatorypricesresultina
transferofwelfarefromtheconsumerstotheplat-
form.23
Thealgorithmcanalsoplayontherangeofprod-
uctsofferedtotheInternetuser.Dependingonits
anticipateddegreeofexpertiseortheneedsassigned
toher,thetechnicalperformanceoftheproposed
productmayvary .Thediscriminationthroughver-
sioningcanrelynotonpricesbutperformanceor
quality.Forasameprice,thecharacteristicsofthe
productofferedmightdifferfromausertoanother.
Attheextreme,incaseofanon-demandproduction
(ina4.0industryworld),theproductcanbededicat-
edtoaspecificuser.Suchanapproachmayleadto
deceptivecommercialpracticesandharmfuldiscrim-
inationamongconsumers.W ecouldeasilyimagine
thatnaïveorcaptiveonesmightonlyaccesstoprod-
uctscharacterizedbydeterioratedperformancesas
aresultofmachinelearningmethodsappliedtocon-
sumersegmentation.24
Aburgeoningfieldoftheeconomicsliteraturein-
vestigatesthepossibleexploitativeabusesthatcould
affectthemorenaïveconsumers.25Firmsincreasing-
lyhavethecapacitytodiscriminateamongtheircon-
sumers.Theever-increasingflowofinformation,the
enhancedcapacitiestoprocessthedatacollectedand
theobfuscationofon-linepricesandoffersmaylead
toaquasi-perfectdiscriminationexposingnaïvecon-
sumertopayunexpectedcharges26ortoaccesstoin-
feriorqualitygoodsorservices.
19(n3)
20T omSimonite,‘StudySuggestsGoogle’sAd-TargetingSystemMay
Discriminate’(MITTechnologyReview ,6July2015)<https://
www.technologyreview .com/s/539021/probing-the-dark-side-of
-googles-ad-targeting-system/>accessed20January2020
21SalilMehra,‘ AntitrustandtheRobo-Seller:Competitioninthe
TimeofAlgorithms’(2016)100MinnesotaLawReview
1323-1375
22HalVarian,‘ ArtificialIntelligenceandIndustrialOrganization’
(2018)NBERWorkingPaper
23J.-P .DubéandSanjongMisra,‘ScalablePriceTargeting’(2017)
WorkingPaperUniversityofChicago
24NiladriSyamandArunSharma,'WaitingforaSalesRenaissance
intheF ourthIndustrialRevolution:MachineLearningandArtifi-
cialIntelligenceinSalesResearchandPractice'(2018)69Indus-
trialMarketingManagement135–46.
25P aulHeidhuesandBotondKőszegi,'Naïveté-BasedDiscrimina-
tion'(2017)132QuarterlyJournalofEconomics1019-1054
26XavierGabaixandDavidLaibson,'ShroudedAttributes,Con-
sumerMyopia,andInformationSuppressioninCompetitive
Markets'(2006)121QuarterlyJournalofEconomics505-540
Delphi4|2019221 AIandOnlineIntermediationPlatforms
Perverseeffectsresultingfromalgorithm-based
discriminationcanalsostemfromamplificationsof
socialbiases.Actually,matchingorpricealgorithms
mayconfirmoraggravatesomediscriminational-
readyexistinginsociety .Twodifficultiescanbecon-
sidered.Thefirstdifficultyechoesasituationin
whichthealgorithmisbasedonreinforcingself-di-
rectedlearning.Assuch,itlearnsfromavailableda-
taandevolvesthroughinteractions.Indoingso,it
risksreproducingsocialbiasesand,muchworse,am-
plifyingthem.Theseconddifficultyisrelatedtothe
worseningoftheeconomicconsequencesofdiscrim-
inations.Manystudiesemphasisethisimpactonthe
incomeofagentsofferingtheirservicesonplatforms
orontheopportunitiesavailabletothem.27
Consumersmayreactnegativelytopersonalised
pricespricesorpricestrategiesgeneratingrandom
prices.28Forinstance,Amazonhadtoabandonran-
dompricevariationinitiativesin2000.29Thus,the
reputationaldamagecanbesignificantifthecon-
sumerhasaperceptionoftheplatform'sbehavioras
manipulative,misleadingorunfair.Inthatcase,the
potential‘market-based’sanctioncanplayasaprice
signalincentivisingtheplatformtomonitorcareful-
lyitspractices.However,suchaself-disciplinaryef-
fectcanonlybeeffectiveifthemarketpositionof
theplatformremainscontestable(ifthecompetition
isstilloneclickaway)andiftheconsumeriseffec-
tivelyawareofthesepractices.
Consumersmayadverselyreacttonewmarketing
practicesbasedonAIasthepossibleshiftfroma
shopping-then-shippingmodeltoashipping-to-shop-
pingmodel.30Asretailerscanmoreandmorepre-
ciselypredictconsumers’futureneeds,theycansend
theproductbeforeanyformalorder,allowingthecon-
sumertofreelyreturntheitem.31However,anunde-
siredshipping,notmandatoryresultingfromafalse
predictionaboutaconsumer’sneedsandpreferences,
mayleadtoanegativereaction.Forinstance,acon-
sumer’scurrentpreferencemaydifferfromtheones
inferredfromherpastbehavior.Theproposedprod-
uctmayputherinanuncomfortablesituation.32The
consumermayalsoreactnegativelytoaperceived
lossinautonomyintermsofconsumptionchoices.33
OneofthemainconcernsraisedbyAIimplemen-
tationformarketingrecommendationsintermsof
consumers’reactionscanbeillustratedwiththe‘pri-
vacy-personalisationparadox’.34Ontheonehand,
consumersaskfordedicatedoffersbut,ontheother
hand,theywanttopreservetheirprivacy.Theirtrade-
offmightbedistortedconsideringimperfectratio-
nality.AccordingtoAcquisti(2004)35,consumers
maybe‘privacymyopic’.Inotherwords,theymay
divulgeasubstantialamountofinformationinre-
turnforanotsosubstantialcounterpart.36
Theplatformmonitoringbythirdpartiescanbe
helpful.Distributedsurveillanceschemescanbea
waytoprovideguaranteestoconsumersandtopro-
videtheproperincentivestopromoteacompetition
throughquality(orthroughcommitmentsonfair
practices)amongplatforms.
Symmetrically,market-basedincentivesmightbe
insufficienttoguaranteethatfirmsproperlycontrol
theeffectsoftheiralgorithmic-baseddecisionsin
termsoffairness.Despitetheirownbias,consumers
mayreactnegativelyassoonastheyperceivethe
27BenjaminEdelman,MichaelLucaandDanSvirsky,‘Racial
DiscriminationintheSharingEconomy:Evidencefromafield
experiment’(2017)9AmericanEconomicJournal–Applied
Economics1-22;
AlexRosenblatetal,‘DiscriminatingT astes:Uber’sCustomer
RatingsasV ehiclesforWorkplaceDiscrimination’(2017)9
PolicyandInternet256-279;
MingmingChengandCarmelFoley,‘TheSharingEconomyand
DigitalDiscrimination:TheCaseofAirbnb’(2018)International
JournalofHospitalityManagement95-98;
GraziaCecereetal,‘STEMandT eens:AnAlgorithmicBiason
SocialMedia’(2018)WorkingP aperSSRNn°3176168
28ThierryWarinandDanielLeiter ,'HomogenousGoodsMarkets:
AnEmpiricalStudyofPriceDispersionontheInternet'(2012)4
InternationalJournalofEconomicsandBusinessResearch
514–29;AkivaMiller,'WhatDoWeWorryAboutWhenWe
SorryAboutPriceDiscrimination?TheLawandEthicsofUsing
PersonalInformationforPricing'(2014)19JournalofTechnology
LawandPolicy41-104
29MatthewEdwards,‘PriceandPrejudice:TheCaseagainstCon-
sumerEqualityintheInformationAge’(2006)10LewisandClark
LawReview559
30ThomasDavenportetal,'HowArtificialIntelligenceWillChange
theFutureofMarketing'(2020)48JournaloftheAcademyof
MarketingScience24-42
31(n10)
32(n30)
33QuentinAndréetal,'ConsumerChoiceandAutonomyinthe
AgeofArtificialIntelligenceandBigData'(2018)5Consumers
NeedsandSolutions28-37
34ElizabethAguireetal,'UnravellingthePersonalizationParadox:
TheEffectofInformationCollectionandTrust-buildingStrategies
inOnlineAdvertisementEffectiveness'(2015)9JournalofRetail-
ing34-49
35AlessandroAcquisti,'PrivacyinElectronicCommerceandthe
EconomicsofImmediateGratification'(2004)5thConferenceon
ElectronicCommerce,NewYork
36JoshuaGerlickandStephanLiozu,'EthicalandLegalConsidera-
tionsofArtificialIntelligenceandAlgorithmicDecision-makingin
PersonalizedPricing'(2020)JournalofRevenueandPricing
Management.
