Content uploaded by Eric Werner
Author content
All content in this area was uploaded by Eric Werner on Feb 11, 2020
Content may be subject to copyright.
The Internet of Life
Chapter 1: Universal nonrandom network protocols govern
development and evolution of all bilaterians
Eric Werner *
Oxford Advanced Research Foundation
eric.werner@oarf.org
https://www.ericwerner.com
https://www.oarf.com
Abstract
All diploid sexual organisms have two distinct haploid genomes, one from each
parent. There is the male derived haploid genome and the female derived haploid
genome. Each genome contains a distinct developmental control network that di-
rects the development of the embryo to an adult. Run separately, independent of
the influence of the other network, the each haploid genome produces a morpho-
logically different organism. The interrelationship of the male and female haploid
genome networks is governed by an interaction protocol that determines which
parental network is in control in any given cell at any given point in development.
The protocol consists of two interacting half-protocols, one for each parental hap-
loid genome. The full interaction protocol is itself a higher-level, meta-network,
or internetwork between the two lower-level, parental developmental control net-
works. Computer simulations show that if the interaction protocol is random then
there is a loss of bilateral symmetry in the generated organism. Therefore, for all
bilaterally symmetric organisms, the interaction protocol between the two parental
genomes cannot be random. This implies that a nonrandom ur-protocol must have
evolved with the first diploid bilaterians in the Precambrian more than 570 mil-
lion years ago. Nonrandom protocols partition the embryo and adult into dy-
namic sections that are variably controlled by one or the other parental haploid
genome network. Developmental networks and their meta-network protocols pro-
vide fundamentally new insights into embryonic and post-embryonic development,
developmental pathologies, animal and plant hybrids, heterosis, and evolutionary
dynamics.
Key words:Urbilaterian, bilateria, Haploid genome interaction protocols, meta-networks, meta-network sig-
natures, evolution, species formation, evolution of species, cenes, cenome, developmental control networks,
embryo network partitioning, hybrid development, heterosis, hybrid vigor, 1st-order network, 2nd-order net-
work, network completeness, network consistency, super phyla, network-based classification system
*©Werner 2020. All rights reserved. Cite As: Werner, E., The Internet of Life, Chapter 1: Universal nonrandom
network protocols govern development and evolution of all bilaterians, Preprint 2020, DOI: *insert DOI, located
on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 1
Contents
1 Introduction 2
2 Methodology: Computational multicellular experiments 2
3 Background: What controls development? 3
3.1 Why networks not genes control development of embryos .......... 3
3.2 Meta-control: What happens when the genomes of parents interact? . . . . 3
3.3 Protocols as meta-networks between genome networks ............ 5
4 Types of meta-network interaction protocols 5
4.1 Nonrandom Turn-Taking protocols ....................... 5
4.1.1 Null-Interaction Protocol ........................ 6
4.1.2 Network dominance relations ..................... 6
4.1.3 Merge interaction protocols ...................... 6
4.2 Random Turn-Taking Protocols ......................... 6
5 Random Interaction Protocols destroy bilateral symmetry 7
5.1 Experiments on organims 1 ........................... 7
5.2 Experiments on organism 2 ........................... 8
5.3 How the experiments were done ......................... 9
6 Discussion 9
6.1 Implications for the embryology of bilaterians ................ 9
6.2 Implications for the evolution of bilaterians .................. 10
7 Conclusions and further implications 10
7.1 Partitioning of control in development ..................... 11
7.2 Network based pathologies ........................... 11
7.3 Gynandromorphs and hybrids .......................... 11
7.4 Genome organization, classification, and evolution .............. 12
8 Materials and Methods 12
9 Appendix: Multicellular genome semantics with genCAD 12
9.1 How the user does experiments with genCAD ................ 13
9.1.1 Loading, running and transforming genomes ............. 13
9.1.2 CAD - Computer Aided Design in biology .............. 14
9.1.3 CAD for understanding highly complex living systems ....... 14
9.2 An outline of genCAD experimental methodology and features ....... 14
9.3 Advantages of computational multicellular experiments ........... 15
9.3.1 Do experiments that you can only imagine .............. 15
9.3.2 Speed ................................... 16
9.3.3 Clarity and understanding ....................... 16
9.3.4 Exact repeatability ........................... 16
9.3.5 Reduces animal and human suffering ................. 16
9.4 Abstraction in systems biology ......................... 17
9.5 Multicellular modeling complements wet lab experimentation ........ 18
References 18
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 2
1 Introduction
All diploid sexual organisms have two distinct haploid genomes, one from each parent. There
is the male derived haploid genome and the female derived haploid genome. Each genome
contains a distinct developmental control network that directs the development of the embryo
to an adult. Run separately, independent of the influence of the other network, the two haploid
genomes produce morphologically distinct organisms.
The interaction of two male and female haploid genome networks is governed by an interaction
protocol that determines which parental network is in control in any given cell at any given
point in development. The interaction protocol is itself a meta-network, a network that connects
two different networks. Thus, the protocol meta-network is an inter-network between the two
parental developmental control networks.
Computer simulations show that if the interaction protocol between the two parental haploid
genome networks is random then there is a loss of bilateral symmetry in the developing organ-
ism. Therefore, for all bilaterally symmetric organisms, the interaction protocol between the
two parental genomes cannot be random. Moreover, it means that a nonrandom ur-protocol
must have evolved with the first diploid bilaterians more than 570 million years ago.
A further fundamental consequence of nonrandom interaction protocols is: For all bilaterians
the developing embryo and later adult forms are partitioned or sectioned into areas controlled
by either one or the other parental genome network. For example see Fig.1. This result has not
only computational but direct observational, experimental and clinical support. Sectioning of
embryos will be discussed in depth in Chapter 2 and 3 of this series.
As protocols and developmental networks diverge new species, genera, and families emerge.
It indicates the existence of a level of organization in genomes above genes, above transcrip-
tion factor-based gene regulatory networks, and even above developmental control networks.
Developmental control networks and their meta-network protocols provide fundamentally new
insights into embryonic and post-embryonic development, developmental pathologies, animal
and plant hybrids, heterosis, and evolutionary dynamics.
2 Methodology: Computational multicellular experiments
In this and the following chapters, we computationally explore the properties of both random
and nonrandom genome interaction protocols. These chapters describe the results of experi-
ments in silico done on growing embryos. They describe the resulting simulations of experi-
ments done on designed, bilateral multicellular organisms. Unlike wet-lab experiments, they
are experiments done on a computer using biological CAD (Computer Aided Design) software
that models and simulates the development of multicellular systems. Development starts from
a single founder cell and grows by cell division into a multicellular system. The basic experi-
mental method is to modify the genome and/or the founder cell of a given multicellular system,
then observe and compare the results as the embryo develops in continuous space and time. In
particular, for these experiments, we used the genCAD software suite both for the experimental
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 3
design and then for doing the actual experiments. See the Appendix in Sec. 9for details on
how these experiments were performed and how to do these experiments yourself.
All the computational images of cells and genomes shown here are screenshots taken while
doing the experiments using the genCAD software suite.
3 Background: What controls development?
In my theoretical framework networks, not genes, control the development of global architec-
ture of embryos and organisms [962,960,958,956,955,954]. We share most of our genes
with chimpanzees, flies and worms. Most genes simply generate parts used universally by all
living organisms. These are much like the parts of a skyscraper or a house. The parts may be
used to build very different structures with very different architectures.
3.1 Why networks not genes control development of embryos
A special class of genes, called Transcription Factors (TFs), control the activation of other
genes and other networks. For example, when the so-called eyeless gene which is a transcrip-
tion factor that if mutated, results in the failure of the eyes to develop. This is taken a proof that
the eyeless gene controls the development of the eye in humans. The problem is that this gene
is sequentially almost identical to the eyeless gene in flies. They are even interchangeable. If,
however, you replace the eyeless gene in the fly with the human version, a human eye does not
develop. Instead a fly eye develops. Since fly eyes are compound eyes that are very different
from human eyes, clearly is not the eyeless gene that controls the actual growth development
of the eye in humans or flies. Rather the eyeless gene merely activates the developmental net-
works that control the development of the eye in humans and flies. These eye networks must
be very different in humans and flies. Thus, while genes such as transcription factors can acti-
vate arbitrarily complex developmental networks, they do not themselves have the capacity to
control the minutia of complex development possessed by the networks they activate.
Perhaps more importantly, I have proven mathematically that transcription factors are not
combinatorially rich enough to support the complex development of either humans or
flies[968,969]. Instead, developmental control networks called DCNs or CENEs (Control
Genes) based on an RNA-DNA addressing architecture, control the details of animal and plant
development. These combinatorially rich developmental control networks (DCNs /CENEs)
are fundamentally different from the limited, combinatorially poor TF-networks.
3.2 Meta-control: What happens when the genomes of parents interact?
Each parental haploid genome contains its own complete rich developmental control network
with sufficient information to control the development of a single cell to an adult. Each on
its own develops a morphologically different organism. The problem I am describing here is
what happens when these two different but complete networks interact. Who controls what and
when?
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 4
The answer is that there is a protocol that determines which network is in control in any given
cell at any given time. It is Turn-Taking Protocol which switches back and forth by saying:
Now it is your turn to take control of development. This is much like turn-taking in a game
of chess, except that instead of two players there are between one and billions of players, all
playing the game at the same time.
(a) Sectioned Embryo Stained (b) 1st and 2nd Order Networks (c) Sectioned Embryo
Fig. 1: A nonrandom meta-network protocol links two parental haploid genome networks
The designed organism in Fig.1a has six stained sections. The software enables the staining of the
network control state of the cell. Staining is used to differentiate between cells controlled by the Male
versus Female haploid genomes. Aquamarine indicates that the female parental haploid genome is in
control. Purple shows where the male parental haploid genome is in control. The non-stained view
in Fig.1c shows its 6 sections colored according to whether the cells are of Male (greens) or Female
parental genome origin. Fig.1b shows two views of the genome network generating this organism. The
top view (Fig.1b) shows the full network including both the 1st-order parental networks and 2nd-order
links between 1st-order networks. The Male haploid genome and its local 1st-order developmental
network is graphically represented by the top line with its network of local links. The Female haploid
genome and its local 1st-order developmental network is represented graphically by the 2nd line with
its network of local links. The bottom view (Fig.1b) shows just the 2nd-order or meta-links between
the two 1st-order haploid genomes. This meta-network links the 1st-order networks in two haploid
genomes with four non-stochastic trans-links. The pink and blue meta-links between the upper and lower
networks constitute the meta-network that defines the protocol of interaction (such as Turn-Taking)
between the Male and Female haploid genomes. The upward directed Female pink links together
constitute the female parent’s contribution to the meta-network protocol. The downward Male blue
links constitute the Male part of the meta-network protocol. Together the upward and downward links
constitute the full Male-Female interaction protocol between the parental haploid genomes. Each full
protocol has a unique network architecture called its signature. Given that 1st order networks are fixed,
the signature dynamically determines the partitioning of the developing organism.
The way the protocol is actually implemented in the address-based architecture of the
genome[968,969,963,960,959], [967] is as yet another network, but it is a network at a
higher level of organization. The protocol is implemented as a network between networks. For
this reason, I call it a meta-network (also called a trans-network or inter-network depending on
the viewpoint or context). Another way to see this is that the protocol is a 2nd-order network
between 1st-order networks. The meta-network consists of trans-links or meta-links that con-
nect nodes of 1st-order networks. The meta-network is the interface between the two 1st-order
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 5
developmental control networks.
The 1st-order developmental control networks (DCNs or CENEs) are the workhorses that direct
cell actions. Given that 1st-order networks are invariant, the 2nd-order network is the higher
level controlling protocol that tells which 1st-order network is allowed to be in control in a cell
at any given point in development.
Each full protocol has a unique network architecture called its signature. Given that 1st order
networks are fixed, the signature dynamically determines the partitioning of the developing
organism. Changes in the signature leads to changes in developmental partitioning.
However, 1st-order networks are not passive players in the game of control. There is a dynamic
interaction between the 1st-order networks and 2nd-order networks. A change in either of
the 1st-order networks can change the pathways that cells take through the global network
of 1st and 2nd-order links and thereby change the partitioning of control of the developing
embryo1.
As will be shown in later Chapters, this hierarchical arrangement of networks has deep conse-
quences for animal and plant development, for hybrids, for developmental pathologies and for
evolutionary dynamics.
3.3 Protocols as meta-networks between genome networks
An interaction protocol between two developmental control networks is a global inter-network,
ameta-network or higher level 2nd-order network, that links two local 1st-order lower level
developmental networks. If control alternates between the two 1st-order networks as deter-
mined by the architecture of the meta, 2nd-order network, then the protocol is a Turn Taking
Protocol (TTP). If each link in the meta-network results in a unique control state in the cell
then the protocol is deterministic. If there is a choice between two or more links where links
are chosen probabilistically then the Turn Taking Protocol is stochastic.
4 Types of meta-network interaction protocols
4.1 Nonrandom Turn-Taking protocols
In a nonrandom turn-taking meta-network protocol or simply Turn-Taking Protocol, control is
switched back and forth between the two parental developmental networks. Relative to a given
cell, if network πAof parent Ais given a turn by activating it, then network πAis in control of
that cell and its progeny until there is a meta-network jump to the opposite parental network
πBof parent B. At that point turns have switched and network πBis in control of development
of that cell and its progeny until there is another meta-networks jump in one or more of the
progeny. The protocol is distributed and runs in parallel, so that at any given point in time
1These seemingly difficult concepts are easier to understand by doing the experiments described here with the
CAD software described in the Appendix in Sec. 9.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 6
different cells may be executing different parental networks and at different nodes within those
networks.
4.1.1 Null-Interaction Protocol
A special case of a nonrandom interaction protocol is the Null-Interaction Protocol where there
is no interaction between parental genomes and either the male or the female parental genome
takes full control of development of the embryo.
4.1.2 Network dominance relations
One might object that just as genes may have dominance relations, so too networks may have
dominance relations. Such dominance relations would then generated an implicit Turn Taking
Protocol without the need of actual meta-network links from one parental genome to the other.
It is like a Turn Taking Interaction Protocol where either one of the other instruction is used
based on dominance. However, which parental network dominates at a given point in a cell
in development cannot be random without loss of bilateral symmetry (see below). Therefore,
if dominance controls which network is in control then that dominance relation cannot be
random. In effect the dominance relation generates an implicit network of dominance links
which is functionally equivalent to a Turn-Taking Protocol.
4.1.3 Merge interaction protocols
In a Merge Interaction Protocol at any given point the possibly conflicting control directives
to the cell from each parental networks are simply merged. If the two parental networks give
contradictory instructions to a cell, the instructions are merged into a single instruction. How
this merging function would be determined is an open question. While merging works for
some phenotypes caused by protein coding genes (such as skin color), merging does not work
very well for developmental control networks. Merge Interaction Protocols fail to account
for the parent-based, morphological partitioning observed in normal animals, nor can they
explain developmental pathologies or sectioning in hybrids (see the examples and discussion
in Chapters 2 and 3 of this series).
4.2 Random Turn-Taking Protocols
ARandom Turn-Taking Protocol is a type of Turn-Taking Protocol where some the turns are
assigned randomly with some probability. For example, given a random Turn-Taking protocol
for a game of Chess whether is White or Black’s turn might be decided by a coin toss.
If the game is between parental genomes, whose turn it is is determined by 2nd-order, trans-
links between those genomes. More formally, in a stochastic Turn-Taking Protocol, the next
parental genome (its 1st-order network state) to be activated is based on some probability
distribution.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 7
5 Random Interaction Protocols destroy bilateral symmetry
Computer simulations show (such as the experiments in Fig.2and Fig.3), to maintain bilat-
eral symmetry and more generally completeness, consistency and congruence the Turn-Taking
Protocol cannot be random.
5.1 Experiments on organims 1
(a) RandomRun 1 (b) Executed Network of Run 1 (c) Random Run 1
(d) RandRun2 (e) Executed Network: Run 2 (f) Nonrandom Run of Net of RandRun2
(g) Random Run 3 (h) Random Run 4 (i) Random Run 5 (j) Random Run 6
Fig. 2: Random Turn-Taking protocols break bilateral symmetry.
Random Runs 1 to 6, in Fig.2a to Fig.2j, depict different stochastic developments of genetically and
genomically identical organisms. Each grows starting from a single cell that contains a genome iden-
tical to all the others. These network executions and the resulting developed organisms illustrate that
bilateral symmetry is broken if the interaction protocol between the male and female developmental
networks is stochastic. The networks in Fig.2b, and Fig.2e show the actual links executed by Run 1 and
Run 2. The dashed meta-links between the 1st-order networks of haploid genomes in Figs.2b,2e are
stochastic links. This means a cell executing such a link will with random probability either stay on and
keep executing the current haploid genome or cell execution jumps to the other haploid genome. The
active genome view of cells shows which haploid genome a cell is executing. Aquamarine indicates
that the female parental haploid genome is in control, while purple shows where the male parental
haploid genome is in control. Note how symmetry is broken compared to the organism growing with
a nonrandom protocol in Fig.1. However, symmetry is restored in Fig.2f when the random links in the
randomly generated net in Fig.2e are converted to deterministic links of probability 1.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 8
Fig.2shows the results of several runs (executions) of two haploid genomes with developmen-
tally distinct control networks using a random interaction protocol. If the protocol links in the
meta-network in Fig.2are stochastic, then link execution by the cell is probabilistic. For any
given cell at a stochastic meta-link, execution randomly either stays on its current local haploid
network or execution jumps to the other local haploid network with some probability.
5.2 Experiments on organism 2
Fig. 3illustrates a further example of stochastic development of a diploid bilateral organism.
It shows a 2-dimensional slice of the organism as it develops:
(a) Female (b) Male
(c) Run 1 (d) Run 2 (e) Run 3 (f) Run 4
(g) Run 5 (h) Run 6 (i) Run 7 (j) Run 8 (k) Run 9
Fig. 3: Stochastic run combinations showing a slice of a diploid organism
Computationally modeled 3-sectioned multicellular organism grown from a single cell (zygote) contain-
ing both the male and female parents haploid genomes. The organism has three anterior to posterior
segments (head, midsection, tail). In the top line, the leftmost Fig.3a shows the result of execution of the
pure female parental haploid genome network under the deterministic Null Interaction Protocol (see
Sec.4.1). The top right most Fig.3b shows the result of execution of the pure male parental haploid
genome network with the deterministic Null Interaction Protocol. In the remaining examples, the active
genome view shows which haploid genome network is in control in which cells. The purple stain indi-
cates that the male parental haploid genome is in control, while the aquamarine stain shows where
the female parental haploid genome is in control. Run 1 (Fig.3c) to Run 9 (Fig.3k ) depict different
stochastic developments (runs) of the same organism in the active genome view. Note how symmetry is
broken.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 9
Each stochastic run leads to many possible variations depending on how many meta-network
links exist between the local networks in the parental genomes.
For example, in a Random Turn-Taking Protocol, if the probability is 0.5 then half the time
a cell’s control state will stay in its present 1st-order network and half the time it jumps to
the other parental network. Thus, for such a stochastic trans-link, for two sister cells in the
same control state but residing on opposite halves of a bilateral embryo, there is a good chance
(50%) that these two sister cells will inhabit (be controlled by) different, opposite-sex parental
genomes. Hence, these two cells could develop non-equivalent morphologies. The more mor-
phologically distinct the parents and grandparents are in the given developing partition, the
more askew the embryo asymmetry will appear.
5.3 How the experiments were done
These experiments were done with genCAD using Random Turn-Taking Protocols were per-
formed on a pre-designed multicellular system that is bilaterally symmetric when the Turn-
Taking Protocol is deterministic (see Fig.1). Each experiment starts with a single cell and
grows it into a multicellular system2.
6 Discussion
Together, these simulations show that if the protocol is random then different parental haploid
networks can be in control in corresponding bilateral body halves at the same time-point in
development. Such asymmetries of control lead to possible asymmetric development in parts
that would normally be symmetric.
While the morphologies of the two parents in Figs. 3a and 3b are quite similar, the larger
differences in morphology of the parents in Fig. 2, can generate greater possible distortions
and pathologies. Thus random elements in the network interaction protocol provide an entirely
new explanation of pathologies of human and animal development that are difficult to explain
in the standard, gene-centered paradigm of development (more on this topic in Chapters 2 and
3 of this series).
6.1 Implications for the embryology of bilaterians
For random network interaction protocols the fundamental discovery reported here is:
Proposition 1. If the interaction protocol between parental haploid genomes is random then
there is a loss of bilateral symmetry.
Furthermore:
Proposition 2. The greater the differences in morphology of the grandparents, the greater the
distortions of bilaterality and the more severe the possible pathologies resulting from random
elements in the network interaction protocol.
2For details on how the experiment is done see Appendix 9
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 10
Therefore, for true bilaterally symmetric organisms we have:
Proposition 3. For any bilaterian there exists a non-random meta-network protocol that gov-
erns the interaction between its parental haploid genomes.
For all diploid bilaterally symmetric organisms, the meta-network architecture or Turn Tak-
ing Protocol between the local control networks in parental haploid genomes cannot be ran-
dom.
If meta-network control is stochastic at any point in development then possible asymmetries of
structure and function can result. The results, illustrated in Figure 2, imply there must exist a
universal non-stochastic protocol that is control symmetric and at any given time determines
which allelic male or female derived parent network is simultaneously active in both bilateral
body halves as the organism develops. The male or female parent network active at any given
time must be the same in both body halves. Otherwise, we get a failure of bilateral symme-
try.
Proposition 4. For any bilaterally symmetric organism there must exist a non-stochastic pro-
tocol that is control symmetric and at any given time determines which allelic male or female
derived parent network is simultaneously active in both bilateral body halves as the organism
develops.
6.2 Implications for the evolution of bilaterians
Such a nonrandom proto-protocol or Ur-Protocol must have evolved more than 570 million
years ago with the first sexually diploid bilaterally symmetric organisms.
Proposition 5. A nonrandom Ur-Protocol evolved more than 570 million years ago with the
first sexually diploid bilaterally symmetric organisms.
7 Conclusions and further implications
For all diploid, sexually reproducing organisms, each male and female parent donates half its
genome (haploid genome) encased in either sperm or egg. Each haploid male or female genome
contains a different developmental control network. We assume that developmental networks
and not genes alone control the development of embryos and that each haploid genome con-
tains a complete developmental network that can generate a complete and consistent organism.
Given these assumptions, then the results of computational experiments on diploid bilater-
ally symmetric multicellular organisms show that if the interaction protocol between the two
parental genomes is random, then there is a loss of bilateral symmetry in the generated embryo
and adult form.
Therefore, for any diploid bilaterally symmetric organism the interaction protocol cannot be
random. Hence, the protocol is deterministic given the same maternal and external environment
for both bilateral body halves.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 11
This implies that with the evolution of the first bilaterians that evolved over 570 million years
ago, there must also have evolved a nonrandom protocol that specified the interactions between
their haploid parental genomes.
7.1 Partitioning of control in development
A further consequence, to be discussed in the next chapters, is that any bilateral symmetric
organism with a nonrandom Turn-Taking protocol generates an organism that is partitioned
into sections or modules3. At any point in embryogenisis, the development of any given cell is
under control of either the male haploid genome or the female haploid genome.
Proposition 6. All nonrandom interaction protocols between haploid parental genomes, gen-
erate a dynamically changing partitioning of the organism into sections or modules controlled
by either the male or the female haploid 1st-order genome network.
Hence, the first diploid bilaterians were governed by a nonrandom ur-protocol and must have
been sectioned into areas separately controlled by one or the other parental haploid, 1st-order
genome network.
Proposition 7. The first diploid bilaterians, over 570 million years ago, were partitioned into
sections or modules that were separately controlled by one or the other parental haploid 1st-
order genome network.
Sectioning of organisms is a natural consequence of meta-network protocols between haploid
genomes of bilateral organisms.
Note, this is different form an organism having repeated, identical sections along the length of
its body. Such sections can be generated by a single haploid 1st-order network. That being
said, it is possible for the sections in such a multi-sectioned animal to be under varied parental
network control.
7.2 Network based pathologies
This dynamic partitioning of the embryo to adult has implications for understanding both nor-
mal and pathological development. Indeed we will see that one can have perfect genes but
imperfect networks or perfect networks but imperfect genes or any combination thereof. Each
type imperfection leads to different classes of pathologies.
7.3 Gynandromorphs and hybrids
Interestingly, network interaction protocols of bilaterians also explain not only gynandromorph
development[964] but also hybrid phenotypes. This, as will be shown, has applications to
understanding and designing heterosis in plants and animals.
3As illustrated in Fig.1and Fig. 2f.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 12
7.4 Genome organization, classification, and evolution
Random variations and transformations of nonrandom bilaterian interaction protocols also may
be sources of rapid evolution of bilaterian species where changes in protocol signatures and
other network transformations can result in discontinuous evolutionary saltations.
Meta-network protocols indicate the existence of a level of organization in genomes above
genes, above transcription factor-based gene regulatory networks, and even above develop-
mental control networks. As protocols and developmental networks diverge, new super phyla
down to species emerge -where the classification system is not based just on genes but primar-
ily on developmental control networks.
In summary, developmental control networks and their meta-network protocols provide fun-
damentally new insights into embryonic and post-embryonic development, developmental
pathologies, animal and plant hybrids, heterosis, and evolutionary dynamics.
8 Materials and Methods
All the experiments described here were designed and performed using genCAD multicellular
modeling and simulation software. The software suite genCAD allows the user to run genomes
of designed multicellular organism. Each run starts with a single cell which, once activated by
the user, develops into a 3-dimensional multicellular organism. Cell signaling, cell-cell physics
can be modeled in both discrete and continuous space-time. In concert with the developing
cells, a window shows the user graphically how genome network states change in a highly
dynamic way. At any point in development, growth can be stopped, continued or rebooted.
Any particular cell state, the whole multicellular state, or the genome state can be investigated
or transformed graphically by the user. Then development can be continued or restarted. For
more details on genCAD see the Appendix in Sec. 9.
9 Appendix: Multicellular genome semantics with genCAD
The CAD software, genCAD4, used to design, model and run the genome networks and em-
bryological processes in the experiments descried here will soon be available. You can then
download an experiment onto your laptop. For more information please contact genCAD di-
rectly by email: dna@gencad.net.
Then you can do these experiments yourself by manipulating the genome networks graphically
and observe both how the network executes and in parallel how the cells grow into a dynamic
3-dimensional multicellular system. At any point you can stop development and observer both
the network state and the state of the developing cells.
To observe the interior of the organism, the user can cut or slice the embryo, at will, without
destroying it -and then watch as the cells communicate and continue to divide. The network
and/or cell states can be changed even during execution.
4genCAD is a trademark of Cellnomica, Inc.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 13
Unlike wet lab experiments that can take hours, days, weeks or months, these experiments
take mere minutes or even seconds to perform. This perspicuity, transparency and speed is
invaluable for gaining a deeper understanding of how genomes and their networks control the
development of organisms.
The interface is designed to hide the imposing, underlying complexity. Tested with 12 and 13
year olds, the students, with supervision, were able to do more experiments in half an hour than
a developmental biologist can do in his or her lifetime (with CRISPR perhaps a quarter of a
lifetime). By downloading the experiments performed to write this article, the user can quickly
gain hands-on experience of the difference between random and nonrandom genome network
interactions and their effects on embryonic development.
Doing such computational experiments gives a much deeper, experience-based, insight both
into how networks control multicellular dynamic developmental processes and into the devel-
opmental processes themselves. At a higher level this provides a practical understanding of the
challenging theoretical concepts underlying the network paradigm of development. The goal
of the software is to give unprecedented practical, hands-on understanding of how genomes
work in development.
9.1 How the user does experiments with genCAD
As stated, we computationally explore the properties of both random and nonrandom genome
interaction protocols. Using genCAD (genomic embryonic network Computer Aided Design)
software the user can load a genome into a cell, transform the genome graphically in a window,
and run that genome watching the developing organism or multicellular system in adjacent
window.
9.1.1 Loading, running and transforming genomes
More specifically, the user can load a genome network interaction protocol and/or mutate a
given network protocol and rerun it in an initial cell. A transformed protocol results in a
transformed genome execution. This in turn results in a transformed developing organism.
Practically, the user can load a genome or can do one or more transformations on a given
genome. At any point, the user can simply reinitialize the system to start growing from a single
cell that contains a given, new or transformed genome. Then the user can run the transformed
genome and view the changes in morphology and functionality in the developing multicellular
organism. Thus, the user can do computationally simulated experiments on the genomes of
developing multicellular systems.
The full genome loaded into a founder cell in the experiments described here consists of two
different parental haploid genomes that interact during development to form the multicellular
organism.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 14
9.1.2 CAD - Computer Aided Design in biology
The modeling process is akin to how computer CAD programs are used to design airplanes or
automobiles, then test their dynamics, and then use that design to construct the actual thing.
The difference is that while the car or airplane is constructed out of designed parts, in genCAD
all the parts grow from the same initial, single cell while simultaneously and cooperatively
forming the multicellular organism. The virtual organism, like living organisms, is encoded in
the DNA of its genome. Like living cells, computationally modeled cells bring a lot of structure
to the table to enable them to interpret and execute their genome.
9.1.3 CAD for understanding highly complex living systems
Of course, such software is highly complex since cells, genomes, cell signaling interactions,
genome interactions with the cell, genome-genome interactions, chromosome interactions, and
cell-cell physics have to be modeled and simulated continually in embryological space and
time. Fortunately, the point of CAD modeling and simulation software is that the interface
hides complexity from the user, so that the user can do experiments easily and quickly by
graphically interacting with the growing cells and the active genomes.
9.2 An outline of genCAD experimental methodology and features
There is a graphical interface simultaneously showing both dynamic embryonic development in
a physical space-time view and an adjacent genome view that dynamically shows which cells
are executing which part of the genome. Both the cells and the genome can be graphically
transformed by the user.
Given a genome a typical experimental method is the following:
1. Load a genome from a file into a single founder cell.
2. Press the Spacebar to run the genome and start cell division, communication and em-
bryonic growth.
3. Observe embryonic development as the cell divides and proliferates in space-time
forming a multicellular system.
4. Observe network dynamics: As the organism grows the network state changes are
shown graphically.
5. Start or stop development at any time and in any state by pressing the Spacebar.
6. Cut or slice the embryo to see the internal state either statically or dynamically.
7. Observe cell signaling by choosing transparency to see inside the cells.
8. Stain haploid genomes to observe which parental genome is in control in which cells.
9. Mutate or Transform the genome or the cell state graphically and continue to run or
reboot.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 15
10. Reboot the system at any time to start from a single founder cell by pressing zero ’0’.
11. Rerun: Press Spacebar again to start running the transformed genome.
12. Observe the changes in network execution and embryonic development into the com-
plete organism.
13. Do Unlimited Mutations and/or Transformations and observe the effects on devel-
opment.
14. Unlimited repeatability of an experiment by rebooting by pressing zero ’0’ resulting in
identical development if the protocols are nonrandom.
15. Save the genome and/or the entire genome-organism state to an external file if you
like the result of a run.
A typical run of a genome starting from a single cell and developing to 100 cells takes sec-
onds to minutes depending on the accuracy of the cell physics and precision of morphological
development desired by the user. Transforming and/or designing a genome or cell with the
graphical user interface, depending on the complexity of the design, can take minutes to hours
and in rare cases days but not weeks or months. For many common design and transformation
tasks there are helper menu functions that transform the whole genome at once taking only
seconds to complete.
9.3 Advantages of computational multicellular experiments
The user can quickly gain unparalleled insight into complex multicellular embryonic processes
that can take a lifetime doing biology wet-lab experiments. Computer modeling and simulation
allows understanding complex multicellular systems that would otherwise be beyond our abili-
ties as humans. Even for just 50 cells their development, their networks and their cell signaling
can be enormously complex to the extent that it cannot be understood by reading a book or lis-
tening to a lecture or doing a wet-lab experiment. In fact the processes that can be observed in
a biological CAD system are mostly inaccessible to a wet-lab biologist or a medical researcher.
Hence, most cannot even be imagined without the aid of software.
Understanding a system can have very real consequences. For example, to understand cancer
without software modeling may be beyond our bounds. With software that models and sim-
ulates cancer cells and their networks, the researcher can gain the deep insight needed to not
only understand cancer but begin to imagine a path, even a precise roadmap to cure cancer
[978,977,979,980,981,975,973].
9.3.1 Do experiments that you can only imagine
Perhaps the most important advantage of genCAD is that you can do experiments with genCAD
that you cannot even imagine. You can do experiments that you cannot yet do with present
technology. But it implies what technology has to be created to do the experiment. It thus
opens the door to fast technological development. It shows you how to design experiments that
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 16
one cannot as yet even conceptualize in the present gene-centered paradigm. It opens the world
of the network control paradigm.
9.3.2 Speed
Another big advantage of computational multicellular experiments versus wet-lab experiments
is speed. While wet-lab experiments can take weeks, months or even years, the experiments
described here take seconds or minutes to develop. A whole experimental framework can be
designed from scratch within hours.
For example, the Siamese Twin experiment that explores how Siamese twins develop and how
they differ from normal twins (to be described in a later article) took less than half an hour, ap-
proximately 25 minutes to design. Doing the experiments themselves took longer, not because
of the time of embryo development -which was less than a minute, but to really comprehend
what is going on in theses complex multicellular processes. That may require repeating the
experiment over and over again experimenting with possible genomic modifications.
Designing here means designing the organism on which to do the experiments. Once designed,
running different mutations usually takes seconds or minutes. It is so fast the user usually has to
pause or elect to slow down the development to see what is happening in the organism.
9.3.3 Clarity and understanding
Another advantage is clarity of observation and process. The user can see both the multicellular
state and the simultaneous genome state graphically. In observation mode, the organism can
be cut, sliced without damage or affecting its development. In experimental mode, the user can
delete cells, change cell states, cell signaling and more.
9.3.4 Exact repeatability
Experiments are exactly repeatable. Changes can be saved to a file as a genome only or as a
full physical multicellular state of cells plus their genome states and their genome.
The standard wet-lab biologist has weeks, months or years to think of how to interpret his or
her results, i.e., to understand what is going on. In contrast, doing computational experiments
is so fast that repeating the same experiment several times is usually necessary to understand
what is happening. Fast, exact repeatability is thus a huge advantage of bio-computational
CAD software like genCAD .
