PreprintPDF Available

Abstract and Figures

Memristors close the loop for I-V characteristics of the traditional, passive, semiconductor devices. Originally proposed in 1971,the hunt for the memristor has been going ever since. The key feature of a memristor is that its current resitance is a function of its previous resistance. As such, the behaviour of the device is influenced by changing the way in which potential is applied across it. Ultimately, information can be encoded on memristors. Biological substrates have already been shown to exhibit some memristive propertiesHowever, many memristive devices are yet to be found. Here we show that the fruit bodies of grey oyster fungi Pleurotus ostreatus exhibit memristive behaviours. This paper presents the I-V characteristics of the mushrooms. By examination of the conducted current for a given voltage applied as a function of the previous voltage, it is shown that the mushroom is a memristor. Our results demonstrate that nature continues to provide specimens that hold these unique and valuable electrical characteristics and which have the potential to advance the field of hybrid electronic systems.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Microtubules (MTs) are cytoskeletal structures that play a central role in a variety of cell functions including cell division and cargo transfer. MTs are also nonlinear electrical transmission lines that produce and conduct electrical oscillations elicited by changes in either electric field and/or ionic gradients. The oscillatory behavior of MTs requires a voltage-sensitive gating mechanism to enable the electrodiffusional ionic movement through the MT wall. Here we explored the electrical response of non-oscillating rat brain MT sheets to square voltage steps. To ascertain the nature of the possible gating mechanism, the electrical response of non-oscillating rat brain MT sheets (2D arrays of MTs) to square pulses was analyzed under voltage-clamping conditions. A complex voltage-dependent nonlinear charge movement was observed, which represented the summation of two events. The first contribution was a small, saturating, voltage-dependent capacitance with a maximum charge displacement in the range of 4 fC/μm2. A second, major contribution was a non-saturating voltage-dependent charge transfer, consistent with the properties of a multistep memristive device. The memristive capabilities of MTs could drive oscillatory behavior, and enable voltage-driven neuromorphic circuits and architectures within neurons.
Article
Full-text available
We recorded extra-cellular electrical potential of fruit bodies of oyster fungi Pleurotus djamor. We demonstrated that the fungi generate action potential like impulses of electrical potential. Trains of the spikes are observed. Two types of spiking activity are uncovered: high-frequency (period 2.6 min) and low-frequency (period 14 min); transitions between modes of spiking are illustrated. An electrical response of fruit bodies to short (5 sec) and long (60 sec) thermal stimulation with open flame is analysed in details. We show that non-stimulated fruit bodies of a cluster react to the thermal stimulation, with a single action-potential like spike, faster than the stimulated fruit body does.
Article
Full-text available
A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.
Article
Hypothesis: Tubulin is a key protein of the cytoskeleton, forming networks of microtubules (MTs). These networks are vital for many aspects of a cell, including intra-cellular transport. It has been suggested by others that this network could be responsible for sub-cellular information processing, which naturally raises the question of whether such a system could be exploited for more artificial constructs. In this endeavour, this paper studies the electrical properties of Taxol-stabilised MT ensembles. Experiments: Electrical experiments were conducted on samples containing MTs. Measurements were made using iridium-coated needle electrodes on a droplet. Cyclic voltammetry was performed, by sweeping through a DC voltage range of [-1.2,+1.2] V. AC measurements were also taken, between 1 kHZ and 10 MHz, and with a DC bias. Separately, pulse train stimulation were conducted, with an amplitude of 0.5 V and duration of 1 ms. Findings: Cyclic voltammetry experiments reveal that the MT droplets act as electrical switches, under the experimental conditions. This is partly revealed in a substantial hysteresis. The stimulation of a MT droplet with a positive fast-impulse resulted in oscillation of the droplet's resistance, not observed in control experiments. Taxol-stabilised MT samples proved to be mem-resistive/mem-inductive, therefore the history of their electrical characterisation is able to change their response and behaviour. If the history of electrical stimuli is the same, so is the response. These findings pave a way towards future designs of MT-based sensing and computing devices, including data storage featuring liquid states.
Article
This paper proposes the realization of grounded and floating fractional order mem-elements (FOMEs) based on two- and three-port mutators, respectively. Three different topologies based on two-port mutators are implemented using the four members of the second-generation current conveyor (CCII) family which is useful to achieve several realizations for the same circuit. The Fractional Order Mem-capacitor (FOMC) and Fractional Order Mem-inductor (FOMI) are realized using different combinations of memristor and fractional order capacitor (FOC) plus resistors. In addition, the generalization of the three-port mutator increases the flexibility to design the floating FOMI and FOMC mutators. The order α of the employed FOC affects the location of the pinched point and the hysteresis loop area. The q − v of FOMC and φ − i of FOMI curves are presented showing the movement of the pinched point location and the hysteresis loop area with different α at different applied frequency. Circuit simulations and experimental results for the mutator circuits are introduced to validate the theoretical findings.
Article
Leon Chua postulated the memristor, a resistor with memory, in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current–voltage characteristic is similar to that of a Lissajous pattern. The analysis of presence of memristors in apple fruits is based on cyclic voltam-metric characteristics at different frequencies of bipolar voltage waves. The electrostimulation of apple fruits by bipolar periodic triangular or sinusoidal voltage waves induces electrical responses with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of K + ion channels, transforms memristors to resistors in apple fruits. Memristive properties of apple fruits are linked to the properties of voltage gated K + ion channels. The shape of cyclic voltammograms depends on frequency bipolar triangular or sinusoidal waves. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo. The discovery of memristors in fruits creates a new direction in the modeling and understanding of electrochemical phenomena in fruit ion channels and structures.
Article
Flexible solution-processed memristors show different behaviour dependent on the choice of electrode material. Use of gold for both electrodes leads to switchable WORM (Write Once Read Many times) resistive devices. Use of aluminium for both electrodes allows both curved (wholly non-linear) and triangular (linear ohmic low resistance state) memristive switching resistance memories. A comparison device with an aluminium bottom electrode and gold top electrode only exhibited significant memristive resistance switching when the aluminium electrode was the anode, suggesting that the electrode is acting as a source/sink of oxygen anions. Using the gold electrode as the anode causes oxygen evolution and electrode deformation. We conclude aluminium is helpful for stabilising and promoting memristive behaviour in sol–gel TiO2 devices. On and Off resistance states were found to correlate to device size, and the relative proportions of curved to triangular switching devices could be affected by vacuum curing of the gel layer and compliance current. We postulate that: A. the curved memristor switching is a bulk action compliant with Chua's description of a memristor; B. the triangular switching involves a filament conduction for the ohmic low resistance state.