Delphi4|2019 222AIandOnlineIntermediationPlatforms
firm’sbehaviorasunfairormanipulative.Theper-
ceived(un)fairnessechoeswithdistributivejustice-
relatedconcernsandmayleadtosalelosses.37
TheuseofAI-basedrecommendationssystems
raisesreputation-relatedconcernsforfirmsaswellas
ethicalandlegalones.Ifanalgorithmmakesitspre-
dictionsasanon-accountableblackbox,itsdevelop-
ersandthefirmusingitcanbeliableaboutitspoten-
tialdiscriminatoryorunfaireffects.Martin(2019)38
explainsthatafirmmaybeaccountableifitdevelops
orimplementsaninscrutablealgorithm.Shedefines
suchanalgorithmasonethatlimits–orexcludes–
anyhumaninterventioninthedecisionprocessand
makesthisalgorithmimpossibletoobjectivelyex-
plainexpost.Inthisframework,afirmengagesits
corporateresponsibilitybyrelyingon‘toodifficultto
explain’decisionprocesses.Inotherwords,thelack
ofaccountabilitymaybeseenastheoppositeofan
ethical-by-designapproach.Asaconsequence,
opaqueandnon-accountablealgorithmsrequireasu-
pervision,fromathird-partyoraregulatoryagency .39
TheconfidencetowardsAI-baseddecisionsmaybe
reinforcedbytherecoursetoXAI,egexplainableAI.40
Wecanalsoinsistonasecondpotentialadvantage
ofAIinthefieldofsearchengines.AI-basedsearch
recommendationscanbecustomisedaccordingto
theperson'snaturalsearchprocess(broadfirstand
progressiverefinement).Indeed,consumers’search
behaviourevolvesduringitssuccessivestages.AI-
basedalgorithmscanadjusttheirresultstofitwith
suchaprocess.Basedonananalysisperformedone-
Bayusers,Blakeandal(2015)41showthatthecon-
sumerspreferatthefirststepsverybroad-rangere-
sultstoscreentheavailableoptionsandprogressive-
lyconvergetowardmorenarrowlytargetedresults.
Asearchormatchingalgorithmmayreproducesuch
pathandreviseateachiterationthescopeandthe
characteristicsoftheresultsdisplayed.However,
suchatoolhastwosides;itcanbothsupportanddis-
torttheconsumer'schoices.Again,ethicalconcerns
mustbeaddressed.
IV .UsingAItoFacilitateT rustin
Transactions:CorrectingInformation
AsymmetriesorIncreasingTrading-
Partners'Vulnerability?
Trustinonlineplatformsisacomplexmatter.Itde-
pendsonthenatureoftheplatform(proprietaryvs
open-source),theindustry ,thetechnology
(blockchainvshttps),thecompany ,etc.42
Oneofthedigitalintermediationplatforms’key
factorsofsuccesshasbeentheirabilitytosecure
transactions.Thistrustisnotonlyaboutsecuring
paymentsbutalsointermsofreducinginformation-
alimperfectionsthatcouldpreventtheactofpur-
chase.Forconsumers,theseimperfectionsweredue
toincompleteandasymmetricinformationaboutthe
qualityofproductsandsellersactiveinonlinemar-
ketplaces.Theopinionssubmittedonlinehave
playedasignificantroleincorrectingtheseinforma-
tionalbiases.AIcanbeaninterestingrelaytoaddress
thisissue:forinstance,bypredictingthequalityof
agivensellerbyinterpretingonlineexchangeswrit-
teninnaturallanguageinprevioustransactions.The
analysisofexchangesbetweencustomersandinde-
pendentsellers(throughnaturallanguageprocess-
ing)canmakeitpossibletoconstructadvancedindi-
catorsofunderperformanceandthereforetointer-
venetoremedyitveryearlyon.Assuch,theplatform
protectsitsconsumersevolvinginincompleteand
asymmetricinformationconditions.
Puttinginplacemechanismstocreateanenviron-
mentthatwouldincreaseparticipants'confidenceis
oneofthekeysoftheplatforms’businessmodel.43
37T imothyRichards,JuraLiaukonyteandNadiaStretskaya,'Person-
alizedPricingandPriceFairness'(2016)44InternationalJournal
ofIndustrialOrganization138-153
38KirstenMartin,'EthicalImplicationsandAccountabilityof
Algorithms'(2019)160JournalofBusinessEthics835-850
39FrankP asquale,TheBlackBoxSociety:TheSecretAlgorithmsthat
ControlMoneyandInformation(HarvardUniversityPress2015)
40(n36)
41ThomasBlake,ChrisNoskoandStevenT adelis,'Consumer
HeterogeneityandP aidSearchEffectiveness:ALargeScaleField
Experiment'(2015)83Econometrica155-174
42CarinvanderCruijsen,MauriceDollandFrankvanHoenselaar ,
'TrustinOtherPeopleandtheUsageofPeerPlatformMarkets'
(2019)166JournalofEconomicBehaviorandOrganization
751–66<https://doi.org/10.1016/j.jebo.2019.08.021>accessed
30January2020;
ImeneBenY ahia,NasserAl-NeamaandLaoucineKerbache,
'InvestigatingtheDriversforSocialCommerceinSocialMedia
Platforms:ImportanceofT rust,SocialSupportandthePlatform
PerceivedUsage'(2018)41JournalofRetailingandConsumer
Services11–19<https://doi.org/10.1016/j.jretconser.2017.10.021
>accessed30January2020;
NuanLuoetal,'IntegratingCommunityandE-Commerceto
BuildaT rustedOnlineSecond-HandPlatform:Basedonthe
PerspectiveofSocialCapital'(2020)153TechnologicalForecast-
ingandSocialChange119913<https://doi.org/10.1016/j.techfore
.2020.119913>accessed30January2020
43LiYfanMacinnesIanandY urcikWilliam,'ReputationandDis-
puteineBayT ransactions'(2005)10InternationalJournalof
ElectronicCommerce27-54
Delphi4|2019223 AIandOnlineIntermediationPlatforms
Suchacharacteristicwasnotaforegoneconclusion
sincetrustcouldnotbebasedoninterpersonalrela-
tionships,theexperienceofpasttransactionsorthe
collectivecontrolexercisedbyagivencommunityor
corporation.Norcouldtrustcomefromtechnicalde-
vicesasisthecase,forexample,throughblockchain
technologiesinwhichcryptographicevidencecanre-
placetrust.Thesuccessofthefirstonlinemarket-
placeswasensuredbytheimplementationofbuyer
feedbacks.Theseopinionsmadeitpossibletobene-
fitfromanex-anteandnotonlyanex-postevaluation
ofthequalityoftheproducts.Inotherwords,the
sharingofinformationmeantthatthegoodsandser-
vicesconsumeddidnotfall,foreachsuccessivecon-
sumer,withinthecategoryofexperiencegoods.Even
beforeenteringintoatransactionwithaformerlyun-
triedmerchant,buyersonaplatformbenefitfrom
theassessmentsoftheseller’spreviousconsumers.
However,thissuccessisthesubjectofincreasing
challenges.First,consumershavenoincentivesto
spendtimetowritereviewsandcanindividuallybe-
haveasfreeriders.Second,theirconfidenceincon-
sumers’reviewavailableonlinetendstobedecreas-
ing.Suchmistrustisduetobiasesinassessments,rat-
inginflation44andrisksofopinionmanipulation45.
Someusersmayalsocolludetoartificiallyincrease
theratingsbyrelyingonpuppetconsumersposting
falseopinionscorrespondingtofalsetransactions.46
Theuseofartificialintelligencecanbealeverto
restorethistrust.47Theideaistousethemessages
exchangedontheplatformbetweensellersandbuy-
ersbeforeandafterthetransaction.Thesupportof
NLP(NaturalLanguageProcessing)allowssuchan
evaluation.Thealgorithmaimsatpredictingwhich
characteristicseachconsumerislikelytoappreciate
inthelightofherinterestsandneeds.
SuchamethodwasimplementedbyMasterovet
al(2015)48oncommentsleftontheeBayplatform.It
isamatteroffindinganelementthatcanpredictan
unsatisfactorytransaction.Theauthorsreliedon
messagesandinternaldatawithintheplatformthat
couldindicatethatthetransactionwasnotsatisfac-
tory(complaint,non-receiptorreturnoftheobject).
Theindicatorofbadexperienceisthedependentvari-
able.Thealgorithmwillaimtopredictthisresult
fromthemessagesexchanged.Afteratransaction,
nomessagescanbeexchanged,negativemessages
canbelisted,andfinally‘neutral’messagescanbe
recorded.85%ofthetransactionsstudieddonotgen-
erateanymessages.Whenthereisnomessage,the
numberofunsatisfactorytransactionsis4%.When
aneutralmessageissent,thisrateis13%.Whenat
leastonenegativemessageissent,thisrateincreas-
esto30%.Apriori,thehighertheproportionofneg-
ativemessagesasellerreceives,thelessqualityhe
canbeconsideredas.Thisfrequencymakesitpossi-
bletocalculateaqualityscorethatappearstobea
goodpredictoroffutureperformance.
AIallowsthisindicatortobeinferredfromlarge
databasesofemailexchangeswritteninnaturallan-
guagetopreventtheconsumer–disappointedbya
seller–fromturningawayfromtheplatform.49In
thepresentcase,‘thefractionofaseller'smessage
trafficthatwasnegativepredictswhetherabuyer
whotransactswiththissellerwillstoppurchasing
oneBay’.Thisultimatelyallowstheplatformtosanc-
tionanon-performingselleronobjectivegroundsor
tohaveleadingindicatorsofthedeteriorationinthe
qualityoftheserviceprovided.Thesemonitoring
methodsmayalsoraiseconcernsassoonaswecon-
siderinformationandpowerasymmetriesbetween
theplatformanditscomplementors.Althoughthese
toolsultimatelyprotectconsumers,theyplaceinde-
pendentsellersunderevenclosercontroloftheplat-
form.BydoingsoAIincreasestheirdependenceand
vulnerability.Whatisgoodforconsumersisnotal-
waysgoodforplatforms’tradingpartners.