9.3.5 Reduces animal and human suffering
Doing computational virtual animal experiments versus wet-lab experiments on live or killed
animals, reduces enormously the need for animal and human testing. Much of lab and medical
testing is actually looking for what is not really understood resulting in needless suffering of
animals and humans. To repeat, much of animal testing is done because the researcher does
not understand the multicellular processes that cause the phenomena or behavior he or she is
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 17
interested in. The method is to mutate and then kill the animal and see what you get. It is blind
search rather than a heuristic, designed search.
9.4 Abstraction in systems biology
Gains in efficiency and perspicuity are possible because the genome and organism are modeled
at a higher level of abstraction. Trying to model the cell at the lowest molecular level is com-
putationally intractable. Just modeling protein folding of one protein for one millisecond is
computationally hard, taxing any super computer. This computational intractability is the case
for most real world situations. The key to Newton’s success was to build an abstract math-
ematical model. Thus, abstraction hierarchies are commonly used in areas like architecture,
computer science, engineering and robotics.
Fig. 4: The Systems Biology Hierarchy
Presented in a talk “In Silico Multicellular Systems Biology” to the IBM BlueGene conference on pro-
tein folding at the University of Edinburgh, Scotland, March 2002. Image is adapted from [951]. While
the Systems Biology Hierarchy in shown above is far from complete, it can be quite helpful as an
overview and general roadmap. genCAD focuses on the network level, i.e., top blue-gray colored areas
in the hierarchy.
Network abstraction permits modeling and understanding of complex biological processes that
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 18
would otherwise be impossible. For example, the OSI network model or the Internet protocol
suite TCP/IP, are used to understand, design, and build computer networks. They have levels
of abstraction starting from the most basic physical layer to an application layer. Each level
has its own protocols of interaction.
To understand living systems, a hierarchical view of levels of abstraction and function is an
enormous help. When I first published and presented the Systems Biology Hierarchy in Fig.4
it was considered revolutionary. Now it is a common way to look at biological systems.
Note, many models do not fit neatly into one level. For example, genCAD uses a hybrid of sev-
eral models. It uses differential equations to model aspects of continuous cell physics but also
uses very different, but complimentary, models for cell signaling and cell-genome interaction.
The key is to integrate different levels of abstraction into one functioning system.
The network theory that I developed gives a global view of developmental processes above the
apparent confusion of the molecular genome and its containing cell. The network paradigm
is even more necessary to understand what hundreds, let alone billions, of cells are doing
when they grow, divide and communicate. It gives clarity where the gene-centered paradigm
falters.
9.5 Multicellular modeling complements wet lab experimentation
Modeling cannot replace wet labs. However it can be a great aid for design and precise, deeper
understanding of the concepts and theories involved. Modeling depends on the data generated
by wet lab and other researchers. At the same time modeling and especially CAD programs are
invaluable in helping scientists to understand the complex phenomena they are investigating.
At a minimum computational modeling can show what is not possible, but it can also show
unimagined possibilities. So genCAD will hopefully help scientists understand the deeper
networks underlying cancer and embryonic development. At the same time the data from
various levels of the systems biology hierarchy will improve the models. Ideally the model
will be not just explain the given data but be predictive. This will enable the design of living
multicellular systems as well as future therapies.
References
[1] M. Abe, H. Takahashi, and R. Kuroda. Spiral cleavages determine the left-
right body plan by regulating nodal pathway in monomorphic gastropods,
physa acuta. Int J Dev Biol, 58(6-8):513–20, 2014.
[2] E. Abouheif, R. Zardoya, and A. Meyer. Limitations of metazoan 18s rrna
sequence data: implications for reconstructing a phylogeny of the animal
kingdom and inferring the reality of the cambrian explosion. J Mol Evol,
47(4):394–405, 1998.
[3] J. G. Achatz, M. Chiodin, W. Salvenmoser, S. Tyler, and P. Martinez. The
acoela: on their kind and kinships, especially with nemertodermatids and
xenoturbellids (bilateria incertae sedis). Org Divers Evol, 13(2):267–286,
2013.
[4] G. J. Adams, D. M. Simoni, J. Bordelon, C. B., r. Vick, G. W., K. T. Kim-
ball, J. Insull, W., and J. D. Morrisett. Bilateral symmetry of human carotid
artery atherosclerosis. Stroke, 33(11):2575–80, 2002.
[5] J. M. Adrain, R. A. Fortey, and S. R. Westrop. Post-cambrian trilobite di-
versity and evolutionary faunas. Science, 280(5371):1922–5, 1998.
[6] H. J. Ahn, K. A. Han, H. R. Kwon, and K. W. Min. The small rice
bowl-based meal plan was effective at reducing dietary energy intake, body
weight, and blood glucose levels in korean women with type 2 diabetes
mellitus. Korean Diabetes J, 34(6):340–9, 2010.
[7] J. H. Ahn and P. R. Buseck. Hematite nanospheres of possible colloidal ori-
gin from a precambrian banded iron formation. Science, 250(4977):111–3,
1990.
[8] R. Aires, A. Dias, and M. Mallo. Deconstructing the molecular mecha-
nisms shaping the vertebrate body plan. Curr Opin Cell Biol, 55:81–86,
2018.
[9] K. Akasaka. Body plan of ancestral type animals and the evolution. Seika-
gaku, 72(5):351–64, 2000.
[10] M. Akiyama, A. Shimoyama, and C. Ponnamperuma. Amino acids from
the late precambrian thule group, greenland. Orig Life, 12(2):215–27, 1982.
[11] Y. Akiyama-Oda and H. Oda. Mechanisms of body axis formation in the
spider embryo: transformation from radial to bilateral symmetry. Tan-
pakushitsu Kakusan Koso, 50(15):1988–94, 2005.
[12] P. Allard and C. J. Tabin. Achieving bilateral symmetry during vertebrate
limb development. Semin Cell Dev Biol, 20(4):479–84, 2009.
[13] C. W. Allison. Siliceous microfossils from the lower cambrian of northwest
canada: possible source for biogenic chert. Science, 211(4477):53–5, 1981.
[14] R. Alterson and D. B. Plewes. Bilateral symmetry analysis of breast mri.
Phys Med Biol, 48(20):3431–43, 2003.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 19
[15] J. J. Alvaro and S. Clausen. Morphology and ultrastructure of epilithic
versus cryptic, microbial growth in lower cambrian phosphorites from the
montagne noire, france. Geobiology, 8(2):89–100, 2010.
[16] A. Alzamora Rodriguez and R. J. Perez-Cambrodi. Anomalocaris: the su-
pervision of the marine giant of the cambrian period. Arch Soc Esp Oftal-
mol, 89(9):e69–70, 2014.
[17] P. Ancel and S. Calame. Orientation of the plane of bilateral symmetry &
of the dorsoventral axis by compression of the eggs of rana fusca. C R Hebd
Seances Acad Sci, 248(7):893–5, 1959.
[18] P. Ancel and M. Reyss-Brion. Inversion of bilateral symmetry in the mouse
embryo. C R Hebd Seances Acad Sci, 243(19):1380–3, 1956.
[19] P. Ancel and P. Vintemberger. Orientation of the plane of bilateral sym-
metry by centrifugations in direction perpendicular to the ovular axis, of
fertilized or non-iota fertilized eggs of rana fusca. C R Seances Soc Biol
Fil, 145(5-6):324–6, 1951.
[20] P. G. Anderson, A. Sassaroli, J. M. Kainerstorfer, N. Krishnamurthy,
S. Kalli, S. S. Makim, R. A. Graham, and S. Fantini. Optical mammog-
raphy: bilateral breast symmetry in hemoglobin saturation maps. J Biomed
Opt, 21(10):101403, 2016.
[21] S. Archambeault, J. A. Taylor, and K. D. Crow. Hoxa and hoxd expression
in a variety of vertebrate body plan features reveals an ancient origin for the
distal hox program. Evodevo, 5:44, 2014.
[22] V. E. Archer. Association of lung cancer mortality with precambrian gran-
ite. Arch Environ Health, 42(2):87–91, 1987.
[23] D. Arendt, K. Tessmar, M. I. de Campos-Baptista, A. Dorresteijn, and
J. Wittbrodt. Development of pigment-cup eyes in the polychaete
platynereis dumerilii and evolutionary conservation of larval eyes in bilate-
ria. Development, 129(5):1143–54, 2002.
[24] D. Arendt and J. Wittbrodt. Reconstructing the eyes of urbilateria. Philos
Trans R Soc Lond B Biol Sci, 356(1414):1545–63, 2001.
[25] C. Aria and J. B. Caron. Burgess shale fossils illustrate the origin of the
mandibulate body plan. Nature, 545(7652):89–92, 2017.
[26] C. Aria and J. B. Caron. Mandibulate convergence in an armoured cambrian
stem chelicerate. BMC Evol Biol, 17(1):261, 2017.
[27] C. Aria and J. B. Caron. Correction to: Mandibulate convergence in an
armoured cambrian stem chelicerate. BMC Evol Biol, 18(1):78, 2018.
[28] C. Aria and J. B. Caron. A middle cambrian arthropod with chelicerae and
proto-book gills. Nature, 573(7775):586–589, 2019.
[29] C. Aria, F. Zhao, H. Zeng, J. Guo, and M. Zhu. Fossils from south china re-
define the ancestral euarthropod body plan. BMC Evol Biol, 20(1):4, 2020.
[30] T. Ariizumi and M. Asashima. Control of the embryonic body plan by
activin during amphibian development. Zoolog Sci, 12(5):509–21, 1995.
[31] S. Aris-Brosou and Z. Yang. Bayesian models of episodic evolution sup-
port a late precambrian explosive diversification of the metazoa. Mol Biol
Evol, 20(12):1947–54, 2003.
[32] J. Aruga, A. Kamiya, H. Takahashi, T. J. Fujimi, Y. Shimizu, K. Ohkawa,
S. Yazawa,Y. Umesono, H. Noguchi, T. Shimizu, N. Saitou, K. Mikoshiba,
Y. Sakaki, K. Agata, and A. Toyoda. A wide-range phylogenetic analy-
sis of zic proteins: implications for correlations between protein structure
conservation and body plan complexity. Genomics, 87(6):783–92, 2006.
[33] N. C. Aschliman, M. Nishida, M. Miya, J. G. Inoue, K. M. Rosana, and
G. J. Naylor. Body plan convergence in the evolution of skates and rays
(chondrichthyes: Batoidea). Mol Phylogenet Evol, 63(1):28–42, 2012.
[34] S. Asteriti, S. Grillner, and L. Cangiano. A cambrian origin for vertebrate
rods. Elife, 4, 2015.
[35] S. M. Awramik. Precambrian columnar stromatolite diversity: reflection of
metazoan appearance. Science, 174(4011):825–7, 1971.
[36] D. I. Axelrod. Early cambrian marine fauna: A new hypothesis that can in
some measure be tested explains its origin in terms of coastal sites. Science,
128(3314):7–9, 1958.
[37] S. Ayyar, B. Negre, P. Simpson, and A. Stollewerk. An arthropod cis-
regulatory element functioning in sensory organ precursor development
dates back to the cambrian. BMC Biol, 8:127, 2010.
[38] J. Baguna, P. Martinez, J. Paps, and M. Riutort. Back in time: a new sys-
tematic proposal for the bilateria. Philos Trans R Soc Lond B Biol Sci,
363(1496):1481–91, 2008.
[39] M. Bahreynian, M. Qorbani, M. E. Motlagh, R. Heshmat, G. Ardalan, and
R. Kelishadi. Association of perceived weight status versus body mass in-
dex on adherence to weight-modifying plan among iranian children and
adolescents: The caspian-iv study. Indian Pediatr, 52(10):857–63, 2015.
[40] X. Bailly, H. Reichert, and V. Hartenstein. The urbilaterian brain revisited:
novel insights into old questions from new flatworm clades. Dev Genes
Evol, 223(3):149–57, 2013.
[41] W. K. Baker. A fine-structure gynandromorph fate map of the drosophila
head. Genetics, 88(4):743–54, 1978.
[42] E. S. Barghoorn, W. G. Meinschein, and J. W. Schopf. Paleobiology of
a precambrian shale: Geology, organic geochemistry, and paleontology are
applied to the problem of detection of ancient life. Science, 148(3669):461–
72, 1965.
[43] E. S. Barghoorn and J. W. Schopf. Microorganisms from the late precam-
brian of central australia. Science, 150(3694):337–9, 1965.
[44] E. S. Barghoorn and J. W. Schopf. Microorganisms three billion years old
from the precambrian of south africa. Science, 152(3723):758–63, 1966.
[45] E. S. Barghoorn and S. A. Tyler. Fossil organisms from precambrian sedi-
ments. Ann N Y Acad Sci, 108:451–2, 1963.
[46] E. S. Barghoorn and S. A. Tyler. Microorganisms from the gunflint chert:
These structurally preserved precambrian fossils from ontario are the most
ancient organisms known. Science, 147(3658):563–75, 1965.
[47] J. Barnabas, R. M. Schwartz, and M. O. Dayhoff. Evolution of major
metabolic innovations in the precambrian. Orig Life, 12(1):81–91, 1982.
[48] L. Barrientos-Lozano, A. Y. Rocha-Sanchez, and A. Correa-Sandoval. A
new species of the genus obolopteryx cohn et al. 2014 and a conspecific
<br />gynandromorph (ensifera: Tettigoniidae: Phaneropterinae). Zootaxa,
4028(4):485–510, 2015.
[49] F. R. Barroso, M. S. Viana, M. F. de Lima Filho, and S. M. Agostinho.
First ediacaran fauna occurrence in northeastern brazil (jaibaras basin,
?ediacaran-cambrian): preliminary results and regional correlation. An
Acad Bras Cienc, 86(3):1029–42, 2014.
[50] J. K. Bartley, M. Pope, A. H. Knoll, M. A. Semikhatov, and P. Petrov. A
vendian-cambrian boundary succession from the northwestern margin of
the siberian platform: stratigraphy, palaeontology, chemostratigraphy and
correlation. Geol Mag, 135(4):473–94, 1998.
[51] K. T. Bates, P. D. Mannion, P. L. Falkingham, S. L. Brusatte, J. R. Hutchin-
son, A. Otero, W. I. Sellers, C. Sullivan, K. A. Stevens, and V. Allen. Tem-
poral and phylogenetic evolution of the sauropod dinosaur body plan. R
Soc Open Sci, 3(3):150636, 2016.
[52] F. U. Battistuzzi, P. Billing-Ross, O. Murillo, A. Filipski, and S. Kumar.
A protocol for diagnosing the effect of calibration priors on posterior time
estimates: A case study for the cambrian explosion of animal phyla. Mol
Biol Evol, 32(7):1907–12, 2015.
[53] K. Baverstock. Commentary on: Cause of cambrian explosion - terrestrial
or cosmic? Prog Biophys Mol Biol, 136:25–26, 2018.
[54] K. M. Beavers, B. A. Nesbit, J. R. Kiel, J. L. Sheedy, L. M. Arterburn, A. E.
Collins, S. A. Ford, R. M. Henderson, C. D. Coleman, and D. P. Beavers.
Effect of an energy-restricted, nutritionally complete, higher protein meal
plan on body composition and mobility in older adults with obesity: A ran-
domized controlled trial. J Gerontol A Biol Sci Med Sci, 74(6):929–935,
2019.
[55] M. A. Bell. Origin of metazoan phyla: Cambrian explosion or proterozoic
slow burn? Trends Ecol Evol, 12(1):1–2, 1997.
[56] S. Bengtson, V. Belivanova, B. Rasmussen, and M. Whitehouse. The con-
troversial "cambrian" fossils of the vindhyan are real but more than a billion
years older. Proc Natl Acad Sci U S A, 106(19):7729–34, 2009.
[57] S. Bengtson and G. Budd. Comment on "small bilaterian fossils from 40
to 55 million years before the cambrian". Science, 306(5700):1291; author
reply 1291, 2004.
[58] S. Bengtson and Y. Zhao. Predatorial borings in late precambrian mineral-
ized exoskeletons. Science, 257(5068):367–9, 1992.
[59] S. Berking. Generation of bilateral symmetry in anthozoa: a model. J Theor
Biol, 246(3):477–90, 2007.
[60] R. D. C. Bicknell and J. R. Paterson. Reappraising the early evidence of
durophagy and drilling predation in the fossil record: implications for esca-
lation and the cambrian explosion. Biol Rev Camb Philos Soc, 93(2):754–
784, 2018.
[61] R. D. C. Bicknell, J. R. Paterson, J. B. Caron, and C. B. Skovsted. The
gnathobasic spine microstructure of recent and silurian chelicerates and the
cambrian artiopodan sidneyia: Functional and evolutionary implications.
Arthropod Struct Dev, 47(1):12–24, 2018.
[62] E. Blackwelder. Pre-cambrian rooks in southeastern wyoming. Science,
27(698):787–8, 1908.
[63] J. E. Blair and S. B. Hedges. Molecular clocks do not support the cambrian
explosion. Mol Biol Evol, 22(3):387–90, 2005.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 20
[64] B. Bloeser, J. W. Schopf, R. J. Horodyski, and W. J. Breed. Chitinozoans
from the late precambrian chuar group of the grand canyon, arizona. Sci-
ence, 195(4279):676–9, 1977.
[65] D. E. Boerner, R. D. Kurtz, J. A. Craven, G. M. Ross, F. W. Jones, and
W. J. Davis. Electrical conductivity in the precambrian lithosphere of west-
ern canada. Science, 283(5402):668–70, 1999.
[66] O. Bogdanovic. Tet proteins: master regulators of vertebrate body plan
formation? Epigenomics, 9(2):93–96, 2017.
[67] A. Boija and M. Mannervik. Initiation of diverse epigenetic states during
nuclear programming of the drosophila body plan. Proc Natl Acad Sci U S
A, 113(31):8735–40, 2016.
[68] E. Boncinelli, A. Mallamaci, and V. Broccoli. Body plan genes and human
malformation. Adv Genet, 38:1–29, 1998.
[69] O. P. Boryskina, A. Al-Kilani, and V. Fleury. Body plan in tetrapods: is it
patterned by a hyperbolic tissue flow? Cell Cycle, 10(22):3801–2, 2011.
[70] S. T. Bowen and J. Hanson. A gynandromorph of the brine shrimp, artemia
salina. Genetics, 47:277–80, 1962.
[71] S. A. Bowring, J. P. Grotzinger, C. E. Isachsen, A. H. Knoll, S. M.
Pelechaty, and P. Kolosov. Calibrating rates of early cambrian evolution.
Science, 261:1293–8, 1993.
[72] G. Boyan, Y. Liu, S. K. Khalsa, and V. Hartenstein. A conserved plan
for wiring up the fan-shaped body in the grasshopper and drosophila. Dev
Genes Evol, 227(4):253–269, 2017.
[73] R. A. Boyle, T. W.Dahl, C. J. Bjerrum, and D. E. Canfield. Bioturbation and
directionality in earth’s carbon isotope record across the neoproterozoic-
cambrian transition. Geobiology, 16(3):252–278, 2018.
[74] V. Braitenberg and M. Kemali. Exceptions to bilateral symmetry in the
epithalamus of lower vertebrates. J Comp Neurol, 138(2):137–46, 1970.
[75] L. Brand, M. Wang, and A. Chadwick. Global database of paleocurrent
trends through the phanerozoic and precambrian. Sci Data, 2:150025, 2015.
[76] M. D. Brasier. The cambrian explosion and the slow burning fuse. Sci Prog,
83 (Pt 1):77–92, 2000.
[77] B. Brenzinger, G. Haszprunar, and M. Schrodl. At the limits of a success-
ful body plan - 3d microanatomy, histology and evolution of helminthope
(mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastro-
pod. Front Zool, 10(1):37, 2013.
[78] D. E. Briggs. Giant predators from the cambrian of china. Science,
264(5163):1283–4, 1994.
[79] D. E. Briggs. The cambrian explosion. Curr Biol, 25(19):R864–8, 2015.
[80] D. E. Briggs. Extraordinary fossils reveal the nature of cambrian life: a
commentary on whittington (1975) ’the enigmatic animal opabinia regalis,
middle cambrian, burgess shale, british columbia’. Philos Trans R Soc Lond
B Biol Sci, 370(1666), 2015.
[81] D. E. Briggs, R. A. Fortey, and M. A. Wills. Morphological disparity in the
cambrian. Science, 256(5064):1670–3, 1992.
[82] D. E. G. Briggs and J. B. Caron. A large cambrian chaetognath with super-
numerary grasping spines. Curr Biol, 27(16):2536–2543 e1, 2017.
[83] D. Brinkman, M. Rabi, and L. Zhao. Lower cretaceous fossils from china
shed light on the ancestral body plan of crown softshell turtles (trionychi-
dae, cryptodira). Sci Rep, 7(1):6719, 2017.
[84] L. F. Brito, Z. A. Taboza, V. R. Silveira, F. A. Furlaneto, C. K. Rosing, and
R. O. Rego. Aggressive periodontitis presents a higher degree of bilateral
symmetry in comparison with chronic periodontitis. J Oral Sci, 60(1):97–
104, 2018.
[85] L. Bromham. What can dna tell us about the cambrian explosion? Integr
Comp Biol, 43(1):148–56, 2003.
[86] L. Bromham, A. Rambaut, R. Fortey, A. Cooper, and D. Penny. Testing
the cambrian explosion hypothesis by using a molecular dating technique.
Proc Natl Acad Sci U S A, 95(21):12386–9, 1998.
[87] L. D. Bromham and M. D. Hendy. Can fast early rates reconcile molecu-
lar dates with the cambrian explosion? Proc Biol Sci, 267(1447):1041–7,
2000.
[88] E. E. Brown, K. M. Margelot, and M. V. Danilchik. Provisional bilat-
eral symmetry in xenopus eggs is established during maturation. Zygote,
2(3):213–20, 1994.
[89] A. E. Bruce and M. Shankland. Expression of the head gene lox22-otx in
the leech helobdella and the origin of the bilaterian body plan. Dev Biol,
201(1):101–12, 1998.
[90] T. Brunet, A. Bouclet, P. Ahmadi, D. Mitrossilis, B. Driquez, A. C.
Brunet, L. Henry, F. Serman, G. Bealle, C. Menager, F. Dumas-Bouchiat,
D. Givord, C. Yanicostas, D. Le-Roy, N. M. Dempsey, A. Plessis, and
E. Farge. Evolutionary conservation of early mesoderm specification by
mechanotransduction in bilateria. Nat Commun, 4:2821, 2013.
[91] S. L. Brusatte, G. T. Lloyd, S. C. Wang, and M. A. Norell. Gradual as-
sembly of avian body plan culminated in rapid rates of evolution across the
dinosaur-bird transition. Curr Biol, 24(20):2386–92, 2014.
[92] L. A. Buatois, J. Almond, M. G. Mangano, S. Jensen, and G. J. B. Germs.
Sediment disturbance by ediacaran bulldozers and the roots of the cambrian
explosion. Sci Rep, 8(1):4514, 2018.
[93] L. A. Buatois, M. G. Mangano, R. A. Olea, and M. A. Wilson. Decoupled
evolution of soft and hard substrate communities during the cambrian ex-
plosion and great ordovician biodiversification event. Proc Natl Acad Sci
USA, 113(25):6945–8, 2016.
[94] L. A. Buatois, G. M. Narbonne, M. G. Mangano, N. B. Carmona, and
P. Myrow. Ediacaran matground ecology persisted into the earliest cam-
brian. Nat Commun, 5:3544, 2014.
[95] C. Buckley and J. Clarke. Establishing the plane of symmetry for lumen
formation and bilateral brain formation in the zebrafish neural rod. Semin
Cell Dev Biol, 31:100–5, 2014.
[96] G. E. Budd. The cambrian fossil record and the origin of the phyla. Integr
Comp Biol, 43(1):157–65, 2003.
[97] G. E. Budd. Palaeontology: lost children of the cambrian. Nature,
427(6971):205–7, 2004.
[98] G. E. Budd. Palaeontology: Cambrian nervous wrecks. Nature,
490(7419):180–1, 2012.
[99] G. E. Budd. At the origin of animals: the revolutionary cambrian fossil
record. Curr Genomics, 14(6):344–54, 2013.
[100] G. E. Budd, N. J. Butterfield, and S. Jensen. Crustaceans and the "cambrian
explosion". Science, 294(5549):2047, 2001.
[101] G. E. Budd and I. S. Jackson. Ecological innovations in the cambrian and
the origins of the crown group phyla. Philos Trans R Soc Lond B Biol Sci,
371(1685):20150287, 2016.
[102] G. E. Budd and S. Jensen. Trace fossils and the cambrian explosion. Trends
Ecol Evol, 13(12):507, 1998.
[103] G. E. Budd and S. Jensen. A critical reappraisal of the fossil record of the
bilaterian phyla. Biol Rev Camb Philos Soc, 75(2):253–95, 2000.
[104] G. E. Budd and S. Jensen. The origin of the animals and a ’savannah’
hypothesis for early bilaterian evolution. Biol Rev Camb Philos Soc,
92(1):446–473, 2017.
[105] R. D. Burke. Deuterostome neuroanatomy and the body plan paradox. Evol
Dev, 13(1):110–5, 2011.
[106] L. Burkhardt. Bilateral shape similarity of human ears – a contribution on
the symmetry problem. Anthropol Anz, 34(2):102–11, 1974.
[107] A. L. Burlingame, P. Haug, T. Belsky, and M. Calvin. Occurrence of bio-
genic steranes and pentacyclic triterpanes in an eocene shale (52 million
years) and in an early precambrian shale (2.7 billion years): A preliminary
report. Proc Natl Acad Sci U S A, 54(5):1406–12, 1965.
[108] G. Burnside, C. M. Pine, and P. R. Williamson. Modelling the bilateral
symmetry of caries incidence. Caries Res, 42(4):291–6, 2008.
[109] R. G. Burwell, P. H. Dangerfield, B. J. Freeman, R. K. Aujla, A. A. Cole,
A. S. Kirby, R. K. Pratt, J. K. Webb, and A. Moulton. Etiologic theo-
ries of idiopathic scoliosis: the breaking of bilateral symmetry in relation
to left-right asymmetry of internal organs, right thoracic adolescent idio-
pathic scoliosis (ais) and vertebrate evolution. Stud Health Technol Inform,
123:385–90, 2006.
[110] R. G. Burwell, B. J. Freeman, P. H. Dangerfield, R. K. Aujla, A. A. Cole,
A. S. Kirby, R. K. Pratt, J. K. Webb, and A. Moulton. Etiologic theories of
idiopathic scoliosis: enantiomorph disorder concept of bilateral symmetry,
physeally-created growth conflicts and possible prevention. Stud Health
Technol Inform, 123:391–7, 2006.
[111] R. G. Burwell, B. J. Freeman, P. H. Dangerfield, R. K. Aujla, A. A. Cole,
A. S. Kirby, R. K. Pratt, J. K. Webb, and A. Moulton. Left-right upper arm
length asymmetry associated with apical vertebral rotation in subjects with
thoracic scoliosis: anomaly of bilateral symmetry affecting vertebral, costal
and upper arm physes? Stud Health Technol Inform, 123:66–71, 2006.
[112] N. J. Butterfield. Exceptional fossil preservation and the cambrian explo-
sion. Integr Comp Biol, 43(1):166–77, 2003.
[113] T. Butts, P. W. Holland, and D. E. Ferrier. The urbilaterian super-hox clus-
ter. Trends Genet, 24(6):259–62, 2008.
[114] M. Byrne, D. Koop, V. B. Morris, J. Chui, G. A. Wray, and P. Cisternas.
Expression of genes and proteins of the pax-six-eya-dach network in the
metamorphic sea urchin: Insights into development of the enigmatic echin-
oderm body plan and sensory structures. Dev Dyn, 247(1):239–249, 2018.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 21
[115] M. Byrne, P. Martinez, and V. Morris. Evolution of a pentameral body plan
was not linked to translocation of anterior hox genes: the echinoderm hox
cluster revisited. Evol Dev, 18(2):137–43, 2016.
[116] C. B. Cameron, J. R. Garey, and B. J. Swalla. Evolution of the chordate
body plan: new insights from phylogenetic analyses of deuterostome phyla.
Proc Natl Acad Sci U S A, 97(9):4469–74, 2000.
[117] A. J. Campbell and M. W. Service. A gynandromorph of the mosquito
aedes cantans in britain. Ann Trop Med Parasitol, 81(2):193–4, 1987.
[118] S. E. Campbell. Soil stabilization by a prokaryotic desert crust: implica-
tions for precambrian land biota. Orig Life, 9(4):335–48, 1979.
[119] A. M. Candel, M. L. Romero-Romero, G. Gamiz-Arco, B. Ibarra-Molero,
and J. M. Sanchez-Ruiz. Fast folding and slow unfolding of a resurrected
precambrian protein. Proc Natl Acad Sci U S A, 114(21):E4122–E4123,
2017.
[120] L. H. Caporale. Putting together the pieces: evolutionary mechanisms at
work within genomes: can we suggest molecular underpinnings of punctu-
ated equilibria and the cambrian explosion? Bioessays, 31(7):700–2, 2009.
[121] D. B. Carlisle. Chitin in a cambrian fossil, hyolithellus. Biochem J,
90(2):1C–2C, 1964.
[122] J. B. Caron and C. Aria. Cambrian suspension-feeding lobopodians and the
early radiation of panarthropods. BMC Evol Biol, 17(1):29, 2017.
[123] J. B. Caron and B. Cheung. Amiskwia is a large cambrian gnathiferan with
complex gnathostomulid-like jaws. Commun Biol, 2:164, 2019.
[124] J. B. Caron, S. Conway Morris, and D. Shu. Tentaculate fossils from the
cambrian of canada (british columbia) and china (yunnan) interpreted as
primitive deuterostomes. PLoS One, 5(3):e9586, 2010.
[125] J. B. Caron, S. C. Morris, and C. B. Cameron. Tubicolous enteropneusts
from the cambrian period. Nature, 495(7442):503–6, 2013.
[126] J. B. Caron, A. Scheltema, C. Schander, and D. Rudkin. A soft-bodied
mollusc with radula from the middle cambrian burgess shale. Nature,
442(7099):159–63, 2006.
[127] J. B. Caron, M. R. Smith, and T. H. Harvey. Beyond the burgess shale:
Cambrian microfossils track the rise and fall of hallucigeniid lobopodians.
Proc Biol Sci, 280(1767):20131613, 2013.
[128] D. Carre, C. Rouviere, and C. Sardet. In vitro fertilization in ctenophores:
sperm entry, mitosis, and the establishment of bilateral symmetry in beroe
ovata. Dev Biol, 147(2):381–91, 1991.
[129] P. Cartwright, S. L. Halgedahl, J. R. Hendricks, R. D. Jarrard, A. C. Mar-
ques, A. G. Collins, and B. S. Lieberman. Exceptionally preserved jelly-
fishes from the middle cambrian. PLoS One, 2(10):e1121, 2007.
[130] B. Catarino, A. J. Hetherington, D. M. Emms, S. Kelly, and L. Dolan. The
stepwise increase in the number of transcription factor families in the pre-
cambrian predated the diversification of plants on land. Mol Biol Evol,
33(11):2815–2819, 2016.
[131] T. Cavalier-Smith. Correction to ’origin of animal multicellularity: precur-
sors, causes, consequences-the choanoflagellate/sponge transition, neuro-
genesis and the cambrian explosion’. Philos Trans R Soc Lond B Biol Sci,
372(1718), 2017.
[132] T. Cavalier-Smith. Origin of animal multicellularity: precursors, causes,
consequences-the choanoflagellate/sponge transition, neurogenesis and the
cambrian explosion. Philos Trans R Soc Lond B Biol Sci, 372(1713), 2017.
[133] T. Cavalier-Smithand S. A. Karpov. Paracercomonas kinetid ultrastructure,
origins of the body plan of cercomonadida, and cytoskeleton evolution in
cercozoa. Protist, 163(1):47–75, 2012.
[134] T. Cavalier-Smith and B. Oates. Ultrastructure of allapsa vibrans and the
body plan of glissomonadida (cercozoa). Protist, 163(2):165–87, 2012.
[135] R. T. Chamberlin. More than two pre-cambrian granites in the canadian
shield. Science, 82(2119):126–7, 1935.
[136] X. Y. Chan and J. D. Lambert. Development of blastomere clones in the
ilyanassa embryo: transformation of the spiralian blastula into the larval
body plan. Dev Genes Evol, 224(3):159–74, 2014.
[137] R. Chaves, D. Ferreira, A. Mendes-da Silva, S. Meles, and F. Adega. Fa-sat
is an old satellite dna frozen in several bilateria genomes. Genome Biol
Evol, 9(11):3073–3087, 2017.
[138] A. Chen, H. Chen, D. A. Legg, Y. Liu, and X. G. Hou. A redescription
of liangwangshania biloba chen, 2005, from the chengjiang biota (cam-
brian, china), with a discussion of possible sexual dimorphism in fuxian-
huiid arthropods. Arthropod Struct Dev, 47(5):552–561, 2018.
[139] J. Y. Chen. The sudden appearance of diverse animal body plansduring the
cambrian explosion. Int J Dev Biol, 53(5-6):733–51, 2009.
[140] J. Y. Chen, D. J. Bottjer, E. H. Davidson, S. Q. Dornbos, X. Gao, Y. H.
Yang, C. W. Li, G. Li, X. Q. Wang, D. C. Xian, H. J. Wu, Y. K. Hwu, and
P. Tafforeau. Phosphatized polar lobe-forming embryos from the precam-
brian of southwest china. Science, 312(5780):1644–6, 2006.
[141] J. Y. Chen, D. J. Bottjer, G. Li, M. G. Hadfield, F. Gao, A. R. Cameron,
C. Y. Zhang, D. C. Xian, P. Tafforeau, X. Liao, and Z. J. Yin. Com-
plex embryos displaying bilaterian characters from precambrian doushan-
tuo phosphate deposits, weng’an, guizhou, china. Proc Natl Acad Sci U S
A, 106(45):19056–60, 2009.
[142] J. Y. Chen, D. J. Bottjer, P. Oliveri, S. Q. Dornbos, F. Gao, S. Ruffins,
H. Chi, C. W. Li, and E. H. Davidson. Small bilaterian fossils from 40 to
55 million years before the cambrian. Science, 305(5681):218–22, 2004.
[143] J. Y. Chen and D. Y. Huang. A possible lower cambrian chaetognath (arrow
worm). Science, 298(5591):187, 2002.
[144] J. Y. Chen, D. Y. Huang, and D. J. Bottjer. An early cambrian prob-
lematic fossil: Vetustovermis and its possible affinities. Proc Biol Sci,
272(1576):2003–7, 2005.
[145] J. Y. Chen, D. Y. Huang, Q. Q. Peng, H. M. Chi, X. Q. Wang,and M. Feng.
