Available via license: CC BY 4.0
Content may be subject to copyright.
Sports2020,8,12;doi:10.3390/sports8020012www.mdpi.com/journal/sports
Article
EffectsofCreatineSupplementationonLower‐Limb
MuscleEnduranceFollowinganAcuteBoutof
AerobicExerciseinYoungMen
ItamarP.Vieira
1
,AmandaG.dePaula
1
,PauloGentil
2
,ClaudePichard
3
,DarrenG.Candow
4
andGustavoD.Pimentel
1,
*
1
ClinicalandSportsNutritionResearchLaboratory(Labince),FacultyofNutrition,FederalUniversityof
Goias,74605‐080Goiânia,Brazil;itamarpef@gmail.com(I.P.V.);mnd.gms1@gmail.com(A.G.d.P.)
2
FacultyofPhysicalEducationandDance,FederalUniversityofGoias,74605‐080Goiânia,Brazil;
paulogentil@hotmail.com
3
ClinicalNutrition,GenevaUniversityHospital,1205Geneva,Switzerland;claude.pichard@unige.ch
4
FacultyofKinesiologyandHealthStudies,UniversityofRegina,Regina,SKS4SOA2,Canada;
darren.candow@uregina.ca
*Correspondence:gdpimentel@gmail.com;Tel.:+55‐62‐3209‐6270
Received:25November2019;Accepted:6January2020;Published:21January2020
Abstract:Weaimedtodeterminewhethercreatinesupplementationinfluenceslower‐limbmuscle
endurancefollowinganacuteboutofaerobicexercise(AE)inyounghealthymen.Usinga
randomized,double‐blind,placebo‐controlledcrossoverdesign,11men(26.5±6.2years,bodymass
index26.6±2.1kg/m
2
),with12monthsofexperienceinstrengthtraining(threetimes/week)andAE
(twotimes/week)wererandomizedtoreceivecreatine(20g/dayplus20g/daymaltodextrin)and
placebo(40g/daymaltodextrin)for7days,separatedbyawashoutperiodof14days,before
performinganacuteboutofAE(30minontreadmillat80%baselinemaximumvelocity)whichwas
followedbyfoursetsofbilaterallegextensionenduranceexerciseusinga10‐repetitionmaximum
protocol(10RM)).Therewasasignificantdecreaseinthenumberofrepetitionsperformedinthe
third(Placebo:−20%vs.Creatine:−22%)andfourthset(Placebo:−22%vs.Creatine:−28%)compared
withthefirstset(p<0.05),withnodifferencesbetweencreatineandplacebo.Additionally,no
differenceswereobservedbetweencreatineandplaceboforthetotalnumberofrepetitions
performedacrossallfoursets(Placebo:33.9±7.0vs.Creatine:34.0±6.9repetitions,p=0.97),nor
fortotalworkvolume(Placebo:3030.5±1068.2vs.Creatine:3039.8±1087.7kg,p=0.98).Short‐term
creatinesupplementationhasnoeffectonlower‐limbmuscleendurancefollowinganacuteboutof
aerobicexerciseintrainedyoungmen.
Keywords:creatine;aerobicexercise;concurrentexercise;strengthloss;muscle
1.Introduction
Concurrentexercise(CE)involvesthecombinationofaerobicexercise(AE)andresistance
traininginthesametrainingsession[1].CEiscommonpracticeamongexercisingindividualsand
athletesandincreasesphysicalperformanceandbodycomposition[2–6].However,previousstudies
haveshownthatperformingAEbeforeresistancetrainingresultsinacutedecreasesinmuscle
performance[2,4,7–10],possiblyduetoanincreaseinperipheralfatigue,AMP‐activatedprotein
kinase(AMPK)andPeroxisomeproliferator‐activatedreceptorgammacoactivator1‐alpha(PGC‐1α)
signalinganddecreaseinsatellitecellactivity[1].