Therefore,therearealsoethicalconsiderations
withsomealgorithmspunishingnon-performing
sellers.Itisevenmorerelevantinthecontextofthe
potentialblack-boxeffect,butsolutionsexistwith-
outopeningtheblackbox.50Explainablemodelscan
44GeorgiosZervas,DavideProserpioandJohn,Byers,‘ AFirstLook
atOnlineReputationonAirbnb,WhereEveryStayisAbove
Average’(2015)WorkingP aperBostonUniversity
45DinaMayzlin,Y anivDoverandJudithChevalier,‘Promotional
Reviews:AnEmpiricalInvestigationofOnlineReviewManipula-
tion’(2014)104AmericanEconomicReview2421-2455
46WeijiaY ouetal,'ReputationInflationDetectioninaChinese
C2CMarket'(2011)10ElectronicCommerceResearchand
Applications510-519
47(n3)
48DimitriyMasterov ,UweMayerandStevnTadelis,‘Canaryinthe
E-commerceCoalMine:DetectingandPredictingPoorExperi-
encesUsingBuyer-to-sellerMmessages’(2015)Proceedingsofthe
16thACMConferenceonEconomicsandComputation81-93
49ChrisNoskoandStevenT adelis,‘TheLimitsofReputationin
PlatformMarkets:AnEmpiricalAnalysisandFieldExperiment’
(2015)NBERworkingpapern°20830
50SandraWachter,BrentMittelstadtandChrisRussell,‘Counterfac-
tualExplanationswithoutOpeningtheBlackBox:Automated
DecisionsandtheGDPR’(2017)ArXiv:1711.00399[Cs]<http://
arxiv.org/abs/1711.00399>accessed20January2020
Delphi4|2019 224AIandOnlineIntermediationPlatforms
bedetectedareoftenproposedasasolutiontothe
potentialblackboxissue.51Algorithmshavetobeac-
countablewithoutopeningtheblackbox,mainlyfor
competitivereasonsrelatedtotradesecrecy .52
V .UsingAItoCreateaMarketfor
OnlineEvaluations:InSearchof
Objectivity
Creatingorreinforcingthetrustgrantedtoanonline
intermediaryimpliesprovidingconsumerswitha
largenumberofreviewsonitsproducts.Suchopin-
ionsareessentialtoreduceconsumers’information-
alasymmetriesandbydoingsoaddressingthecold
startissueforanewentrant,forinstance,aninde-
pendentsellerproposingitsitemsforthefirsttime
onaplatform.Thislastonecannoteasilytransferits
reputationfromaplatformtoanotherbecauseofthe
barrierstodataorreviewportability .Anewentrant
hasstrongincentivestorewarditsuserstowritere-
views;inthiscontext,thequestionistoknowhow
toconciliatetheseincentiveswithguaranteesin
termsofobjectivity.AImaybeusedasatoolallow-
ingtheprovisionofunbiasedincentivesforonline
notifications.
AImayaddresstheissueofthecoldstartofplat-
formsorsitespublishingeditorialcontentonline.In
thecaseofmarketplaces,commentsareneededto
createtrust,butthesecommentsmustbetrustwor-
thy!Badcommentscanbefakeonesbywhichcom-
paniespunishtheircompetitors.53Goodcomments,
ontheotherside,canbepaidtospecialisedcompa-
niesinwritingfalseconsumerreviews.AImaybe
usedtocreateamarketforonlineassessments.A
largemajorityofbuyersononlinemarketplacesleave
noopinion.Inabsoluteterms,theconsumerhasno
reasontodoso:itconsumestimeandforfuturepur-
chases,shecanadoptastowawaystrategyusingthe
opinionsofothers.Theproblemisnotjustaboutin-
dividualincentives.AsMilgromandTadelis(2018)54
note,thisisalsoanindustrialorganizationproblem:
thelownumberofthird-partyevaluationsonanew
platformmakesbuyingfromitlesssecurethanbuy-
ingfromaplatformwithalarge‘stock’ofopinions.
TheEuropeanCommission'sJune2019Regula-
tiononrelationshipsbetweensellersandplatforms
stressedthispoint:thelackofdataandreviewporta-
bilitydoesnotallowthesellertotransferherrepu-
tationfromamarketplacetoanother.55Hindering
consumers’reviewsportabilityhastwopotentialan-
ti-competitiveeffects.First,itincreasestheseller's
dependenceontheplatform(byincreasingswitch-
ingcosts).Secondly,itconstitutesabarriertoentry
fornewplatforms(whichalsohastheindirectcon-
sequenceofdeprivingsellersofexitoptionscom-
paredtoexistingplatformsandthusfurtherincreas-
ingtheirdependence).
HowtouseAItosolvethisproblem?Lietal.
(2016)56analysefromacasestudyontheChinese
Taobaoplatformthepossibilitytochargemerchants
fortheoptionofhavingbuyersleaveanotice.The
ideaisnottobuygoodreviews.Theproblemisal-
waysoneoftrust.Itisaquestionofentrustinganal-
gorithm,andnotthesellerhimself,withthetaskof
decidingwhethertheopinionisrelevant.Theexper-
imentbeganinMarch2012withan‘evaluationdis-
count’scheme(takingtheformofex-postreimburse-
mentsordiscountcoupons).Paymentismade
whethertheopinionispositiveornegative.Itison-
lytheinformationalqualityofitscontentthatistak-
enintoaccount.Theinterestistwofold.First,it
makesitpossibletodistinguishbetweengoodand
badsalesmen.Indeed,thepurchaseofappraisalsis
aninvestmentthatwillonlybeprofitableifandon-
lyifthesellerisofgoodquality.Asthesellerknows
herowntype,thismechanismactsasarevealingcon-
tract.Second,itallowsthesellertosolvetheprob-
lemofthecold-startissue.Investmentinreputation
canbeacceleratedbypurchasing‘objective’assess-
ments.
Thesamecold-startissueappliesforonlinenews
publishers.AsY angetal(2019)57stress,thevalueof
51(n39)
52JuliaDresselandHanyFarid,‘TheAccuracy,Fairness,andLimits
ofPredictingRecidivism’(2018)4ScienceAdvanceseaao5580
<https://doi.org/10.1126/sciadv.aao5580>accessed20January
2020
53JustinJohnsonandD.DanielSokol,‘UnderstandingAICollusion
andCompliance’forthcominginD.DanielSokolandBenjamin
vanRooi(eds)CambridgeHandbookofCompliance<https://
papers.ssrn.com/sol3/papers.cfm?abstract_id=3413882>accessed
30January2020
54(n3)
55EuropeanCommission,Regulation(EU)2019/1150onPromoting
FairnessandTransparencyforBusinessUsersofOnlineInterme-
diationServices
56LingfangLi,StevenT adelisandXiaolanZhou,‘BuyingReputation
asaSignalofQuality:EvidencefromanOnlineMarketPlace’
(2016)NBERWorkingPapern°22584
57ZeY angetal,‘Read,AttendandComment:ADeepArchitecture
forAutomaticNewsCommentGeneration’(2019)arXiv.org>cs
>arXiv:1909.11974
Delphi4|2019225 AIandOnlineIntermediationPlatforms
anarticlecloselydependsonthenumberandthe
qualityofthecommentsitgenerates.Commentaries
provideadditionalinformationtoreadersandim-
provetheirengagementonthewebsite.Editorshave
strongincentivestoencouragesuchcommentsand
debatesamongusers.However,theuseofAI-based
technologymightraiseethicalissues.Opinionscan
bewrittenbyAIsandusethereactionsofInternet
userstocreateartificialfixingpointsorevenguide
debates.Suchautomaticnewscommentingsystems
mightalsoaimatgeneratingneutralandreliable
commentsenhancingthereaders’experiencebyus-
ing‘read-attend-procedures’basedonmachineread-
ingcomprehension(MRC)devices.58Itremainstrue,
however,thattheethicalguaranteesrequiredby
firmsareessentialinguaranteeingthemodelintegri-
ty.
VI.Conclusion
Whatarethepossibleprinciplesforguaranteesas-
sociatedwithAIineconomics?Cantransparencybe
required59andbesufficienttomakemarketplayers
accountable?Allowingthirdpartiestoaccessthe
codemightconflictwithtradesecrecyrulesandin-
creasetherisktoseeitsalgorithmsfooled.How,then,
canex-postaccountabilityforchoicesbeensured?