The first tunicate from the early cambrian of south china. Proc Natl Acad
Sci U S A, 100(14):8314–8, 2003.
[146] J. Y. Chen, P. Oliveri, F. Gao, S. Q. Dornbos, C. W. Li, D. J. Bottjer, and
E. H. Davidson. Precambrian animal life: probable developmental and adult
cnidarian forms from southwest china. Dev Biol, 248(1):182–96, 2002.
[147] J. Y. Chen, P. Oliveri, C. W. Li, G. Q. Zhou, F. Gao, J. W. Hagadorn, K. J.
Peterson, and E. H. Davidson. Precambrian animal diversity: putative phos-
phatized embryos from the doushantuo formation of china. Proc Natl Acad
Sci U S A, 97(9):4457–62, 2000.
[148] J. Y. Chen, L. Ramskold, and G. Q. Zhou. Evidence for monophyly and
arthropod affinity of cambrian giant predators. Science, 264(5163):1304–8,
1994.
[149] J. Y. Chen, J. W. Schopf, D. J. Bottjer, C. Y. Zhang, A. B. Kudryavtsev,
A. B. Tripathi, X. Q. Wang,Y. H. Yang, X. Gao, and Y. Yang. Raman spec-
tra of a lower cambrian ctenophore embryo from southwestern shaanxi,
china. Proc Natl Acad Sci U S A, 104(15):6289–92, 2007.
[150] J. Y. Chen, J. Vannier, and D. Y. Huang. The origin of crustaceans: new ev-
idence from the early cambrian of china. Proc Biol Sci, 268(1482):2181–7,
2001.
[151] J. Y.Chen, G. Q. Zhou, G. D. Edgecombe, and L. Ramskold. Head segmen-
tation in early cambrian fuxianhuia: implications for arthropod evolution.
Science, 268(5215):1339–43, 1995.
[152] X. Chen, H. F. Ling, D. Vance, G. A. Shields-Zhou, M. Zhu, S. W. Poul-
ton, L. M. Och, S. Y. Jiang, D. Li, L. Cremonese, and C. Archer. Rise to
modern levels of ocean oxygenation coincided with the cambrian radiation
of animals. Nat Commun, 6:7142, 2015.
[153] X. Chen, J. Ortega-Hernandez, J. M. Wolfe, D. Zhai, X. Hou, A. Chen,
H. Mai, and Y. Liu. The appendicular morphology of sinoburius lunaris
and the evolution of the artiopodan clade xandarellida (euarthropoda, early
cambrian) from south china. BMC Evol Biol, 19(1):165, 2019.
[154] J. E. Cilek and F. W. Knapp. Face fly (diptera: Muscidae) gynandromorph.
J Med Entomol, 31(5):760–2, 1994.
[155] S. Clausen and A. B. Smith. Palaeoanatomy and biological affinities of a
cambrian deuterostome (stylophora). Nature, 438(7066):351–4, 2005.
[156] J. Clavert and G. Filogamo. Investigations on the determination of bilat-
eral symmetry in the fish, lebistes reticulatus. Acta Embryol Morphol Exp,
9(2):105–17, 1966.
[157] J. Clavert and Vintemberger. On the determinism of bilateral symmetry in
birds. 12. the state of development which is realized in the uterine ovum of
the pigeon, determination of the embryonic axis. C R Seances Soc Biol Fil,
154:400–3, 1960.
[158] J. Clavert and P. Vintemberger. Determination of bilateral symmetry in
birds. iv. mode of evolution of the egg in the uterus and its repercussions on
the orientation of the embryo. C R Seances Soc Biol Fil, 148(11-12):1122–
5, 1954.
[159] J. Clavert and P. Vintemberger. Determinism of bilateral symmetry in the
bird. ii. is the relation between the orientation of the embryo of birds and
the long axis of the egg, expressed by von baer’s rule, conditioned by the
movement of rotation exerted on the egg by the uterus? verification on the
pigeon egg. C R Seances Soc Biol Fil, 148(3-4):376–9, 1954.
[160] J. Clavert and P.Vintemberger. Determinism of bilateral symmetry in birds.
vi. observation of a series of four cases of inversion of orientation of the
embryo in the eggs laid by one pigeon. C R Seances Soc Biol Fil, 149(3-
4):413–5, 1955.
[161] J. Clavert and P.Vintemberger. Determinants of bilateral symmetry in birds.
viii. dominant orientation of the embryo to the egg axis & the von baer law.
C R Seances Soc Biol Fil, 151(12):2183–7, 1957.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 22
[162] J. Clavert and P. Vintemberger. Determination of bilateral symmetry in
birds. x. experimental changes of inclination of the axis of the egg in utero
& its effect on orientation of pigeon embryo. C R Seances Soc Biol Fil,
152(1):149–51, 1958.
[163] J. Clavert and J. P. Zahnd. Determinism of bilateral symmetry and von
baer’s rule in reptiles. C R Seances Soc Biol Fil, 149(15-18):1650–1, 1955.
[164] J. Cloud, P. E. Significance of the gunflint (precambrian) microflora: Pho-
tosynthetic oxygen may have had important local effects before becoming
a major atmospheric gas. Science, 148(3666):27–35, 1965.
[165] J. Cloud, P. E., J. W. Gruner, and H. Hagen. Carbonaceous rocks of the
soudan iron formation (early precambrian). Science, 148(3678):1713–6,
1965.
[166] P. Cloud. The precambrian. Science, 173(3999):851–4, 1971.
[167] M. I. Coates, J. A. Finarelli, I. J. Sansom, P. S. Andreev, K. E. Criswell,
K. Tietjen, M. L. Rivers, and P. J. La Riviere. An early chondrichthyan and
the evolutionary assembly of a shark body plan. Proc Biol Sci, 285(1870),
2018.
[168] B. L. Cohen. Association of lung cancer mortality with the precambrian
granite of the reading prong. Arch Environ Health, 43(4):313–5, 1988.
[169] M. J. Cohn and C. Tickle. Limbs: a model for pattern formation within the
vertebrate body plan. Trends Genet, 12(7):253–7, 1996.
[170] C. A. Coker. Bilateral symmetry in coincident timing: a preliminary inves-
tigation. Percept Mot Skills, 98(1):359–65, 2004.
[171] A. G. Collins. Evaluating multiple alternative hypotheses for the origin of
bilateria: an analysis of 18s rrna molecular evidence. Proc Natl Acad Sci U
S A, 95(26):15458–63, 1998.
[172] D. Collins, D. Briggs, and S. C. Morris. New burgess shale fossil sites
reveal middle cambrian faunal complex. Science, 222(4620):163–7, 1983.
[173] J. Compagnon, V. Barone, S. Rajshekar, R. Kottmeier, K. Pranjic-Ferscha,
M. Behrndt, and C. P. Heisenberg. The notochord breaks bilateral symme-
try by controlling cell shapes in the zebrafish laterality organ. Dev Cell,
31(6):774–83, 2014.
[174] P. Cong, A. C. Daley, G. D. Edgecombe, and X. Hou. The functional
head of the cambrian radiodontan (stem-group euarthropoda) amplecto-
belua symbrachiata. BMC Evol Biol, 17(1):208, 2017.
[175] P. Cong, X. Ma, M. Williams, D. J. Siveter, D. J. Siveter, S. E. Gabbott,
D. Zhai, T. Goral, G. D. Edgecombe, and X. Hou. Host-specific infestation
in early cambrian worms. Nat Ecol Evol, 1(10):1465–1469, 2017.
[176] P. Y. Cong, T. H. P. Harvey, M. Williams, D. J. Siveter, D. J. Siveter, S. E.
Gabbott, Y. J. Li, F. Wei, and X. G. Hou. Naked chancelloriids from the
lower cambrian of china show evidence for sponge-type growth. Proc Biol
Sci, 285(1881), 2018.
[177] S. Conway Morris. The cambrian "explosion": slow-fuse or megatonnage?
Proc Natl Acad Sci U S A, 97(9):4426–9, 2000.
[178] S. Conway-Morris. The cambrian "explosion" of metazoans and molecular
biology: would darwin be satisfied? Int J Dev Biol, 47(7-8):505–15, 2003.
[179] S. Conway Morris. Darwin’s dilemma: the realities of the cambrian ’ex-
plosion’. Philos Trans R Soc Lond B Biol Sci, 361(1470):1069–83, 2006.
[180] J. Cooke. Induction and the organization of the body plan in xenopus de-
velopment. Ciba Found Symp, 144:187–201; discussion 201–7, 208–11,
1989.
[181] M. C. Corballis and I. L. Beale. Bilateral symmetry and behavior. Psychol
Rev, 77(5):451–64, 1970.
[182] J. H. Costello and R. Coverdale. Planktonic feeding and evolutionary
significance of the lobate body plan within the ctenophora. Biol Bull,
195(2):247–248, 1998.
[183] J. P. Couso. Segmentation, metamerism and the cambrian explosion. Int J
Dev Biol, 53(8-10):1305–16, 2009.
[184] A. T. Cribb, C. G. Kenchington, B. Koester, B. M. Gibson, T. H. Boag,
R. A. Racicot, H. Mocke, M. Laflamme, and S. A. F. Darroch. Increase in
metazoan ecosystem engineering prior to the ediacaran-cambrian boundary
in the nama group, namibia. R Soc Open Sci, 6(9):190548, 2019.
[185] X. Cui, T. Qiao, and M. Zhu. Scale morphology and squamation pattern of
guiyu oneiros provide new insights into early osteichthyan body plan. Sci
Rep, 9(1):4411, 2019.
[186] S. J. Culver. Early cambrian foraminifera from west africa. Science,
254(5032):689–91, 1991.
[187] F. W. Cummings. Early metazoan development: the origin of the cambrian
exuberance. Theor Biol Forum, 109(1-2):71–92, 2016.
[188] J. L. Da Lage, F. Maczkowiak, and M. L. Cariou. Phylogenetic distribution
of intron positions in alpha-amylase genes of bilateria suggests numerous
gains and losses. PLoS One, 6(5):e19673, 2011.
[189] E. B. Daeschler, N. H. Shubin, and J. Jenkins, F. A. A devonian
tetrapod-like fish and the evolution of the tetrapod body plan. Nature,
440(7085):757–63, 2006.
[190] T. W. Dahl, R. A. Boyle, D. E. Canfield, J. N. Connelly, B. C. Gill, T. M.
Lenton, and M. Bizzarro. Uranium isotopes distinguish two geochemically
distinct stages during the later cambrian spice event. Earth Planet Sci Lett,
401:313–326, 2014.
[191] T. W. Dahl, M. L. Siggaard-Andersen, N. H. Schovsbo, D. O. Persson,
S. Husted, I. W. Hougard, A. J. Dickson, K. Kjaer, and A. T. Nielsen. Brief
oxygenation events in locally anoxic oceans during the cambrian solves the
animal breathing paradox. Sci Rep, 9(1):11669, 2019.
[192] A. C. Daley. A treasure trove of cambrian fossils. Science,
363(6433):1284–1285, 2019.
[193] A. C. Daley, J. B. Antcliffe, H. B. Drage, and S. Pates. Early fossil record
of euarthropoda and the cambrian explosion. Proc Natl Acad Sci U S A,
115(21):5323–5331, 2018.
[194] B. Dalmayrac, J. R. Lancelot, and A. Leyreloup. Two-billion-year gran-
ulites in the late precambrian metamorphic basement along the southern
peruvian coast. Science, 198(4312):49–51, 1977.
[195] W. C. Darrah. Spores of cambrian plants. Science, 86(2224):154–5, 1937.
[196] S. A. F. Darroch, E. F. Smith, M. Laflamme, and D. H. Erwin. Ediacaran
extinction and cambrian explosion. TrendsEcol Evol, 33(9):653–663, 2018.
[197] E. H. Davidson and D. H. Erwin. An integrated view of precambrian eu-
metazoan evolution. Cold Spring Harb Symp Quant Biol, 74:65–80, 2009.
[198] B. De Bari, R. Jumeau, L. Deantonio, S. Adib, S. Godin, M. Zeverino,
R. Moeckli, J. Bourhis, J. O. Prior, and M. Ozsahin. Role of functional
imaging in treatment plan optimization of stereotactic body radiation ther-
apy for liver cancer. Tumori, 102(5):e21–e24, 2016.
[199] D. M. de Jong, N. R. Hislop, D. C. Hayward, J. S. Reece-Hoyes, P. C. Pon-
tynen, E. E. Ball, and D. J. Miller. Components of both major axial pattern-
ing systems of the bilateria are differentially expressed along the primary
axis of a ’radiate’ animal, the anthozoan cnidarian acropora millepora. Dev
Biol, 298(2):632–43, 2006.
[200] M. T. de Mello. Sylvatic bubonic plague and soils derived from precam-
brian rocks. An Microbiol (Rio J), 14:77–8, 1966.
[201] A. de Mendoza and I. Ruiz-Trillo. The mysterious evolutionary origin for
the gne gene and the root of bilateria. Mol Biol Evol, 28(11):2987–91,
2011.
[202] E. M. De Robertis, G. Oliver, and C. V. Wright. Homeobox genes and the
vertebrate body plan. Sci Am, 263(1):46–52, 1990.
[203] E. M. De Robertis and Y.Sasai. A common plan for dorsoventral patterning
in bilateria. Nature, 380(6569):37–40, 1996.
[204] C. de Solages, B. C. Hill, M. M. Koop, J. M. Henderson, and H. Bronte-
Stewart. Bilateral symmetry and coherence of subthalamic nuclei beta band
activity in parkinson’s disease. Exp Neurol, 221(1):260–6, 2010.
[205] N. DeJong and J. M. Dunning. Bilateral symmetry of dental restorations in
a dental care program. J Public Health Dent, 31(4):251–5, 1971.
[206] S. Delgado, D. Casane, L. Bonnaud, M. Laurin, J. Y. Sire, and M. Giron-
dot. Molecular evidence for precambrian origin of amelogenin, the major
protein of vertebrate enamel. Mol Biol Evol, 18(12):2146–53, 2001.
[207] P. Delwaide, C. Heusghem, W. G. Verly, J. Colard, and R. Boulenger. Plan
for the construction of a total body radioactivity counter using gamma spec-
trometry. Arch Belg Med Soc, 20:293–312, 1962.
[208] A. S. Denes, G. Jekely, P. R. Steinmetz, F. Raible, H. Snyman,
B. Prud’homme, D. E. Ferrier, G. Balavoine, and D. Arendt. Molecular
architecture of annelid nerve cord supports common origin of nervous sys-
tem centralization in bilateria. Cell, 129(2):277–88, 2007.
[209] H. W. Denker. Self-organization of stem cell colonies and of early mam-
malian embryos: Recent experiments shed new light on the role of auton-
omy vs. external instructions in basic body plan development. Cells, 5(4),
2016.
[210] J. A. Dent. Evidence for a diverse cys-loop ligand-gated ion channel super-
family in early bilateria. J Mol Evol, 62(5):523–35, 2006.
[211] J. B. Deregowski. Bilateral symmetry and perceptual reversals. Perception,
43(1):85–9, 2014.
[212] A. Derenne. Shifts in postdiscrimination gradients within a stimulus dimen-
sion based on bilateral facial symmetry. J Exp Anal Behav, 93(3):485–94,
2010.
[213] D. J. Des Marais. Microbial mats, stromatolites and the rise of oxygen in
the precambrian atmosphere. Glob Planet Change, 97:93–6, 1991.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 23
[214] D. J. Des Marais. Tectonic control of the crustal organic carbon reservoir
during the precambrian. Chem Geol, 114:303–14, 1994.
[215] J. S. Deutsch and E. Mouchel-Vielh. Hox genes and the crustacean body
plan. Bioessays, 25(9):878–87, 2003.
[216] A. Di Gregorio and M. Levine. Ascidian embryogenesis and the origins of
the chordate body plan. Curr Opin Genet Dev, 8(4):457–63, 1998.
[217] N. Di-Poi, J. I. Montoya-Burgos, H. Miller, O. Pourquie, M. C.
Milinkovitch, and D. Duboule. Changes in hox genes’ structure and func-
tion during the evolution of the squamate body plan. Nature, 464(7285):99–
103, 2010.
[218] J. Diaz, R. E., C. V. Anderson, D. P. Baumann, R. Kupronis, D. Jewell,
C. Piraquive, J. Kupronis, K. Winter, F. Bertocchini, and P. A. Trainor.
The veiled chameleon (chamaeleo calyptratus dumeril and dumeril 1851):
A model for studying reptile body plan development and evolution. Cold
Spring Harb Protoc, 2015(10):889–94, 2015.
[219] J. Dolger, T. Kiorboe, and A. Andersen. Dense dwarfs versus gelatinous
giants: The trade-offs and physiological limits determining the body plan
of planktonic filter feeders. Am Nat, 194(2):E30–E40, 2019.
[220] X. P. Dong, J. A. Cunningham, S. Bengtson, C. W. Thomas, J. Liu,
M. Stampanoni, and P. C. Donoghue. Embryos, polyps and medusae of the
early cambrian scyphozoan olivooides. ProcBiol Sci, 280(1757):20130071,
2013.
[221] X. P. Dong, P. C. Donoghue, H. Cheng, and J. B. Liu. Fossil embryos
from the middle and late cambrian period of hunan, south china. Nature,
427(6971):237–40, 2004.
[222] Y. Dong, C. G. Kumar, N. Chia, P. J. Kim, P. A. Miller, N. D. Price, I. K.
Cann, T. M. Flynn, R. A. Sanford, I. G. Krapac, n. Locke, R. A., P. Y.Hong,
H. Tamaki, W. T. Liu, R. I. Mackie, A. G. Hernandez, C. L. Wright, M. A.
Mikel, J. L. Walker, M. Sivaguru, G. Fried, A. C. Yannarell, and B. W.
Fouke. Halomonas sulfidaeris-dominated microbial community inhabits a
1.8 km-deep subsurface cambrian sandstone reservoir. Environ Microbiol,
16(6):1695–708, 2014.
[223] S. Dreizen, G. S. Parker, R. M. Snodgrasse, T. D. Spies, and H. Webbpe-
ploe. Bilateral symmetry of skeletal maturation in the human hand and
wrist. AMA J Dis Child, 93(2):122–7, 1957.
[224] M. L. Droser and S. Finnegan. The ordovician radiation: A follow-up to
the cambrian explosion? Integr Comp Biol, 43(1):178–84, 2003.
[225] M. L. Droser, S. Jensen, and J. G. Gehling. Trace fossils and substrates of
the terminal proterozoic-cambrian transition: implications for the record
of early bilaterians and sediment mixing. Proc Natl Acad Sci U S A,
99(20):12572–6, 2002.
[226] Y. Du, K. Luo, R. Ni, and R. Hussain. Selenium and hazardous elements
distribution in plant-soil-water system and human health risk assessment
of lower cambrian, southern shaanxi, china. Environ Geochem Health,
40(5):2049–2069, 2018.
[227] B. Duan, X. P. Dong, L. Porras, K. Vargas, J. A. Cunningham, and P. C. J.
Donoghue. The early cambrian fossil embryo pseudooides is a direct-
developing cnidarian, not an early ecdysozoan. Proc Biol Sci, 284(1869),
2017.
[228] S. C. Dufour and D. McIlroy. An ediacaran pre-placozoan alternative to the
pre-sponge route towards the cambrian explosion of animal life: a comment
on cavalier-smith 2017. Philos Trans R Soc Lond B Biol Sci, 373(1738),
2018.
[229] R. G. Duggleby. Commentary: Numerical analysis of steele et al.: Cause
of cambrian explosion - terrestrial or cosmic? Prog Biophys Mol Biol,
141:72–73, 2019.
[230] E. F. Dunn, V. N. Moy, L. M. Angerer, R. C. Angerer, R. L. Morris, and
K. J. Peterson. Molecular paleoecology: using gene regulatory analysis to
address the origins of complex life cycles in the late precambrian. Evol
Dev, 9(1):10–24, 2007.
[231] J. A. Dunne, R. J. Williams, N. D. Martinez, R. A. Wood, and D. H. Er-
win. Compilation and network analyses of cambrian food webs. PLoS
Biol, 6(4):e102, 2008.
[232] S. H. Duttke, R. F. Doolittle, Y. L. Wang, and J. T. Kadonaga. Trf2 and the
evolution of the bilateria. Genes Dev, 28(19):2071–6, 2014.
[233] J. Dzik. Possible ctenophoran affinities of the precambrian "sea-pen"
rangea. J Morphol, 252(3):315–34, 2002.
[234] D. B. Edelman, M. McMenamin, P. Sheesley, and S. Pivar. Origin of the
vertebrate body plan via mechanically biased conservation of regular geo-
metrical patterns in the structure of the blastula. Prog Biophys Mol Biol,
121(3):212–44, 2016.
[235] J. J. Elser, J. Watts, J. H. Schampel, and J. Farmer. Early cambrian food
webs on a trophic knife-edge? a hypothesis and preliminary data from a
modern stromatolite-based ecosystem. Ecol Lett, 9(3):295–303, 2006.
[236] M. V. Enzien. Cyanobacteria or rhodophyta? interpretation of a precam-
brian microfossil. Biosystems, 24(3):245–51, 1990.
[237] M. E. Eriksson and F. Terfelt. Exceptionally preserved cambrian trilobite
digestive system revealedin 3d by synchrotron-radiation x-ray tomographic
microscopy. PLoS One, 7(4):e35625, 2012.
[238] M. E. Eriksson, F. Terfelt, R. Elofsson, and F. Marone. Internal soft-tissue
anatomy of cambrian ’orsten’ arthropods as revealed by synchrotron x-ray
tomographic microscopy. PLoS One, 7(8):e42582, 2012.
[239] D. H. Erwin. Metazoan phylogeny and the cambrian radiation. TrendsEcol
Evol, 6(4):131–4, 1991.
[240] D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and
K. J. Peterson. The cambrian conundrum: early divergence and later eco-
logical success in the early history of animals. Science, 334(6059):1091–7,
2011.
[241] J. Esteve, Y.L. Zhao, M. A. Mate-Gonzalez, M. Gomez-Heras, and J. Peng.
A new high-resolution 3-d quantitative method for analysing small morpho-
logical features: an example using a cambrian trilobite. Sci Rep, 8(1):2868,
2018.
[242] C. G. Extavour. Gray anatomy: phylogenetic patterns of somatic gonad
structures and reproductive strategies across the bilateria. Integr Comp Biol,
47(3):420–6, 2007.
[243] J. X. Fan, S. Z. Shen, D. H. Erwin, P. M. Sadler,N. MacLeod, Q. M. Cheng,
X. D. Hou, J. Yang, X. D. Wang, Y. Wang, H. Zhang, X. Chen, G. X. Li,
Y. C. Zhang, Y. K. Shi, D. X. Yuan, Q. Chen, L. N. Zhang, C. Li, and Y. Y.
Zhao. A high-resolution summary of cambrian to early triassic marine in-
vertebrate biodiversity. Science, 367(6475):272–277, 2020.
[244] J. Fautrez. Bilateral symmetry of embryo of lebistes reticulatus observed in
culture in vitro. C R Seances Soc Biol Fil, 147(15-18):1492–4, 1953.
[245] T. E. Feinberg and J. Mallatt. The evolutionary and genetic origins of con-
sciousness in the cambrian period over 500 million years ago. Front Psy-
chol, 4:667, 2013.
[246] X. Fernandez-Busquets, A. Kornig, I. Bucior, M. M. Burger, and D. Ansel-
metti. Self-recognition and ca2+-dependent carbohydrate-carbohydrate
cell adhesion provide clues to the cambrian explosion. Mol Biol Evol,
26(11):2551–61, 2009.
[247] A. C. Fianco, A. Roisenberg, and D. M. Bonotto. Radon emissions re-
lated to the granitic precambrian shield in southern brazil. Isotopes Environ
Health Stud, 49(1):122–31, 2013.
[248] N. Finke, R. L. Simister, A. H. O’Neil, S. Nomosatryo, C. Henny, L. C.
MacLean, D. E. Canfield, K. Konhauser, S. V. Lalonde, D. A. Fowle, and
S. A. Crowe. Mesophilic microorganisms build terrestrial mats analogous
to precambrian microbial jungles. Nat Commun, 10(1):4323, 2019.
[249] J. R. Finnerty. The origins of axial patterning in the metazoa: how old is
bilateral symmetry? Int J Dev Biol, 47(7-8):523–9, 2003.
[250] J. R. Finnerty. Did internal transport, rather than directed locomotion, favor
the evolution of bilateral symmetry in animals? Bioessays, 27(11):1174–
80, 2005.
[251] J. R. Finnerty, K. Pang, P. Burton, D. Paulson, and M. Q. Martindale. Ori-
gins of bilateral symmetry: Hox and dpp expression in a sea anemone.
Science, 304(5675):1335–7, 2004.
[252] J. R. Finnerty, D. Paulson, P. Burton, K. Pang, and M. Q. Martindale. Early
evolution of a homeobox gene: the parahox gene gsx in the cnidaria and the
bilateria. Evol Dev, 5(4):331–45, 2003.
[253] V. Fleury. Development, triploblastism, physics of wetting and the cam-
brian explosion. Acta Biotheor, 61(3):385–96, 2013.
[254] V. Fleury, O. P. Boryskina, and A. Al-Kilani. Hyperbolic symmetry break-
ing and its role in the establishment of the body plan of vertebrates. C R
Biol, 334(7):505–15, 2011.
[255] M. Foote and S. J. Gould. Cambrian and recent morphological disparity.
Science, 258(5089):1816, 1992.
[256] T. D. Ford, J. Cloud, P. E., and C. A. Nelson. Pteridinium and the
precambrian-cambrian boundary. Science, 157(3791):957–8, 1967.
[257] R. Fortey. Evolution. the cambrian explosion exploded? Science,
293(5529):438–9, 2001.
[258] D. Fox. What sparked the cambrian explosion? Nature, 530(7590):268–70,
2016.
[259] G. Freeman. A developmental basis for the cambrian radiation. Zoolog Sci,
24(2):113–22, 2007.
[260] R. Frei, C. Gaucher, S. W. Poulton, and D. E. Canfield. Fluctuations in pre-
cambrian atmospheric oxygenation recorded by chromium isotopes. Na-
ture, 461(7261):250–3, 2009.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 24
[261] B. M. French. Graphitization of organic material in a progressively meta-
morphosed precambrian iron formation. Science, 146(3646):917–8, 1964.
[262] M. Fritsch, T. Wollesen, and A. Wanninger. Hox and parahox gene expres-
sion in early body plan patterning of polyplacophoran mollusks. J Exp Zool
B Mol Dev Evol, 326(2):89–104, 2016.
[263] H. Fritz, M. Abdelsalam, K. A. Ali, B. Bingen, A. S. Collins, A. R. Fowler,
W. Ghebreab, C. A. Hauzenberger, P. R. Johnson, T. M. Kusky, P. Macey,
S. Muhongo, R. J. Stern, and G. Viola. Orogen styles in the east african
orogen: A review of the neoproterozoic to cambrian tectonic evolution. J
Afr Earth Sci, 86:65–106, 2013.
[264] A. Frood. Palaeobiology: the cambrian smorgasbord. Nature,
453(7196):717–8, 2008.
[265] D. Fu, G. Tong, T. Dai, W. Liu, Y. Yang, Y. Zhang, L. Cui, L. Li, H. Yun,
Y. Wu, A. Sun, C. Liu, W. Pei, R. R. Gaines, and X. Zhang. The qingjiang
biota-a burgess shale-type fossil lagerstatte from the early cambrian of
south china. Science, 363(6433):1338–1342, 2019.
[266] R. Fujinami and R. Imaichi. Developmental anatomy of terniopsis
malayana (podostemaceae, subfamily tristichoideae), with implications for
body plan evolution. J Plant Res, 122(5):551–8, 2009.
[267] S. Fujiwara and K. Kawamura. Acquisition of retinoic acid signaling path-
way and innovation of the chordate body plan. Zoolog Sci, 20(7):809–18,
2003.
[268] R. Furon. Origin and evolution of life in the pre-cambrian period. review
of ideas and facts: physicochemistry, biophysics, biocrystallography, bio-
chemistry and paleontology. Rev Gen Sci Pures Appl Bull Assoc Fr Av Sci,
68:83–101, 1961.
[269] C. Furumizu, J. P. Alvarez, K. Sakakibara, and J. L. Bowman. Antagonis-
tic roles for knox1 and knox2 genes in patterning the land plant body plan
following an ancient gene duplication. PLoS Genet, 11(2):e1004980, 2015.
[270] S. K. Gada and S. J. Nagda. Assessment of position and bilateral symmetry
of occurrence of mental foramen in dentate asian population. J Clin Diagn
Res, 8(2):203–5, 2014.
[271] L. Galli-Resta, B. Falsini, G. Rossi, M. Piccardi, L. Ziccardi, A. Fadda,
A. Minnella, D. Marangoni, G. Placidi, F. Campagna, E. Abed, M. Bertelli,
M. Zuntini, and G. Resta. Bilateral symmetry of visual function loss in
cone-rod dystrophies. Invest Ophthalmol Vis Sci, 57(8):3759–68, 2016.
[272] F. F.Garberoglio, S. Apesteguia, T. R. Simoes, A. Palci, R. O. Gomez, R. L.
Nydam, H. C. E. Larsson, M. S. Y. Lee, and M. W. Caldwell. New skulls
and skeletons of the cretaceous legged snake najash, and the evolution of
the modern snake body plan. Sci Adv, 5(11):eaax5833, 2019.
[273] A. Garcia-Bellido and A. Ferrus. Gynandromorph fate map of the wing-
disk compartments indrosophila melanogaster. WilehmRoux Arch Dev Biol,
178(4):337–340, 1975.
[274] D. C. Garcia-Bellido, M. S. Lee, G. D. Edgecombe, J. B. Jago, J. G.
Gehling, and J. R. Paterson. A new vetulicolian from australia and its bear-
ing on the chordate affinities of an enigmatic cambrian group. BMC Evol
Biol, 14:214, 2014.
[275] D. Gardner. Bilateral symmetry and interneuronal organization in the buc-
cal ganglia of aplysia. Science, 173(3996):550–3, 1971.
[276] R. L. Gardner and T. J. Davies. Trophectoderm growth and bilateral sym-
metry of the blastocyst in the mouse. Hum Reprod, 17(7):1839–45, 2002.
[277] R. L. Gardner and T. J. Davies. An investigation of the origin and signif-
icance of bilateral symmetry of the pronuclear zygote in the mouse. Hum
Reprod, 21(2):492–502, 2006.
[278] n. Gargan, T. P., C. W. Kamau, P. C. Thande, and J. N. Wagateh. Gynandro-
morph of aedes mcintoshi from central kenya. J Am Mosq Control Assoc,
5(4):599–600, 1989.
[279] S. M. Garn and R. S. Baby. Bilateral symmetry in finer lines of increased
density. Am J Phys Anthropol, 31(1):89–92, 1969.
[280] S. Gasmi, G. Neve, N. Pech, S. Tekaya, A. Gilles, and Y. Perez. Evolu-
tionary history of chaetognatha inferred from molecular and morphological
data: a case study for body plan simplification. Front Zool, 11(1):84, 2014.
[281] F. Gasparini, T. Skobo, F. Benato, G. Gioacchini, A. Voskoboynik,
O. Carnevali, L. Manni, and L. Dalla Valle. Characterization of ambra1
in asexual cycle of a non-vertebrate chordate, the colonial tunicate botryl-
lus schlosseri, and phylogenetic analysis of the protein group in bilateria.
Mol Phylogenet Evol, 95:46–57, 2016.
[282] E. A. Gaucher, S. Govindarajan, and O. K. Ganesh. Palaeotemperature
trend for precambrian life inferred from resurrected proteins. Nature,
451(7179):704–7, 2008.
[283] W. J. Gehring. The animal body plan, the prototypic body segment, and eye
evolution. Evol Dev, 14(1):34–46, 2012.
[284] J. Gerhart. Evolution of the organizer and the chordate body plan. Int J Dev
Biol, 45(1):133–53, 2001.
[285] B. C. Gill, T. W. Lyons, S. A. Young, L. R. Kump, A. H. Knoll, and M. R.
Saltzman. Geochemical evidence for widespread euxinia in the later cam-
brian ocean. Nature, 469(7328):80–3, 2011.
[286] S. Ginsburg and E. Jablonka. The evolution of associative learning: A fac-
tor in the cambrian explosion. J Theor Biol, 266(1):11–20, 2010.
[287] A. S. Ginzburg. Appearance of bilateral symmetry in sturgeon eggs. Dokl
Akad Nauk SSSR, 90(3):477–80, 1953.
[288] G. Giribet. Current advances in the phylogenetic reconstruction of meta-
zoan evolution. a new paradigm for the cambrian explosion? Mol Phylo-
genet Evol, 24(3):345–57, 2002.
[289] R. W. Glade, E. M. Burrill, and R. J. Falk. The influence of a tempera-
ture gradient on bilateral symmetry in rana pipiens. Growth, 31(3):231–49,
1967.
[290] M. F. Glaessner, W. V. Preiss, and M. R. Walter. Precambrian columnar
stromatolites in australia: morphological and stratigraphic analysis. Sci-
ence, 164(3883):1056–8, 1969.
[291] A. Y. Glikson. Early precambrian asteroid impact-triggered tsunami: ex-
cavated seabed, debris flows, exotic boulders, and turbulence features as-
sociated with 3.47-2.47 ga-old asteroid impact fallout units, pilbara craton,
western australia. Astrobiology, 4(1):19–50, 2004.
[292] L. Godoy, R. Gonzalez-Duarte, and R. Albalat. Analysis of planarian adh3
supports an intron-rich architecture and tissue-specific expression for the
urbilaterian ancestral form. Comp Biochem Physiol B Biochem Mol Biol,
146(4):489–95, 2007.
[293] B. Gojanovic, B. Waeber, G. Gremion, L. Liaudet, and F. Feihl. Bilateral
symmetry of radial pulse in high-level tennis players: implications for the
validity of central aortic pulse wave analysis. J Hypertens, 27(8):1617–23,
2009.
[294] D. A. Gold. Life in changing fluids: A critical appraisal of swimming ani-
mals before the cambrian. Integr Comp Biol, 58(4):677–687, 2018.
[295] B. J. Gomez-Fernandez, E. Garcia-Ruiz, J. Martin-Diaz, P. Gomez de San-
tos, P.Santos-Moriano, F. J. Plou, A. Ballesteros, M. Garcia, M. Rodriguez,
V. A. Risso, J. M. Sanchez-Ruiz, S. M. Whitney, and M. Alcalde. Directed
-in vitro- evolution of precambrian and extant rubiscos. Sci Rep, 8(1):5532,
2018.