Sports2020,8,122of9
Supplementationwithcreatine,anorganicacidderivedfromreactionsinvolvingarginine,
methionine,andglycineinthekidneyandliver[1],hasbeenshowntoincreasemuscleperformance,
possiblybyinfluencinghigh‐energyphosphatemetabolism,satellitecellactivity,muscleprotein
kinetics,andinflammation[11,12].Theoretically,creatinesupplementationmaybeaneffective
nutritionalinterventionfollowingAEtomaintainmuscleperformance.Forexample,Painellietal.
[4]showedthatcreatinesupplementation(20g/dayfor7days+5g/daythereafter)maintainedlower‐
bodymuscleendurance(numberofrepetitionsperformed)followingacuteboutsofintermittentand
continuousAEinstrength‐trainedmalescomparedwithadecreaseinmaleswhoreceivedplacebo.
However,thisstudywaslimitedbytheparallelgroupdesign.
Thepurposeofthisstudywastodeterminewhethercreatinesupplementationmaintainsmuscle
performancefollowinganacuteboutofAEintrainedyoungmalesusingarandomized,cross‐over
design.Cross‐overdesignstypicallyreducetheinfluenceofconfoundingvariablesonthedependent
outcomemeasuresandareconsideredmorestatisticallypowerful(lessvariance)comparedwith
parallelgroupdesigns.BasedonthemechanisticactionsofcreatineandthefindingsofPainellietal.
[4],itwashypothesizedthatcreatinesupplementationwouldmaintainlower‐limbmuscleendurance
followinganacuteboutofAEcomparedwithplacebointrainedyoungmales.
2.Methods
2.1.Participants
Seventeenmenwith12monthsofstrengthtraining(threetimesperweek)andAE(twotimes
perweek)experiencevolunteered.Participantswereexcludediftheywerevegetarian,hadconsumed
proteinorcreatinesupplementssixmonthspriortothestartofthestudy,iftheyhadahistoryof
hormonaltherapyinterventionsoranabolicsteroiduse,oriftheyhadpre‐existingkidneyorliver
abnormalities.Participantswereinstructednottochangetheirdietorphysicalactivitypatterns
duringthestudy.Participantswereinformedoftherisksanddiscomfortsassociatedwiththestudy
beforeprovidingwrittenconsent.ExperimentaldesignwasapprovedbytheResearchEthics
Committee(no.2.507.216),andafterestablishingtheinclusionandexclusioncriteria,theparticipants
signedtheinformconsentform.
2.2.StudyOverview
Thestudywasadouble‐blind,placebo‐controlledcrossovertrialwhereparticipantswere
randomizedusingacomputer‐generatedschedule(https://www.randomizer.org/)toconsume
creatineandplacebofor7days,separatedbya14daywashoutperiod.Aftereach7days
supplementationphase,participantsperformedanacuteboutofAEexperimentaltestconsistingof
a30minrunonatreadmill(Technogym®,ExciteRun1000,Cesena,Italy)at80%maximumvelocity
(MV)obtainedinthetest.Immediatelyfollowingthetreadmillexercise,participantsperformedfour
setsofbilaterallegextensionexercise(Technogym®,LegExtensionMed,SãoPaulo,Brazil)withthe
loadobtainedonthe10‐repetitionmaximum(10RM)test.Allsetswereperformedtomomentary
musclefailureaspreviouslydefined[13].Restbetweensetswas2min.Bloodglucoseandlactate
concentrationsweredeterminedbeforeandaftertheacuteboutofAEtests.Duringthe14days
washoutperiod,nosupplementwasconsumed(Figure1).PriortotheacuteboutofAE,participants
wereinstructedtoabstainfromalcohol,caffeine,othersupplements,andstrenuousexercisefor48h.
Participantsarrivedfortesting1haftertheirlastmealandpre‐testfeedingwasstandardized(yogurt
withbanana).Adlibitumwaterconsumptionwasallowedduringthetestsandfoodintakewas
measuredusingthree24hfoodrecalls.Priortorandomizationandsupplementation,participants
performedafamiliarizationtrialwiththeexerciseequipmenttoreducetheamountoflearningwhich
mayhavecontributedtoourfindings.