Accountabilitydemandstheidentificationofthree
elements:(1)thepeopleinvolved,(2)thedecision
processand(3)theinputsusedtoformthisdeci-
sion.60TheincreasingroleofAIinplatformeconom-
icssupposestoprovideguaranteesthatefficiency
gainsforfirmswillnotbepaidbyincreasedinfor-
mationasymmetriesandmanipulationcapacitiesat
theexpenseofconsumersandtradingpartners.The
useofAIbyelectronicplatformsmustnotfacilitate
exclusionaryorexploitativeabuses.Enhancingdis-
criminationpossibilitieswouldbealsoproblematic
inthat,aswehaveseen,theeffectofpricediscrimi-
nationonconsumerwelfarecanbediscussed.Such
potentialabusesmaycompromisetheconfidencein
thedigitaleconomy .Thesearenottheonlycompeti-
tionriskspointedoutbytheacademicliterature.Con-
cernsaboutbot-ledtacitcollusionequilibriaarealso
stressed.Self-reinforcingmachinelearningmight
favourspontaneousconvergenceofcompetitorsto-
wardcollusivepriceswithoutanyexplicitintentand
informationexchangedevices.61
Moreover,someadditionalandevenmoreprob-
lematicdimensionsshouldbeconsidered.Thefirst
oneconcernsthefreedomofchoiceforconsumers
andforproducers,theaccesstothemarket.AIcan,
tosomeextent,constrainandmanipulatechoices
withouttheaccountabilityofalgorithmsbeingobvi-
ousatthistime.Thesecondoneisrelatedtotheis-
sueoftheonlinereputationmonitoring.AIcanbea
powerfultooltoassessthenatureandbehaviorofa
selleronamarketplaceandincentivehimtoprovide
agoodservice(throughscoringsorthreatsofaccount
suspensionorsuppression).Thisevaluationmecha-
nismdoesnotfocusononlyoneofthesidesofthe
platform.Theconsumerhimselfcanbegivenascore
inherdigitaljourney .Thisuseofartificialintelli-
genceraisesquestionsinanareathatisnotexclu-
sivelytheresponsibilityofthemarketbutofindivid-
ualfreedoms.Itoffersnewresourcesformonitoring
individualbehaviorfarbeyondthesphereofonline
markettransactions.
58ibid
59(30)
60StephenKosackandArchonFung,‘DoesT ransparencyImprove
Governance?’(2014)17AnnualReviewofPoliticalScience
65–87.
61EmilioCalvanoetal,‘ AlgorithmicPricing:WhatImplicationsfor
CompetitionPolicy?’(2019)55ReviewofIndustrialOrganization
155-171
Delphi4|2019 226SustainableAISafety?
SustainableAISafety?
Nadisha-MarieAliman,LeonKester,PeterWerkhovenandSoenke
Ziesche*
Inrecentyears,theneedtoaddressthemulti-facetedissueofAIgovernancewithsafety-rel-
evant,ethicalandlegalimplicationsataninternationallevelisbecomingincreasinglycrit-
ical.Simultaneously,theinternationalcommunityisfacingawidearrayofglobalchallenges
forwhichtheUnitedNationsinitiatedanagendawith17ambitiousSustainableDevelop-
mentalGoals(SDGs).Inthisarticle,weanalysepotentialsynergiesbetweenmethodologies
totackleboththeAIgovernancechallengeandtheSDGchallengeandworkoutnovelcon-
structiverecommendationsforanSDG-informedAIgovernanceandanAI-assistedapproach
totheSDGendeavour.However,wealsoexpoundmultipleopenissuesandcontextuallimi-
tationsthatmightplayarole.Overall,ouranalysissuggeststhatwhilesustainableAISafe-
tycannotbeguaranteedandthegoalsandvaluesoftheinternationalcommunitymay
changewithtime,AIgovernancecouldaimatasustainabletransdisciplinaryscientificap-
proachinstantiatedwithinacorrectivesocio-technologicalfeedback-loop.Finally,weelab-
orateontheimportanceoftheSDGsrelatedtoeducationandstronginstitutionsforthere-
alisationofthispotentiallyrobustAIgovernancestrategy.
I.SynergiesBetweentheChallengesof
UNSustainableDevelopmentalGoals
andAIValueAlignment
AsZieschehasproposed,1itmightbehighlyvalu-
abletoidentifysynergiesbetweentheso-calledAI
valuealignmentproblemandtheSustainableDevel-
opmentalGoals(SDGs)challengewhichhavesofar
largelybeentreatedseparatelydespiteapotential
mutualbenefit.Thereby,theAIsafetyrelevantprob-
lemofAIvaluealignmentrepresentsacrucialsub-
taskforAIgovernanceandaimsatidentifyingmeth-
odsonhowtoimplementAIsystemsactinginaccor-
dancewithhumanvalues.Thisproblemofsocietal
relevancehasbeenacknowledgedtobeofhighly
complexnatureduetotheabsenceofsufficientlyspe-
cificaswellasuniversalhumangoals.2Complemen-
tarily,theSDGscouldbeforinstanceinterpretedas
representingatypeofcondensedcompendiumof
certainkeyhumanvaluessharedinternationally
across193statesandthusofferingabasisforAIgov-
ernance.Inaddition,sufficientlyvalue-alignedAI
systemscouldbeutilisedassupporttoachievethe
SDGsinatargetedwayincludingsupportinpolicy
making.Infact,thesebidirectionalsynergiescould
bevitalgiventheurgencytoaddressAIgovernance
issuesandsincetheSDGshavebeenadoptedin2015
bytheUNGeneralAssemblyinorderto‘stimulate
actionoverthenext15yearsinareasofcriticalim-
portanceforhumanityandtheplanet’.3
However,theUNSDGframework,whichstates
that17SDGsshouldbeachievedby2030,revealscer-
taincaveatsthatneedtobeconsideredaprioriinor-
dertobeabletoharnessitforAIvaluealignmentor
todesignAIsystemsdirectlysupportingtheframe-
work.The17SDGs,includingthoserelatedtopover-
ty,environmentalpollutionorinequalityarefurther
subdividedinto169targetswhoseachievementis
DOI:10.21552/delphi/2019/4/12
*Nadisha-MarieAliman,M.Sc.,PhDcandidateatUtrechtUnivesi-
ty,DepartmentofInformationandComputingSciences.For
correspondence:<nadishamarie.aliman@gmail.com>;
Dr.LeonKester ,SeniorResearchScientistonethicalintelligent
systems,TNONetherlands;
Dr.SoenkeZiesche,IndependentResearcher ,India.
1SoenkeZiesche,‘PotentialSynergiesBetweenTheUnitedNations
SustainableDevelopmentGoalsAndT heValueLoadingProblem
InArtificialIntelligence’(2018)MaldivesNationalJournalof
Research47-56
2NickBostrom,Superintelligence:Paths,Dangers,Strategies
(OxfordUniversityPress2014)
3UNGeneralAssembly,‘ResolutionAdoptedbytheGeneral
Assemblyon25September2015;70/1:T ransformingourWorld:
The2030AgendaforSustainableDevelopment’(2015)
Delphi4|2019227 SustainableAISafety?
monitoredvia232indicatorswithvaryingquality.
Thedifferencesinqualityarepartlyreflectedinthe
subdivisionoftheindicatorsintothreedifferent
tiers.Asof26September2019,countriesdonotreg-
ularlyproducedatafor89(so-calledtierIIindicators)
outofthe232indicators,whilenointernationallyes-
tablishedmethodologyisyetavailableforafurther
33indicators(so-calledtierIIIindicators).45Oneof
themainissuesisthatseveraltargetsarenotquan-
tifiedandtospecifyindicatorsforsuchtargetsispar-
ticularlychallenging.Despitethesenotablechal-
lenges,weproposeconsideringtheUNSDGsascom-
plementaryapproachtowardstheAIV alueAlign-
mentproblem.Inordertoachievethat,thesetof
SDGshastobeformulatedinamachineunderstand-
ableversiontofacilitategoal-orientedAI-basedsolu-
tions.InordertoidentifyforAIvaluealignmentpur-
poseswhatasocietywants(ethicalself-assessment)
andinasecondstepwhatasocietyshouldwant(eth-
icaldebiasing),ithasbeensuggestedtocombinea
scientificallygroundedassessmentofhumanethics
withtechnologicalmethodssuchasvirtualreality
studiesforexperiencesfromafirst-personperspec-
tive.6Thereby ,webelievethattheSDGscouldserve
asaheuristicabletosupplementethicalself-assess-
mentbyqualitativelyspecifyingcandidatehuman
values.Moreover,certainmorepreciseSDGindica-
torsmightprovidehelpfulquantitativetargetsin
somecases.Beyondthat,wewillalsodiscusshowthe
SDGsrelatedtostronginstitutionsandqualityedu-
cationareexpedientforarobustdynamicapproach
toAIgovernancewhichisnotonlyproactivebutal-
soforeseestheneedforreactivecorrectionsleading
toasocio-technologicalfeedback-loop.7
InSectionIIwediscusspossiblecontributionsof
SDGsforAIvaluealignmentbytakingtheexample
ofvaluealignmentforintelligentautonomoussys-
temsandmorepreciselytheautonomousvehiclecase
forillustrativepurposes.InSectionIII,wecomment
onlimitationsandemergingsustainabilitychal-
lengesinthiscontextandformulateasetofrecom-
mendationswhichalsoencompassestheotherdirec-
tionofthesynergy,namelyAIsystemsforUNSDGs.
Finally ,inSectionIV ,weconc ludeanddiscussfuture
prospects.Inanutshell,wedonotclaimthatthe
SDGsareacomprehensivesolutionforAIgover-
nance,butratherapromisingcomplementarytool
giventheurgencyoftheproblemaswellasthefact
thattheSDGscanbeseenasthemostdetailedaswell
asinclusivevisionforhumandevelopmentevercom-
piled.8
II.ComplementingValueAlignmentfor
IntelligentAutonomousSystemswith
UNSDGs
Afterhavingtheoreticallymotivatedthepotential
usefulnessofUNSDGsforAIvaluealignment,we
discusstheapplicationofthispropositioninthecon-
textofintelligentautonomoussystemsutilisingthe
usecaseofautonomousvehicles(AV s)ashelpfultoy
modelwithethical,legalandenvironmentaldimen-
sionspertainingtotherealisationoftheSDGendeav-
ouritself.9(Inthefollowing,wewillrefertointelli-
gentautonomoussystemswiththeexpression‘arti-
ficialintelligentsystem’instead,sincewewantto
stressthatthegoalsfordecision-makinginthiscon-
textarespecifiedbyhumansandirrespectiveofthe
levelofautomation,itisnottheartificialsystemthat
craftsitsowngoalsautonomouslyasoftenmistak-
enlyassumed.)WeusevaluealignmentwithAVsas
toymodelduetothefactthattheusecaseexhibits
domain-generalimportantsafety-critical,ethicaland
legalfeaturesmanyofwhichwouldpertaintothe
valuealignmentofawiderangeofartificialintelli-
gentsystemsdeployedinreal-worldenvironments.