[296] Y. B. Gong and S. Q. Huang. Floral symmetry: pollinator-mediated
stabilizing selection on flower size in bilateral species. Proc Biol Sci,
276(1675):4013–20, 2009.
[297] R. Gonzales, J. S. Laurent, and R. K. Johnson. Relationship between meal
plan, dietary intake, body mass index, and appetitive responsiveness in col-
lege students. J Pediatr Health Care, 31(3):320–326, 2017.
[298] P. Gonzalez, K. R. Uhlinger, and C. J. Lowe. The adult body plan of indi-
rect developing hemichordates develops by adding a hox-patterned trunk to
an anterior larval territory. Curr Biol, 27(1):87–95, 2017.
[299] B. A. Goodman and P. T. Johnson. Disease and the extended phenotype:
parasites control host performance and survival through induced changes in
body plan. PLoS One, 6(5):e20193, 2011.
[300] A. M. Goodwin. Precambrian perspectives. Science, 213(4503):55–61,
1981.
[301] A. M. Goodwin. Precambrian geology: geological evolution of the earth
during the precambrian. Science, 222(4626):923–4, 1983.
[302] V. A. Gostin, P. W.Haines, R. J. Jenkins, W. Compston, and I. S. Williams.
Impact ejecta horizon within late precambrian shales, adelaide geosyncline,
south australia. Science, 233(4760):198–200, 1986.
[303] N. J. Gostling, C. W. Thomas, J. M. Greenwood, X. Dong, S. Bengtson,
E. C. Raff, R. A. Raff, B. M. Degnan, M. Stampanoni, and P.C. Donoghue.
Deciphering the fossil record of early bilaterian embryonic development in
light of experimental taphonomy. Evol Dev, 10(3):339–49, 2008.
[304] R. C. Gougeon, M. G. Mangano, L. A. Buatois, G. M. Narbonne, and B. A.
Laing. Early cambrian origin of the shelf sediment mixed layer. Nat Com-
mun, 9(1):1909, 2018.
[305] L. E. Graham, M. E. Cook, and J. S. Busse. The origin of plants: body plan
changes contributing to a major evolutionary radiation. Proc Natl Acad Sci
USA, 97(9):4535–40, 2000.
[306] C. Grande, J. M. Martin-Duran, N. J. Kenny, M. Truchado-Garcia, and
A. Hejnol. Evolution, divergence and loss of the nodal signalling pathway:
new data and a synthesis across the bilateria. Int J Dev Biol, 58(6-8):521–
32, 2014.
[307] C. Grande and N. H. Patel. Lophotrochozoa get into the game: the nodal
pathway and left/right asymmetry in bilateria. Cold Spring Harb Symp
Quant Biol, 74:281–7, 2009.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 25
[308] B. Grbic and A. B. Bleecker. An altered body plan is conferred on ara-
bidopsis plants carrying dominant alleles of two genes. Development,
122(8):2395–2403, 1996.
[309] J. Green. Precambrian lunar volcanic protolife. Int J Mol Sci, 10(6):2681–
721, 2009.
[310] J. B. Green and J. C. Smith. Growth factors as morphogens: do gradients
and thresholds establish body plan? Trends Genet, 7(8):245–50, 1991.
[311] S. Green, H. Hodgson, and J. Bobrowski. Scapular winging on exercise
cambrian patrol: three soldiers in three days - an occupational risk? J R
Army Med Corps, 165(5):371–373, 2019.
[312] J. B. Greer, S. Khuri, and L. A. Fieber. Phylogenetic analysis of ionotropic
l-glutamate receptor genes in the bilateria, with special notes on aplysia
californica. BMC Evol Biol, 17(1):11, 2017.
[313] H. Groger and V. Schmid. Larval development in cnidaria: a connection to
bilateria? Genesis, 29(3):110–4, 2001.
[314] J. P. Grotzinger and J. F. Kasting. New constraints on precambrian ocean
composition. J Geol, 101(2):235–43, 1993.
[315] J. P. Grotzinger and A. H. Knoll. Anomalous carbonate precipitates: is the
precambrian the key to the permian? Palaios, 10(6):578–96, 1995.
[316] J. P. Grotzinger and A. H. Knoll. Stromatolites in precambrian carbonates:
evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet
Sci, 27:313–58, 1999.
[317] A. Gruhl and B. Okamura. Development and myogenesis of the vermi-
form buddenbrockia (myxozoa) and implications for cnidarian body plan
evolution. Evodevo, 3(1):10, 2012.
[318] H. Grunz. Factors responsible for the establishment of the body plan in the
amphibian embryo. Int J Dev Biol, 40(1):279–89, 1996.
[319] I. Guerreiro, S. Gitto, A. Novoa, J. Codourey,T. H. Nguyen Huynh, F. Gon-
zalez, M. C. Milinkovitch, M. Mallo, and D. Duboule. Reorganisation of
hoxd regulatory landscapes during the evolution of a snake-like body plan.
Elife, 5, 2016.
[320] R. A. Gulbrandsen, S. S. Goldich, and H. H. Thomas. Glauconite from the
precambrian belt series, montana. Science, 140(3565):390–1, 1963.
[321] S. Gutarra, B. C. Moon, I. A. Rahman, C. Palmer, S. Lautenschlager, A. J.
Brimacombe, and M. J. Benton. Effects of body plan evolution on the hy-
drodynamic drag and energy requirements of swimming in ichthyosaurs.
Proc Biol Sci, 286(1898):20182786, 2019.
[322] W. E. Hable. Rac1 signaling in the establishment of the fucoid algal body
plan. Front Plant Sci, 5:690, 2014.
[323] C. Hallmann, B. J. Nettersheim, J. J. Brocks, A. Schwelm, J. M.
Hope, F. Not, M. Lomas, C. Schmidt, R. Schiebel, E. C. M. Nowack,
P. De Deckker, J. Pawlowski, S. S. Bowser, I. Bobrovskiy, K. Zonneveld,
M. Kucera, and M. Stuhr. Reply to: Sources of c30 steroid biomarkers in
neoproterozoic-cambrian rocks and oils. Nat Ecol Evol, 4(1):37–39, 2020.
[324] E. U. Hammarlund, M. P. Smith, J. A. Rasmussen, A. T.Nielsen, D. E. Can-
field, and D. A. T. Harper. The sirius passet lagerstatte of north greenland-
a geochemical window on early cambrian low-oxygen environments and
ecosystems. Geobiology, 17(1):12–26, 2019.
[325] J. Han, S. Conway Morris, J. F. Hoyal Cuthill, and D. Shu. Sclerite-bearing
annelids from the lower cambrian of south china. Sci Rep, 9(1):4955, 2019.
[326] J. Han, S. Kubota, G. Li, X. Yao, X. Yang, D. Shu, Y. Li, S. Kinoshita,
O. Sasaki, T. Komiya, and G. Yan. Early cambrian pentamerous cubozoan
embryos from south china. PLoS One, 8(8):e70741, 2013.
[327] J. Han, S. Kubota, H. O. Uchida, J. Stanley, G. D., X. Yao, D. Shu, Y. Li,
and K. Yasui. Tiny sea anemone from the lower cambrian of china. PLoS
One, 5(10):e13276, 2010.
[328] J. Han, S. C. Morris, Q. Ou, D. Shu, and H. Huang. Meiofaunal deuteros-
tomes from the basal cambrian of shaanxi (china). Nature, 542(7640):228–
231, 2017.
[329] N. Hardcastle, B. M. Oborn, and A. Haworth. On the use of a convolution-
superposition algorithm for plan checking in lung stereotactic body radia-
tion therapy. J Appl Clin Med Phys, 17(5):99–110, 2016.
[330] R. B. Hargraves. Precambrian geologic history. Science, 193(4251):363–
71, 1976.
[331] T. J. Harris, J. K. Sawyer, and M. Peifer. How the cytoskeleton helps build
the embryonic body plan: models of morphogenesis from drosophila. Curr
Top Dev Biol, 89:55–85, 2009.
[332] C. J. Harrison, A. H. Roeder, E. M. Meyerowitz, and J. A. Langdale. Local
cues and asymmetric cell divisions underpin body plan transitions in the
moss physcomitrella patens. Curr Biol, 19(6):461–71, 2009.
[333] A. A. Hartley. The major-axis effect: axes of bilateral symmetry or loci of
neural interactions? Percept Psychophys, 23(6):537–41, 1978.
[334] T. H. Harvey. Carbonaceous preservation of cambrian hexactinellid sponge
spicules. Biol Lett, 6(6):834–7, 2010.
[335] T. H. Harvey and N. J. Butterfield. Sophisticated particle-feeding in a large
early cambrian crustacean. Nature, 452(7189):868–71, 2008.
[336] T. H. Harvey, M. I. Velez, and N. J. Butterfield. Exceptionally preserved
crustaceans from western canada reveal a cryptic cambrian radiation. Proc
Natl Acad Sci U S A, 109(5):1589–94, 2012.
[337] T. H. P. Harvey and N. J. Butterfield. Exceptionally preserved cambrian
loriciferans and the early animal invasion of the meiobenthos. Nat Ecol
Evol, 1(3):22, 2017.
[338] M. Hasebe and T. Tanahashi. Evolution of body plan in land plants. Tan-
pakushitsu Kakusan Koso, 50(6 Suppl):756–61, 2005.
[339] J. T. Haug, D. E. Briggs, and C. Haug. Morphology and function in the
cambrian burgess shale megacheiran arthropod leanchoilia superlata and
the application of a descriptive matrix. BMC Evol Biol, 12:162, 2012.
[340] J. T. Haug, J. B. Caron, and C. Haug. Demecology in the cambrian: syn-
chronized molting in arthropods from the burgess shale. BMC Biol, 11:64,
2013.
[341] J. T. Haug, G. Mayer, C. Haug, and D. E. Briggs. A carboniferous non-
onychophoran lobopodian reveals long-term survival of a cambrian mor-
photype. Curr Biol, 22(18):1673–5, 2012.
[342] J. T. Haug, D. Waloszek, C. Haug, and A. Maas. High-level phylogenetic
analysis using developmental sequences: the cambrian +martinssonia elon-
gata, +musacaris gerdgeyeri gen. et sp. nov.and their position in early crus-
tacean evolution. Arthropod Struct Dev, 39(2-3):154–73, 2010.
[343] B. Hausdorf. Early evolution of the bilateria. Syst Biol, 49(1):130–42, 2000.
[344] N. Hawkes. German body calls for pause in european plan for fast track
drug approval. BMJ, 354:i4479, 2016.
[345] T. He, M. Zhu, B. J. W. Mills, P. M. Wynn, A. Y. Zhuravlev, R. Tostevin,
P.A. E. Pogge von Strandmann, A. Yang, S. W. Poulton, and G. A. Shields.
Possible links between extreme oxygen perturbations and the cambrian ra-
diation of animals. Nat Geosci, 12(6):468–474, 2019.
[346] T. W. Hearing, T. H. P. Harvey, M. Williams, M. J. Leng, A. L. Lamb,
P. R. Wilby, S. E. Gabbott, A. Pohl, and Y. Donnadieu. An early cambrian
greenhouse climate. Sci Adv, 4(5):eaar5690, 2018.
[347] J. Hearn, P. P. and J. F. Sutter. Authigenic potassium feldspar in cam-
brian carbonates: evidence of alleghanian brine migration. Science,
228(4707):1529–31, 1985.
[348] A. Hejnol and M. Q. Martindale. Acoel development supports a sim-
ple planula-like urbilaterian. Philos Trans R Soc Lond B Biol Sci,
363(1496):1493–501, 2008.
[349] C. Helm, A. Karl, P. Beckers, S. Kaul-Strehlow, E. Ulbricht, I. Kourtesis,
H. Kuhrt, H. Hausen, T. Bartolomaeus, A. Reichenbach, and C. Bleidorn.
Early evolution of radial glial cells in bilateria. Proc Biol Sci, 284(1859),
2017.
[350] C. Helm, A. Weigert, G. Mayer, and C. Bleidorn. Myoanatomy of myzos-
toma cirriferum (annelida, myzostomida): implications for the evolution of
the myzostomid body plan. J Morphol, 274(4):456–66, 2013.
[351] S. Hennessey, E. Huszti, A. Gunasekura, A. Salleh, L. Martin, S. Minkin,
S. Chavez, and N. F. Boyd. Bilateral symmetry of breast tissue composi-
tion by magnetic resonance in young women and adults. Cancer Causes
Control, 25(4):491–7, 2014.
[352] J. Q. Henry and M. Q. Martindale. Evolution of cleavage programs in
relationship to axial specification and body plan evolution. Biol Bull,
195(3):363–366, 1998.
[353] J. Q. Henry, M. Q. Martindale, and B. C. Boyer. Axial specification in
a basal member of the spiralian glade: Lineage relationships of the first
four cells to the larval body plan in the polyclad turbellarian hoploplana
inquilina. Biol Bull, 189(2):194–195, 1995.
[354] A. Herpin, C. Lelong, T. Becker, F. M. Rosa, P. Favrel,and C. Cunningham.
Structural and functional evidences for a type 1 tgf-beta sensu stricto recep-
tor in the lophotrochozoan crassostrea gigas suggest conserved molecular
mechanisms controlling mesodermal patterning across bilateria. Mech Dev,
122(5):695–705, 2005.
[355] Q. Herzog, M. Rabus, B. Wolfschoon Ribeiro, and C. Laforsch. Inducible
defenses with a "twist": Daphnia barbata abandons bilateral symmetry in
response to an ancient predator. PLoS One, 11(2):e0148556, 2016.
[356] Y. Heuze, N. Martinez-Abadias, J. M. Stella, C. W. Senders, S. A. Boyad-
jiev, L. J. Lo, and J. T. Richtsmeier. Unilateral and bilateral expression of a
quantitative trait: asymmetry and symmetry in coronal craniosynostosis. J
Exp Zool B Mol Dev Evol, 318(2):109–22, 2012.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 26
[357] T. Hiiragi and D. Solter. Mechanism of first cleavage specification in the
mouse egg: is our body plan set at day 0? Cell Cycle, 4(5):661–4, 2005.
[358] L. C. Hileman. Bilateral flower symmetry–how, when and why? Curr Opin
Plant Biol, 17:146–52, 2014.
[359] N. J. Himmel, J. M. Letcher, A. Sakurai, T. R. Gray, M. N. Benson, and
D. N. Cox. Drosophila menthol sensitivity and the precambrian origins of
transient receptor potential-dependent chemosensation. Philos Trans R Soc
Lond B Biol Sci, 374(1785):20190369, 2019.
[360] F. Hirth, L. Kammermeier, E. Frei, U. Walldorf, M. Noll, and H. Reichert.
An urbilaterian origin of the tripartite brain: developmental genetic insights
from drosophila. Development, 130(11):2365–73, 2003.
[361] J. K. Hobbs, C. Shepherd, D. J. Saul, N. J. Demetras, S. Haaning, C. R.
Monk, R. M. Daniel, and V. L. Arcus. On the origin and evolution of ther-
mophily: reconstruction of functional precambrian enzymes from ancestors
of bacillus. Mol Biol Evol, 29(2):825–35, 2012.
[362] J. Hoefs and M. Schidlowski. Carbon isotope composition of carbona-
ceous matter from the precambrian of the witwatersrand system. Science,
155(3766):1096–7, 1967.
[363] H. J. Hofmann. Precambrian fossils (?) near elliot lake, ontario. Science,
156(3774):500–4, 1967.
[364] H. J. Hofmann, W. H. Fritz, and G. M. Narbonne. Ediacaran (precam-
brian) fossils from the wernecke mountains, northwestern canada. Science,
221(4609):455–7, 1983.
[365] G. Holland, B. S. Lollar, L. Li, G. Lacrampe-Couloume, G. F. Slater, and
C. J. Ballentine. Deep fracture fluids isolated in the crust since the precam-
brian era. Nature, 497(7449):357–60, 2013.
[366] H. D. Holland and C. R. Feakes. Paleosols and their relevance to precam-
brian atmospheric composition: a discussion. J Geol, 97(6):761–2, 1989.
[367] L. Z. Holland. Body-plan evolution in the bilateria: early antero-posterior
patterning and the deuterostome-protostome dichotomy. Curr Opin Genet
Dev, 10(4):434–42, 2000.
[368] P. W. Holland. Did homeobox gene duplications contribute to the cambrian
explosion? Zoological Lett, 1:1, 2015.
[369] G. Hollo and M. Novak. The manoeuvrability hypothesis to explain the
maintenance of bilateral symmetry in animal evolution. Biol Direct, 7:22,
2012.
[370] L. E. Holmer, C. B. Skovsted, G. A. Brock, J. L. Valentine, and J. R. Pater-
son. The early cambrian tommotiid micrina, a sessile bivalved stem group
brachiopod. Biol Lett, 4(6):724–8, 2008.
[371] M. J. Hopkins. How species longevity, intraspecific morphological varia-
tion, and geographic range size are related: a comparison using late cam-
brian trilobites. Evolution, 65(11):3253–73, 2011.
[372] M. J. Hopkins. Decoupling of taxonomic diversity and morphological dis-
parity during decline of the cambrian trilobite family pterocephaliidae. J
Evol Biol, 26(8):1665–76, 2013.
[373] M. J. Hopkins, F. Chen, S. Hu, and Z. Zhang. The oldest known digestive
system consisting of both paired digestive glands and a crop from excep-
tionally preserved trilobites of the guanshan biota (early cambrian, china).
PLoS One, 12(9):e0184982, 2017.
[374] D. J. Horne. Cambrian explosion still in the water. Trends Ecol Evol,
13(8):322, 1998.
[375] R. J. Horodyski and L. P. Knauth. Life on land in the precambrian. Science,
263(5146):494–8, 1994.
[376] X. Hou, M. Williams, D. J. Siveter, D. J. Siveter, R. J. Aldridge, and R. S.
Sansom. Soft-part anatomy of the early cambrian bivalved arthropods kun-
yangella and kunmingella: significance for the phylogenetic relationships
of bradoriida. Proc Biol Sci, 277(1689):1835–41, 2010.
[377] X. Hou, M. Williams, D. J. Siveter, D. J. Siveter, S. Gabbott, D. Holwell,
and T. H. Harvey. A chancelloriid-like metazoan from the early cambrian
chengjiang lagerstatte, china. Sci Rep, 4:7340, 2014.
[378] X. G. Hou, R. J. Aldridge, D. J. Siveter, D. J. Siveter, M. Williams, J. Za-
lasiewicz, and X. Y. Ma. An early cambrian hemichordate zooid. Curr Biol,
21(7):612–6, 2011.
[379] X. G. Hou, D. J. Siveter, R. J. Aldridge, and D. J. Siveter. Collective be-
havior in an early cambrian arthropod. Science, 322(5899):224, 2008.
[380] C. H. House, J. W. Schopf, K. D. McKeegan, C. D. Coath, T. M. Harrison,
and K. O. Stetter. Carbon isotopic composition of individual precambrian
microfossils. Geology, 28(8):707–10, 2000.
[381] J. Houstek. Development of the human body in relation to basic functions
of the major body systems. results of the major tasks of the viii-3-3 national
plan for basic research for 1986-1990. Cesk Pediatr, 46(5):289–94, 1991.
[382] J. Houstek and O. Hrodek. Results of the major tasks of vii-3-3 "human de-
velopment after birth in relation to functionally important body systems",
the national plan for basic research 1981-1985. Cesk Pediatr, 41(8):441–5,
1986.
[383] J. J. Howard, W. K. Gall, and J. Oliver. A gynandromorph of culiseta mor-
sitans. J Am Mosq Control Assoc, 23(3):340–2, 2007.
[384] D. G. Howarth, T. Martins, E. Chimney, and M. J. Donoghue. Diversifica-
tion of cycloidea expression in the evolution of bilateral flowersymmetry in
caprifoliaceae and lonicera (dipsacales). Ann Bot, 107(9):1521–32, 2011.
[385] J. F. Hoyal Cuthill and S. Conway Morris. Fractal branching organizations
of ediacaran rangeomorph fronds reveal a lost proterozoic body plan. Proc
Natl Acad Sci U S A, 111(36):13122–6, 2014.
[386] D. Y. Huang, J. Y. Chen, J. Vannier, and J. I. Saiz Salinas. Early cambrian
sipunculan worms from southwest china. Proc Biol Sci, 271(1549):1671–6,
2004.
[387] L. Huang, T. Djemil, T. Zhuang, M. Andrews, S. T. Chao, J. H. Suh, and
P. Xia. Treatment plan quality and delivery accuracy assessments on 3 imrt
delivery methods of stereotactic body radiotherapy for spine tumors. Med
Dosim, 44(1):11–14, 2019.
[388] C. L. Hughes and T. C. Kaufman. Exploring the myriapod body plan:
expression patterns of the ten hox genes in a centipede. Development,
129(5):1225–38, 2002.
[389] C. L. Hughes and T. C. Kaufman. Hox genes and the evolution of the
arthropod body plan. Evol Dev, 4(6):459–99, 2002.
[390] N. C. Hughes. Strength in numbers: High phenotypic variance in early cam-
brian trilobites and its evolutionary implications. Bioessays, 29(11):1081–
4, 2007.
[391] T. S. Hunt. The pre-cambrian rocks of wales. Science, 2(33):403, 1883.
[392] H. G. Huxley. The degree of bilateral symmetry in the distribution of plaque
bacteria and dental caries in wistar rats. Arch Oral Biol, 18(8):981–6, 1973.
[393] I. A. Illan, J. M. Gorriz, J. Ramirez, E. W. Lang, D. Salas-Gonzalez, and
C. G. Puntonet. Bilateral symmetry aspects in computer-aided alzheimer’s
disease diagnosis by single-photon emission-computed tomography imag-
ing. Artif Intell Med, 56(3):191–8, 2012.
[394] G. Inversini, L. Conte, G. Pedroli, and M. Visconti. Plan of a whole-
body radioactivity counter for clinical use and protection. Radiol Med,
64(10):1179–81, 1978.
[395] N. Irie and S. Kuratani. The developmental hourglass model: a predictor of
the basic body plan? Development, 141(24):4649–55, 2014.
[396] A. Ito, M. N. Aoki, K. Yahata, and H. Wada. Complicated evolution of
the caprellid (crustacea: Malacostraca: Peracarida: Amphipoda) body plan,
reacquisition or multiple losses of the thoracic limbs and pleons. Dev Genes
Evol, 221(3):133–40, 2011.
[397] M. Ito, Y. Sato, and M. Matsuoka. Involvement of homeobox genes in early
body plan of monocot. Int Rev Cytol, 218:1–35, 2002.
[398] T. A. Jackson. Fossil actinomycetes in middle precambrian glacial varves.
Science, 155(3765):1003–5, 1967.
[399] D. K. Jacobs. Selector genes and the cambrian radiation of bilateria. Proc
Natl Acad Sci U S A, 87(11):4406–10, 1990.
[400] D. K. Jacobs, N. C. Hughes, S. T. Fitz-Gibbon, and C. J. Winchell. Terminal
addition, the cambrian radiation and the phanerozoic evolution of bilaterian
form. Evol Dev, 7(6):498–514, 2005.
[401] M. Jager, E. Queinnec, E. Houliston, and M. Manuel. Expansion of the sox
gene family predated the emergence of the bilateria. Mol Phylogenet Evol,
39(2):468–77, 2006.
[402] N. P. James, D. R. Kobluk, and S. G. Pemberton. The oldest macroborers:
lower cambrian of labrador. Science, 197(4307):980–3, 1977.
[403] T. Jankauskas and W. A. Sarjeant. Boris v. timofeyev (1916-1982): pioneer
of precambrian and early paleozoic palynology. Earth Sci Hist, 20(2):178–
92, 2001.
[404] W. Janning. Gynandromorph fate maps in drosophila. Results Probl Cell
Differ, 9:1–28, 1978.
[405] R. P. Jefferies. Two types of bilateral symmetry in the metazoa: chordate
and bilaterian. Ciba Found Symp, 162:94–120; discussion 121–7, 1991.
[406] H. Jehle. Bilateral symmetry in morphogenesis of embryos. Proc Natl Acad
Sci U S A, 67(1):156–63, 1970.
[407] B. Jenkins. Redundancy in the perception of bilateral symmetry in dot tex-
tures. Percept Psychophys, 32(2):171–7, 1982.
[408] S. Jensen. The proterozoic and earliest cambrian trace fossil record; pat-
terns, problems and perspectives. Integr Comp Biol, 43(1):219–28, 2003.
[409] V. Jensen. Early precambrian impact structure and associated hyalomy-
lonites near agto, west greenland. Nature, 233(5316):188–90, 1971.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 27
[410] D. J. Jerolmack and D. Mohrig. Palaeoclimatology: formation of precam-
brian sediment ripples. Nature, 436(7049):E1; discussion E1–2, 2005.
[411] S. Y. Jiang, D. H. Pi, C. Heubeck, H. Frimmel, Y. P. Liu, H. L. Deng, H. F.
Ling, and J. H. Yang. Early cambrian ocean anoxia in south china. Nature,
459(7248):E5–6; discussion E6, 2009.
[412] H. Jockusch and A. Dress. From sphere to torus: a topological view of the
metazoan body plan. Bull Math Biol, 65(1):57–65, 2003.
[413] H. Jockusch and A. Dress. Re: Jockusch and dress ’from sphere to torus:
a topological view of the metazoan body plan’ (bull. math.biol. (2003) 65,
57-65). Bull Math Biol, 66(5):1455, 2004.
[414] K. B. John. Variations in bilateral symmetry of human figure drawings as-
sociated with two levels of adjustment. J Clin Psychol, 30(3):401–4, 1974.
[415] W. J. Johnson and R. H. Goldstein. Cambrian sea water preserved as inclu-
sions in marine low-magnesium calcite cement. Nature, 362(6418):335–
337, 1993.
[416] P. Jolicoeur. Bilateral symmetry and asymmetry in limb bones of martes
americana and man. Rev Can Biol, 22:409–32, 1963.
[417] J. E. Jones, T. R. Lynch, and A. M. Sadove. Three dimensional premaxillary
orthopedic technique for improved position and symmetry prior to cheilo-
plasty in bilateral cleft lip and palate patients. Quintessence Int, 16(3):229–
31, 1985.
[418] J. Just, R. M. Kristensen, and J. Olesen. Dendrogramma, new genus, with
two new non-bilaterian species from the marine bathyal of southeastern aus-
tralia (animalia, metazoa incertae sedis)–with similarities to some medu-
soids from the precambrian ediacara. PLoS One, 9(9):e102976, 2014.
[419] E. R. Kanasewich. Precambrian rift: genesis of strata-bound ore deposits.
Science, 161(3845):1002–5, 1968.
[420] K. Kao and M. Danilchik. Generation of body plan phenotypes in early
embryogenesis. Methods Cell Biol, 36:271–84, 1991.
[421] A. Kareem, D. Radhakrishnan, Y. Sondhi, M. Aiyaz, M. V. Roy, K. Sugi-
moto, and K. Prasad. De novo assembly of plant body plan: a step ahead
of deadpool. Regeneration (Oxf), 3(4):182–197, 2016.
[422] J. F. Kasting. Theoretical constraints on oxygen and carbon dioxide con-
centrations in the precambrian atmosphere. Precambrian Res, 34:205–29,
1987.
[423] H. Katow, L. Elia, and M. Byrne. Development of nervous systems to meta-
morphosis in feeding and non-feeding echinoid larvae, the transition from
bilateral to radial symmetry. Dev Genes Evol, 219(2):67–77, 2009.
[424] A. J. Kaufman, A. H. Knoll, M. A. Semikhatov, J. P. Grotzinger, S. B.
Jacobsen, and W. Adams. Integrated chronostratigraphy of proterozoic-
cambrian boundary beds in the western anabar region, northern siberia.
Geol Mag, 133(5):509–33, 1996.
[425] J. S. Kayode, Y. Yusup, M. N. M. Nawawi, K. S. Ariffin, A. E. Kalil, and
M. G. Tagwa. Edx-sem-xrf data from selected precambrian basement com-
plex rock samples in part of southwestern nigeria. Data Brief, 20:1525–
1531, 2018.
[426] J. Kazmierczak and S. Kempe. Genuine modern analogues of precam-
brian stromatolites from caldera lakes of niuafo’ou island, tonga. Natur-
wissenschaften, 93(3):119–26, 2006.
[427] S. Keerthisinghe, J. A. Nadeau, J. R. Lucas, T. Nakagawa, and F. D. Sack.
The arabidopsis leucine-rich repeat receptor-like kinase mustaches enforces
stomatal bilateral symmetry in arabidopsis. Plant J, 81(5):684–94, 2015.
[428] R. Keller. Shaping the vertebrate body plan by polarized embryonic cell
movements. Science, 298(5600):1950–4, 2002.
[429] A. W. Kellner. Scientific integrity, precambrian acritarchs from brazil and
mangroves and climate change. An Acad Bras Cienc, 87(2):537–8, 2015.
[430] J. F. Kemp. Pre-cambrian sediments in the adirondacks. Science,
12(290):81–98, 1900.
[431] A. Kempe, J. W. Schopf, W. Altermann, A. B. Kudryavtsev, and W. M.
Heckl. Atomic force microscopy of precambrian microscopic fossils. Proc
Natl Acad Sci U S A, 99(14):9117–20, 2002.
[432] M. Kennedy, M. Droser, L. M. Mayer, D. Pevear, and D. Mrofka. Late
precambrian oxygenation; inception of the clay mineral factory. Science,
311(5766):1446–9, 2006.
[433] D. H. Kenyon and A. Nissenbaum. Melanoidin and aldocyanoin micro-
spheres: implications for chemical evolution and early precambrian mi-
cropaleontology. J Mol Evol, 7(3):245–51, 1976.
[434] A. Kerner, F. Debrenne, and R. Vignes-Lebbe. Cambrian archaeocy-
athan metazoans: revision of morphological characters and standardization
of genus descriptions to establish an online identification tool. Zookeys,
(150):381–95, 2011.
[435] R. A. Kerr. Precambrian tectonics: is the present the key to the past? Sci-
ence, 199(4326):282–330, 1978.
[436] R. A. Kerr. Evolution. a trigger for the cambrian explosion? Science,
298(5598):1547, 2002.
[437] G. Kesidis, B. J. Slater, S. Jensen, and G. E. Budd. Caught in the
act: priapulid burrowers in early cambrian substrates. Proc Biol Sci,
286(1894):20182505, 2019.
[438] K. Khalturin, C. Shinzato, M. Khalturina, M. Hamada, M. Fujie, R. Koy-
anagi, M. Kanda, H. Goto, F. Anton-Erxleben, M. Toyokawa, S. Toshino,
and N. Satoh. Medusozoan genomes inform the evolution of the jellyfish
body plan. Nat Ecol Evol, 3(5):811–822, 2019.
[439] K. Khalturin, C. Shinzato, M. Khalturina, M. Hamada, M. Fujie, R. Koy-
anagi, M. Kanda, H. Goto, F. Anton-Erxleben, M. Toyokawa, S. Toshino,
and N. Satoh. Publisher correction: Medusozoan genomes inform the evo-
lution of the jellyfish body plan. Nat Ecol Evol, 3(6):989, 2019.
[440] D. H. Kim, K. R. Lee, T. Y. Kim, and M. S. Yoon. Coexistence of lichen
sclerosus with morphoea showing bilateral symmetry. Clin Exp Dermatol,
34(7):e416–8, 2009.
[441] S. J. Kinder, T. E. Tsang, S. L. Ang, R. R. Behringer, and P. P. Tam. Defects
of the body plan of mutant embryos lacking lim1, otx2 or hnf3beta activity.
Int J Dev Biol, 45(1):347–55, 2001.
[442] L. P. Knauth and M. J. Kennedy. The late precambrian greening of the
earth. Nature, 460(7256):728–32, 2009.
[443] R. D. Knight and S. M. Shimeld. Identification of conserved c2h2 zinc-
finger gene families in the bilateria. Genome Biol, 2(5):RESEARCH0016,
2001.
[444] A. H. Knoll. Proterozoic and early cambrian protists: evidence for accel-
erating evolutionary tempo. Proc Natl Acad Sci U S A, 91(15):6743–50,
1994.
[445] A. H. Knoll and E. S. Barghoorn. Ambient pyrite in precambrian chert: new
evidence and a theory. Proc Natl Acad Sci U S A, 71(6):2329–31, 1974.
[446] A. H. Knoll, E. S. Barghoorn, and S. Golubic. Paleopleurocapsa wopfnerii
gen. et sp. nov.: A late precambrian alga and its modern counterpart. Proc
Natl Acad Sci U S A, 72(7):2488–92, 1975.
[447] A. H. Knoll, I. J. Fairchild, and K. Swett. Calcified microbes in neo-
proterozoic carbonates: implications for our understanding of the protero-
zoic/cambrian transition. Palaios, 8:512–25, 1993.
[448] M. Kobayashi, H. Furuya, and H. Wada. Molecular markers comparing the
extremely simple body plan of dicyemids to that of lophotrochozoans: in-
sight from the expression patterns of hox, otx, and brachyury. Evol Dev,
11(5):582–9, 2009.
[449] S. Kochav and H. Eyal-Giladi. Bilateral symmetry in chick embryo deter-
mination by gravity. Science, 171(3975):1027–9, 1971.
[450] M. O. Kokornaczyk, G. Dinelli, and L. Betti. Approximate bilateral sym-
metry in evaporation-induced polycrystalline structures from droplets of
wheat grain leakages and fluctuating asymmetry as quality indicator. Natur-
wissenschaften, 100(1):111–5, 2013.
[451] M. P. Kolesnikov and I. A. Egorov. Porphyrins and phycobilins in precam-
brian rocks. Orig Life, 8(4):383–90, 1977.
[452] D. Koop, P. Cisternas, V. B. Morris, D. Strbenac, J. Y. Yang, G. A. Wray,
and M. Byrne. Nodal and bmp expression during the transition to pen-
tamery in the sea urchin heliocidaris erythrogramma: insights into pattern-
ing the enigmatic echinoderm body plan. BMC Dev Biol, 17(1):4, 2017.
[453] D. Koop, N. D. Holland, M. Semon, S. Alvarez, A. R. de Lera, V. Laudet,
L. Z. Holland, and M. Schubert. Retinoic acid signaling targets hox genes
during the amphioxus gastrula stage: insights into early anterior-posterior
patterning of the chordate body plan. Dev Biol, 338(1):98–106, 2010.
[454] E. M. Kramer and W. Li. A transcriptomics and comparative genomics
analysis reveals gene families with a role in body plan complexity. Front
Plant Sci, 8:869, 2017.