Sports2020,8,123of9
Figure1.Experimentaldesign.Afteranamnesis,anthropometricevaluation,strengthtests,and
exercisefamiliarization,elevenparticipantsonahigh‐proteindietandplaceboorcreatine
supplementationforoneweekweresubmittedtoacuteconcurrentexercisesession.Afterawashout
periodoffourteendays,thesameprotocolwasrepeated.
2.3.Supplementation
Participantsingested20gofcreatinemonohydrate(20g;MaxTitanium®,Supley,Matão,Brazil;
99.9%purity)and20gmaltodextrinor40gofmaltodextrin(placebo,MaxTitanium®,Supley,Matão,
Brazil)for7days.Afterthe14dayswashoutperiod,participantscrossed‐overandconsumedthe
oppositesupplementfor7days.Thetotaldailyamountofsupplementwasdividedintofourequal
portionsandconsumedwithfoodthroughouttheday.Creatineandplacebowereidenticalintaste,
color,texture,andappearance.Supplementpackageswereunmarkedsoneithertheparticipantnor
theresearcherknewthecontent.
2.4.AnthropometricMeasures
Bodymasswasmeasuredusingadigitalpersonalscale(HN‐289LA®OmronHealthcareCo.,
Muko,Kyoto,Japan)andheightusingaportablestadiometer(Sanny®,SãoPaulo,Brazil),andbody
massindex(BMI)wasthencalculated.Upper‐ andlower‐limbandwaistcircumferencewas
measuredtwiceusingatapemeasure.Skinfoldthicknesses(subcutaneousadiposetissue)were
measuredusingacaliper(Lange®SkinfolderCaliper,BetaTechnology,SantaCruz,USA)andbody
fatwascalculatedaccordingtotheJacksonandPollockprotocol[14].Anthropometricassessments
wereperformedbythesametrainedresearcher.
2.5.DietaryIntakeAnalyses
Dietaryintakewasassessedbyhavingparticipantsfilloutthree24hfooddiariesonseparate
days(twoweekdaysandoneweekendday)toevaluatehabitualfoodconsumption[15].Thedietary
intakeanalysisconsistedoftotalcalories,carbohydrate,lipids,proteins,leucine,valine,and
isoleucine.FoodintakecalculuswasperformedusingtheDietPro®software(version6.0,Viçosa,
Brazil)usingtheFoodDatabaseTableoftheUnitedStatesDepartmentofAgriculture[16].
2.6.MaximumGradedTest
Amaximalgradedexercisetestwasperformedonatreadmill(Technogym®,ExciteRun1000,
Cesena,Italy),withslopesetat1%.Afterawarm‐upthatconsistedofwalkingat6.0km/hfor3min,
thetreadmillwasadjustedwiththespeedof8.0km/h,followedbyanincreaseof1.0km/hineach
subsequentminuteuntiltheparticipantsreachedexhaustion.Thevelocityatthelastcompletestage
beforeexhaustionwasrecordastheMV.Participantswerestronglyencouragedverballytoexert
maximumeffort[17].
Sports2020,8,124of9
2.7.Maximum‐RepetitionStrength(10RM)andStrengthEnduranceTest
The10‐repetitionmaximum(10RM)testwasperformedusingthelegextensionmachine
(Technogym®,LegExtensionMed,SãoPaulo,Brazil).Theproceduresfollowedtherecommendations
previouslydescribed[10,18].Theparticipantsperformedthewarm‐upwithtenrepetitions
performedataself‐selectedcomfortableload.Afterarestof5min,theestimated10RMloadwas
adjustedbasedonthetraininghistoryofeachparticipant.Ifthevolunteerwasnotabletoperform
tenrepetitionsorperformedmorethantenrepetitions,theloadwasadjustedforthenextattempt.
Onlythreeattemptswereallowed,withrestof5minbetweenthem.The10RMloadswereobtained
forallparticipantsintwotothreeattempts.Participantsperformedthetestswiththeirbacksin
contactwiththesupportandwerenotallowedtousetrunkmovementsorraisetheirhipsfromthe
chair.Thetestswerestoppedwhentheparticipantswereunabletodothemovementproperly(total
rangeofmotionwithoutchangesinthetechnique)fortwoconsecutiverepetitions.The
familiarizationofstrengthendurancetestinvolvedoftheconclusionoffoursetstofailureat80%of
theloadaspertheprotocolpublishedpreviously[4].Thetestswereperformedbytrained
professionalsandverbalmotivationwasusedinallsets.