Firstly,itrevealstheneedtomakehumanvaluesex-
plicitforriskassessmentandplanningwhichrepre-
sentsasocietalchallengeofethicalself-assessment
sincehumansareoftenreluctanttoclearlyexpress
whattheywant.Secondly,theusecasepointstoan-
otherchallengeofscientificnaturewhichistode-
signsuitablemachine-readableframeworksthatcan
4UnitedNations,‘TierClassificationforGlobalSDGIndicators’
(2019)
5AnexemplarytierIIindicatoris14.1.1(indexofcoastaleutrophi-
cationandfloatingplasticdebrisdensity)whiletheindicator
12.4.2(hazardouswastegeneratedpercapitaandproportionof
hazardouswastetreated,bytypeoftreatment)representsan
exampleforatierIIIindicator .
6Nadisha-MarieAlimanandLeonKester,‘ExtendingSocio-Techno-
logicalRealityforEthicsinArtificialIIntelligentSystems’(2019)
IEEEAIVR
7Nadisha-MarieAliman,LeonKester,PeterWerkhovenand
RomanYampolskiy,Orthogonality-BasedDisentanglementof
ResponsibilitiesforEthicalIntelligentSystems.InInternational
ConferenceonArtificialGeneralIntelligence(Springer2019)
22-31
8(n1)
9RicardoVinuesaetal,‘TheRoleofArtificialIntelligencein
AchievingtheSustainableDevelopmentGoals’(2019)arXiv
preprintarXiv:1905.00501
Delphi4|2019 228SustainableAISafety?
serveasscaffoldsandtemplatesfortheidentifiedhu-
manethicalvaluesandlegalconceptions.Thirdly ,it
mightnecessitateasocietal-levelaggregationofhet-
erogeneousandoftenconflictingviewswithinthis
typeofethicalframeworks.Fourthly ,duetoitscom-
plexity,itmightrequireacognitive-affectiveexten-
sionofsociety(egusingtargetedvirtualrealitystud-
ies10)facilitatingahigh-qualityethicalself-assess-
mentandethicaldebiasingwhichconstitutesasci-
entificandtechnologicalchallenge.Fifthly,whilethe
casemightseemtocorrespondtoarathernarrowdo-
main,ithasimplicationsthatextendbeyonditand
willneedasupportivecontextwhichcanbecharac-
terisedasaninstitutional,legalandsocietalchal-
lenge.
SincetheUNSDGsthemselves,aswellasitstar-
gets,mightbetooabstracttoidentifyhowtheycan
bedirectlyappliedtotheAVcase,itishelpfultoscan
theSDGindicators11inabottom-upfashion.Inthe
following,weonlymentionanon-comprehensive
exemplarysetofsomeofthemoststraightforward
relatedindicators.Regardingenvironmentalaware-
nessforAVs,onecanforinstanceidentifytheindi-
cators9.4.1(CO2emissionperunitofvalueadded)
and11.6.2(annualmeanlevelsoffineparticulate
matter(egPM2.5andPM10)incities(population
weighted)).Theseindicatorsmightberelevantfor
hybrid-electricAVsbutalsoelectricAVsthatobtain
theirenergyfromcorrespondinglypolluting
sources.Atthetop-level,theindicator9.4.1isrelat-
edtotheSDG9whichseeksto‘buildresilientinfra-
structure,promoteinclusiveandsustainableindus-
trializationandfosterinnovation’,whileindicator
11.6.2stemsfromtheSDG11whichaimsto‘make
citiesandhumansettlementsinclusive,safe,re-
silientandsustainable’.Concerningethicalandlegal
aspects,onecanforinstancenameindicator3.6.1
(deathrateduetoroadtrafficinjuries),5.1.1(whether
ornotlegalframeworksareinplacetopromote,en-
forceandmonitorequalityandnon-discrimination
onthebasisofsex),16.7.2(proportionofpopulation
whobelievedecision-makingisinclusiveandre-
sponsive,bysex,age,disabilityandpopulation
group)asgermaneinthiscontext.Theseindicators
arerelatedtoSDG3whichaimsto‘ensurehealthy
livesandpromotewell-beingforallatallages’,SDG
5‘achievegenderequalityandempowerallwomen
andgirls’andSDG16onpeace,justiceandstrongin-
stitutionsrespectively.Allmentionedindicatorsare
tierIindicators(ierelativelyclearlyformulated,re-
spectinginternationalstandardsandwithregular
updatesondataavailable)exceptfor5.1.1and16.7.2
whicharetierIIindicators.Independentlyofthespe-
cifictypeofethicalframeworkenvisagedformean-
ingfulcontrolofAV s,thepresentedindicatorsrelat-
edto5SDGscouldbehelpfuleventhoughcertain-
lynotinisolation.Toexplainhowtheycouldbehar-
nessedforanethicalframeworkforAVs,wefirstde-
scribearecentlyintroducedscientificallygrounded
non-normativeframeworkforethicsinartificialin-
telligentsystemsdenotedaugmentedutilitarian-
ism12beforelinkingitbacktotheSDG-relatedsyn-
ergy.
Recently,augmentedutilitarianismhasbeenpro-
posedasscaffoldandtemplatetofillinhumanval-
uesandasinstrumenttocontrolartificialintelligent
systemsinanovelutility-basedmanner.Augmented
utilitarianismisinaccordancewithmoderninsights
inconstructionistaccountsofmoralpsychology13
andcognitiveneuroscience14accordingtowhich
mentalstates(alsomoraljudgements)15areembod-
iedconstructionsbasedondomain-generalprocess-
esofcontext-sensitive,perceiver-dependent,time-de-
pendentandaffectivenature.16Forthispurpose,aug-
mentedutilitarianismintroducesatypeofcontext-
sensitiveandperceiver-dependentutilityfunction
thatextendsbeyondtheclassicalconsequentialist
andutilitarianutilityfunctionswhicharefocused
solelyontheoutcomeofactions.Inthisway,ital-
lowsacoalescenceoftheclassicalnormativeethical
viewsrelatedtovirtueethics,deontologyandconse-
quentialism–whichseemtoallpossiblyplayarole
10(n6)
11UnitedNationsStatisticalCommission,‘GlobalIndicatorFrame-
workfortheSustainableDevelopmentGoalsandT argetsofthe
2030AgendaforSustainableDevelopment;UNResolution
A/RES/71/313'(2017)<https://unstats.un.org/sdgs/indicators/
Global%20Indicator%20Framework_A.RES.71.313%20Annex
.pdf>accessed20January2020
12Nadisha-MarieAlimanandLeonKester ,‘RequisiteVarietyin
EthicalUtilityFunctionsforAIValueAlignment’IJC AIAISafety
Workshop2019
13ChelseaScheinandKurtGray,‘TheTheoryofDyadicMorality:
ReinventingMoralJudgmentbyRedefiningHarm’(2018)Person-
alityandSocialPsychologyReview32-70
14IanR.Kleckneretal,‘EvidenceforaLarge-scaleBrainSystem
SupportingAllostasisandInteroceptioninHumans’(2017)Na-
tureHumanBehaviour0069;SuzanneOosterwijketal,‘Statesof
Mind:Emotions,BodyFeelings,andThoughtsShareDistributed
NeuralNetworks’(2012)NeuroImage2110-2128
15(n12)
16LisaFeldmanBarrett,HowEmotionsareMade:TheSecretLifeof
theBrain(HoughtonMifflinHarcourt2017)
Delphi4|2019229 SustainableAISafety?
inhumanmoraljudgements.17Toachievethis,aug-
mentedutilitarianismoffersaperceiver-dependent
templateallowingthejointconsiderationofagent,
actionandpatient.Forameaningfulcontrolofarti-
ficialintelligentsystemsusingthisframework,peo-
plewouldnotneedtoagreeonwhattheyvalueand
howtheyweighwhattheyvalue.Themainnecessary
preconditionwouldbetoconsenttoanacceptable
supersetofparametersallowinganaggregationof
theperceiver-dependentandcontext-sensitiveutili-
tyfunctionsrespectinglegalconstraints.(Notethat
thesemachine-readableutilityfunctionswouldfacil-
itateinterpretabilityofreasoning/planningatthelev-
elofthedecision-makingcomponentviathetrans-
parenthuman-craftedformulationofparameters
andweightsenablingconcretecounterfactualcom-
parisons.18However,interpretabilityatthesensor-
levelremainsanimportantoutstandingchallenge.)
Thenecessaryethicalself-assessmentandethicalde-
biasingtocrafttheseutilityfunctionscanbeassist-
edbyexpertsfromthelegislativeandbesupported
bytechnologysuchasvirtualoraugmentedreality19
providingarichcounterfactualexperientialtestbed
foraresponsiblehuman-centreddecision-making.To
makejusticetothetime-dependencyofhumaneth-
icalconceptions,onewouldalsoneedtoupdatethese
augmentedutilityfunctions.Thisindispensablecor-
rectionofutilityfunctionspairedwiththeneedto
updatetheworldmodelsoftheAIsystemsthem-
selvesinstantiatesadynamicsocio-technological
feedback-loop.