[455] J. E. Kraus, D. Fredman, W. Wang, K. Khalturin, and U. Technau. Adop-
tion of conserved developmental genes in development and origin of the
medusa body plan. Evodevo, 6:23, 2015.
[456] V. Kudithipudi,O. Gayou, and A. Colonias. Megavoltage conebeam ct cine
as final verification of treatment plan in lung stereotactic body radiotherapy.
J Med Imaging Radiat Oncol, 60(3):441–5, 2016.
[457] A. B. Kudryavtsev, J. W. Schopf, D. G. Agresti, and T. J. Wdowiak. In situ
laser-raman imagery of precambrian microscopic fossils. Proc Natl Acad
Sci U S A, 98(3):823–6, 2001.
[458] L. R. Kump and H. D. Holland. Iron in precambrian rocks: implications for
the global oxygen budget of the ancient earth. Geochim Cosmochim Acta,
56(8):3217–23, 1992.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 28
[459] S. Kuratani, T. Ueki, S. Aizawa, and S. Hirano. Peripheral development
of cranial nerves in a cyclostome, lampetra japonica: morphological dis-
tribution of nerve branches and the vertebrate body plan. J Comp Neurol,
384(4):483–500, 1997.
[460] I. Kurki. Stimulus information supporting bilateral symmetry perception.
Vision Res, 161:18–24, 2019.
[461] T. Lacalli. The middle cambrian fossil pikaia and the evolution of chordate
swimming. Evodevo, 3(1):12, 2012.
[462] P. Lagutenko Iu. Early evolutional forms of epidermal nervous junction in
bilateria as possible witness of the first variety of its original condition. Zh
Evol Biokhim Fiziol, 38(3):275–82, 2002.
[463] M. G. Laird, P. B. Andrews, P. Kyle, and P. Jennings. Late cambrian fossils
and the age of the ross orogeny, antarctica. Nature, 238(5358):34–6, 1972.
[464] R. S. Lambert. Early precambrian terrains: evolution of the lewisian and
comparable precambrian high grade terrains. Science, 240(4850):342–3,
1988.
[465] J. C. Lamsdell, M. Stein, and P. A. Selden. Kodymirus and the case for
convergence of raptorial appendages in cambrian arthropods. Naturwis-
senschaften, 100(9):811–25, 2013.
[466] C. Larroux. The genome of the sponge amphimedon queenslandica is help-
ing us to reconstruct our precambrian ancestor. Med Sci (Paris), 27(2):138–
41, 2011.
[467] N. Lartillot, M. Le Gouar, and A. Adoutte. Expression patterns of fork
head and goosecoid homologues in the mollusc patella vulgata supports the
ancestry of the anterior mesendoderm across bilateria. Dev Genes Evol,
212(11):551–61, 2002.
[468] N. Lartillot, O. Lespinet, M. Vervoort, and A. Adoutte. Expression pattern
of brachyury in the mollusc patella vulgata suggests a conserved role in the
establishment of the ap axis in bilateria. Development, 129(6):1411–21,
2002.
[469] N. Lartillot and H. Philippe. Improvement of molecular phylogenetic infer-
ence and the phylogeny of bilateria. Philos Trans R Soc Lond B Biol Sci,
363(1496):1463–72, 2008.
[470] M. J. Lavin, B. Eldem, and Z. J. Gregor. Symmetry of disciform scars in
bilateral age-related macular degeneration. Br J Ophthalmol, 75(3):133–6,
1991.
[471] I. Lazcano, R. Rodriguez-Ortiz, P. Villalobos, A. Martinez-Torres, J. C.
Solis-Sainz, and A. Orozco. Knock-down of specific thyroid hormone re-
ceptor isoforms impairs body plan development in zebrafish. Front En-
docrinol (Lausanne), 10:156, 2019.
[472] M. S. Lee. Cambrian and recent morphological disparity. Science,
258(5089):1816–7, 1992.
[473] M. S. Lee. The origin of the turtle body plan: bridging a famous morpho-
logical gap. Science, 261(5129):1716–20, 1993.
[474] M. S. Lee, J. B. Jago, D. C. Garcia-Bellido, G. D. Edgecombe, J. G.
Gehling, and J. R. Paterson. Modern optics in exceptionally preserved
eyes of early cambrian arthropods from australia. Nature, 474(7353):631–
4, 2011.
[475] M. S. Lee, J. Soubrier, and G. D. Edgecombe. Rates of phenotypic and ge-
nomic evolution during the cambrian explosion. Curr Biol, 23(19):1889–
95, 2013.
[476] M. S. Y. Lee and J. B. Dorey. Evolution: Dampening the cambrian explo-
sion. Curr Biol, 28(23):R1353–R1355, 2018.
[477] D. A. Legg, M. D. Sutton, G. D. Edgecombe, and J. B. Caron. Cam-
brian bivalved arthropod reveals origin of arthrodization. Proc Biol Sci,
279(1748):4699–704, 2012.
[478] S. M. Leinders, S. Breedveld, A. Mendez Romero, D. Schaart, Y. Sep-
penwoolde, and B. J. Heijmen. Adaptive liver stereotactic body radiation
therapy: automated daily plan reoptimization prevents dose delivery degra-
dation caused by anatomy deformations. Int J Radiat Oncol Biol Phys,
87(5):1016–21, 2013.
[479] C. Lenk, P. K. Strother, C. A. Kaye, and E. S. Barghoorn. Precam-
brian age of the boston basin: new evidence from microfossils. Science,
216(4546):619–20, 1982.
[480] R. Lerosey-Aubril, T. A. Hegna, C. Kier, E. Bonino, J. Habersetzer, and
M. Carre. Controls on gut phosphatisation: the trilobites from the weeks
formation lagerstatte (cambrian; utah). PLoS One, 7(3):e32934, 2012.
[481] R. Lerosey-Aubril and J. Ortega-Hernandez. Appendicular anatomy of the
artiopod emeraldella brutoni from the middle cambrian (drumian) of west-
ern utah. PeerJ, 7:e7945, 2019.
[482] R. Lerosey-Aubril and S. Pates. New suspension-feeding radiodont sug-
gests evolution of microplanktivory in cambrian macronekton. Nat Com-
mun, 9(1):3774, 2018.
[483] M. A. LeRoy and B. C. Gill. Evidence for the development of local anoxia
during the cambrian spice event in eastern north america. Geobiology,
17(4):381–400, 2019.
[484] O. Lespinet, A. J. Nederbragt, M. Cassan, W. J. Dictus, A. E. van Loon, and
A. Adoutte. Characterisation of two snail genes in the gastropod mollusc
patella vulgata. implications for understanding the ancestral function of the
snail-related genes in bilateria. Dev Genes Evol, 212(4):186–95, 2002.
[485] S. P. Leys,G. Yahel, M. A. Reidenbach, V.Tunnicliffe, U. Shavit, and H. M.
Reiswig. The sponge pump: the role of current induced flow in the design
of the sponge body plan. PLoS One, 6(12):e27787, 2011.
[486] C. W. Li, J. Y. Chen, and T. E. Hua. Precambrian sponges with cellular
structures. Science, 279(5352):879–82, 1998.
[487] D. J. Li and S. Zhang. The cambrian explosion triggered by critical
turning point in genome size evolution. Biochem Biophys Res Commun,
392(2):240–5, 2010.
[488] F. Li and X. Wang. Bilateral symmetry of human carotid artery atheroscle-
rosis: a multi-contrast weighted mr study. Int J Cardiovasc Imaging,
32(8):1219–26, 2016.
[489] L. Li, B. A. Wing, T. H. Bui, J. M. McDermott, G. F. Slater, S. Wei,
G. Lacrampe-Couloume, and B. S. Lollar. Sulfur mass-independent frac-
tionation in subsurface fracture waters indicates a long-standing sulfur cy-
cle in precambrian rocks. Nat Commun, 7:13252, 2016.
[490] L. Li, X. Zhang, H. Yun, and G. Li. Complex hierarchical microstructures
of cambrian mollusk pelagiella: insight into early biomineralization and
evolution. Sci Rep, 7(1):1935, 2017.
[491] S. Li, F. Danion, M. L. Latash, Z. M. Li, and V. M. Zatsiorsky. Bilateral
deficit and symmetry in finger force production during two-hand multifin-
ger tasks. Exp Brain Res, 141(4):530–40, 2001.
[492] W. P. Li, Y. Y. Zhao, M. Y. Zhao, X. P. Zha, and Y. F. Zheng. Enhanced
weathering as a trigger for the rise of atmospheric o2 level from the late
ediacaran to the early cambrian. Sci Rep, 9(1):10630, 2019.
[493] Y. L. Li. Hexagonal platelet-like magnetite as a biosignature of ther-
mophilic iron-reducing bacteria and its applications to the exploration of
the modern deep, hot biosphere and the emergence of iron-reducing bacte-
ria in early precambrian oceans. Astrobiology, 12(12):1100–8, 2012.
[494] Z. Q. Li, L. C. Zhang, C. J. Xue, M. T. Zheng, M. T. Zhu, L. J. Robbins,
J. F. Slack, N. J. Planavsky, and K. O. Konhauser. Earth’s youngest banded
iron formation implies ferruginous conditions in the early cambrian ocean.
Sci Rep, 8(1):9970, 2018.
[495] R. Lichtneckert and H. Reichert. Insights into the urbilaterian brain: con-
served genetic patterning mechanisms in insect and vertebrate brain devel-
opment. Heredity (Edinb), 94(5):465–77, 2005.
[496] B. S. Lieberman. A test of whether rates of speciation were unusually high
during the cambrian radiation. Proc Biol Sci, 268(1477):1707–14, 2001.
[497] B. S. Lieberman. Taking the pulse of the cambrian radiation. Integr Comp
Biol, 43(1):229–37, 2003.
[498] B. S. Lieberman, R. Kurkewicz, H. Shinogle, J. Kimmig, and B. A. Mac-
Gabhann. Disc-shaped fossils resembling porpitids or eldonids from the
early cambrian (series 2: Stage 4) of western usa. PeerJ, 5:e3312, 2017.
[499] S. Lin, L. Zhang, G. V. P. Reddy, C. Hui, J. Gielis, Y. Ding, and P. Shi.
A geometrical model for testing bilateral symmetry of bamboo leaf with a
simplified gielis equation. Ecol Evol, 6(19):6798–6806, 2016.
[500] Y. W. Lin, K. H. Lin, H. W. Ho, H. M. Lin, L. C. Lin, S. P. Lee, and
C. S. Chui. Treatment plan comparison between stereotactic body radiation
therapy techniques for prostate cancer: non-isocentric cyberknife versus
isocentric rapidarc. Phys Med, 30(6):654–61, 2014.
[501] D. A. Lindsey. Sediment transport in a precambrian ice age: the huronian
gowganda formation. Science, 154(3755):1442–3, 1966.
[502] M. I. Lipshits, V. S. Gurfinkel, S. Deshonen, D. McIntyre, and A. Bertose.
Gravitation and hemispheric specialization of the brain during determina-
tion of bilateral symmetry. Fiziol Cheloveka, 28(2):5–11, 2002.
[503] C. Liu, Z. Xu, and N. H. Chua. Auxin polar transport is essential for the es-
tablishment of bilateral symmetry during early plant embryogenesis. Plant
Cell, 5(6):621–630, 1993.
[504] J. Liu, Q. Ou, J. Han, J. Li, Y. Wu, G. Jiao, and T. He. Lower cambrian
polychaete from china sheds light on early annelid evolution. Naturwis-
senschaften, 102(5-6):34, 2015.
[505] J. Liu, M. Steiner, J. A. Dunlop, H. Keupp, D. Shu, Q. Ou, J. Han,
Z. Zhang, and X. Zhang. An armoured cambrian lobopodian from china
with arthropod-like appendages. Nature, 470(7335):526–30, 2011.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 29
[506] J. Liu, M. Steiner, J. A. Dunlop, and D. Shu. Microbial decay analysis
challenges interpretation of putative organ systems in cambrian fuxianhui-
ids. Proc Biol Sci, 285(1876), 2018.
[507] R. Liu, E. V. Linardopoulou, G. E. Osborn, and S. M. Parkhurst. Formins
in development: orchestrating body plan origami. Biochim Biophys Acta,
1803(2):207–25, 2010.
[508] Y. Liu, Z. X. Li, S. A. Pisarevsky, U. Kirscher, R. N. Mitchell, J. C.
Stark, C. Clark, and M. Hand. First precambrian palaeomagnetic data from
the mawson craton (east antarctica) and tectonic implications. Sci Rep,
8(1):16403, 2018.
[509] Y. Liu, R. R. Melzer, J. T. Haug, C. Haug, D. E. Briggs, M. K. Hornig,
Y. Y. He, and X. G. Hou. Three-dimensionally preserved minute larva of a
great-appendage arthropod from the early cambrian chengjiang biota. Proc
Natl Acad Sci U S A, 113(20):5542–6, 2016.
[510] Y. J. Liu and B. D. Hall. Body plan evolution of ascomycetes, as in-
ferred from an rna polymerase ii phylogeny. Proc Natl Acad Sci U S A,
101(13):4507–12, 2004.
[511] J. K. Lockey and M. A. Willis. One antenna, two antennae, big antennae,
small: total antennae length, not bilateral symmetry, predicts odor-tracking
performance in the american cockroach periplaneta americana. J Exp Biol,
218(Pt 14):2156–65, 2015.
[512] G. A. Logan, R. E. Summons, and J. M. Hayes. An isotopic biogeochemical
study of neoproterozoic and early cambrian sediments from the centralian
superbasin, australia. Geochim Cosmochim Acta, 61(24):5391–409, 1997.
[513] B. S. Lollar, T. C. Onstott, G. Lacrampe-Couloume, and C. J. Ballentine.
The contribution of the precambrian continental lithosphere to global h2
production. Nature, 516(7531):379–82, 2014.
[514] M. R. Longo, A. Ghosh, and T. Yahya. Bilateral symmetry of distortions of
tactile size perception. Perception, 44(11):1251–62, 2015.
[515] A. S. Lopuchin. Structures of biogenic origin from early precambrian rocks
of euro-asia. Orig Life, 6(1-2):45–57, 1975.
[516] G. D. Love, J. A. Zumberge, P. Cardenas, E. A. Sperling, M. Rohrssen,
E. Grosjean, J. P. Grotzinger, and R. E. Summons. Sources of c30 steroid
biomarkers in neoproterozoic-cambrian rocks and oils. Nat Ecol Evol,
4(1):34–36, 2020.
[517] S. Lovtrup. A physiological interpretation of the mechanism involved in
the determination of bilateral symmetry in amphibian embryos. J Embryol
Exp Morphol, 6(1):15–27, 1958.
[518] V. L. Low, M. L. Wong, J. W. K. Liew, S. Pramasivan, N. K. Jeyaprakasam,
and I. Vythilingam. Gender beyond male and female: Occurrence of a
gynandromorph in the japanese encephalitis vector culex sitiens (diptera:
Culicidae). Acta Trop, 201:105207, 2020.
[519] M. Lucia, A. H. Abrahamovich, and L. J. Alvarez. A gynandromorph
of xylocopa nigrocincta smith (hymenoptera: Apidae). Neotrop Entomol,
38(1):901–3, 2009.
[520] O. M. Lukianovaia and L. I. Omel’chenko. Chief results of scientific re-
search concerning the problem of ’age and the child’s body under normal
conditions and in pathology’ during the 9th five-year-plan. Pediatr Akus
Ginekol, (6):29–31, 1976.
[521] T. M. Lundin, M. D. Grabiner, and D. W. Jahnigen. On the assumption
of bilateral lower extremity joint moment symmetry during the sit-to-stand
task. J Biomech, 28(1):109–12, 1995.
[522] D. C. Lyons, M. Q. Martindale, and M. Srivastava. The cell’s view of ani-
mal body-plan evolution. Integr Comp Biol, 54(4):658–66, 2014.
[523] X. Ma, P. Cong, X. Hou, G. D. Edgecombe, and N. J. Strausfeld. An ex-
ceptionally preserved arthropod cardiovascular system from the early cam-
brian. Nat Commun, 5:3560, 2014.
[524] X. Ma, G. D. Edgecombe, X. Hou, T. Goral, and N. J. Strausfeld. Preserva-
tional pathways of corresponding brains of a cambrian euarthropod. Curr
Biol, 25(22):2969–75, 2015.
[525] X. Ma, X. Hou, R. J. Aldridge, D. J. Siveter, D. J. Siveter, S. E. Gabbott,
M. A. Purnell, A. R. Parker, and G. D. Edgecombe. Morphology of cam-
brian lobopodian eyes from the chengjiang lagerstatte and their evolution-
ary significance. Arthropod Struct Dev, 41(5):495–504, 2012.
[526] X. Ma, X. Hou, and J. Bergstrom. Morphology of luolishania longicruris
(lower cambrian, chengjiang lagerstatte, sw china) and the phylogenetic re-
lationships within lobopodians. Arthropod Struct Dev, 38(4):271–91, 2009.
[527] X. Ma, X. Hou, G. D. Edgecombe, and N. J. Strausfeld. Complex brain
and optic lobes in an early cambrian arthropod. Nature, 490(7419):258–61,
2012.
[528] C. Macilwain. Disagreements derail us bill to double research funding...as
physical sciences plan lobbying body. Nature, 407(6803):436, 2000.
[529] C. Magnabosco, K. Ryan, M. C. Lau, O. Kuloyo, B. Sherwood Lollar, T. L.
Kieft, E. van Heerden, and T. C. Onstott. A metagenomic window into car-
bon metabolism at 3 km depth in precambrian continental crust. ISME J,
10(3):730–41, 2016.
[530] F. Mahmood and W. I. Bajwa. Description of a culex pipiens gynandro-
morph from new york city. J Am Mosq Control Assoc, 22(4):751–3, 2006.
[531] M. Maisch, W. Wu, A. Kappler, and E. D. Swanner. Laboratory simula-
tion of an iron(ii)-rich precambrian marine upwelling system to explore the
growth of photosynthetic bacteria. J Vis Exp, (113), 2016.
[532] V. V. Malakhov. Origin of bilateral-symmetrical animals (bilateria). Zh
Obshch Biol, 65(5):371–88, 2004.
[533] P. Malcolm, S. Galle, P. Van den Berghe, and D. De Clercq. Exoskeleton
assistance symmetry matters: unilateral assistance reduces metabolic cost,
but relatively less than bilateral assistance. J Neuroeng Rehabil, 15(1):74,
2018.
[534] J. Mallatt and N. Holland. Pikaia gracilens walcott: stem chordate, or
already specialized in the cambrian? J Exp Zool B Mol Dev Evol,
320(4):247–71, 2013.
[535] M. Mallo, D. M. Wellik, and J. Deschamps. Hox genes and regional pat-
terning of the vertebrate body plan. Dev Biol, 344(1):7–15, 2010.
[536] D. F. Mandoli. Elaboration of body plan and phase change during devel-
opment of acetabularia: How is the complex architecture of a giant unicell
built? Annu Rev Plant Physiol Plant Mol Biol, 49:173–198, 1998.
[537] M. G. Mangano and L. A. Buatois. Decoupling of body-plan diversification
and ecological structuring during the ediacaran-cambrian transition: evolu-
tionary and geobiological feedbacks. Proc Biol Sci, 281(1780):20140038,
2014.
[538] J. H. Mansfield. cis-regulatory change associated with snake body plan
evolution. Proc Natl Acad Sci U S A, 110(26):10473–4, 2013.
[539] S. Marcellini. When brachyury meets smad1: the evolution of bilateral
symmetry during gastrulation. Bioessays, 28(4):413–20, 2006.
[540] S. Marcellini, U. Technau, J. C. Smith, and P. Lemaire. Evolution of
brachyury proteins: identification of a novel regulatory domain conserved
within bilateria. Dev Biol, 260(2):352–61, 2003.
[541] D. S. Margolis, Y. H. Lien, L. W. Lai, and J. A. Szivek. Bilateral symmetry
of biomechanical properties in mouse femora. Med Eng Phys, 26(4):349–
53, 2004.
[542] Y. Marikawa. Wnt/beta-catenin signaling and body plan formation in
mouse embryos. Semin Cell Dev Biol, 17(2):175–84, 2006.
[543] G. Marrama, G. Carnevale, L. Giusberti, G. J. P. Naylor, and J. Kri-
wet. A bizarre eocene dasyatoid batomorph (elasmobranchii, myliobati-
formes) from the bolca lagerstatte (italy) reveals a new, extinct body plan
for stingrays. Sci Rep, 9(1):14087, 2019.
[544] G. Marrama, G. Carnevale, G. J. P. Naylor, and J. Kriwet. Mosaic of ple-
siomorphic and derived characters in an eocene myliobatiform batomorph
(chondrichthyes, elasmobranchii) from italy defines a new, basal body plan
in pelagic stingrays. Zoological Lett, 5:13, 2019.
[545] L. Marschner, R. Triebskorn, and H. R. Kohler. Arresting mantle formation
and redirecting embryonic shell gland tissue by platinum2+leads to body
plan modifications in marisa cornuarietis (gastropoda, ampullariidae). J
Morphol, 273(8):830–41, 2012.
[546] C. G. Marshall, J. W. May, and C. J. Perret. Fossil microorganisms:
Possible presence in precambrian shield of western australia. Science,
144(3616):290–2, 1964.
[547] C. R. Marshall and J. W. Valentine. The importance of preadapted genomes
in the origin of the animal bodyplans and the cambrian explosion. Evolu-
tion, 64(5):1189–201, 2010.
[548] J. J. Marshall, N. C. Graves, D. D. Rettedal, K. Frush, and V. Vardaxis.
Ultrasound assessment of bilateral symmetry in dorsal lisfranc ligament. J
Foot Ankle Surg, 52(3):319–23, 2013.
[549] M. Q. Martindale, J. R. Finnerty, and J. Q. Henry. The radiata and the
evolutionary origins of the bilaterian body plan. Mol Phylogenet Evol,
24(3):358–65, 2002.
[550] A. V. Martynov. Ontogeny, systematics, and phylogenetics: space of future
synthesis and a new model of the evolution of bilateria. Izv Akad Nauk Ser
Biol, (5):469–77, 2012.
[551] A. V. Martynov. Evolutionary history of metazoa, ancestral status of the
bilateria clonal reproduction, and semicolonial origin of the mollusca. Zh
Obshch Biol, 74(3):201–40, 2013.
[552] R. W. Massof, D. Finkelstein, S. J. Starr, K. R. Kenyon, J. A. Fleischman,
and I. H. Maumenee. Bilateral symmetry of vision disorders in typical re-
tinitis pigmentosa. Br J Ophthalmol, 63(2):90–6, 1979.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 30
[553] T. Matsui, T. Yamamoto, S. Wyder, E. M. Zdobnov, and T. Kadowaki. Ex-
pression profiles of urbilaterian genes uniquely shared between honey bee
and vertebrates. BMC Genomics, 10:17, 2009.
[554] K. Mattes, S. Manzer, Y. Kianmarz, and J. Paasch. Reproducibility and
bilateral symmetry of maximal isokinetic trunk rotation strength in healthy
and active male adults. Sportverletz Sportschaden, 30(4):211–217, 2016.
[555] F. Mazet, J. K. Yu, D. A. Liberles, L. Z. Holland, and S. M. Shimeld. Phy-
logenetic relationships of the fox (forkhead) gene family in the bilateria.
Gene, 316:79–89, 2003.
[556] M. A. McMenamin. Paleoecological feedback and the vendian-cambrian
transition. Trends Ecol Evol, 3(8):205–8, 1988.
[557] H. Meinhardt. The radial-symmetric hydra and the evolution of the bilateral
body plan: an old body became a young brain. Bioessays, 24(2):185–91,
2002.
[558] W. G. Meinschein. Soudan formation: Organic extracts of early precam-
brian rocks. Science, 150(3696):601–5, 1965.
[559] W. G. Meinschein, E. S. Barghoorn, and J. W. Schopf. Biological remnants
in a precambrian sediment. Science, 145(3629):262–3, 1964.
[560] T. L. Metcalfe, P. J. Dillon, and C. D. Metcalfe. Detecting the transport of
toxic pesticides from golf courses into watersheds in the precambrian shield
region of ontario, canada. Environ Toxicol Chem, 27(4):811–8, 2008.
[561] R. A. Mezzarane and A. F. Kohn. Bilateral soleus h-reflexes in humans
elicited by simultaneous trains of stimuli: symmetry, variability, and co-
variance. J Neurophysiol, 87(4):2074–83, 2002.
[562] V. A. Mglinets and V. I. Ivanov. Bilateral symmetry of the dermatoglyphic
characteristics in down’s syndrome. Ontogenez, 24(3):98–102, 1993.
[563] J. E. Michalek, H. G. Preuss, H. A. Croft, P. L. Keith, S. C. Keith, M. Dapil-
moto, N. V. Perricone, R. B. Leckie, and G. R. Kaats. Changes in total
body bone mineral density following a common bone health plan with two
versions of a unique bone health supplement: a comparative effectiveness
research study. Nutr J, 10:32, 2011.
[564] G. Miller. Sex, mutations and marketing. how the cambrian explosion set
the stage for runaway consumerism. EMBO Rep, 13(10):880–4, 2012.
[565] D. J. Milton. Drifting organisms in the precambrian sea. Science,
153(3733):293–4, 1966.
[566] R. Milward-de Andrade. Diatom florulas in an artificial lagoon in pre-
cambrian terrains; pedro leopoldo municipality, minas gerais, brazil. (chro-
mophyta, diatomophyceae). Rev Bras Malariol Doencas Trop, 35:121–4,
1983.
[567] S. B. Minsuk, F. R. Turner, M. E. Andrews, and R. A. Raff. Axial pat-
terning of the pentaradial adult echinoderm body plan. Dev Genes Evol,
219(2):89–101, 2009.
[568] R. C. Misra. On organic remains from the vindhyans; pre-cambrian. Curr
Sci, 18(12):438, illust, 1949.
[569] R. C. Misra and G. S. Bhatnagar. On carbonaceous discs and algal dust
from the vindhyans pre-cambrian. Curr Sci, 19(3):88–9, 1950.
[570] C. J. Mitchell and T. B. Hughes. A bipolar differentiated gynandromorph
of culex tarsalis coquillett, from texas. J Med Entomol, 6(1):78, 1969.
[571] V. Mitolo. The bilateral symmetry of the proliferative activity in the neural
tube. Boll Soc Ital Biol Sper, 53(23):2226–30, 1977.
[572] V. Mitolo, L. Bosco, and M. Saccia. Influence of stochastic factors on bi-
lateral symmetry. Boll Soc Ital Biol Sper, 61(11-12):1529–34, 1985.
[573] T. Miyata and H. Suga. Divergence pattern of animal gene families and re-
lationship with the cambrian explosion. Bioessays, 23(11):1018–27, 2001.
[574] K. Modzelewska, A. Lauritzen, S. Hasenoeder, L. Brown, J. Georgiou, and
N. Moghal. Neurons refine the caenorhabditis elegans body plan by direct-
ing axial patterning by wnts. PLoS Biol, 11(1):e1001465, 2013.
[575] K. Moelling. Commentary to: Cause of cambrian explosion - terrestrial or
cosmic? steele, e.j. et al. Prog Biophys Mol Biol, 136:24, 2018.
[576] J. M. Moldowan and N. M. Talyzina. Biogeochemical evidence for di-
noflagellate ancestors in the early cambrian. Science, 281(5380):1168–70,
1998.
[577] A. P. Moller and R. Thornhill. Bilateral symmetry and sexual selection: a
meta-analysis. Am Nat, 151(2):174–92, 1998.
[578] A. Molven, C. V. Wright, R. Bremiller, E. M. De Robertis, and C. B.
Kimmel. Expression of a homeobox gene product in normal and mutant
zebrafish embryos: evolution of the tetrapod body plan. Development,
109(2):279–88, 1990.
[579] J. Monge-Najera and X. Hou. Disparity, decimation and the cambrian
"explosion": comparison of early cambrian and present faunal communi-
ties with emphasis on velvet worms (onychophora). Rev Biol Trop, 48(2-
3):333–51, 2000.
[580] J. Monge-Najera and X. Hou. Experimental taphonomy of velvet worms
(onychophora) and implications for the cambrian "explosion, disparity and
decimation" model. Rev Biol Trop, 50(3-4):1133–8, 2002.
[581] M. Montenari and T. Servais. Early paleozoic (late cambrian-early ordovi-
cian) acritarchs from the metasedimentary baden-baden-gaggenau zone
(schwarzwald, sw germany). Rev Palaeobot Palynol, 113(1-3):73–85,
2000.
[582] A. Moore. Unfolding evolution: from transposons and the cambrian explo-
sion to the function of the enigmatic laca gene. Bioessays, 31(7):692–3,
2009.
[583] J. Moossy, G. S. Zubenko, A. J. Martinez, and G. R. Rao. Bilateral symme-
try of morphologic lesions in alzheimer’s disease. Arch Neurol, 45(3):251–
4, 1988.
[584] E. Moreno, K. De Mulder, W. Salvenmoser, P. Ladurner, and P. Martinez.
Inferring the ancestral function of the posterior hox gene within the bilate-
ria: controlling the maintenance of reproductive structures, the musculature
and the nervous system in the acoel flatworm isodiametra pulchra. Evol
Dev, 12(3):258–66, 2010.
[585] E. Moreno, J. Permanyer, and P. Martinez. The origin of patterning sys-
tems in bilateria-insights from the hox and parahox genes in acoelomorpha.
Genomics Proteomics Bioinformatics, 9(3):65–76, 2011.
[586] H. J. Morowitz. A basic body plan. Hosp Pract, 11(2):74–7, 1976.
[587] S. C. Morris. Burgess shale faunas and the cambrian explosion. Science,
246(4928):339–46, 1989.
[588] S. C. Morris. Defusing the cambrian ’explosion’? Curr Biol, 7(2):R71–4,
1997.
[589] S. C. Morris. Eggs and embryos from the cambrian. Bioessays, 20(8):676–
82, 1998.
[590] S. C. Morris. Nipping the cambrian "explosion" in the bud? Bioessays,
22(12):1053–6, 2000.
[591] S. C. Morris and J. B. Caron. Pikaia gracilens walcott, a stem-group chor-
date from the middle cambrian of british columbia. Biol Rev Camb Philos
Soc, 87(2):480–512, 2012.
[592] S. C. Morris and J. B. Caron. A primitive fish from the cambrian of north
america. Nature, 512(7515):419–22, 2014.
[593] V. B. Morris. Origins of radial symmetry identified in an echinoderm dur-
ing adult development and the inferred axes of ancestral bilateral symmetry.
Proc Biol Sci, 274(1617):1511–6, 2007.
[594] V. B. Morris. Coelomogenesis during the abbreviated development of the
echinoid heliocidaris erythrogramma and the developmental origin of the
echinoderm pentameral body plan. Evol Dev, 13(4):370–81, 2011.
[595] V. B. Morris. Analysis of coelom development in the sea urchin holop-
neustes purpurescens yielding a deuterostome body plan. Biol Open,
5(3):348–58, 2016.
[596] V. B. Morris and M. Byrne. Involvement of two hox genes and otx in
echinoderm body-plan morphogenesis in the sea urchin holopneustes pur-
purescens. J Exp Zool B Mol Dev Evol, 304(5):456–67, 2005.
[597] A. Morshedian, M. B. Toomey,G. E. Pollock, R. Frederiksen, J. M. Enright,
S. D. McCormick, M. C. Cornwall, G. L. Fain, and J. C. Corbo. Cambrian
origin of the cyp27c1-mediated vitamin a1-to-a2 switch, a key mechanism
of vertebrate sensory plasticity. R Soc Open Sci, 4(7):170362, 2017.
[598] L. Moubayidin and L. Ostergaard. Dynamic control of auxin distribution
imposes a bilateral-to-radial symmetry switch during gynoecium develop-
ment. Curr Biol, 24(22):2743–8, 2014.
[599] E. Mouchel-Vielh, C. Rigolot, J. M. Gibert, and J. S. Deutsch. Molecules
and the body plan: the hox genes of cirripedes (crustacea). Mol Phylogenet
Evol, 9(3):382–9, 1998.
[600] J. Moysiuk and J. B. Caron. A new hurdiid radiodont from the burgess shale
evinces the exploitation of cambrian infaunal food sources. Proc Biol Sci,
286(1908):20191079, 2019.
[601] M. D. Muir. Microfossils from the middle precambrian mcarthur group,
northern territory, australia. Orig Life, 5(1):105–18, 1974.
[602] M. D. Muir and J. Sutton. Some fossiliferous pre-cambrian chert pebbles
within the torridonian of britain. Nature, 226(5244):443–5, 1970.
[603] W. E. Muller and I. M. Muller. Analysis of the sponge porifera gene reper-
toire: implications for the evolution of the metazoan body plan. Prog Mol
Subcell Biol, 37:1–33, 2003.
[604] S. Munoz-Leal, T. F. Martins, L. R. Luna, A. Rodriguez, and M. B.
Labruna. A new collection of amblyomma parvitarsum (acari: Ixodidae)
in peru, with description of a gynandromorph and report of rickettsia detec-
tion. J Med Entomol, 55(2):464–467, 2018.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 31
[605] D. J. Murdock, S. Bengtson, F. Marone, J. M. Greenwood, and P. C.
Donoghue. Evaluating scenarios for the evolutionary assembly of the bra-
chiopod body plan. Evol Dev, 16(1):13–24, 2014.
[606] L. Na and W. Kiessling. Diversity partitioning during the cambrian radia-
tion. Proc Natl Acad Sci U S A, 112(15):4702–6, 2015.
[607] M. A. Nace and P. B. Sawin. Genetic growth differences as factors in the
determination of bilateral symmetry in the rabbit. Anat Rec, 97(3):422,
1947.
[608] M. B. Nadeau, J. Laur, and D. P. Khasa. Mycorrhizae and rhizobacteria on
precambrian rocky gold mine tailings: I. mine-adapted symbionts promote
white spruce health and growth. Front Plant Sci, 9:1267, 2018.
[609] M. B. Nadeau, J. Laur, and D. P. Khasa. Mycorrhizae and rhizobacteria
on precambrian rocky gold mine tailings: Ii. mine-adapted symbionts alle-
viate soil element imbalance for a better nutritional status of white spruce
seedlings. Front Plant Sci, 9:1268, 2018.
[610] H. Nagashima. Comparative anatomical and comparative embryological
studies on turtle body plan. Kaibogaku Zasshi, 86(3):73–4, 2011.
[611] H. Nagashima, S. Kuraku, K. Uchida, Y. Kawashima-Ohya, Y. Narita, and
S. Kuratani. Body plan of turtles: an anatomical, developmental and evolu-
tionary perspective. Anat Sci Int, 87(1):1–13, 2012.
