ArticlePDF Available

‫المجلد‬ ‫الرياضيات‬ ‫و‬ ‫الحاسوب‬ ‫لعلوم‬ ‫افدين‬ ‫الر‬ ‫مجلة‬ ( 13 ) (‫العدد‬ 2 ) 2019 On MLGP-Rings

Authors:

Abstract

An ideal 𝐾 of a ring 𝑅 is called right (left) generalized pure (𝐺𝑃-ideal)if for every 𝑎 ∈ 𝐾, there exists 𝑚 ∈ 𝑍 +, and 𝑏 ∈ 𝐾 such that 𝑎 𝑚 = 𝑎 𝑚 𝑏 ( 𝑎 𝑚 = 𝑏 𝑎 𝑚 ) . A ring 𝑅 is called 𝑀𝐿𝐺𝑃- ring if every right maximal ideal is left 𝐺𝑃- ideal . In this paper have been studied some new properties of 𝑀𝐿𝐺𝑃- rings and the relation between this rings and strongly 𝜋- regular rings some of the main result of the present work are as follows: 1- Let 𝑅 be a local , 𝑀𝐿𝐺𝑃 and 𝑆𝑋𝑀 ring . Then : (a) 𝐽(𝑅) = 0 . (b) If 𝑅 is 𝑁𝐽- ring . Then 𝑟(𝑎 𝑚) is a direct sum and for all ∈ 𝑅 , 𝑚 ∈ 𝑍 + . 2 - Let 𝑅 be a local , 𝑆𝑋𝑀 and 𝑁𝐽- ring . Then 𝑅 is strongly 𝜋- regular if and only if 𝑅 i 𝐿𝐺𝑃 .

61
On MLGP- Rings
Raida D.mahmood  Ebtehal S. Mageed
raida.1961@uomosul.edu.iq
College of Computer Sciences and Mathematics
University of Mosul, Mosul, Iraq
ABSTRACT
An ideal of a ring is called right (left) generalized pure (-ideal)if for every
, there exists , and such that  (  ) . A ring
is called - ring if every right maximal ideal is left - ideal . In this paper have
been studied some new properties of - rings and the relation between this rings
and strongly - regular rings some of the main result of the present work are as follows:
1- Let be a local ,  and  ring . Then :
(a) 󰇛󰇜 .
(b) If is - ring . Then 󰇛󰇜 is a direct sum and for all , .
2 - Let be a local ,  and - ring . Then is strongly - regular if and only
if i  .
Keywords: NJ Rings , SXM rings ,local strongly regular rings ,pure ideals
MLGP-





1806\2019 30062019



 
  




(1)

a 󰇛󰇜
b 
󰇛󰇜 

MLGP-
62
(2)


NJSXM
1Introduction

  

 




 󰇛󰇜󰇛󰇜        󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜

  
󰇛󰇜 󰇛󰇜



󰇛󰇜 󰇛󰇜󰇛󰇜 󰇛󰇜
 
  

 


󰇛󰇜
󰇛󰇜
.2 



2.1

2
3.1.45 
1

󰇛󰇜
󰇛󰇜  






63
2.2

󰇛󰇜 󰇛󰇜
 󰇛󰇜0 
  󰇛 󰇜 
󰇛 󰇜 
󰇛 󰇜 


󰇛 󰇜
  󰇛󰇜
󰇛󰇜 󰇛󰇜

󰇛󰇜 󰇛󰇜
2.3


1 
2 
3 󰇛󰇜 󰇛󰇜
4 
5  󰇛󰇜
6 󰇛󰇜
7 
1232󰇛󰇜 󰇛󰇜
2.101133445
671.33732.2

2.4


 󰇥󰇣
󰇤  󰇦
 󰇥󰇣
󰇤󰇣
󰇤󰇣
󰇤󰇣
󰇤󰇦

MLGP-
64
2.5


1 󰇛󰇜
2 
󰇛󰇜 

1󰇛󰇜
4󰇛󰇜
 󰇛󰇜 󰇛󰇜
 

 󰇛󰇜󰇛 󰇜

󰇛 󰇜 󰇛 󰇜 
󰇛󰇜
2  󰇛󰇜 
 󰇛󰇜 
 󰇛󰇜

 



󰇛 󰇜 󰇛󰇜 󰇛󰇜  
 󰇛󰇜 3.1.25
 󰇛󰇜 󰇛󰇜 
2.6

1 
2 󰇛󰇜 󰇛󰇜
12.5󰇛󰇜 󰇛󰇜 󰇛󰇜1.33
21󰇛󰇜 󰇛󰇜 



2.7



 
 󰇛󰇜 


 󰇛󰇜 


65

󰇛󰇜
󰇛󰇜


󰇛 󰇜 󰇛󰇜 󰇛󰇜
 
 󰇛󰇜     󰇛󰇜




 󰇛󰇜 1

2.8


 
 
 
  󰇛󰇜
 󰇛󰇜  
MLGP-
66

Abdullah , H. Handan , K. and Bureu , U. (2018 ), " On Weak symmetric
property of rings" , Sou . Asian , Bull . of Math . 42 , pp 31 40 .
[1]
on , D.M. (1970) ; "",
 .
[2]
Chang ,L. and Soo, Y. p. (2018) " When nilpotents are contanined in
Jacobson radicals " J . Korean . Math . Soc . 55 , No .5, pp , 1193-1205 .
[3]
Hazewinkel , M . , Gubareni , N . and Kiriehenko V. V. , (2004) , "
Algebras , Rings and Modules " Vol .1 Kluwer Academic publishers .
[4]
 , . . (2000) , " When
nilpotents are contanined in Jacobson radicals " ,  .. ,  ,
 .
[5]
   󰇛󰇜Maximal generalization of
pure ideals "     
[6]
Wei , J. C. (2007) , " On simple singular YJ-injective modules " , Sou.
Asian Bull . Of Math. 31, pp.1-10 .
[7]
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The purpose of this paper is to study the class of the rings for which every maximal right ideal is left GP-ideal. Such rings are called MGP-rings and give some of their basic properties as well as the relation between MGP-rings, strongly regular ring, weakly regular ring and kasch ring.
Article
Full-text available
We investigate the strong regularity of rings whose simple singular right R-modules are YJ-injective. It is proved that the following conditions are equivalent for a ring R: (1) R is strongly regular; (2) R is a strongly right min-Abel right MERT ring and right weakly regular ring; (3) R is a strongly right min-Abel right MERT ring whose simple singular right R-modules are YJ-injective; (4) R is a wjc right quasi-duo ring whose simple singular right R-modules are YJ-injective. Several known results are unified and extended.
Article
We focus our attention on a ring property that nilpotents are contained in the Jacobson radical. This property is satisfied by NI and left (right) quasi-duo rings. A ring is said to be NJ if it satisfies such property. We prove the following: (i) Köthe’s conjecture holds if and only if the polynomial ring over an NI ring is NJ; (ii) If R is an NJ ring, then R is exchange if and only if it is clean; and (iii) A ring R is NJ if and only if so is every (one-sided) corner ring of R.
On Weak symmetric property of rings
  • H Abdullah
  • K Handan
  • U Bureu
Abdullah, H. Handan, K. and Bureu, U. (2018 ), " On Weak symmetric property of rings", Sou. Asian, Bull. of Math. 42, pp 31 -40.
  • M Hazewinkel
  • N Gubareni
  • V V Kiriehenko
Hazewinkel, M., Gubareni, N. and Kiriehenko V. V., (2004), " Algebras, Rings and Modules " Vol.1 Kluwer Academic publishers.