However,itbecomesclearthatsuchageneral
mechanismofcorrectionoferrorwithinasocio-tech-
nologicalfeedback-loopwhichishighlyrelevantfor
AIvaluealignmentcannotsucceedifthementioned
SDG16relatedtopeace,justiceandstronginstitu-
tionsisnotrealisedtoasufficientdegree.Thisisag-
nosticoftheethicalframeworkconsidered,sincethe
factthathumanknowledgeispronetoerrorsmakes
acorrectionprocessmandatory.Therefore,one
mightcategoriseSDG16asameta-goalforAIgover-
nance.Furthermore,theSDGsidentifiedcanalso
providemoredetailedinformationrelatedtocon-
creteparametersspecificallyappliedtotheAVcase.
Sincesocietywouldneedtospecifyasupersetofcan-
didateparametersthatareadmittedforconsidera-
tion,theSDGindicatorsspecifiedcanhelptoextend
orfilterthissuperset.Forinstance,itmightberec-
ommendabletoaddCO2andfineparticulatematter
relatedparametersintheaugmentedutilityfunc-
tionsoftheAV sifsuited(eveniftheprovidedindi-
cators9.4.1and11.6.2areratherrestrictedwithre-
gardtoallclimatechangerelevantmeasures)which
isinthespiritofsustainablemobility.Anobvious
additionalimportantparameterisrelatedtoroad
trafficinjuriesasencodedintheSDGindicator3.6.1.
Finally,onemustaddressriskassessmentparame-
terswhicharenecessarybecausecollisionscanin
practicenotbeavoidedwithabsolutecertaintyat
anytime20andthereisno100%securesystem21even
ifAVsaremeanttodrasticallyimprovethesecurity
ofmobility.Obviously,theUNSDGsdonotallowa
directconsiderationofthiscasesincecraftedfora
fullydifferentpurpose,althoughmoregenerally,the
indicator5.1.1.and16.7.2reflectrecommendations
ongender-inclusivelegalenforcementandnon-dis-
criminatorydecision-making.However,thisindica-
tiondoesnotdirectlysolvethecomplexproblemof
identifyingparametersthatcouldberelevantfor
dilemmaticsituationsinthecontextofriskassess-
ment,animportantpartofAIValuealignment.We
applyacloseranalysistothismissingpieceofcru-
cialimportanceinSectionIII.However,theseindi-
catorsmightemphasisethegeneralnecessitytocom-
petentlyaddressdiscriminationbasedonalgorith-
micbiaseswhichwewilltouchuponinSectionIII.
Lastly,onedrawbackoftheSDGframeworkisthat
itdoesnotallowtheidentificationofpreciseweights
andtheestablishmentofconcreteprioritiesinthe
pursuitoftheSDGs.Intotal,itcanbesummarised
thattheUNSDGsallowapowerfulsupplementto
valuealignmentwithAVs(andmoregenerallyarti-
ficialintelligentsystems)whichaddimportantqual-
itativeandquantitativecontributions.However,itis
notmeantasastandalonesolutionandshouldbe
utilisedinconjunctionwithanethicalframework
abletomodelethicalandlegaldimensionsandbe
extendedbyscientificallygroundedandtechnology-
assistedethicalself-assessmentanddebiasingmea-
sures.
17VeljkoDubljević,SebastianSattlerandEricRacine,‘Deciphering
MoralIntuition:HowAgents,Deeds,andConsequencesInflu-
enceMoralJudgment’(2018)PloSonee0204631
18(n7)
19(n6)
20SixianLietal,‘InfluencingFactorsofDrivingDecision-Making
UndertheMoralDilemma’(2019)IEEEAccess104132-104142
21RomanV .Y ampolskiyandM.S.Spellchecker,‘ ArtificialIntelli-
genceSafetyandCybersecurity:AT imelineofAIFailures’(2016)
arXivpreprintarXiv:1610.07997
Delphi4|2019 230SustainableAISafety?
III.SustainabilityChallengesinthe
ContextofAIValueAlignment
Itishighlyimportanttoaddressthementionedpoint
ofdecision-makingunderdilemmaticcircum-
stances,sincewhileweexemplarilyrefertotheAV
caseastoymodel,thetopicisgenerallyrelevantfor
artificialintelligentsystemsandartificialdecision
supportsystemsincriticaldomainswherethelives
andthewell-beingofpeopleareinherentpartofthe
decisionprocess.Conceivablerelevantapplicationar-
easmaybeegjustice,medicineandbureaucracybut
couldalsopertaintofuturehuman-machinecollab-
orationformssuchashuman-robotrescueteams,hy-
bridfirebrigadesorevenadvanceddomesticrobots.
ComingbacktotheAVcase,itisalsonoteworthy
thatfailingtoaddressthisissuecouldhavenon-triv-
ialrepercussionsonafewSDGindicatorsthemselves.
Ifthesatisfactionofsocietywithproposedethical
guidelinesforAV sislow ,itmight(ceterisparibus)
slowdowntheacceptanceofthetechnologyandpeo-
plewouldbelesswillingtoswitchtoAVs.Inturn,
thisreservationcouldpossiblyhinderanoptimal
overallreductionofairpollution(relatedtoSDGin-
dicators9.4.1and11.6.2)andimportantly ,itisthink-
ablethatthenumberofdeathsduetoroadtrafficin-
juries(seeSDGindicator3.6.1)whichAVsaresup-
posedtodecreasecouldthereforenotbedecreased
optimally.Infact,accordingtoastudyanalysingthe
socialdilemmaencounteredwithAV s,22whilepeo-
plewouldintheoryapproveAV sequippedwitha
utilitarianapproachtodilemmaticscenarios,they
wouldnotliketoridesuchanAVthemselves.More-
over,peopleexpressedtheirunwillingnesstoaccept
regulationsmandatingautilitarianself-sacrificeof
AVpassengersandexpressedtheiraversiontobuy
AVsinthepresenceofsuchregulations.Thistypeof
mechanismscouldleadtothementionedundesirable
repercussionsonsomeSDGindicators.Inthefollow-
ing,weportraywhytheutilitarianapproachtoethi-
caldilemmasinAVsasegsuggestedbyGermaneth-
icalguidelinesstatingthatinunavoidableaccident
scenariospersonalfeatures(egage)shouldnotbe
considered23posesadditionalproblemsofdifferent
nature.Thereafter,weprovideasetofrecommenda-
tionsonhowtoaddresssuchsocio-technologicalis-
suesbyinitiatinganactivesocietaldebatesupport-
edbyscienceandtechnologyincludingAIsystems
themselves–finallylinkingittotheotherdirection
ofthesynergyofAIsforUNSDGs.
Onecandistinguishtwomaintypesofproblems
thatcanarisewhenadoptingapurelyutilitariande-
cision-makingforAVsbutalsomoregenerallyforar-
tificialintelligentsystemsincriticaldomains:the
firstoneisrelatedtothediscrepancybetweenthe
(oftenculture-dependent)24ethicalintuitionsofmost
peopleandtheutilitarianapproachandthesecond
oneconcernsafundamentalproblem25relatedtoim-
possibilitytheoremsforclassicalutilitarianutility
functions.First,multipleexperimentsassessingeth-
icaldilemmaswithAVshavebeenperformedegin
textformorvirtualrealityenvironments.Depending
onthetypeofconstellationandthefocusofdiffer-
entrecentvirtualreality-basedexperiments,26the
moraljudgementsormoralactionsofparticipants
(denotedasperceiversinthefollowing)werehetero-
geneousandpartlycontradictoryoverall.Intheseex-
perimentselementsthatweredecisiveincludedfor
instance:theperceivednatureandtransparencyof
theagent,thelegalliabilityoftheagent,whetherthe
accidenthappenedbyactionorbyinaction,whether
theactioninvolvesaself-sacrifice,thenumberofpa-
tients,theageofpatients,thepersonalitytraitsofthe
perceiver,thecultureoftheperceiverandtheamount
oftimetheperceiverhadforadecision27.Thisisnot
surprising,sincemoraljudgmentsarerelatedtoa
perceiver-dependentdyadiccognitivetemplateen-
codingacontinuumalongwhichanintentionalagent
isperceivedtocauseharmtoavulnerablepatient28.
Themorethisseemstobethecase,themoreimmoral
doestheactseemtotheperceiver.Thereby,thevul-
nerabilitypeopleascribetopatientscanvaryex-
tremely.Generallyspeaking,thewaypeopleperceive
theagent,theactionandthepatientcanvarywith
regardtoapluralityofparametersofegcultural,so-
22Jean-FrançoisBonnefon,AzimShariff,andIyadRahwan,‘The
SocialDilemmaofAutonomousVehicles’(2016)Science
1573-1576
23NoaKallioinenetal,‘MoralJudgementsontheActionsofSelf-
drivingCarsandHumanDriversinDilemmaSituationsfrom
DifferentPerspectives’(2019)FrontiersinPsychology<https://
www.frontiersin.org/articles/10.3389/fpsyg.2019.02415/full>>ac-
cessed20January2020
24EdmondAwadetal,‘TheMoralMachineExperiment’(2018)
Nature59-64
25PeterEckersley,‘ImpossibilityandUncertaintyTheoremsinAI
ValueAlignment(OrWhyY ourAGIShouldnotHaveaUtility
Function)’(2018)arXivpreprintarXiv:1901.00064
26(n6)
27(n6)
28(n13)
Delphi4|2019231 SustainableAISafety?
cial,temporal,psychologicalandaffectivenature.