[612] H. Nagashima, S. Kuraku, K. Uchida, Y. K. Ohya, Y. Narita, and S. Ku-
ratani. On the carapacial ridge in turtle embryos: its developmental ori-
gin, function and the chelonian body plan. Development, 134(12):2219–26,
2007.
[613] H. Nagashima, F. Sugahara, M. Takechi, R. Ericsson, Y. Kawashima-Ohya,
Y. Narita, and S. Kuratani. Evolution of the turtle body plan by the folding
and creation of new muscle connections. Science, 325(5937):193–6, 2009.
[614] B. Nagy. Pyrolysis of precambrian kerogens: constraints and capabilities.
J Mol Evol, 18(3):217–20, 1982.
[615] B. Nagy, J. E. Zumberge, and L. A. Nagy. Abiotic, graphitic microstruc-
tures in micaceous metaquartzite about 3760 million years old from south-
western greenland: Implications for early precambrian microfossils. Proc
Natl Acad Sci U S A, 72(3):1206–9, 1975.
[616] A. Nakagawa, M. S. Kitazawa, and K. Fujimoto. A design principle for
floral organ number and arrangement in flowers with bilateral symmetry.
Development, 147(3), 2020.
[617] A. Nakamoto, A. Arai, and T. Shimizu. Specification of polarity of teloblas-
togenesis in the oligochaete annelid tubifex: cellular basis for bilateral sym-
metry in the ectoderm. Dev Biol, 272(1):248–61, 2004.
[618] A. J. Naldrett. Classic ore deposits: precambrian sulphide deposits. Sci-
ence, 222(4624):609–10, 1983.
[619] E. K. Namigai, N. J. Kenny, and S. M. Shimeld. Right across the tree of life:
the evolution of left-right asymmetry in the bilateria. Genesis, 52(6):458–
70, 2014.
[620] K. Nanglu, J. B. Caron, S. Conway Morris, and C. B. Cameron. Cambrian
suspension-feeding tubicolous hemichordates. BMC Biol, 14:56, 2016.
[621] S. J. Nesbitt, R. J. Butler, M. D. Ezcurra, P. M. Barrett, M. R. Stocker, K. D.
Angielczyk, R. M. H. Smith, C. A. Sidor, G. Niedzwiedzki, A. G. Sennikov,
and A. J. Charig. The earliest bird-line archosaurs and the assembly of the
dinosaur body plan. Nature, 544(7651):484–487, 2017.
[622] H. Netzel. The establishment of polarity and bilateral symmetry in the
oocytes of gryllus domesticus l. Wilhelm Roux Arch Entwickl Mech Org,
160(1):119–166, 1968.
[623] J. Neupane, F. C. K. Wong, and M. A. Surani. The unfolding body plan of
primate embryos in culture. Cell Res, 30(2):103–104, 2020.
[624] A. Nicol and O. Donoghue. The skeleton coast diet plan: body mass
and body fat changes on an arduous expedition. J R Army Med Corps,
158(2):106–9, 2012.
[625] C. Nielsen and A. Parker. Morphological novelties detonated the ediacaran-
cambrian "explosion". Evol Dev, 12(4):345–6, 2010.
[626] M. N. Nikitina. Socio-hygienic studies in pediatrics during the 10th 5-year
plan on "age factors of the child’s body in health and disease". Pediatriia,
(10):58–61, 1977.
[627] B. Nilsson. A gynandromorph of the mallophagan goniodes colchici from
phasianus colchicus. Angew Parasitol, 17(4):223–5, 1976.
[628] K. Nishii, B. H. Huang, C. N. Wang, and M. Moller. From shoot to leaf:
step-wise shifts in meristem and knox1 activity correlate with the evolution
of a unifoliate body plan in gesneriaceae. Dev Genes Evol, 227(1):41–60,
2017.
[629] K. Nithiyanantham, G. Kadirampatti Mani, V. Subramani, K. Karukku-
palayam Palaniappan, M. Uthiran, S. Vellengiri, S. Raju, S. S. Supe, and
T.Kataria. Influence of segment width on plan quality for volumetric modu-
lated arc based stereotactic body radiotherapy. Rep Pract Oncol Radiother,
19(5):287–95, 2014.
[630] K. R. Nitta, A. Jolma, Y. Yin,E. Morgunova, T. Kivioja, J. Akhtar, K. Hens,
J. Toivonen, B. Deplancke, E. E. Furlong, and J. Taipale. Conservation of
transcription factor binding specificities across 600 million years of bilate-
ria evolution. Elife, 4, 2015.
[631] D. Nna-Mvondo, R. Navarro-Gonzalez, F. Raulin, and P. Coll. Nitrogen
fixation by corona discharge on the early precambrian earth. Orig Life Evol
Biosph, 35(5):401–9, 2005.
[632] D. Normile and X. Lei. Paleontology. china clamps down on mining to
preserve cambrian site. Science, 305(5692):1893–4, 2004.
[633] L. J. O’Brien and J. B. Caron. A new stalked filter-feeder from the middle
cambrian burgess shale, british columbia, canada. PLoS One, 7(1):e29233,
2012.
[634] H. Oda and Y.Akiyama-Oda. Differing strategies for forming the arthropod
body plan: lessons from dpp, sog and delta in the fly drosophila and spider
achaearanea. Dev Growth Differ, 50(4):203–14, 2008.
[635] D. Z. Oehler, J. H. Oehler, and A. J. Stewart. Algal fossils from a late
precambrian, hypersaline lagoon. Science, 205(4404):388–90, 1979.
[636] D. Z. Oehler, J. W. Schopf, and K. A. Kvenvolden. Carbon isotopic studies
of organic matter in precambrian rocks. Science, 175(4027):1246–8, 1972.
[637] J. H. Oehler and D. Z. Oehler. On the significance of tetrahedral tetrads of
precambrian algal cells. Orig Life, 7(3):259–67, 1976.
[638] M. Ogasawara, Y. Shigetani, S. Hirano, N. Satoh, and S. Kuratani.
Pax1/pax9-related genes in an agnathan vertebrate, lampetra japonica: ex-
pression pattern of ljpax9 implies sequential evolutionary events towardthe
gnathostome body plan. Dev Biol, 223(2):399–410, 2000.
[639] N. Ogihara, M. Nakatsukasa, Y. Nakano, and H. Ishida. Computerized
restoration of nonhomogeneous deformation of a fossil cranium based on
bilateral symmetry. Am J Phys Anthropol, 130(1):1–9, 2006.
[640] Y. Ogura and Y. Sasakura. Ascidians as excellent models for studying cel-
lular events in the chordate body plan. Biol Bull, 224(3):227–36, 2013.
[641] H. Ohmoto, K. E. Yamaguchi, and S. Ono. Questions regarding precam-
brian sulfur isotope fractionation. Science, 292(5524):1959, 2001.
[642] S. Ohno. The notion of the cambrian pananimalia genome. Proc Natl Acad
Sci U S A, 93(16):8475–8, 1996.
[643] S. Ohno. The reason for as well as the consequence of the cambrian explo-
sion in animal evolution. J Mol Evol, 44 Suppl 1:S23–7, 1997.
[644] S. Ohno. The notion of the cambrian pananimalia genome and a genomic
difference that separated vertebrates from invertebrates. Prog Mol Subcell
Biol, 21:97–117, 1998.
[645] S. Ohno and T. Ishii. A tentative plan of measuring the amount of the
stretch of the skin using origin on body surface. Ann Physiol Anthropol,
13(3):107–12, 1994.
[646] M. R. Okun and L. M. Edelstein. Identical twins, asymmetrical mito-
sis and bilateral symmetry of organisms. Physiol Chem Phys Med NMR,
39(1):107–10, 2007.
[647] J. Olesen, J. T. Haug, A. Maas, and D. Waloszek. External morphology
of lightiella monniotae (crustacea, cephalocarida) in the light of cambrian
’orsten’ crustaceans. Arthropod Struct Dev, 40(5):449–78, 2011.
[648] M. E. Olson. Ontogenetic origins of floral bilateral symmetry in
moringaceae (brassicales). Am J Bot, 90(1):49–71, 2003.
[649] B. Olsrzanska, E. Szolajska, and Z. Lassota. Effect of spatial position of
uterine quail blastoderms cultured in vitro on bilateral symmetry formation.
Wilehm Roux Arch Dev Biol, 193(2):108–110, 1984.
[650] T. Onai, N. Irie, and S. Kuratani. The evolutionary origin of the vertebrate
body plan: the problem of head segmentation. Annu Rev Genomics Hum
Genet, 15:443–59, 2014.
[651] Z. Ormianer, A. L. Solodukhin, D. Lauritano, P. Segal, D. Lavi, F. Carinci,
and J. Block. Bilateral symmetry of anterior maxillary incisors: evalua-
tion of a community-based population. J Biol Regul Homeost Agents, 31(2
Suppl 1):37–43, 2017.
[652] J. Oro, S. Nakaparksin, H. Lichtenstein, and E. Gil-Av. Configuration of
amino-acids in carbonaceous chondrites and a pre-cambrian chert. Nature,
230(5289):107–8, 1971.
[653] P. J. Orr,D. E. G. Briggs, and S. L. Kearns. Cambrian burgess shale animals
replicated in clay minerals. Science, 281(5380):1173–5, 1998.
[654] J. Ortega-Hernandez, A. Azizi, T. W. Hearing, T. H. Harvey, G. D. Edge-
combe, A. Hafid, and K. El Hariri. A xandarellid artiopodan from morocco
- a middle cambrian link between soft-bodied euarthropod communities in
north africa and south china. Sci Rep, 7:42616, 2017.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 32
[655] J. Ortega-Hernandez, A. Azizi, T. W. Hearing, T. H. P. Harvey, G. D. Edge-
combe, A. Hafid, and K. El Hariri. Corrigendum: A xandarellid artiopodan
from morocco - a middle cambrian link between soft-bodied euarthropod
communities in north africa and south china. Sci Rep, 7:46797, 2017.
[656] J. Ortega-Hernandez, J. Esteve, and N. J. Butterfield. Humble origins for
a successful strategy: complete enrolment in early cambrian olenellid trilo-
bites. Biol Lett, 9(5):20130679, 2013.
[657] J. Ortega-Hernandez, D. Fu, X. Zhang, and D. Shu. Gut glands illumi-
nate trunk segmentation in cambrian fuxianhuiids. Curr Biol, 28(4):R146–
R147, 2018.
[658] J. Ortega-Hernandez, R. Lerosey-Aubril, and S. Pates. Proclivity of nervous
system preservation in cambrian burgess shale-type deposits. Proc Biol Sci,
286(1917):20192370, 2019.
[659] C. J. Orth, J. D. Knight, L. R. Quintana, J. S. Gilmore, and A. R. Palmer.
A search for iridium abundance anomalies at two late cambrian biomere
boundaries in western utah. Science, 223(4632):163–5, 1984.
[660] M. M. Ortiz, R. Eritja, J. A. Oteo, and I. Ruiz-Arrondo. Description of
a culex pipiens gynandromorph captured in la rioja (spain). J Am Mosq
Control Assoc, 35(4):288–290, 2019.
[661] N. S. Ossenberg. An argument for the use of total side frequencies of bilat-
eral nonmetric skeletal traits in population distance analysis: the regression
of symmetry on incidence. Am J Phys Anthropol, 54(4):471–9, 1981.
[662] R. Osterauer, L. Marschner, O. Betz, M. Gerberding, B. Sawasdee,
P. Cloetens, N. Haus, B. Sures, R. Triebskorn, and H. R. Kohler. Turning
snails into slugs: induced body plan changes and formation of an internal
shell. Evol Dev, 12(5):474–83, 2010.
[663] A. Otero, A. R. Cuff, V. Allen, L. Sumner-Rooney, D. Pol, and J. R.
Hutchinson. Ontogenetic changes in the body plan of the sauropodomorph
dinosaur mussaurus patagonicus reveal shifts of locomotor stance during
growth. Sci Rep, 9(1):7614, 2019.
[664] Q. Ou, J. Han, Z. Zhang, D. Shu, G. Sun, and G. Mayer. Three cambrian
fossils assembled into an extinct body plan of cnidarian affinity. Proc Natl
Acad Sci U S A, 114(33):8835–8840, 2017.
[665] Q. Ou and G. Mayer. A cambrian unarmoured lobopodian, daggerlenisam-
bulatrix humboldti gen. et sp. nov., compared with new material of dagger-
diania cactiformis. Sci Rep, 8(1):13667, 2018.
[666] Q. Ou, S. C. Morris, J. Han, Z. Zhang, J. Liu, A. Chen, X. Zhang, and
D. Shu. Evidence for gill slits and a pharynx in cambrian vetulicolians:
implications for the early evolution of deuterostomes. BMC Biol, 10:81,
2012.
[667] Q. Ou, D. Shu, and G. Mayer. Cambrian lobopodians and extant ony-
chophorans provide new insights into early cephalization in panarthropoda.
Nat Commun, 3:1261, 2012.
[668] Q. Ou, S. Xiao, J. Han, G. Sun, F. Zhang, Z. Zhang, and D. Shu. A
vanished history of skeletonization in cambrian comb jellies. Sci Adv,
1(6):e1500092, 2015.
[669] L. R. Page. Gastropod ontogenetic torsion: developmental remnants of an
ancient evolutionary change in body plan. J Exp Zool B Mol Dev Evol,
297(1):11–26, 2003.
[670] L. R. Page. Modern insights on gastropod development: Reevaluation of
the evolution of a novel body plan. Integr Comp Biol, 46(2):134–43, 2006.
[671] S. Paige. The mechanics of intrusion of the black hills (s. d.) precambrian
granite. Proc Natl Acad Sci U S A, 2(3):113–4, 1916.
[672] J. A. Palmer, G. N. Phillips, and T. S. McCarthy. Paleosols and their rele-
vance to precambrian atmospheric composition. J Geol, 97(1):77–92, 1989.
[673] G. Pannella, C. Macclintock, and M. N. Thompson. Paleontological evi-
dence of varitions in length of synodic month since late cambrian. Science,
162(3855):792–6, 1968.
[674] T. Y. Park and D. K. Choi. Post-embryonic development of the furongian
(late cambrian) trilobite tsinania canens: implications for life mode and
phylogeny. Evol Dev, 11(4):441–55, 2009.
[675] T. Y. Park, J. Woo, D. J. Lee, D. C. Lee, S. B. Lee, Z. Han, S. K. Chough,
and D. K. Choi. A stem-group cnidarian described from the mid-cambrian
of china and its significance for cnidarian evolution. Nat Commun, 2:442,
2011.
[676] L. Parry, J. Vinther, and G. D. Edgecombe. Cambrian stem-group annelids
and a metameric origin of the annelid head. Biol Lett, 11(10), 2015.
[677] L. A. Parry, P. C. Boggiani, D. J. Condon, R. J. Garwood, J. M. Leme,
D. McIlroy, M. D. Brasier, R. Trindade, G. A. C. Campanha, M. Pacheco,
C. Q. C. Diniz, and A. G. Liu. Ichnological evidence for meiofaunal bilate-
rians from the terminal ediacaran and earliest cambrian of brazil. Nat Ecol
Evol, 1(10):1455–1464, 2017.
[678] J. R. Paterson, G. D. Edgecombe, and M. S. Y. Lee. Trilobite evolutionary
rates constrain the duration of the cambrian explosion. Proc Natl Acad Sci
USA, 116(10):4394–4399, 2019.
[679] J. R. Paterson, D. C. Garcia-Bellido, M. S. Lee, G. A. Brock, J. B. Jago,
and G. D. Edgecombe. Acute vision in the giant cambrian predator anoma-
locaris and the origin of compound eyes. Nature, 480(7376):237–40, 2011.
[680] D. C. Paulus and B. K. Schilling. Ground reaction force comparison of bi-
lateral symmetry with pneumatic resistance squat device and free weights -
biomed 2009. Biomed Sci Instrum, 45:419–23, 2009.
[681] D. C. Paulus and D. M. Settlage. Bilateral symmetry of ground reaction
force with a motor-controlled resistance exercise system using a mechani-
cal advantage barbell for spaceflight. Biomed Sci Instrum, 48:340–4, 2012.
[682] J. Pawlowski and A. J. Gooday. Precambrian biota: protistan origin of trace
fossils? Curr Biol, 19(1):R28–30, 2009.
[683] J. S. Peel, M. Stein, and R. M. Kristensen. Life cycle and morphology of a
cambrian stem-lineage loriciferan. PLoS One, 8(8):e73583, 2013.
[684] J. G. Peixoto, B. de Souza Moreira, J. B. M. Diz, E. F. Timoteo, R. N. Kirk-
wood, and L. F. Teixeira-Salmela. Analysis of symmetry between lower
limbs during gait of older women with bilateral knee osteoarthritis. Aging
Clin Exp Res, 31(1):67–73, 2019.
[685] A. Pennino and V. Benigno. Bilateral symmetry of the dermatoglyphics
in the finger tips of thalassemic subjects and thalassemic heterozygotes.
Pathologica, 71(1013):420–1, 1979.
[686] I. S. Peter and E. H. Davidson. Evolution of gene regulatory networks con-
trolling body plan development. Cell, 144(6):970–85, 2011.
[687] S. E. Peters and R. R. Gaines. Formation of the ’great unconformity’ as a
trigger for the cambrian explosion. Nature, 484(7394):363–6, 2012.
[688] K. J. Peterson, M. R. Dietrich, and M. A. McPeek. Micrornas and metazoan
macroevolution: insights into canalization, complexity, and the cambrian
explosion. Bioessays, 31(7):736–47, 2009.
[689] F. J. Pettijohn. Dimensional fabric and ice flow, precambrian (huronian)
glaciation. Science, 135(3502):442, 1962.
[690] A. Pietak, J. Bischof, J. LaPalme, J. Morokuma, and M. Levin. Neural
control of body-plan axis in regenerating planaria. PLoS Comput Biol,
15(4):e1006904, 2019.
[691] P. D. Polly. Trait-based extinction catches the red queen napping during the
cambrian. Proc Natl Acad Sci U S A, 111(46):16240–1, 2014.
[692] K. Poradovsky, V. Kliment, and J. Scholtz. Importance and working plan of
the advisory body to the regional specialist. Cesk Gynekol, 37(8):578–80,
1972.
[693] Z. M. Portman and T. Griswold. Review of perdita subgenus procockerellia
timberlake (hymenoptera, andrenidae) and the first perdita gynandromorph.
Zookeys, (712):87–111, 2017.
[694] C. M. Postlethwaite, T. M. Psemeneki, J. Selimkhanov,M. Silber, and M. A.
MacIver. Optimal movement in the prey strikes of weakly electric fish: a
case study of the interplay of body plan and movement capability. J R Soc
Interface, 6(34):417–33, 2009.
[695] K. Praveen, M. Anjaneyulu, C. Narshimha, and U. V. B. Reddy. Petrol-
ogy and geochemistry data of the precambrian granitoids from the hyder-
abad area, part of eastern dharwar craton, telangana state india. Data Brief,
21:1909–1917, 2018.
[696] J. C. Preston and L. C. Hileman. Parallel evolution of tcp and b-class genes
in commelinaceae flower bilateral symmetry. Evodevo, 3:6, 2012.
[697] G. Priest. Framing causal questions about the past: The cambrian explosion
as case study. Stud Hist Philos Biol Biomed Sci, 63:55–63, 2017.
[698] L. Probyn, A. M. Cheung, C. Lang, L. Lenchik, J. D. Adachi, A. Khan,
R. G. Josse, G. Tomlinson, and R. Bleakney. Bilateral atypical femoral
fractures: how much symmetry is there on imaging? Skeletal Radiol,
44(11):1579–84, 2015.
[699] L. A. Prosser, R. T. Lauer, A. F. VanSant, M. F. Barbe, and S. C. Lee. Vari-
ability and symmetry of gait in early walkers with and without bilateral
cerebral palsy. Gait Posture, 31(4):522–6, 2010.
[700] B. Prud’homme, C. Minervino, M. Hocine, J. D. Cande, A. Aouane, H. D.
Dufour, V. A. Kassner, and N. Gompel. Body plan innovation in tree-
hoppers through the evolution of an extra wing-like appendage. Nature,
473(7345):83–6, 2011.
[701] E. Pukhlyakova, A. J. Aman, K. Elsayad, and U. Technau. beta-catenin-
dependent mechanotransduction dates back to the common ancestor of
cnidaria and bilateria. Proc Natl Acad Sci U S A, 115(24):6231–6236, 2018.
[702] M. Pulina, D. Liang, and S. Astrof. Shape and position of the node and
notochord along the bilateral plane of symmetry are regulated by cell-
extracellular matrix interactions. Biol Open, 3(7):583–90, 2014.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 33
[703] M. V. Pulina, S. Y. Hou, A. Mittal, D. Julich, C. A. Whittaker, S. A. Holley,
R. O. Hynes, and S. Astrof. Essential roles of fibronectin in the devel-
opment of the left-right embryonic body plan. Dev Biol, 354(2):208–20,
2011.
[704] X. S. Qi, J. P. Wang, C. L. Gomez, W. Shao, X. Xu, C. King, D. A. Low,
M. Steinberg, and P. Kupelian. Plan quality and dosimetric association of
patient-reported rectal and urinary toxicities for prostate stereotactic body
radiotherapy. Radiother Oncol, 121(1):113–117, 2016.
[705] G. A. Quinlan, E. A. Williams, S. S. Tan, and P. P. Tam. Neuroectodermal
fate of epiblast cells in the distal region of the mouse egg cylinder: implica-
tion for body plan organization during early embryogenesis. Development,
121(1):87–98, 1995.
[706] S. D. Quistad and N. Traylor-Knowles. Precambrian origins of the tnfr
superfamily. Cell Death Discov, 2:16058, 2016.
[707] I. A. Rahman, J. R. Thompson, D. E. G. Briggs, D. J. Siveter, D. J. Siveter,
and M. D. Sutton. A new ophiocistioid with soft-tissue preservation from
the silurian herefordshire lagerstatte, and the evolution of the holothurian
body plan. Proc Biol Sci, 286(1900):20182792, 2019.
[708] I. A. Rahman, S. Zamora, P. L. Falkingham, and J. C. Phillips. Cambrian
cinctan echinoderms shed light on feeding in the ancestral deuterostome.
Proc Biol Sci, 282(1818):20151964, 2015.
[709] P. Ramakrishna, M. Anjaneyulu, and K. Praveen. Petrology and geochem-
istry dataset of the precambrian granitoids from the part of gadwal schist
belt, eastern dharwar craton india. Data Brief, 24:103743, 2019.
[710] D. E. Randall, M. L. Curtis, and I. L. Millar. A new late middle cam-
brian paleomagnetic pole for the ellsworth mountains, antarctica. J Geol,
108(4):403–425, 2000.
[711] K. Rankama. Early pre-cambrian carbon of biogenic origin from the cana-
dian shield. Science, 119(3094):506–7, 1954.
[712] D. W. Rankin, T. W. Stern, J. Reed, J. C., and M. F. Newell. Zircon ages
of felsic volcanic rocks in the upper precambrian of the blue ridge, ap-
palachian mountains. Science, 166(3906):741–4, 1969.
[713] F. L. Ransome. Pre-cambrian sediments and faults in the grand canyon of
the colorado. Science, 27(695):667–9, 1908.
[714] O. Raska, V. Kostrouchova, F. Behensky, P. Yilma, V. Saudek,
Z. Kostrouch, and M. Kostrouchova. Smed-tlx-1 (nr2e1) is critical for tissue
and body plan maintenance in schmidtea mediterranea in fasting/feeding
cycles. Folia Biol (Praha), 57(6):223–31, 2011.
[715] H. Reichert. A tripartite organization of the urbilaterian brain: develop-
mental genetic evidence from drosophila. Brain Res Bull, 66(4-6):491–4,
2005.
[716] C. T. Reinhard and N. J. Planavsky. Mineralogical constraints on precam-
brian pco2. Nature, 474(7349):E1–2; discussion E4–5, 2011.
[717] P. Ren, S. Hu, Z. Han, Q. Wang, S. Yao, Z. Gao, J. Jin, M. L. Bringas,
D. Yao,B. Biswal, and P. A. Valdes-Sosa. Movement symmetry assessment
by bilateral motion data fusion. IEEE Trans Biomed Eng, 66(1):225–236,
2019.
[718] E. Renard, S. P. Leys, G. Worheide, and C. Borchiellini. Understanding an-
imal evolution: The added value of sponge transcriptomics and genomics:
The disconnect between gene content and body plan evolution. Bioessays,
40(9):e1700237, 2018.
[719] J. E. Repetski. A fish from the upper cambrian of north america. Science,
200(4341):529–31, 1978.
[720] R. M. Rieger and P. Ladurner. The significance of muscle cells for the
origin of mesoderm in bilateria. Integr Comp Biol, 43(1):47–54, 2003.
[721] R. M. Rieger, P. Ladurner, and B. Hobmayer. A clue to the origin of the
bilateria? Science, 307(5708):353–5; author reply 353–5, 2005.
[722] R. M. Rieger, P. Ladurner, B. Hobmayer, M. Q. Martindale, and J. R.
Finnerty. A clue to the origin of the bilateria? Science, 307(5708):353c–
355c, 2005.
[723] V. Rieger, Y.Perez, C. H. Muller, T. Lacalli, B. S. Hansson, and S. Harzsch.
Development of the nervous system in hatchlings of spadella cephaloptera
(chaetognatha), and implications for nervous system evolution in bilateria.
Dev Growth Differ, 53(5):740–59, 2011.
[724] J. B. Ries, M. A. Anderson, and R. T. Hill. Seawater mg/ca controls
polymorph mineralogy of microbial caco3: a potential proxy for calcite-
aragonite seas in precambrian time. Geobiology, 6(2):106–19, 2008.
[725] A. Riesgo, C. Taylor, and S. P. Leys. Reproduction in a carnivorous sponge:
the significance of the absence of an aquiferous system to the sponge body
plan. Evol Dev, 9(6):618–31, 2007.
[726] V. A. Risso, J. A. Gavira, E. A. Gaucher, and J. M. Sanchez-Ruiz. Pheno-
typic comparisons of consensus variants versus laboratory resurrections of
precambrian proteins. Proteins, 82(6):887–96, 2014.
[727] V. A. Risso, J. A. Gavira, D. F. Mejia-Carmona, E. A. Gaucher, and J. M.
Sanchez-Ruiz. Hyperstability and substrate promiscuity in laboratory res-
urrections of precambrian beta-lactamases. J Am Chem Soc, 135(8):2899–
902, 2013.
[728] V. A. Risso, J. A. Gavira, and J. M. Sanchez-Ruiz. Thermostable and
promiscuous precambrian proteins. Environ Microbiol, 16(6):1485–9,
2014.
[729] V. A. Risso, S. Martinez-Rodriguez, A. M. Candel, D. M. Kruger,
D. Pantoja-Uceda, M. Ortega-Munoz, F.Santoyo-Gonzalez, E. A. Gaucher,
S. C. L. Kamerlin, M. Bruix, J. A. Gavira, and J. M. Sanchez-Ruiz. De novo
active sites for resurrected precambrian enzymes. Nat Commun, 8:16113,
2017.
[730] N. L. Rivera-Rivera, N. Martinez-Rivera, I. Torres-Vazquez, J. L. Serrano-
Velez, G. V. Lauder, and E. Rosa-Molinar. A male poecillid’s sexually
dimorphic body plan, behavior, and nervous system. Integr Comp Biol,
50(6):1081–90, 2010.
[731] C. Robb-Nicholson. By the way, doctor. i’m 79 years old and have been tak-
ing 3,000 mg of vitamin c a day for years. i’m now uneasy about taking this
amount and plan to cut back to 1,000 mg daily. is this the right dose? will
my body be startled by the abrupt change? Harv Womens Health Watch,
17(7):8, 2010.
[732] F. Robert and M. Chaussidon. A palaeotemperature curve for the precam-
brian oceans based on silicon isotopes in cherts. Nature, 443(7114):969–72,
2006.
[733] A. Rodewald, K. D. Zang, and G. Ziegelmayer. Bilateral symmetry of
qualitative dermatoglyphic patterns in the down syndrome. Z Morphol An-
thropol, 67(3):333–44, 1976.
[734] T. Roeser, S. Stein, and M. Kessel. Nuclear beta-catenin and the devel-
opment of bilateral symmetry in normal and licl-exposed chick embryos.
Development, 126(13):2955–65, 1999.
[735] B. T. Rogers, M. D. Peterson, and T. C. Kaufman. Evolution of the in-
sect body plan as revealed by the sex combs reduced expression pattern.
Development, 124(1):149–57, 1997.
[736] D. S. Roh, M. D. Treiser, E. H. Lafleur, and Y. S. Chun. Technique to pro-
mote symmetry in 2-staged bilateral breast reconstruction in the setting of
unilateral postmastectomy radiation. Ann Plast Surg, 78(4):386–391, 2017.
[737] M. Ronshaugen, N. McGinnis, and W. McGinnis. Hox protein mutation and
macroevolution of the insect body plan. Nature, 415(6874):914–7, 2002.
[738] O. Rosa-Salva, M. Hernik, A. Broseghini, and G. Vallortigara. Visually-
naive chicks prefer agents that move as if constrained by a bilateral body-
plan. Cognition, 173:106–114, 2018.
[739] O. Rota-Stabelli, A. C. Daley, and D. Pisani. Molecular timetrees reveal a
cambrian colonization of land and a new scenario for ecdysozoan evolution.
Curr Biol, 23(5):392–8, 2013.
[740] L. J. Rothschild. A model for diurnal patterns of carbon fixation in a
precambrian microbial mat based on a modern analog. Biosystems, 25(1-
2):13–23, 1991.
[741] J. Rougeot, N. D. Chrispijn, M. Aben, D. M. Elurbe, K. M. Andralojc, P. J.
Murphy, P. Jansen, M. Vermeulen, B. R. Cairns, and L. M. Kamminga.
Maintenance of spatial gene expression by polycomb-mediated repression
after formation of a vertebrate body plan. Development, 146(19), 2019.
[742] G. Roumeliotis, R. Willing, M. Neuert, R. Ahluwalia, T. Jenkyn, and
A. Yazdani. Application of a novel semi-automatic technique for deter-
mining the bilateral symmetry plane of the facial skeleton of normal adult
males. J Craniofac Surg, 26(6):1997–2001, 2015.
[743] A. Y. Rozanov. The cambrian radiation of shelly fossils. Trends Ecol Evol,
7(3):84–7, 1992.
[744] S. V. Rozhnov. From vendian to cambrian: the beginning of morphological
disparity of modern metazoan phyla. Ontogenez, 41(6):425–37, 2010.
[745] R. Ruedemann. On some fundamentals of pre-cambrian paleo-geography.
Proc Natl Acad Sci U S A, 5(1):1–6, 1919.
[746] R. Ruedemann. Cambrian graptolites. Science, 80(2062):15, 1934.
[747] B. Runnegar. No evidence for planktotrophy in cambrian molluscs. Evol
Dev, 9(4):311–2, 2007.
[748] J. H. Russell, H. C. Kiddy, and N. S. Mercer. The use of symnose for quan-
titative assessment of lip symmetry following repair of complete bilateral
cleft lip and palate. J Craniomaxillofac Surg, 42(5):454–9, 2014.
[749] A. Sadiq Aliyu, Y. Musa, M. S. Liman, H. T. Abba, M. S. Chaanda, N. C.
Ngene, and N. N. Garba. Determination of rare earth elements concentra-
tion at different depth profile of precambrian pegmatites using instrumental
neutron activation analysis. Appl Radiat Isot, 131:36–40, 2018.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 34
[750] M. Saifuddin, K. Miyamoto, H. M. Ueda, N. Shikata, and K. Tanne. An
electromyographic evaluation of the bilateral symmetry and nature of mas-
ticatory muscle activity in jaw deformity patients during normal daily ac-
tivities. J Oral Rehabil, 30(6):578–86, 2003.
[751] M. Salinas-Saavedra and A. O. Vargas. Cortical cytasters: a highly con-
served developmental trait of bilateria with similarities to ctenophora.
Evodevo, 2:23, 2011.
[752] M. R. Saltzman, S. A. Young, L. R. Kump, B. C. Gill, T. W. Lyons, and
B. Runnegar. Pulse of atmospheric oxygen during the late cambrian. Proc
Natl Acad Sci U S A, 108(10):3876–81, 2011.
[753] A. F. Salvador, K. R. Schubert, R. S. Cruz, R. B. Corvino, K. L. Pereira,
F. Caputo, and M. F. de Oliveira. Bilateral muscle strength symmetry and
performance are improved following walk training with restricted blood
flow in an elite paralympic sprint runner: Case study. Phys Ther Sport,
20:1–6, 2016.
[754] B. San, N. D. Chrispijn, N. Wittkopp, S. J. van Heeringen, A. K. Lagendijk,
M. Aben, J. Bakkers, R. F. Ketting, and L. M. Kamminga. Normal forma-
tion of a vertebrate body plan and loss of tissue maintenance in the absence
of ezh2. Sci Rep, 6:24658, 2016.
[755] J. Sanchez and M. V. Jose. Analysis of bilateral inverse symmetry in whole
bacterial chromosomes. Biochem Biophys Res Commun, 299(1):126–34,
2002.
[756] M. J. Sanderson. Molecular data from 27 proteins do not support a precam-
brian origin of land plants. Am J Bot, 90(6):954–6, 2003.
[757] L. Sanford, J. Molloy, S. Kumar, M. Randall, R. McGarry, and D. Pokhrel.
Evaluation of plan quality and treatment efficiency for single-isocenter/two-
lesion lung stereotactic body radiation therapy. J Appl Clin Med Phys,
20(1):118–127, 2019.
[758] R. S. Sansom. Preservation and phylogeny of cambrian ecdysozoans tested
by experimental decay of priapulus. Sci Rep, 6:32817, 2016.
[759] N. Santana and J. M. Starbuck. Breaking symmetry: A quantitative anal-
ysis of facial skeleton disharmony in children born with bilateral cleft lip
and palate. Anat Rec (Hoboken), 302(10):1726–1732, 2019.
[760] S. K. Sanyal, K. A. Kvenvolden, and S. S. Marsden. Permeabilities of
precambrian onverwacht cherts and other low permeability rocks. Nature,
232(5309):325–7, 1971.
[761] M. Sara. Biological evolution as an expression of body-plan potentialities.
Riv Biol, 94(3):469–85, 2001.