2.8.BiochemicalAnalysis
Bloodlactatewasmeasuredusingaportablelactometer(Accutrend®Plus;RocheAccutrend
Plus,NewYork,NY,USA).Bloodglucosewasmeasuredbydigitalglucosemeter(Accu‐chek®
Active;Roche,SãoPaulo,Brazil).Allbloodsamplesweretakenfromthefingerbyatrained
professional.
2.9.StatisticalAnalyses
ThenormalityofthedatawastestedusingtheKolmogorov–Smirnovtest.General
characteristics,dietaryfoodintake,legextensionrepetitions,andbloodlactateconcentrationsare
presentedasmean±standarddeviationandglucoselevelsarepresentedasmedian(minimumand
maximum).Strengthdatawereanalyzedusingthetwo‐wayANOVAfollowedbyTukeytest.The
unpairedttestwasusedtocomparethetotalworkvolumeandbloodlactateconcentrationsbetween
groups.TheMann–Whitneytestwasusedtocomparethedeltabloodglucoseconcentrations.The
Fisherexacttestwasperformedtoassesstherateofparticipantswhocorrectlyguessedtheir
allocationinthegroup.AllstatisticalanalysesweredoneusingtheMedCalc®Seoul,Korea,software,
andp<0.05wasdefinedassignificantdifference.
3.Results
Ofthe17participantswhoinitiallyvolunteered,sixwereexcludedfornotadheringtotheproper
supplementationprotocol.Therefore,resultsfrom11participantswereusedintheanalyses.(Table
1).Priortostartingthestudy,allparticipantsfrombothgroupsingestedalow‐carb(3.0±1.0
g/kg/day)andhigh‐proteindiet(1.5±0.3g/kg/day),withnodifferenceindietaryintakebetween
interventionperiods(Table2).Nosideeffectswerereportedfromthesupplementationorexercise
intervention.Verbalconfirmationofsupplementationcompliancewas100%.
Table1.Participants’characteristics.
CharacteristicsMean±SD
Age(years)26.5±6.2
Bodyweight(kg)77.6±7.2
Height(m)1.7±0.0
Bodymassindex(kg/m2)26.6±2.1
Bodyfat(%)14.4±6.6
Workvolumelegextension(kg)88.1±18.6
Totalworkvolume(kg)3030.5±1068.2
Efforttimerunfor5km(min)25.5±2.6
Sports2020,8,125of9
Table2.Dietaryfoodintake.
NutrientsMean±SD
Totalcalories(kcal)2196.6±702.9
Carbohydrate(%)43.6±8.2
Carbohydrate(g/kg)3.0±1.0
Protein(%)26.4±4.3
Protein(g/kg)1.5±0.3
BCAA(g)19.0±6.1
Leucine(g)8.3±2.9
Valine(g)5.8±1.8
Isoleucine(g)4.8±1.5
Lipids(%)29.9±9.5
BCAA:Branched‐chainaminoacids.
AfterAE,therewasasignificantreduction(p<0.05)inlegextensionmuscleendurance(number
ofrepetitionsperformed)inthethird(Placebo:−20%vs.Creatine:−22%)andfourthset(Placebo:
−22%vs.Creatine:−28%)comparedwiththefirstset.However,therewerenodifferencesbetween
creatineandplacebo(Figure2A).Acrossallfoursets,nodifferenceswereobservedinthetotal
numberofrepetitionsperformed(Placebo:33.9±7.0vs.Creatine:34.0±6.9repetitions,p=0.97)
(Figure2B).Additionally,nodifferenceintotalworkvolumewasfoundbetweencreatineand
placeboinkg(Placebo:3030.5±1068.2vs.Creatine:3039.8±1087.7kg,p=0.98)(Figure3)andjoules
(Placebo:3030.4±1068.2vs.Creatine:3035.5±1092.8J/m,p=0.99).
Figure2.Strengthenduranceinlegextension(repetitions)amongthesets(A)andlegextension(sum
ofrepetitions)(B).