Therefore,whilethenumberofvictimsinanun-
avoidablecollisioncertainlyisanimportantfactorto
considerinethicalguidelines,humanethicalintu-
itionstendtoencompassarichersetofinformation.
Finally,itisimportanttonotethatclassicalconse-
quentialistandutilitarianutilityfunctionshavebeen
showntorepresentasafetyriskifusedincriticaldo-
mainswithfuturehumanwell-beingandhuman
livesaspartofthedecision-makingifusedwithout
moreado.29
AsintroducedinSectionII,augmentedutilitari-
anismallowsacontext-sensitiveandperceiver-de-
pendentaccountofhumanethicalintuitionswhich
isnotaffectedbythelimitationsencounteredbyutil-
itarianutilityfunctions.Thus,AIV alueAlignment
couldprofitfromharnessingthisframeworkinad-
ditiontothementionedSDGindicatorsandinitiate
asocietal-leveldebateonthechoiceofasuitablesu-
persetofvaluesthatmatterindilemmaticcircum-
stancesandhowtheyneedtobeweighted.Howev-
er,whilethiswouldservetotacklevaluealignment
atthelevelofthedecision-makingcomponent,arti-
ficialintelligentsystemsalsoneedtoexhibitvalue-
alignedpropertiesatthesensor-level.IntheAVcase,
thiswouldmapbywayofexampletotheproblem
ofdiscriminationviaalgorithmicbiasesatthelevel
ofimageclassification.NexttothementionedSDG
indicators5.1.1,16.7.2ongender-inclusivelegalen-
forcementandnon-discriminatorydecision-making,
onecouldaddthetierIIindicator16.b.1(Proportion
ofpopulationreportinghavingpersonallyfeltdis-
criminatedagainstorharassedintheprevious12
monthsonthebasisofagroundofdiscrimination
prohibitedunderinternationalhumanrightslaw).
Whileitisimportanttostrivefordatasetswitha
largevarietytoforestallsuchoftenunintentionally
arisingdiscriminations,westressthatthiscanand
shouldbecomplementedbyanexplicitformulation
withinthealgorithmitself.Duetothenatureofhu-
manethicalintuitions,autilityfunctionthatdoes
notencodeaffectiveanddyadicparametersofthe
currentsocietycannotbeagoodmodelforanethi-
calframeworkandcanthusnotinstantiateavalue
alignmenteffort.30Inmanycases,thiscanmanifest
itselfbyleadingtoinput-to-outputmappingsthat
peoplecategoriseasdiscriminatory.Anexamplefor
suchdiscriminatorymappingsisthecasewherethe
pictureofpersonswhosephenotypewasunderrep-
resentedinthedatasetwaslabelledwiththeclass‘go-
rilla’byGooglePhotos.Anotherexampleisastudy
whichwasrelatedtotheAVcontextinwhichre-
searchersanalysedmultipleimagerecognitionsys-
temsandfoundthattheimagesofpedestrianswith
darkerskintonesweredetectedwithaloweraccura-
cy.31Nexttomorediversedatasets,itisindispens-
abletoegexplicitlyweighmisclassificationserrors
ofthealgorithmsaffectively.Notallmisclassifica-
tionsareequallyimportant.Insimplifiedterms,itis
easilyconceivablethatforhumansitmakesadiffer-
encewhetheranimagerecognitionsystemmisclas-
sifiesachimpanzeeimageasagorillaincomparison
tothecaseofahumanbeingmistakenforagorilla.
However,manyalgorithmsnowadaysareimple-
mentedagnostictoanalogiesofsuchnuances.(As
‘solution’forthementionedincident,GooglePhotos
optedtocensorthegorillalabel32aswellasafewre-
latedlabelsincluding‘chimpanzee’.)Ifmachine
learningsystemsorartificialintelligentsystemsop-
timiseonlossfunctions,objectivefunctionsorutili-
tyfunctionsdevoidofrelevantaffective,contextual
andsocietalfactors,undesireddiscriminatoryside
effectscouldoccurcontinuously .(Notethatthisanal-
ogouslyappliestorule-basedsystemsandothers.)
Thiswouldrepresentnegativerepercussionsonboth
AIValueAlignmentandUNSDGs.Seenfromadif-
ferentangle,itcanbesaidthatresearchondiscrim-
inationstemmingfromalgorithmicbiaseswould
unifythedirectionsUNSDGsforAIvaluealignment
andAIforUNSDGs.Anadditionalimportantaspect
tocoverforthistypeofresearchareso-calledethical
adversarialexampleswhichrepresentadversarialat-
tacksonAIsystemsattemptingtoenticeAIsystems
‘toaction(s)oroutput(s)thatareperceivedasviolat-
inghumanethicalintuitions.’33
Asalreadydescribed,theSDGframeworkunfor-
tunatelyexhibitsalackofprecisionformultiplein-
dicators.Furthermore,certainofthemareunderspec-
ified.Thismakesitdifficulttotrackprogresstowards
29(n26)
30(n12)
31BenjaminWilson,JudyHoffmanandJamieMorgenstern,‘Predic-
tiveInequityinObjectDetection’arXivpreprintarX-
iv:1902.11097(2019)
32T omSimonite,‘WhenitcomestoGorillas,GooglePhotosRe-
mainsBlind’Wired1November2018<https://www.wired.com/
story/when-it-comes-to-gorillas-google-photos-remains-blind/>
accessed17October2019
33(n12)
Delphi4|2019 232SustainableAISafety?
specificindicatorsandtop-levelSDGs.However,it
hasbeenpostulatedthatmachinelearningapplica-
tionscouldextendtheSDGindicatorsbyutilising
multimodaldatafromdiversesourcesforabetteras-
sessmentofprogress.34Thiscouldalsoberelevantif
oneusesAIasdecision-supportforpolicy-making
thatshouldbeinlinewiththeSDGs.Moreover,aded-
icatedtypeofpositivecomputingcouldtargetSDG
3inabroadersense(ensurehealthylivesandpro-
motewell-beingforallatallages)35.However,sofar,
notmanysystematicAIattemptstowardstheSDGs
andtheirtargetshavebeenreportedyet36.Fromthe
perspectiveofAIvaluealignmentforartificialintel-
ligentsystems,theidentificationofprecisecriteria
basedonwhichonewouldinthefirstplaceselect
SDGsorSDGindicatorsgivenagenericdomainis
non-trivial,sincetheSDGshavebeenmotivatedand
formulatedfromaninternationalperspective.While
fortheAVtoymodelweheuristicallyscannedthe
indicatorsinabottom-upfashionsearchingforob-
viousmatches,futureworkcoulddevelopamoreso-
phisticatedmethodology.Forinstance,animportant
SDGthatmightasfirstglanceseemunrelatedtoval-
uealignmentintheAVcaseinparticularortoarti-
ficialintelligentsystemsingeneral,istheSDG4(en-
sureinclusiveandequitablequalityeducationand
promotelifelonglearningopportunitiesforall).As
onecanalreadyextractfromthearticlesofar,itis
highlyrecommendabletoapplyatransdisciplinary
methodologytobothAIvaluealignmentandtothe
SDGchallengetoavoidblindspotsandanegligent
approachtofutureglobalchallenges.Inthefollow-
ing,wecommentontheimportanceofSDG4forAI
governanceandfinallylinkittoSDG16onpeace,
justiceandstronginstitutions.
Wethinkthateducationandlife-longlearning–
egtransdisciplinaryfurthereducationforAISafety
andAIresearchersaswellasforauthoritiesinvolved
inAIregulation,andeducationfosteringanaware-
nessofsocio-technologicalchallengesforthegener-
alpublic–arehighlypowerfultoolsforbothchal-
lenges.First,itprovidesabasisforthegenerationof
novelapproachestoAIgovernance.Infact,while
somepeoplebelievethatthegoalinAIgovernance
shouldbetoachieveaconsensus,abroadvariation
ofscientificapproachesrepresentsanidealbreeding
groundforprogress.Second,aproactiveAIgover-
nanceapproachisnotenoughduetoerrorsand
changesinhumanvaluesthatwilloccur,which
meansthatonecannotsolelyrelyoncurrentstrate-
gies.Thus,itwillbeconvenienttoaccumulatebroad
knowledgethatmightbehelpfulinthefaceofnov-
elunpredictedproblemsthatarise.AnyAIgover-
nanceapproachthereforeneedstobeupdatableby
designinordertoallowacorrectivesocio-technolog-
icalfeedback-loop.Unfortunately,theSDGframe-
workisnotmeanttobesteadilyupdatedwhichrep-
resentsaclearlimitationthatshouldbethoroughly
takenintoconsiderationwhenattemptingtoachieve
itsfixedgoals.Forinstance,newunforeseeablechal-
lengesmayberelatedtodevelopmentsinAIitself
(andothernewtechnologies)ascanbeseenwhen
consideringthecurrentSDGtarget8.5,whichaims
to‘achievefullandproductiveemploymentandde-
centworkforallwomenandmen’–whichagainst
thebackgroundoftechnologicaladvancesmightbe
neitherrealisticnorworthwhileanymore37.Third,
aneducationofthegeneralpublicmightbeimpor-
tant,sincemanypeopleexhibitethicalbiasesbased
onincorrectassumptions.IntheAVcase,thiscould
forinstanceincludeanthropomorphism,presumed
levelofintentionalityandagencyormisconceptions
onthefunctioningofAVs.38Theseepistemicgaps
canbeaddressedviaamorein-deptheducationlead-
ingtoamoreinformedexperienceandethicaldebi-
asingwhichrespectsthemanifestationofmoralplu-
ralismknownfrompsychology .39Overall,webelieve
thatascientificallygroundedapproachtoAIgover-
nancesupplementedbyeducationisabsolutelynec-
essarygivenfuturechallenges.However,wewantto
re-emphasisethatwithoutstronginstitutionsascap-
turedinSDG16whichwetermedanimportantmeta-
goalforAIvaluealignment,thementionedstrategies
wouldbehighlylimitedintheirfieldofaction.On
theotherhand,failingtoaddressAIgovernance
couldleadtoAISafetyriskswithnegativerepercus-
sionstotheSDGframeworkrangingforinstance
34NiheerDasandiandSlavaJankin.Mikhaylov,‘ AIforSDG-16on
Peace,Justice,andStrongInstitutions:TrackingProgressand
AssessingImpact’(2019)PositionPaperfortheIJCAIWorkshopon
ArtificialIntelligenceandUnitedNationsSustainableDevelop-
mentGoals
35(n1)
36SoenkeZiesche,‘InnovativeBigDataApproachesforCapturing
andAnalyzingDatatoMonitorandAchievetheSDGs’(2017)
ReportoftheUnitedNationsEconomicandSocialCommission
forAsiaandtheP acific:SubregionalOfficeforEastandNorth-
EastAsia(ESC AP-ENEA)
37(n1)
38(n6)
39(n13)
Delphi4|2019233 SustainableAISafety?