[762] Y. Savriama and C. P. Klingenberg. Beyond bilateral symmetry: geometric
morphometric methods for any type of symmetry. BMC Evol Biol, 11:280,
2011.
[763] A. H. Scheltema, K. Kerth, and A. M. Kuzirian. Original molluscan
radula: comparisons among aplacophora, polyplacophora, gastropoda, and
the cambrian fossil wiwaxia corrugata. J Morphol, 257(2):219–45, 2003.
[764] P. E. Schenk. Precambrian glaciated surface beneath the gowganda forma-
tion, lake timagami, ontario. Science, 149(3680):176–7, 1965.
[765] B. Schierwater, S. O. Kolokotronis, M. Eitel, and R. DeSalle. The
diploblast-bilateria sister hypothesis: parallel revolution of a nervous sys-
tems may have been a simple step. Commun Integr Biol, 2(5):403–5, 2009.
[766] J. D. Schiffbauer, J. W. Huntley, D. A. Fike, M. J. Jeffrey, J. M. Gregg, and
K. L. Shelton. Decoupling biogeochemical records, extinction, and envi-
ronmental change during the cambrian spice event. Sci Adv, 3(3):e1602158,
2017.
[767] D. W. Schindler, M. A. Turner, M. P. Stainton, and G. A. Linsey. Natural
sources of acid neutralizing capacity in low alkalinity lakes of the precam-
brian shield. Science, 232(4752):844–7, 1986.
[768] H. Schleich. Bilateral symmetry in complete denture. Quintessenz Zahn-
tech, 13(7):719–23, 1987.
[769] E. A. Schmidt, S. K. Piechnik, P. Smielewski, A. Raabe, B. F. Matta, and
M. Czosnyka. Symmetry of cerebral hemodynamic indices derived from
bilateral transcranial doppler. J Neuroimaging, 13(3):248–54, 2003.
[770] S. Schneuwly, R. Klemenz, and W. J. Gehring. Redesigning the body plan
of drosophila by ectopic expression of the homoeotic gene antennapedia.
Nature, 325(6107):816–8, 1987.
[771] R. R. Schoch. Riedl’s burden and the body plan: selection, constraint, and
deep time. J Exp Zool B Mol Dev Evol, 314(1):1–10, 2010.
[772] R. R. Schoch and H. D. Sues. A middle triassic stem-turtle and the evolu-
tion of the turtle body plan. Nature, 523(7562):584–7, 2015.
[773] B. Schoenemann, C. Castellani, E. N. Clarkson, J. T. Haug, A. Maas,
C. Haug, and D. Waloszek. The sophisticated visual system of a tiny cam-
brian crustacean: analysis of a stalked fossil compound eye. Proc Biol Sci,
279(1732):1335–40, 2012.
[774] J. W. Schopf. The development and diversification of precambrian life.
Orig Life, 5(1):119–35, 1974.
[775] J. W. Schopf. Disparate rates, differing fates: tempo and mode of evolution
changed from the precambrian to the phanerozoic. Proc Natl Acad Sci U S
A, 91(15):6735–42, 1994.
[776] J. W. Schopf. Solution to darwin’s dilemma: discovery of the missing pre-
cambrian record of life. Proc Natl Acad Sci U S A, 97(13):6947–53, 2000.
[777] J. W. Schopf and E. S. Barghoorn. Alga-like fossils from the early precam-
brian of south africa. Science, 156(3774):508–12, 1967.
[778] J. W. Schopf, T. D. Ford, and W. J. Breed. Microorganisms from the late
precambrian of the grand canyon, arizona. Science, 179(4080):1319–21,
1973.
[779] J. W. Schopf, A. B. Kudryavtsev, D. G. Agresti, A. D. Czaja, and T. J.
Wdowiak. Raman imagery: a new approach to assess the geochemical ma-
turity and biogenicity of permineralized precambrian fossils. Astrobiology,
5(3):333–71, 2005.
[780] J. W. Schopf, K. A. Kvenvolden, and E. S. Barghoorn. Amino acids in pre-
cambrian sediments: an assay. Proc Natl Acad Sci U S A, 59(2):639–46,
1968.
[781] J. W. Schopf and Y. K. Sovietov. Microfossils in conophyton from the
soviet union and their bearing on precambrian biostratigraphy. Science,
193(4248):143–6, 1976.
[782] J. W. Schopf, A. B. Tripathi, and A. B. Kudryavtsev. Three-dimensional
confocal optical imagery of precambrian microscopic organisms. Astrobi-
ology, 6(1):1–16, 2006.
[783] P. K. Schot, B. T. Bates, and J. S. Dufek. Bilateral performance symmetry
during drop landing: a kinetic analysis. Med Sci Sports Exerc, 26(9):1153–
9, 1994.
[784] W. M. Scott, V. E. Modzeleski, and B. Nagy. Pyrolysis of early pre-
cambrian onverwacht organic matter (>3 x 10(9) yr old). Nature,
225(5238):1129–30, 1970.
[785] M. C. Serra, D. P. Beavers, R. M. Henderson, J. L. Kelleher, J. R. Kiel,
and K. M. Beavers. Effects of a hypocaloric, nutritionally complete, higher
protein meal plan on regional body fat and cardiometabolic biomarkers in
older adults with obesity. Ann Nutr Metab, 74(2):149–155, 2019.
[786] D. W. Seufert, H. C. Brennan, J. DeGuire, E. A. Jones, and P. D. Vize. De-
velopmental basis of pronephric defects in xenopus body plan phenotypes.
Dev Biol, 215(2):233–42, 1999.
[787] M. Shankland and E. C. Seaver. Evolution of the bilaterian body plan: what
have we learned from annelids? Proc Natl Acad Sci U S A, 97(9):4434–7,
2000.
[788] R. S. Shapiro and S. M. Awramik. Microbialite morphostratigraphy as
a tool for correlating late cambrian-early ordovician sequences. J Geol,
108(2):171–80, 2000.
[789] M. Sharma and Y. Shukla. The evolution and distribution of life in the pre-
cambrian eon-global perspective and the indian record. J Biosci, 34(5):765–
76, 2009.
[790] C. Shen, E. N. Clarkson, J. Yang, T. Lan, J. B. Hou, and X. G. Zhang. De-
velopment and trunk segmentation of early instars of a ptychopariid trilo-
bite from cambrian stage 5 of china. Sci Rep, 4:6970, 2014.
[791] B. Sherwood Lollar, K. Voglesonger, L. H. Lin, G. Lacrampe-Couloume,
J. Telling, T. A. Abrajano, T. C. Onstott, and L. M. Pratt. Hydrogeologic
controls on episodic h2 release from precambrian fractured rocks–energy
for deep subsurface life on earth and mars. Astrobiology, 7(6):971–86,
2007.
[792] G. Shields-Zhou. Biogeochemistry: Toxic cambrian oceans. Nature,
469(7328):42–3, 2011.
[793] P. M. Shih, A. Occhialini, J. C. Cameron, P. J. Andralojc, M. A. Parry,
and C. A. Kerfeld. Biochemical characterization of predicted precambrian
rubisco. Nat Commun, 7:10382, 2016.
[794] H. Shimizu and H. Namikawa. The body plan of the cnidarian medusa:
distinct differences in positional origins of polyp tentacles and medusa ten-
tacles. Evol Dev, 11(6):619–21, 2009.
[795] D. G. Shu, L. Chen, J. Han, and X. L. Zhang. An early cambrian tunicate
from china. Nature, 411(6836):472–3, 2001.
[796] D. G. Shu, S. C. Morris, J. Han, L. Chen, X. L. Zhang, Z. F. Zhang, H. Q.
Liu, Y. Li, and J. N. Liu. Primitive deuterostomes from the chengjiang
lagerstatte (lower cambrian, china). Nature, 414(6862):419–24, 2001.
[797] D. G. Shu, S. C. Morris, J. Han, Y. Li, X. L. Zhang, H. Hua, Z. F. Zhang,
J. N. Liu, J. F. Guo, Y. Yao, and K. Yasui. Lower cambrian vendobionts
from china and early diploblast evolution. Science, 312(5774):731–4, 2006.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 35
[798] D. G. Shu, S. C. Morris, J. Han, Z. F. Zhang, K. Yasui, P. Janvier, L. Chen,
X. L. Zhang, J. N. Liu, Y. Li, and H. Q. Liu. Head and backbone of the
early cambrian vertebrate haikouichthys. Nature, 421(6922):526–9, 2003.
[799] Z. Shuranova. Bilateral symmetry in crayfish behavioral reactions. Acta
Biol Hung, 59 Suppl:163–72, 2008.
[800] B. Z. Siegel and S. M. Siegel. Biology of the precambrian genus kakabekia:
New observations on living kakabekia barghoorniana. Proc Natl Acad Sci
USA, 67(2):1005–10, 1970.
[801] S. M. Siegel and C. Giumarro. On the culture of a microorganism similar to
the precambrian microfossil kakabekia umbellata barghoorn in nh(3)-rich
atmospheres. Proc Natl Acad Sci U S A, 55(2):349–53, 1966.
[802] A. Siegler, C. G. Pick, and E. Been. Differences in body positional bilateral
symmetry between stance and supine positions, and the impact of attention
and awareness on postural symmetry. Gait Posture, 68:476–482, 2019.
[803] C. Simionescu, F. Denes, and E. Schneider. Synthesis of certain amino
acids and peptides in cold plasma. some resemblance between precambrian
protein formations and synthetic structures. C R Acad Hebd Seances Acad
Sci D, 275(5):703–6, 1972.
[804] B. M. Simonson. Petrographic criteria for recognizing certain types of im-
pact spherules in well-preserved precambrian successions. Astrobiology,
3(1):49–65, 2003.
[805] D. J. Siveter, M. Williams, and D. Waloszek. A phosphatocopid crustacean
with appendages from the lower cambrian. Science, 293(5529):479–81,
2001.
[806] P. Skoglund and R. Keller. Integration of planar cell polarity and ecm sig-
naling in elongation of the vertebrate body plan. Curr Opin Cell Biol,
22(5):589–96, 2010.
[807] C. B. Skovsted, G. A. Brock, A. Lindstrom, J. S. Peel, J. R. Paterson, and
M. K. Fuller. Early cambrian record of failed durophagy and shell repair in
an epibenthic mollusc. Biol Lett, 3(3):314–7, 2007.
[808] C. B. Skovsted, L. E. Holmer, C. M. Larsson, A. E. Hogstrom, G. A. Brock,
T. P. Topper, U. Balthasar, S. P.Stolk, and J. R. Paterson. The scleritome of
paterimitra: an early cambrian stem group brachiopod from south australia.
Proc Biol Sci, 276(1662):1651–6, 2009.
[809] J. M. Slack, H. V. Isaacs, G. E. Johnson, L. A. Lettice, D. Tannahill, and
J. Thompson. Specification of the body plan during xenopus gastrulation:
dorsoventral and anteroposterior patterning of the mesoderm. Dev Suppl,
pages 143–9, 1992.
[810] A. B. Smith. Deuterostomes in a twist: the origins of a radical new body
plan. Evol Dev, 10(4):493–503, 2008.
[811] A. B. Smith. Cambrian problematica and the diversification of deuteros-
tomes. BMC Biol, 10:79, 2012.
[812] A. B. Smith and S. Zamora. Cambrian spiral-plated echinoderms from
gondwana reveal the earliest pentaradial body plan. Proc Biol Sci,
280(1765):20131197, 2013.
[813] A. B. Smith, S. Zamora, and J. J. Alvaro. The oldest echinoderm faunas
from gondwana show that echinoderm body plan diversification was rapid.
Nat Commun, 4:1385, 2013.
[814] C. L. Smith, F. Varoqueaux, M. Kittelmann, R. N. Azzam, B. Cooper, C. A.
Winters, M. Eitel, D. Fasshauer, and T. S. Reese. Novel cell types, neu-
rosecretory cells, and body plan of the early-diverging metazoan trichoplax
adhaerens. Curr Biol, 24(14):1565–1572, 2014.
[815] D. Smith and J. L. Larsen. On the symmetry and asymmetry of the bifurca-
tion of the common carotid artery: a study of bilateral carotid angiograms
in 100 adults. Neuroradiology, 17(5):245–7, 1979.
[816] F. W. Smith, T. C. Boothby, I. Giovannini, L. Rebecchi, E. L. Jockusch, and
B. Goldstein. The compact body plan of tardigrades evolved by the loss of
a large body region. Curr Biol, 26(2):224–229, 2016.
[817] M. P. Smith and D. A. Harper. Earth science. causes of the cambrian explo-
sion. Science, 341(6152):1355–6, 2013.
[818] M. R. Smith and J. B. Caron. Primitive soft-bodied cephalopods from the
cambrian. Nature, 465(7297):469–72, 2010.
[819] P. M. Smith, J. R. Paterson, and G. A. Brock. Trilobites and agnostids
from the goyder formation (cambrian series 3, guzhangian; mindyallan),
amadeus basin, central australia. Zootaxa, 4396(1):1–67, 2018.
[820] J. Sokol. Cracking the cambrian. Science, 362(6417):880–884, 2018.
[821] J. Sokol. Fossils show large predator prowled cambrian sediments. Science,
365(6452):417, 2019.
[822] R. V. Sole, P. Fernandez, and S. A. Kauffman. Adaptive walks in a gene
network model of morphogenesis: insights into the cambrian explosion. Int
J Dev Biol, 47(7-8):685–93, 2003.
[823] S. L. Soltau, J. S. Slowik, P. S. Requejo, S. J. Mulroy, and R. R. Neptune.
An investigation of bilateral symmetry during manual wheelchair propul-
sion. Front Bioeng Biotechnol, 3:86, 2015.
[824] H. Song, J. Hu, W. Chen, G. Elliott, P. Andre, B. Gao, and Y. Yang. Planar
cell polarity breaks bilateral symmetry by controlling ciliary positioning.
Nature, 466(7304):378–82, 2010.
[825] O. S. Sotnikov and P. Lagutenko Iu. Transformation of sensory neurons
into associative neurons in the epidermal plexus and ganglia of bilateria.
Zh Evol Biokhim Fiziol, 40(4):359–64, 2004.
[826] V. Souza, J. L. Siefert, A. E. Escalante, J. J. Elser, and L. E. Eguiarte. The
cuatro cienegas basin in coahuila, mexico: an astrobiological precambrian
park. Astrobiology, 12(7):641–7, 2012.
[827] S. Spanio, F. C. Wei, O. K. Coskunfirat, C. H. Lin, and Y. T. Lin. Sym-
metry of vascular pedicle anatomy in the first web space of the foot related
to toe harvest: clinical observations in 85 simultaneous bilateral second-toe
transfer patients. Plast Reconstr Surg, 115(5):1325–7, 2005.
[828] E. A. Sperling, C. A. Frieder, A. V. Raman, P. R. Girguis, L. A. Levin, and
A. H. Knoll. Oxygen, ecology, and the cambrian radiation of animals. Proc
Natl Acad Sci U S A, 110(33):13446–51, 2013.
[829] E. A. Sperling, J. M. Robinson, D. Pisani, and K. J. Peterson. Where’s
the glass? biomarkers, molecular clocks, and micrornas suggest a 200-myr
missing precambrian fossil record of siliceous sponge spicules. Geobiol-
ogy, 8(1):24–36, 2010.
[830] A. V. Spirov and D. M. Holloway. Making the body plan: precision in
the genetic hierarchy of drosophila embryo segmentation. In Silico Biol,
3(1-2):89–100, 2003.
[831] S. G. Sprecher and H. Reichert. The urbilaterian brain: developmental in-
sights into the evolutionary origin of the brain in insects and vertebrates.
Arthropod Struct Dev, 32(1):141–56, 2003.
[832] J. Spring, N. Yanze, C. Josch, A. M. Middel, B. Winninger, and V. Schmid.
Conservation of brachyury, mef2, and snail in the myogenic lineage of jel-
lyfish: a connection to the mesoderm of bilateria. Dev Biol, 244(2):372–84,
2002.
[833] D. N. Stanley, T. Popp, C. S. Ha, G. P. Swanson, T. Y. Eng, N. Papaniko-
laou, and A. N. Gutierrez. Dosimetric effect of photon beam energy on
volumetric modulated arc therapy treatment plan quality due to body habi-
tus in advanced prostate cancer. Pract Radiat Oncol, 5(6):e625–33, 2015.
[834] S. M. Stanley. An ecological theory for the sudden origin of multicellular
life in the late precambrian. Proc Natl Acad Sci U S A, 70(5):1486–9, 1973.
[835] E. J. Steele, S. Al-Mufti, K. A. Augustyn, R. Chandrajith, J. P. Cogh-
lan, S. G. Coulson, S. Ghosh, M. Gillman, R. M. Gorczynski, B. Klyce,
G. Louis, K. Mahanama, K. R. Oliver, J. Padron, J. Qu, J. A. Schuster, W. E.
Smith, D. P.Snyder, J. A. Steele, B. J. Stewart, R. Temple, G. Tokoro,C. A.
Tout, A. Unzicker, M. Wainwright, J. Wallis, D. H. Wallis, M. K. Wallis,
J. Wetherall, D. T. Wickramasinghe, J. T. Wickramasinghe, N. C. Wickra-
masinghe, and Y. Liu. Reply to editorial and commentaries on steele, al-
mufti, augustyn, chandrajith, coghlan, coulson et al. (2018) "cause of cam-
brian explosion - terrestrial or cosmic?". Prog Biophys Mol Biol, 136:27–
28, 2018.
[836] E. J. Steele, S. Al-Mufti, K. A. Augustyn, R. Chandrajith, J. P. Cogh-
lan, S. G. Coulson, S. Ghosh, M. Gillman, R. M. Gorczynski, B. Klyce,
G. Louis, K. Mahanama, K. R. Oliver, J. Padron, J. Qu, J. A. Schuster, W. E.
Smith, D. P.Snyder, J. A. Steele, B. J. Stewart, R. Temple, G. Tokoro,C. A.
Tout, A. Unzicker, M. Wainwright, J. Wallis, D. H. Wallis, M. K. Wallis,
J. Wetherall, D. T. Wickramasinghe, J. T. Wickramasinghe, N. C. Wickra-
masinghe, and Y. Liu. Cause of cambrian explosion - terrestrial or cosmic?
Prog Biophys Mol Biol, 136:3–23, 2018.
[837] G. A. Steele. Medical support for the cambrian march. J R Army Med
Corps, 110:45–7, 1964.
[838] M. Stein, G. E. Budd, J. S. Peel, and D. A. Harper. Arthroaspis n. gen.,
a common element of the sirius passet lagerstatte (cambrian, north green-
land), sheds light on trilobite ancestry. BMC Evol Biol, 13:99, 2013.
[839] A. J. Stewart, D. H. Blake, and C. D. Ollier. Cambrian river terraces
and ridgetops in central australia: oldest persisting landforms? Science,
233(4765):758–61, 1986.
[840] B. L. Stinchcomb, H. L. Levin, and D. J. Echols. Precambrian
graphitic compressions of possible biologic origin from canada. Science,
148(3666):75–6, 1965.
[841] D. A. Stolper, G. D. Love, S. Bates, T. W. Lyons, E. Young, A. L. Ses-
sions, and J. P.Grotzinger. Paleoecology and paleoceanography of the athel
silicilyte, ediacaran-cambrian boundary, sultanate of oman. Geobiology,
15(3):401–426, 2017.
[842] K. M. Strang, H. A. Armstrong, and D. A. Harper. Minerals in the gut:
scoping a cambrian digestive system. R Soc Open Sci, 3(11):160420, 2016.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 36
[843] D. Straus and W. Gilbert. Genetic engineering in the precambrian: structure
of the chicken triosephosphate isomerase gene. Mol Cell Biol, 5(12):3497–
506, 1985.
[844] N. J. Strausfeld. Palaeontology: Clearing the heads of cambrian arthropods.
Curr Biol, 25(14):R616–8, 2015.
[845] N. J. Strausfeld, X. Ma, G. D. Edgecombe, R. A. Fortey, M. F.Land, Y. Liu,
P.Cong, and X. Hou. Arthropod eyes: The early cambrian fossil record and
divergent evolution of visual systems. Arthropod Struct Dev, 45(2):152–
172, 2016.
[846] N. J. Strausfeld, I. Sinakevitch, S. M. Brown, and S. M. Farris. Ground plan
of the insect mushroom body: functional and evolutionary implications. J
Comp Neurol, 513(3):265–291, 2009.
[847] G. Struhl. A universal genetic key to body plan? Nature, 310(5972):10–1,
1984.
[848] I. Strzyzewska-Jowko, M. Jerka-Dziadosz, and J. Frankel. Effect of alter-
ation in the global body plan on the deployment of morphogenesis-related
protein epitopes labeled by the monoclonal antibody 12g9 in tetrahymena
thermophila. Protist, 154(1):71–90, 2003.
[849] M. Stumpp, M. Y.Hu, Y.C. Tseng, Y.J. Guh, Y. C. Chen, J. K. Yu,Y. H. Su,
and P.P. Hwang. Evolution of extreme stomach ph in bilateria inferred from
gastric alkalization mechanisms in basal deuterostomes. Sci Rep, 5:10421,
2015.
[850] S. Su, W. Xiao, W. Guo, X. Yao, J. Xiao, Z. Ye, N. Wang, K. Jiao, M. Lei,
Q. Peng, X. Hu, X. Huang, and D. Luo. The cycloidea-radialis module reg-
ulates petal shape and pigmentation, leading to bilateral corolla symmetry
in torenia fournieri (linderniaceae). New Phytol, 215(4):1582–1593, 2017.
[851] T. J. Suchomel, K. Sato, B. H. DeWeese, W. P. Ebben, and M. H. Stone.
Relationships between potentiation effects after ballistic half-squats and bi-
lateral symmetry. Int J Sports Physiol Perform, 11(4):448–54, 2016.
[852] H. Suemori and S. Noguchi. Hox c cluster genes are dispensable for over-
all body plan of mouse embryonic development. Dev Biol, 220(2):333–42,
2000.
[853] H. Suga, D. Hoshiyama, and T. Miyata. Cambrian explosion and diversifi-
cation of genes. Tanpakushitsu Kakusan Koso, 44(3):207–16, 1999.
[854] R. G. Summers, D. W. Piston, K. M. Harris, and J. B. Morrill. The orienta-
tion of first cleavage in the sea urchin embryo, lytechinus variegatus, does
not specify the axes of bilateral symmetry. Dev Biol, 175(1):177–83, 1996.
[855] H. Sun, M. R. Smith, H. Zeng, F. Zhao, G. Li, and M. Zhu. Hyoliths with
pedicles illuminate the origin of the brachiopod body plan. Proc Biol Sci,
285(1887), 2018.
[856] S. Suursoo, L. Hill, V. Raidla, M. Kiisk, A. Jantsikene, N. Nilb, G. Czup-
pon, K. Putk, R. Munter, R. Koch, and K. Isakar. Temporal changes in
radiological and chemical composition of cambrian-vendian groundwater
in conditions of intensive water consumption. Sci Total Environ, 601-
602:679–690, 2017.
[857] Y. Suzuki. Genes that are involved in bombyx body plan and silk gene
regulation. Int J Dev Biol, 38(2):231–5, 1994.
[858] F. M. Swain, J. Baysinger, and J. M. Bratt. Hydrocarbons obtained by py-
rolysis of some precambrian rocks of minnesota. Orig Life, 7(3):239–59,
1976.
[859] E. D. Swanner, M. Maisch, W. Wu, and A. Kappler. Oxic fe(iii) reduction
could have generated fe(ii) in the photic zone of precambrian seawater. Sci
Rep, 8(1):4238, 2018.
[860] R. Szabo and D. E. Ferrier. Another biomineralising protostome with an
msp130 gene and conservation of msp130 gene structure across bilateria.
Evol Dev, 17(3):195–7, 2015.
[861] P. Szovenyi, M. Waller, and A. Kirbis. Evolution of the plant body plan.
Curr Top Dev Biol, 131:1–34, 2019.
[862] Y. Takahara and N. Ono. A theoretical integration of cambrian explosion
and post-permian quiescence. Biosystems, 43(1):63–8, 1997.
[863] A. Tallafuss and L. Bally-Cuif. Formation of the head-trunk boundary in
the animal body plan: an evolutionary perspective. Gene, 287(1-2):23–32,
2002.
[864] N. M. Talyzina and M. Moczydowska. Morphological and ultrastructural
studies of some acritarchs from the lower cambrian lukati formation, esto-
nia. Rev Palaeobot Palynol, 112(1-3):1–21, 2000.
[865] P. P. Tam and R. R. Behringer. Mouse gastrulation: the formation of a
mammalian body plan. Mech Dev, 68(1-2):3–25, 1997.
[866] P. P. Tam, J. M. Gad, S. J. Kinder, T. E. Tsang, and R. R. Behringer. Mor-
phogenetic tissue movement and the establishment of body plan during de-
velopment from blastocyst to gastrula in the mouse. Bioessays, 23(6):508–
17, 2001.
[867] G. Tanaka, X. Hou, X. Ma, G. D. Edgecombe, and N. J. Strausfeld. Che-
licerate neural ground pattern in a cambrian great appendage arthropod.
Nature, 502(7471):364–7, 2013.
[868] M. Tanaka. Establishment of the vertebrate body plan in relation to limb
formation. Zoolog Sci, 22(12):1371, 2005.
[869] Z. Tanaka, M. Perry, G. Cooper, S. Tang, C. P. McKay, and B. Chen. Near-
infrared (nir) raman spectroscopy of precambrian carbonate stromatolites
with post-depositional organic inclusions. Appl Spectrosc, 66(8):911–6,
2012.
[870] Q. Tang, J. Hu, G. Xie, X. Yuan, B. Wan, C. Zhou, X. Dong, G. Cao, B. S.
Lieberman, S. P. Leys, and S. Xiao. A problematic animal fossil from the
early cambrian hetang formation, south china. J Paleontol, n/a:1937–2337,
2019.
[871] O. A. Tarazona, L. A. Slota, D. H. Lopez, G. Zhang, and M. J. Cohn. The
genetic program for cartilage development has deep homology within bila-
teria. Nature, 533(7601):86–9, 2016.
[872] L. G. Tarhan. Meiofauna mute the cambrian explosion. Nat Ecol Evol,
1(10):1423–1424, 2017.
[873] M. E. Taylor. Precambrian mollusc-like fossils from inyo county, california.
Science, 153(3732):198–201, 1966.
[874] M. J. Telford and G. E. Budd. The place of phylogeny and cladistics in
evo-devo research. Int J Dev Biol, 47(7-8):479–90, 2003.
[875] M. J. Telford, M. J. Wise, and V. Gowri-Shankar. Consideration of rna sec-
ondary structure significantly improves likelihood-based estimates of phy-
logeny: examples from the bilateria. Mol Biol Evol, 22(4):1129–36, 2005.
[876] E. N. Temereva and V. V. Malakhov. Metamorphic remodeling of mor-
phology and the body cavity in phoronopsis harmeri (lophotrochozoa,
phoronida): the evolution of the phoronid body plan and life cycle. BMC
Evol Biol, 15:229, 2015.
[877] P. W. ten Berg, J. G. Dobbe, S. D. Strackee, and G. J. Streekstra.
Three-dimensional assessment of bilateral symmetry of the scaphoid: An
anatomic study. Biomed Res Int, 2015:547250, 2015.
[878] K. H. Ten Tusscher. Mechanisms and constraints shaping the evolution of
body plan segmentation. Eur Phys J E Soft Matter, 36(5):54, 2013.
[879] K. H. Ten Tusscher and P. Hogeweg. Evolution of networks for body plan
patterning; interplay of modularity, robustness and evolvability. PLoS Com-
put Biol, 7(10):e1002208, 2011.
[880] A. L. Thomas. The breath of life - did increased oxygen levels trigger the
cambrian explosion? Trends Ecol Evol, 12(2):44–5, 1997.
[881] S. Tian, M. Zandawala, I. Beets, E. Baytemur, S. E. Slade, J. H. Scrivens,
and M. R. Elphick. Urbilaterian origin of paralogous gnrh and corazonin
neuropeptide signalling pathways. Sci Rep, 6:28788, 2016.
[882] A. M. Tomescu, S. E. Wyatt, M. Hasebe, and G. W. Rothwell. Early evolu-
tion of the vascular plant body plan - the missing mechanisms. Curr Opin
Plant Biol, 17:126–36, 2014.
[883] G. R. Tomkinson and T. S. Olds. Physiological correlates of bilateral sym-
metry in humans. Int J Sports Med, 21(8):545–50, 2000.
[884] G. R. Tomkinson, N. Popovic, and M. Martin. Bilateral symmetry and
the competitive standard attained in elite and sub-elite sport. J Sports Sci,
21(3):201–11, 2003.
[885] X. Tong, S. Hrycaj, O. Podlaha, A. Popadic, and A. Monteiro. Over-
expression of ultrabithorax alters embryonic body plan and wing patterns
in the butterfly bicyclus anynana. Dev Biol, 394(2):357–66, 2014.
[886] T. P. Topper, J. Guo, S. Clausen, C. B. Skovsted, and Z. Zhang. A stem
group echinoderm from the basal cambrian of china and the origins of am-
bulacraria. Nat Commun, 10(1):1366, 2019.
[887] T. P. Topper, L. E. Holmer, and J. B. Caron. Brachiopods hitching a ride:
an early case of commensalism in the middle cambrian burgess shale. Sci
Rep, 4:6704, 2014.
[888] T. P. Topper, L. C. Strotz, L. E. Holmer, Z. Zhang, N. N. Tait, and J. B.
Caron. Competition and mimicry: the curious case of chaetae in bra-
chiopods from the middle cambrian burgess shale. BMC Evol Biol, 15:42,
2015.
[889] C. R. Tosh and G. D. Ruxton. Body plan of consumed organisms influ-
ences ecological range of consumers through neural processing bias. Am
Nat, 171(2):267–73, 2008.
[890] S. Tsuchiyama, B. Sakaguchi, and K. Oishi. Analysis of gynandromorph
survivals in drosophila melanogaster infected with the male-killing sr or-
ganisms. Genetics, 89(4):711–21, 1978.
[891] K. Tsuda and S. Hake. Diverse functions of knox transcription factors in
the diploid body plan of plants. Curr Opin Plant Biol, 27:91–6, 2015.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 37
[892] C. H. Tung, Y. R. Cheng, C. Y. Lin, J. S. Ho, C. H. Kuo, J. K. Yu, and
Y. H. Su. A new copepod with transformed body plan and unique phylo-
genetic position parasitic in the acorn worm ptychodera flava. Biol Bull,
226(1):69–80, 2014.
[893] F. F.Tuon, V. A. Neto, and V. S. Amato. Leishmania: origin, evolution and
future since the precambrian. FEMS Immunol Med Microbiol, 54(2):158–
66, 2008.
[894] S. A. Tyler and E. S. Barghoorn. Occurrence of structurally preserved plants
in pre-cambrian rocks of the canadian shield. Science, 119(3096):606–8,
1954.
[895] T. Uenoyama, S. Uchida, A. Fukunaga, and K. Oishi. Studies on the
sex-specific lethals of drosophila melanogaster. iv. gynandromorph analy-
sis of three male-specific lethals, mle, msl-2(27) and mle(3)132. Genetics,
102(2):223–31, 1982.
[896] A. Ugajin, K. Matsuo, R. Kubo, T. Sasaki, and M. Ono. Expression profile
of the sex determination gene doublesex in a gynandromorph of bumblebee,
bombus ignitus. Naturwissenschaften, 103(3-4):17, 2016.
[897] K. E. Uithoven, J. R. Ryder, R. Brown, K. D. Rudser, N. G. Evanoff, D. R.
Dengel, and A. S. Kelly. Determination of bilateral symmetry of carotid
artery structure and function in children and adolescents. J Vasc Diagn
Interv, 5:1–5, 2017.
[898] N. E. Vaccari, G. D. Edgecombe, and C. Escudero. Cambrian ori-
gins and affinities of an enigmatic fossil group of arthropods. Nature,
430(6999):554–7, 2004.
[899] L. Vakaet. New data on the polarity and bilateral symmetry in oocytes of
lebistes reticulatus, compiled by vital staining with nile blue. C R Seances
Soc Biol Fil, 147(3-4):353–5, 1953.
[900] L. Vakaet and J. Fautrez. Bilateral symmetry of the virgin eggs of lebistes
reticulatus. C R Seances Soc Biol Fil, 146(17-18):1439–40, 1952.
[901] M. Valent, O. Fatka, M. Szabad, V. Micka, and L. Marek. Skryjelites au-
ritus gen. et sp. nov. and quasimolites quasimodo gen. et sp. nov.–two new
middle cambrian hyolithids (?mollusca) from the czech republic. Zootaxa,
4007(3):419–26, 2015.
[902] J. W. Valentine. Bilaterians of the precambrian-cambrian transition and the
annelid-arthropod relationship. Proc Natl Acad Sci U S A, 86(7):2272–5,
1989.
[903] J. W. Valentine. A biotic transition: the precambrian-cambrian boundary.
Science, 245(4922):1126, 1989.
[904] J. W. Valentine. Late precambrian bilaterians: grades and clades. Proc Natl
Acad Sci U S A, 91(15):6751–7, 1994.
[905] J. W. Valentine, D. Jablonski, and D. H. Erwin. Fossils, molecules and
embryos: new perspectives on the cambrian explosion. Development,
126(5):851–9, 1999.
[906] J. A. van den Biggelaar. Development of division asynchrony and bilateral
symmetry in the first quartet of micromeres in eggs of lymnaea. J Embryol
Exp Morphol, 26(3):393–9, 1971.
[907] J. Vannier. Gut contents as direct indicators for trophic relationships in the
cambrian marine ecosystem. PLoS One, 7(12):e52200, 2012.
[908] J. Vannier,C. Aria, R. S. Taylor, and J. B. Caron. Waptia fieldensis walcott,
a mandibulate arthropod from the middle cambrian burgess shale. R Soc
Open Sci, 5(6):172206, 2018.
[909] J. Vannier, M. Steiner, E. Renvoise, S. X. Hu, and J. P. Casanova. Early
cambrian origin of modern food webs: evidence from predator arrow
worms. Proc Biol Sci, 274(1610):627–33, 2007.
[910] M. Varnava,I. Sumida, H. Mizuno, H. Shiomi, O. Suzuki, Y. Yoshioka, and
K. Ogawa. A new plan quality objective function for determining optimal
collimator combinations in prostate cancer treatment with stereotactic body
radiation therapy using cyberknife. PLoS One, 13(11):e0208086, 2018.
[911] E. V. Vasudevan and E. P. Zehr. Multi-frequency arm cycling reveals bilat-
eral locomotor coupling to increase movement symmetry. Exp Brain Res,
211(2):299–312, 2011.
[912] K. A. Vaughan, M. J. McKirdy, and J. G. Meara. Surgery, obstetrics and
anaesthesia: a cambrian explosion for global health. Scott Med J, 64(1):22–
24, 2019.
[913] T. H. Veikkolainen, A. J. Biggin, L. J. Pesonen, D. A. Evans, and N. A.
Jarboe. Advancing precambrian palaeomagnetism with the paleomagia and
pint(qpi) databases. Sci Data, 4:170068, 2017.
[914] J. Veizer, J. Hoefs, D. R. Lowe, and P. C. Thurston. Geochemistry of pre-
cambrian carbonates: Ii. archean greenstone belts and archean sea water.
Geochim Cosmochim Acta, 53:859–71, 1989.
[915] J. Vermot, J. Gallego Llamas, V. Fraulob, K. Niederreither, P. Chambon,
and P. Dolle. Retinoic acid controls the bilateral symmetry of somite for-
mation in the mouse embryo. Science, 308(5721):563–6, 2005.
[916] G. C. Vilhais-Neto, M. Maruhashi, K. T. Smith, M. Vasseur-Cognet, A. S.
Peterson, J. L. Workman, and O. Pourquie. Rere controls retinoic acid sig-
nalling and somite bilateral symmetry. Nature, 463(7283):953–7, 2010.
[917] P. Vintemberger and J. Clavert. Determinism of bilateral symmetry in birds.
i. experiences obtained on the amphibian egg showing the effect of rotation
of the egg membranes on the orientation of the future embryo. C R Seances
Soc Biol Fil, 148(1-2):149–51, 1954.
[918] P. Vintemberger and J. Clavert. The determinism of bilateral symmetry in
birds. iii. our concept of the mechanism of orientation of the embryo and
exceptions to the rule of von baer as seen in the duck. C R Seances Soc Biol
Fil, 148(5-6):571–5, 1954.
[919] P. Vintemberger and J. Clavert. The determinism of bilateral symmetry in
birds. v. notion on the existence during the sojourn of the egg in the uterus,
of a critical period which functions as a determinant of bilateral symmetry.
C R Seances Soc Biol Fil, 148(15-18):1489–91, 1954.
[920] P. Vintemberger and J. Clavert. The determinism of bilateral symmetry in
birds. vii. experimental confirmation of our concept of the mechanism of
inversion of orientation of the pigeon embryo. C R Seances Soc Biol Fil,
149(9-10):1038–41, 1955.
[921] P. Vintemberger and J. Clavert. Determination of bilateral symmetry in
birds. ix. dominant orientation of the embryo & orientation in space of
the axis of the egg in utero in various birds. C R Seances Soc Biol Fil,
152(1):146–8, 1958.
[922] P. Vintemberger and J. Clavert. On the determinism of bilateral symmetry
in birds. xi. the moment of embryonic axis determination, according to the
results of our experiences in rotation of the chicken egg in the uterus. C R
Seances Soc Biol Fil, 153:661–5, 1959.
[923] P. Vintemberger and J. Clavert. On the determinism of bilateral symmetry
in birds. xiii. the factors in the orientation of the embryo in relation to the
axis of the egg and von baer’s rule, in the light of our controlled orientation
experiments on the hen egg extracted from the uterus. C R Seances Soc Biol
Fil, 154:1072–6, 1960.
[924] J. Vinther, D. Eibye-Jacobsen, and D. A. Harper. An early cambrian stem
polychaete with pygidial cirri. Biol Lett, 7(6):929–32, 2011.
[925] J. Vinther, M. Stein, N. R. Longrich, and D. A. Harper. A suspension-
feeding anomalocarid from the early cambrian. Nature, 507(7493):496–9,
2014.
[926] P. Vopalensky, M. A. Tosches, K. Achim, M. Handberg-Thorsager, and
D. Arendt. From spiral cleavage to bilateral symmetry: the developmen-
tal cell lineage of the annelid brain. BMC Biol, 17(1):81, 2019.
[927] J. C. Vroemen, J. G. Dobbe, R. Jonges, S. D. Strackee, and G. J. Streekstra.
Three-dimensional assessment of bilateral symmetry of the radius and ulna
for planning corrective surgeries. J Hand Surg Am, 37(5):982–8, 2012.
[928] H. T. Vu, S. Mansour, M. Kucken, C. Blasse, C. Basquin, J. Azimzadeh,
E. W. Myers, L. Brusch, and J. C. Rink. Dynamic polarization of the
multiciliated planarian epidermis between body plan landmarks. Dev Cell,
51(4):526–542 e6, 2019.
[929] C. D. Walcott. Cambrian trilobites. Proc Natl Acad Sci U S A, 2(2):101,
1916.
[930] J. C. Walker. Precambrian evolution of the climate system. Glob Planet
Change, 82:261–89, 1990.
[931] J. C. Walker and K. J. Zahnle. Lunar nodal tide and distance to the moon
during the precambrian. Nature, 320:600–2, 1986.
[932] R. Wallace. A new formal perspective on ’cambrian explosions’. C R Biol,
337(1):1–5, 2014.
[933] D. Wang, H. F. Ling, U. Struck, X. K. Zhu, M. Zhu, T. He, B. Yang,
A. Gamper, and G. A. Shields. Coupling of ocean redox and animal evo-
lution during the ediacaran-cambrian transition. Nat Commun, 9(1):2575,
2018.
[934] D. Wang, H. F. Ling, U. Struck, X. K. Zhu, M. Zhu, T. He, B. Yang,
A. Gamper, and G. A. Shields. Publisher correction: Coupling of ocean
redox and animal evolution during the ediacaran-cambrian transition. Nat
Commun, 9(1):3395, 2018.
[935] Z. Wang, J. Pascual-Anaya, A. Zadissa, W. Li, Y. Niimura, Z. Huang,
C. Li, S. White, Z. Xiong, D. Fang, B. Wang, Y. Ming, Y. Chen, Y. Zheng,
S. Kuraku, M. Pignatelli, J. Herrero, K. Beal, M. Nozawa, Q. Li, J. Wang,
H. Zhang, L. Yu, S. Shigenobu, J. Wang, J. Liu, P. Flicek, S. Searle,
J. Wang, S. Kuratani, Y. Yin, B. Aken, G. Zhang, and N. Irie. The draft
genomes of soft-shell turtle and green sea turtle yield insights into the
development and evolution of the turtle-specific body plan. Nat Genet,
45(6):701–706, 2013.
[936] N. M. Warburton and C. R. Marchal. Forelimb myology of carnivorous
marsupials (marsupialia: Dasyuridae): Implications for the ancestral body
plan of the australidelphia. Anat Rec (Hoboken), 300(9):1589–1608, 2017.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 38
[937] L. M. Ward, A. Idei, S. Terajima, T. Kakegawa, W. W. Fischer, and S. E.
McGlynn. Microbial diversity and iron oxidation at okuoku-hachikurou
onsen, a japanese hot spring analog of precambrian iron formations. Geo-
biology, 15(6):817–835, 2017.
[938] P. Ward, J. Chamberlain, R. Chamberlain, G. Barord, A. Ilano, and
E. Catlin. Function of calcium phosphate renal concrements in extant nau-
tilus: a paradigm for cambrian-relict short-term mineral reserve equivalent
to vertebrate bone. Zoology (Jena), 117(3):185–91, 2014.
[939] R. Warren and S. Carroll. Homeotic genes and diversification of the insect
body plan. Curr Opin Genet Dev, 5(4):459–65, 1995.
[940] J. M. Waters and R. M. McDowall. Phylogenetics of the australasian mud-
fishes: evolution of an eel-like body plan. Mol Phylogenet Evol, 37(2):417–
25, 2005.
[941] S. Watmough. An assessment of the ca weathering sources to surface waters
on the precambrian shield in central ontario. Sci Total Environ, 626:69–76,
2018.
[942] M. Webster. A cambrian peak in morphological variation within trilobite
species. Science, 317(5837):499–502, 2007.
[943] M. Webster and L. L. Bohach. Systematic revision of the trilobite genera
laudonia and lochmanolenellus (olenelloidea) from the lower dyeran (cam-
brian series 2) of western laurentia. Zootaxa, 3824:1–66, 2014.
[944] M. Webster and M. L. Zelditch. Modularity of a cambrian ptychoparioid
trilobite cranidium. Evol Dev, 13(1):96–109, 2011.
[945] J. J. Welch, E. Fontanillas, and L. Bromham. Molecular dates for the "cam-
brian explosion": the influence of prior assumptions. Syst Biol, 54(4):672–
8, 2005.
[946] P. Wenderoth. The effects of dot pattern parameters and constraints on the
relative salience of vertical bilateral symmetry. Vision Res, 36(15):2311–
20, 1996.
[947] E. Werner. Toward a theory of communication and cooperation for multi-
agent planning. Theoretical Aspects of Reasoning About Knowledge: Pro-
ceedings of the Second Conference, pages 129–143, 1988.
[948] E. Werner. The design of multi-agent systems. Elsevier Science Publishers
B.V. (North Holland), 1992.
[949] E. Werner. Logical foundations of distributed artificial intelligence. Wiley,
1996.
[950] E. Werner. What ants cannot do. Springer Verlag, 1996.
[951] E. Werner. Systems biology: the new darling of drug discovery? Drug
Discov Today, 7(18):947–9, 2002.
[952] E. Werner. In silico cell signaling underground. Sci STKE, 2003(170):PE8,
2003.
[953] E. Werner. In silico multicellular systems biology and minimal genomes.
DDT, 8(24):1121–1127, 2003.
[954] E. Werner. Meeting report: in silico cell signaling underground. Sci STKE,
2003(170):PE8, 2003.
[955] E. Werner. Systems biology unplugged. Drug Discov Today, 8(6):250–2,
2003.
[956] E. Werner. The future and limits of systems biology. Sci STKE, pe16, 2005.
[957] E. Werner. Genome semantics, in silico multicellular systems and the cen-
tral dogma. FEBS Letters, 579(7):1779–1782, 2005.
[958] E. Werner. All systems go. Nature, 446:493–494, 2007.
[959] E. Werner. How central is the genome? Science, 317(5839):753–754, 2007.
[960] E. Werner. Evolutionary embryos. Nature., 460(7251):35–35, 2009.
[961] E. Werner. Meaning in a quantum universe. Science, 329(5992):629–630,
2010.
[962] E. Werner. On programs and genomes. arXiv:1110.5265v1 q-bio.OT,
http://arxiv.org/abs/1110.5265, 2011a.
[963] E. Werner. Cancer networks: A general theoretical and computa-
tional framework for understanding cancer. arXiv:1110.5865v1 q-bio.MN,
http://arxiv.org/abs/1110.5865, 2011b.
[964] E. Werner. Gynandromorphs and sexual dimorphism: A developmental
network theory. To appear arXiv.org, 2012.
[965] E. Werner. The origin, evolution and development of bilateral
symmetry in multicellular organisms. arXiv:1207.3289v1 q-bio.TO,
http://arxiv.org/abs/1207.3289, 2012a.
[966] E. Werner. How to grow an organism inside-out: Evolution of
an internal skeleton from an external skeleton in bilateral organisms.
arXiv:1207.3624v1 q-bio.TO, http://arxiv.org/abs/1207.3624, 2012b.
[967] E. Werner. A developmental network theory of gynandromorphs, sexual
dimorphism and species formation. arXiv:1212.5439 q-bio.MN, 2012c.
[968] E. Werner. What transcription factors can’t do: On the combinato-
rial limits of gene regulatory networks. arXiv:1312.5565 q-bio.MN,
http://arxiv.org/abs/1312.5565, 2013.
[969] E. Werner. A category theory of communication theory. arXiv:1505.07712
cs.IT, http://arxiv.org/abs/1505.07712, 2015.
[970] E. Werner. Combinatorial limits of transcription factors and gene regula-
tory networks in development and evolution. arXiv:1508.03531 q-bio.MN,
http://arxiv.org/abs/1508.03531, 2015.
[971] E. Werner. Stem cell networks. arXiv:1607.04502 q-bio.OT,
http://arxiv.org/abs/1607.04502, 2016.
[972] E. Werner. Stem cells: The good, the bad and the ugly. arXiv:1608.00930v1
q-bio.TO, http://arxiv.org/abs/1608.00930, 2016.
[973] E. Werner. A roadmap to create synthetic multicellular life: Applications:
Protocols to cure cancer, tissue regeneration, network-designed heterosis-
hybrid vigor. Preprint- DOI: 10.13140/RG.2.2.25575.96160, 2017.
[974] E. Werner. A roadmap to cure cancer: Combining crispr
genome editing with cancer network editing. Preprint- DOI:
10.13140/RG.2.2.23272.37127, 2017.
[975] E. Werner. The black widow protocol for coordinated cancer immunother-
apy: Co-editing cancer cells and t-cells for minimal immunotherapeutic
side effects. Preprint-DOI: 10.13140/RG.2.2.21609.60002, 2018.
[976] E. Werner. A cancer cell suicide protocol using cancer-cad and crispr to
edit cancer cell networks. Preprint- DOI: 10.13140/RG.2.2.29065.95848,
2018.
[977] E. Werner. Cancer’s golden thread -why we still do not have a cure for
cancer. Preprint- DOI 10.13140/RG.2.2.13162.41927, 2018.
[978] E. Werner. Catching cancer. Preprint- DOI 10.13140/RG.2.2.36650.52162,
2018.
[979] E. Werner. Genes, networks and the reality of gender. Preprint- DOI
10.13140/RG.2.2.16832.43522, 2018.
[980] E. Werner. Minimal embryos and minimal cancers. Preprint- DOI
10.13140/RG.2.2.23543.32167, 2018.
[981] E. Werner. Viral black widowprotocols for cancer immunotherapy: Match-
ing cancer cell signals with oncolytic virus receptors for complete and con-
sistent cancer eradication. Preprint- 10.13140/RG.2.2.10622.48968, 2018.
[982] G. M. Wessel, M. Kiyomoto, T.L. Shen, and M. Yajima. Genetic manipula-
tion of the pigment pathway in a sea urchin reveals distinct lineage commit-
ment prior to metamorphosis in the bilateral to radial body plan transition.
Sci Rep, 10(1):1973, 2020.
[983] P. K. Weyl. Precambrian marine environment and the development of life.
Science, 161(3837):158–60, 1968.
[984] C. W. Wheat and N. Wahlberg. Phylogenomic insights into the cambrian
explosion, the colonization of land and the evolution of flight in arthropoda.
Syst Biol, 62(1):93–109, 2013.
[985] M. G. Wheatcroft, L. J. Gerende, C. A. Schlack, B. L. Taylor, V. J. Berzin-
skas, and C. E. Mullins. Bilateral symmetry of dental caries. J Dent Res,
30(1):62–74, 1951.
[986] D. White. The promotion of knowledge of precambrian life. Science,
67(1747):620–1, 1928.
[987] E. Wieschaus and W. Gehring. Gynandromorph analysis of the thoracic
disc primordia indrosophila melanogaster. Wilehm Roux Arch Dev Biol,
180(1):31–46, 1976.
[988] M. Wille, T. F. Nagler, B. Lehmann, S. Schroder, and J. D. Kramers. Hydro-
gen sulphide release to surface waters at the precambrian/cambrian bound-
ary. Nature, 453(7196):767–9, 2008.
[989] G. E. Williams. The acraman impact structure: source of ejecta in late
precambrian shales, south australia. Science, 233(4760):200–3, 1986.
[990] S. G. Williams, M. J. Harms, and K. B. Hall. Resurrection of an urbilaterian
u1a/u2b”/snf protein. J Mol Biol, 425(20):3846–62, 2013.
[991] R. T. Willing, G. Roumeliotis, T. R. Jenkyn, and A. Yazdani. Development
and evaluation of a semi-automatic technique for determining the bilateral
symmetry plane of the facial skeleton. Med Eng Phys, 35(12):1843–9,
2013.
[992] D. D. Wilson, C. E. Alonso, A. J. Sim, T. Peck, L. L. Handsfield, Q. Chen,
L. Blackhall, T. N. Showalter, K. A. Reardon, and P. W. Read. Stat rt: a
prospective pilot clinical trial of scan-plan-qa-treat stereotactic body radi-
ation therapy for painful osseous metastases. Ann Palliat Med, 8(3):221–
230, 2019.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 39
[993] K. H. Wilson. The genome sequence of the protostome daphnia pulex en-
codes respective orthologues of a neurotrophin, a trk and a p75ntr: evolu-
tion of neurotrophin signaling components and related proteins in the bila-
teria. BMC Evol Biol, 9:243, 2009.
[994] D. Wilson-Sanchez, S. Martinez-Lopez, S. Navarro-Cartagena, S. Jover-
Gil, and J. L. Micol. Members of the deal subfamily of the duf1218 gene
family are required for bilateral symmetry but not for dorsoventrality in
arabidopsis leaves. New Phytol, 217(3):1307–1321, 2018.
[995] C. J. Winchell, J. E. Valencia, and D. K. Jacobs. Expression of distal-
less, dachshund, and optomotor blind in neanthes arenaceodentata (annel-
ida, nereididae) does not support homology of appendage-forming mecha-
nisms across the bilateria. Dev Genes Evol, 220(9-10):275–95, 2010.
[996] J. G. Winter and P. J. Dillon. Effects of golf course construction and oper-
ation on water chemistry of headwater streams on the precambrian shield.
Environ Pollut, 133(2):243–53, 2005.
[997] J. G. Winter and P. J. Dillon. Export of nutrients from golf courses on the
precambrian shield. Environ Pollut, 141(3):550–4, 2006.
[998] J. G. Winter, K. M. Somers, P. J. Dillon, C. Paterson, and R. A. Reid. Im-
pacts of golf courses on macroinvertebrate community structure in precam-
brian shield streams. J Environ Qual, 31(6):2015–25, 2002.
[999] T. Wintrich, S. Hayashi, A. Houssaye, Y. Nakajima, and P. M. Sander. A
triassic plesiosaurian skeleton and bone histology inform on evolution of a
unique body plan. Sci Adv, 3(12):e1701144, 2017.
[1000] J. M. Wolfe. Metamorphosis is ancestral for crown euarthropods, and
evolved in the cambrian or earlier. Integr Comp Biol, 57(3):499–509, 2017.
[1001] J. A. Wolffand V. S. Trubetskoy. The cambrian period of nonviral gene
delivery. Nat Biotechnol, 16(5):421–2, 1998.
[1002] J. M. Woltering. From lizard to snake; behind the evolution of an extreme
body plan. Curr Genomics, 13(4):289–99, 2012.
[1003] J. M. Woltering, M. Holzem, R. F.Schneider, V. Nanos, and A. Meyer. The
skeletal ontogeny of astatotilapia burtoni - a direct-developing model sys-
tem for the evolution and development of the teleost body plan. BMC Dev
Biol, 18(1):8, 2018.
[1004] R. Wood, A. G. Liu, F.Bowyer, P. R. Wilby, F. S. Dunn, C. G. Kenchington,
J. F. H. Cuthill, E. G. Mitchell, and A. Penny. Author correction: Integrated
records of environmental change and evolution challenge the cambrian ex-
plosion. Nat Ecol Evol, 3(5):858, 2019.
[1005] R. Wood, A. G. Liu, F.Bowyer, P. R. Wilby, F. S. Dunn, C. G. Kenchington,
J. F. H. Cuthill, E. G. Mitchell, and A. Penny. Integrated records of environ-
mental change and evolution challenge the cambrian explosion. Nat Ecol
Evol, 3(4):528–538, 2019.
[1006] T. Wotte, C. B. Skovsted, M. J. Whitehouse, and A. Kouchinsky. Isotopic
evidence for temperate oceans during the cambrian explosion. Sci Rep,
9(1):6330, 2019.
[1007] C. Wren, H. MacCrimmon, R. Frank, and P. Suda. Total and methyl mer-
cury levels in wild mammals from the precambrian shield area of south
central ontario, canada. Bull Environ Contam Toxicol, 25(1):100–5, 1980.
[1008] B. Wu, D. Pang, S. Lei, J. Gatti, M. Tong, T. McNutt, T. Kole, A. Dritschilo,
and S. Collins. Improved robotic stereotactic body radiation therapy plan
quality and planning efficacy for organ-confined prostate cancer utilizing
overlap-volume histogram-drivenplanning methodology. Radiother Oncol,
112(2):221–6, 2014.
[1009] W. Wu, E. D. Swanner, L. Hao, F. Zeitvogel, M. Obst, Y. Pan, and
A. Kappler. Characterization of the physiology and cell-mineral interac-
tions of the marine anoxygenic phototrophic fe(ii) oxidizer rhodovulum
iodosum–implications for precambrian fe(ii) oxidation. FEMS Microbiol
Ecol, 88(3):503–15, 2014.
[1010] J. A. Wygoda, Y. Yang, M. Byrne, and G. A. Wray. Transcriptomic analysis
of the highly derived radial body plan of a sea urchin. Genome Biol Evol,
6(4):964–73, 2014.
[1011] D. Xiang, H. Yang, P. Venglat, Y. Cao, R. Wen, M. Ren, S. Stone, E. Wang,
H. Wang, W. Xiao, D. Weijers, T. Berleth, T. Laux, G. Selvaraj, and
R. Datla. Popcorn functions in the auxin pathway to regulate embry-
onic body plan and meristem organization in arabidopsis. Plant Cell,
23(12):4348–67, 2011.
[1012] L. Xinwei, W. Lingqing, J. Xiaodan, Y. Leipeng, and D. Gelian. Specific
activity and hazards of archeozoic-cambrian rock samples collected from
the weibei area of shaanxi, china. Radiat Prot Dosimetry, 118(3):352–9,
2006.
[1013] D. Xiping and A. H. Knoll. Middle and late cambrian sponge spicules from
hunan, china. J Paleontol, 70(2):173–84, 1996.
[1014] K. Yamana. Radial symmetry–>bilateral symmetry–>radial symmetry?
Tanpakushitsu Kakusan Koso, 39(15):2410–1, 1994.
[1015] D. Yang, X. Guo, T. Xie, and X. Luo. Reactive oxygen species may play
an essential role in driving biological evolution: The cambrian explosion as
an example. J Environ Sci (China), 63:218–226, 2018.
[1016] H. Yang, M. Ma, R. J. Flower, J. R. Thompson, and W. Ge. Preserve
precambrian fossil heritage from mining. Nat Ecol Evol, 1(8):1048–1049,
2017.
[1017] J. Yang, J. Ortega-Hernandez, H. B. Drage, K. S. Du, and X. G. Zhang.
Ecdysis in a stem-group euarthropod from the early cambrian of china. Sci
Rep, 9(1):5709, 2019.
[1018] J. Yang, J. Ortega-Hernandez, S. Gerber,N. J. Butterfield, J. B. Hou, T. Lan,
and X. G. Zhang. A superarmored lobopodian from the cambrian of china
and early disparity in the evolution of onychophora. Proc Natl Acad Sci U
S A, 112(28):8678–83, 2015.
[1019] J. Yang, J. Ortega-Hernandez, T. Lan, J. B. Hou, and X. G. Zhang. A preda-
tory bivalved euarthropod from the cambrian (stage 3) xiaoshiba lagerstatte,
south china. Sci Rep, 6:27709, 2016.
[1020] J. Yang, J. Ortega-Hernandez, D. A. Legg, T. Lan, J. B. Hou, and X. G.
Zhang. Early cambrian fuxianhuiids from china reveal origin of the
gnathobasic protopodite in euarthropods. Nat Commun, 9(1):470, 2018.
[1021] J. Yang, M. R. Smith, T. Lan, J. B. Hou, and X. G. Zhang. Articulated
wiwaxia from the cambrian stage 3 xiaoshiba lagerstatte. Sci Rep, 4:4643,
2014.
[1022] X. L. Yang, Y. L. Zhao, L. E. Babcock, and J. Peng. Siliceous spicules
in a vauxiid sponge (demospongia) from the kaili biota(cambrian stage 5),
guizhou, south china. Sci Rep, 7:42945, 2017.
[1023] K. Yasui, J. D. Reimer, Y. Liu, X. Yao, D. Kubo, D. Shu, and Y. Li. A
diploblastic radiate animal at the dawn of cambrian diversification with a
simple body plan: distinct from cnidaria? PLoS One, 8(6):e65890, 2013.
[1024] Z. Yin, M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao, and P. Tafforeau.
Sponge grade body fossil with cellular resolution dating 60 myr before the
cambrian. Proc Natl Acad Sci U S A, 112(12):E1453–60, 2015.
[1025] H. J. Yost. Coordinating the development of bilateral symmetry and left-
right asymmetry. Semin Cell Dev Biol, 20(4):455, 2009.
[1026] G. M. Young. Precambrian sedimentation in the canadian shield. Science,
170(3963):1239–40, 1970.
[1027] C. Yu, B. Peng, P. Peltola, X. Tang, and S. Xie. Effect of weathering
on abundance and release of potentially toxic elements in soils developed
on lower cambrian black shales, p. r. china. Environ Geochem Health,
34(3):375–90, 2012.
[1028] L. Yuan and Y. Y. Lu. Bilateral symmetry breaking in nonlinear circular
cylinders. Opt Express, 22(24):30128–36, 2014.
[1029] S. Yuan and G. C. Schoenwolf. Reconstitution of the organizer is both
sufficient and required to re-establish a fully patterned body plan in avian
embryos. Development, 126(11):2461–73, 1999.
[1030] Z. Yue, T. X. Jiang, R. B. Widelitz, and C. M. Chuong. Wnt3a gradient
converts radial to bilateral feather symmetry via topological arrangement
of epithelia. Proc Natl Acad Sci U S A, 103(4):951–5, 2006.
[1031] K. Zahnle and J. C. Walker. A constant daylength during the precambrian
era? Precambrian Res, 37:95–105, 1987.
[1032] S. Zamora, I. A. Rahman, and A. B. Smith. Plated cambrian bilaterians
reveal the earliest stages of echinoderm evolution. PLoS One, 7(6):e38296,
2012.
[1033] S. Zamora and A. B. Smith. Cambrian stalked echinoderms show unex-
pected plasticity of arm construction. Proc Biol Sci, 279(1727):293–8,
2012.
[1034] D. Zhai, G. D. Edgecombe, A. D. Bond, H. Mai, X. Hou, and Y. Liu.
Fine-scale appendage structure of the cambrian trilobitomorph naraoia
spinosa and its ontogenetic and ecological implications. Proc Biol Sci,
286(1916):20192371, 2019.
[1035] D. Zhai, J. Ortega-Hernandez, J. M. Wolfe, X. Hou, C. Cao, and Y. Liu.
Three-dimensionally preserved appendages in an early cambrian stem-
group pancrustacean. Curr Biol, 29(1):171–177 e1, 2019.
[1036] D. Zhai, M. Williams, D. J. Siveter, T. H. P. Harvey, R. S. Sansom, S. E.
Gabbott, D. J. Siveter, X. Ma, R. Zhou, Y. Liu, and X. Hou. Variation in
appendages in early cambrian bradoriids reveals a wide range of body plans
in stem-euarthropods. Commun Biol, 2(1):329, 2019.
[1037] H. Zhang, S. Xiao, Y. Liu, X. Yuan, B. Wan, A. D. Muscente, T. Shao,
H. Gong, and G. Cao. Armored kinorhynch-like scalidophoran animals
from the early cambrian. Sci Rep, 5:16521, 2015.
[1038] J. Zhang, T. Fan, Y. Zhang, G. G. Lash, Y. Li, and Y. Wu. Heterogenous
oceanic redox conditions through the ediacaran-cambrian boundary limited
the metazoan zonation. Sci Rep, 7(1):8550, 2017.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*
Eric Werner Internet of Life, Chapter 1: Universal protocols in bilaterians 40
[1039] J. Zhang, D. Jiang, H. Su, Z. Dai, J. Dai, H. Liu, C. Xie, and H. Yu. Dosi-
metric comparison of different algorithms in stereotactic body radiation
therapy (sbrt) plan for non-small cell lung cancer (nsclc). Onco Targets
Ther, 12:6385–6391, 2019.
[1040] L. Zhang, K. Guo, G. Z. Zhang, L. H. Lin, and X. Ji. Evolutionary transi-
tions in body plan and reproductive mode alter maintenance metabolism in
squamates. BMC Evol Biol, 18(1):45, 2018.
[1041] L. J. Zhang, Y. A. Qi, L. A. Buatois, M. G. Mangano, Y. Meng, and D. Li.
The impact of deep-tier burrow systems in sediment mixing and ecosystem
engineering in early cambrian carbonate settings. Sci Rep, 7:45773, 2017.
[1042] X. Zhang, M. Dai, M. Wang, and Y. Qi. Calcified coccoid from cambrian
miaolingian: Revealing the potential cellular structure of epiphyton. PLoS
One, 14(3):e0213695, 2019.
[1043] X. Zhang, W. Liu, Y. Isozaki, and T. Sato. Centimeter-wide worm-like fos-
sils from the lowest cambrian of south china. Sci Rep, 7(1):14504, 2017.
[1044] X. G. Zhang and E. N. Clarkson. Trunk segmentation of cambrian eodis-
coid trilobites. Evol Dev, 11(3):312–7, 2009.
[1045] X. G. Zhang and X. G. Hou. Evidence for a single median fin-fold and tail
in the lower cambrian vertebrate, haikouichthys ercaicunensis. J Evol Biol,
17(5):1162–6, 2004.
[1046] X. G. Zhang, X. G. Hou, and C. C. Emig. Evidence of lophophore diversity
in early cambrian brachiopoda. Proc Biol Sci, 270 Suppl 1:S65–8, 2003.
[1047] X. G. Zhang, A. Maas, J. T. Haug, D. J. Siveter, and D. Waloszek. A eucrus-
tacean metanauplius from the lower cambrian. Curr Biol, 20(12):1075–9,
2010.
[1048] X. G. Zhang and B. R. Pratt. Early cambrian ostracode larvae with a uni-
valved carapace. Science, 262(5130):93–4, 1993.
[1049] X. G. Zhang and B. R. Pratt. Middle cambrian arthropod embryos with
blastomeres. Science, 266(5185):637–9, 1994.
[1050] X. G. Zhang and B. R. Pratt. The first stalk-eyed phosphatocopine crus-
tacean from the lower cambrian of china. Curr Biol, 22(22):2149–54, 2012.
[1051] X. G. Zhang, D. J. Siveter, D. Waloszek,and A. Maas. An epipodite-bearing
crown-group crustacean from the lower cambrian. Nature, 449(7162):595–
8, 2007.
[1052] X. G. Zhang, M. R. Smith, J. Yang, and J. B. Hou. Onychophoran-like mus-
culature in a phosphatized cambrian lobopodian. Biol Lett, 12(9), 2016.
[1053] Z. Zhang, J. Han, Y. Wang, C. C. Emig, and D. Shu. Epibionts on the lingu-
late brachiopod diandongia from the early cambrian chengjiang lagerstatte,
south china. Proc Biol Sci, 277(1679):175–81, 2010.
[1054] Z. Zhang, L. E. Holmer, C. B. Skovsted, G. A. Brock, G. E. Budd, D. Fu,
X. Zhang, D. Shu, J. Han, J. Liu, H. Wang, A. Butler, and G. Li. A sclerite-
bearing stem group entoproct from the early cambrian and its implications.
Sci Rep, 3:1066, 2013.
[1055] Z. Zhang, L. E. Popov, L. E. Holmer, and Z. Zhang. Earliest ontogeny of
early cambrian acrotretoid brachiopods - first evidence for metamorphosis
and its implications. BMC Evol Biol, 18(1):42, 2018.
[1056] Z. F. Zhang, G. X. Li, L. E. Holmer, G. A. Brock, U. Balthasar, C. B.
Skovsted, D. J. Fu, X. L. Zhang, H. Z. Wang, A. Butler, Z. L. Zhang, C. Q.
Cao, J. Han, J. N. Liu, and D. G. Shu. An early cambrian agglutinated
tubular lophophorate with brachiopod characters. Sci Rep, 4:4682, 2014.
[1057] F. Zhao, D. J. Bottjer, S. Hu, Z. Yin,and M. Zhu. Complexity and diversity
of eyes in early cambrian ecosystems. Sci Rep, 3:2751, 2013.
[1058] Y. Zhao, J. Vinther, L. A. Parry, F. Wei, E. Green, D. Pisani, X. Hou,
G. D. Edgecombe, and P.Cong. Cambrian sessile, suspension feeding stem-
group ctenophores and evolution of the comb jelly body plan. Curr Biol,
29(7):1112–1125 e2, 2019.
[1059] J. Zhong, J. C. Preston, L. C. Hileman, and E. A. Kellogg. Repeated and
diverse losses of corolla bilateral symmetry in the lamiaceae. Ann Bot,
119(7):1211–1223, 2017.
[1060] M. Y. Zhu, J. Vannier, H. Van Iten, and Y. L. Zhao. Direct evidence for pre-
dation on trilobites in the cambrian. Proc Biol Sci, 271 Suppl 5:S277–80,
2004.
[1061] X. Zhu, H. Rudolf, L. Healey, P. Francois, S. J. Brown, M. Klingler, and
E. El-Sherif. Speed regulation of genetic cascades allows for evolvabil-
ity in the body plan specification of insects. Proc Natl Acad Sci U S A,
114(41):E8646–E8655, 2017.
[1062] A. Y. Zhuravlev and R. A. Wood. The two phases of the cambrian explo-
sion. Sci Rep, 8(1):16656, 2018.
[1063] G. S. Zubenko, J. Moossy, I. Hanin, A. J. Martinez, G. R. Rao, and U. Kopp.
Bilateral symmetry of cholinergic deficits in alzheimer’s disease. Arch Neu-
rol, 45(3):255–9, 1988.
[1064] O. A. Zverkov, K. V. Mikhailov, S. V. Isaev, L. Y. Rusin, O. V. Popova,
M. D. Logacheva, A. A. Penin, L. L. Moroz, Y. V. Panchin, V. A. Lyubet-
sky, and V. V. Aleoshin. Dicyemida and orthonectida: Two stories of body
plan simplification. Front Genet, 10:443, 2019.
[1065] C. Zwolski, L. C. Schmitt, S. Thomas, T. E. Hewett, and M. V. Paterno.
The utility of limb symmetry indices in return-to-sport assessment in pa-
tients with bilateral anterior cruciate ligament reconstruction. Am J Sports
Med, 44(8):2030–8, 2016.
Cite As: Werner, E., The Internet of Life, Chapter I: Universal nonrandom protocols govern development and evolution
of all bilaterians, Preprint 2020, DOI: *insert DOI, located on the first page, here*