fromcompromisinghumanwell-beingtoexistential
risksinsomecases40.
IV .ConclusionandFutureProspects
Overall,onecanconcludethatitisexpedienttoem-
bracetheSDGsandtheirgeneralintentionasacom-
plementaryfoundationfortheAIV alueAlignment
problem,yetoneneedstoacknowledgegivenlimita-
tionsincludingtheneedforarevised/specialversion
oftheindicatorstobecomefit-for-purpose.Against
thebackgroundofouranalysis,onecanestablishthat
theSDGframeworkexhibitstwomainweaknesses
whenappliedtotheAIvaluealignmentchallenge.
First,theSDGsdonotmentionartificialintelligence
atall,neitheritssignificantopportunities,noritssig-
nificantrisks,althoughbothweretoanextentknown
atthetimewhentheSDGswereformulated.Onerea-
sonforthisisthatthesediscussionsweresiloedin
academiccircles,andonlyrecentlythe(noweven
moreurgent)needforAIGovernancehasbeenac-
knowledged41.Second,humanchallengesandvalues
changeovertimeandunforeseeablefactorsmight
emerge,whiletheSDGshavenomechanismforan
amendmentuntil2030,whichisonlyjustifiedby
pragmaticreasons.Thiscanbealsoillustratedbythe
predecessoroftheSDGs,theMillenniumDevelop-
mentGoals,whichhadpartlydifferentambitions.
Importantly,theaboveissuesareintertwined.Forex-
ample,newunforeseeablechallengesmayaswellbe
relatedtodevelopmentsinAIitselfandothernew
technologies.
AsstatedbyKarlPopper,‘nosocietycanpredict,
scientifically ,itsownfuturestatesofknowledge.’42
Hence,AISafetycannotbeguaranteedtobesustain-
ableinthelongrunnorwillthegoalspursuedbythe
UNnecessarilyremainunchanged.Nevertheless,we
believethatitisasustainabletransdisciplinarysci-
entificapproachthatoneshouldstriveforinorder
toefficientlytackleAIGovernanceandexploitthe
describedbeneficialsynergieswiththeSDGs.Forse-
curityandsafety,oneneedsrequisiteknowledgeat
therighttime.Forthisreason,onecanarguethatthe
SDG4onqualityeducationandlife-longlearningcon-
tainsakeyelement.However,inthelightoftheabove,
itseemsimperativetoadditionallyaspiretoacorrec-
tivesocio-technologicalfeedback-loopenablingboth
proactiveandreactivemeasuresandforwhichSDG
16onstronginstitutionsrepresentsapre-condition.
40SoenkeZiesche,AI&GlobalGovernance:ASeatattheNegotiat-
ingTableforAI?OpportunitiesandRisks,UnitedNationsUniver-
sity2August2019<https://cpr .unu.edu/a-seat-at-the-negotiating
-table.html>accessed17October2019
41AllanDafoe,AIGovernance:AResearchAgenda’Governanceof
AIProgram,FutureofHumanityInstitute(UniversityofOxford
2018)
42KarlR.Popper,ThePovertyofHistoricism(Routledge1957)
era.int
Artifi cial Intelligence (AI)
and Human Rights
Brussels, 12-13 March 2020
Key topics
• AI technology
• Issue of responsibility and transparency of AI systems
• European Commission Ethics Guidelines for
Trustworthy AI
• Relevant ECtHR case law
• Council of Europe Guidelines on Artifi cial Intelligence
and Data Protection
• Impact of AI on selected human rights
Event number: 420D77 ●Language: English
Artifi cial Intelligence (AI)
and the Criminal Justice
System
London, 4-5 June 2020
Key topics
• AI and its implications for the criminal justice system
• Using AI in criminal intelligence
• AI to predict crimes
• The internet industry approach to AI
• AI, ethics and privacy
Event number: 320D61 ●Language: English
Summer Course on
European Information
Technology Law
Trier, 14-18 September 2020
Key topics
• Internet regulation in the European Union
• Role, responsibility and accountability of online
platforms
• Regulating e-commerce in Europe
• Information technologies and intellectual property law
• EU legal framework applicable to data: sui generis
protection of databases, trade secrets protection, free
fl ow of data, access to data, data privacy in the digital
world, data concentration
• Online and smart contracts
• Private international law and information technologies
• Digital identity and electronic payments
• Cybersecurity
Visit to the European Court of Justice
Participants in this summer course will also have
the opportunity to attend a hearing at the CJEU in
Luxembourg.
Who should attend?
Practitioners seeking an introduction to European IT law
Event number: 220B17 ●Language: English
For more information, please visit our website
www.era.int
Academy of European Law
Contact
Academy of European Law
Philipp Gonder
Tel. +49 (0) 651 937 37-811
E-mail pgonder@era.int
www.era.int
February
27 – 28 Fundamentals of State Aid Law | Amsterdam
27 – 28 Public Procurement Requirements for ESI Funds | Paris
March
03 – 04 State Aid Requirements for Services of General Economic Interest | Brussels
12 – 13 State Aid Procedures - The Legal Obligations and Rights of the Parties Involved | Lisbon
19 – 20 How to Most Effectively Use Technical Assistance for ESI Funds Now and in 2021-2027 | Florence
25 – 26 Indicators, Monitoring and Evaluation in ESIF Programme and Project Management | Milan
25 – 27 Spring Course: Public Procurement from A-Z | Milan
26 – 27 Programme and Financial Management of ESI Funds 2021 – 2027 | Nice
26 – 27 Effective Programming and Implementation of Financial Instruments | Malaga
30.3.–1.4. Spring Course: Simplified Cost Options for ESI Funds | Catania
April
01 – 03 Real-life On-the-spot Visits: How to Detect and Combat Irregularities & Fraud in ESI Funds | Maastricht
02 – 04 Verwaltung und Prüfung der Europäischen Struktur- und Investitions-Fonds (in German) | Hamburg
02 – 04 EStAL Seminar | Catania
22 – 24 Spring Course: Concept & Principles of State Aid | Athens
22 – 24 Advanced Spring Course: Innovative Approaches to Risk Analysis, Verifications and Audits in ESI Funds | Nice
23 – 24 Migration and Security Funds: How to Effectively Manage, Audit and Control AMIF & ISF Now and in 2021-2027 | Nice
23 – 24 Essentials of e-Procurement | Rome
28 – 29 State Aid for Agriculture, Forestry, and Rural Areas | Brussels
May
12 – 13 State Aid for Research, Development and Innovation Projects | Brussels
14 – 15 How to Conduct Management Verifications Most Effectively | Bologna
27 – 29 Summer Course: Financial Control and Audit in ESI Funds Now and in 2021-2027 | Sicily
28 – 29 Risk Management and Anti-Fraud Game of Jo Kremers (Edition 2020) | Sicily
28 – 29 Essentials of Public Procurement | Florence
June
09 – 10 State Aid: Assessment and Evaluation | Brussels
09 – 10 How to Successfully Manage, Control and Audit IPA Funds | Amsterdam
11 – 12 ESI Funded Agriculture Programmes and Projects | Catania
11 – 12 EStALI Interactive Forum on EU State Aid Law | Brussels
17 – 19 Summer Course: Irregularities and Fraud in ESI Funds and Public Procurement | Athens
17 – 19 Summer Course: Effective Usage of EU Financial Instruments Now and in 2021-2027 | Lake Como
18 – 19 Master Class: Probity and Public Procurement | Madrid
30.6. – 1.7. Master Class - “State Aid Uncovered” with Prof. Dr. Phedon Nicolaides | Florence
Events Spring/Summer 2020
For more information
and registration please
visit our website
www.lexxion.eu
NEW
European State Aid Law
European Structural and Investment Funds
European Procurement and Public Private Partnership Law