Sports2020,8,126of9
Figure3.Meanvaluefortotalwork(kg)usingthelegextensionmachineeitheronplaceboorcreatine
supplementation.
Therewerenosignificantdifferencesbetweencreatineandplaceboforchangesindeltablood
glucose(Placebo:5.0(−73.0–67.0)vs.Creatine:1.0(−53.0–49.0)mg/dL,p=0.73)andbloodlactate
(Placebo:5.1±2.9vs.Creatine:7.9±4.9nmol/L,p=0.11)concentrations(seeSupplementaryFigure
S1).
Regardingsupplementblindingefficacy,6/11participantscorrectlyguessedwhentheywere
consumingplaceboand5/11correctlyguessedwhentheywereconsumingcreatine,whichwasnot
statisticallydifferent(p=1.00).
4.Discussion
TherearetwohypothesesforthereductioninmuscleendurancefollowingAE,(i)acute;
peripheralfatiguetriggeredbymuscledamageandglycogendepletionduringAEtrainingreduces
theabilityofskeletalmuscletoproducetensionduringresistancetraining[2,3],and(ii)chronic;
skeletalmuscleattemptstoadapttobothformsoftraining,however,morpho‐functionaladaptations,
suchasfibertypeandsizeafterenduranceexerciseandweighttrainingarepartiallyopposed
resultinginaninterferenceeffect.
Thecurrentstudyaimedtoassesstheinfluenceofcreatinesupplementationonmuscle
endurancefollowinganacuteboutofAEintrainedyoungmales.Resultsshowedthatcreatinehad
noeffectonmuscleenduranceortotalworkperformedwhichisincontrasttothefindingsofPainelli
etal.[4],whoshowedthatcreatinesupplementation(20g/dayfor7days+5g/daythereafter)
maintainedlower‐bodymuscleendurance(numberofrepetitionsperformed)followingacutebouts
ofintermittentandcontinuousAEinstrength‐trainedmales(n=15)comparedwithadecreasein
males(n=16)whoreceivedplacebo.Theauthorssuggestthattheincreasedavailabilityofphosphoryl
creatineanditspotentialbufferingcapacity(reductionofH+ions)wouldberesponsiblefor
maintainingmuscleenduranceinthelegs.Furthermore,infemaleswhoperformedaleg‐press1RM
priortoandimmediatelyfollowinganacuteboutofenduranceexercise,therewasapositiveeffect
fromcreatinesupplementationontheperformanceoffoursetsoflegpressat80%of1RM[8].While
itisdifficulttocompareresultsacrossstudies,methodologicaldifferencesmaybeinvolved.Inthe
Painellietal.[4]study,legpressandchestpressmuscleendurance(bothmulti‐jointexercises)was
assessedwhereasweonlyassessedlegextensionendurance(single‐jointexercise).Furthermore,
femaleswereassessedinthestudybyAokiwhereasweassessedonlymales.Previousstudieshave
showndifferencesinmusclefatigability[6,8,19]andresponsivenesstocreatinesupplementation
betweensexes[20,21].
Additionally,nodifferenceinbloodlactateconcentrationswasreported.Thesedataaresimilar
tothosefromapreviousstudy[22].
Sports2020,8,127of9
Ourdatashownopositiveeffectofcreatinesupplementationonmusclestrengthusinga
crossoverdesignandwithdietarycontrolduringthestudy.Consideringthattheparticipantswere
onahighprotein‐diet,thecreatinesupplementationmightbenotnecessary.Thismightbeexplained
becauseproteiningestioncanhelpinmusclerecovery[23]andmightinfluencerecoveryfromaerobic
activities.However,creatinesupplementationitseemsdidnotbringadditionalbenefitsinmenwho
intakeahigh‐proteinandlow‐carbdiet.
Arecentstudy[5]investigatedachronicproteinsupplementationeffect(6months)onmuscle
strengthinsedentarywomenandmenonCE.Menwhoingestedproteinsupplementation2.2
g/kg/day,showedhigherincreasesinstrengthinthebenchpresswhencomparedwiththegroupthat
ingested1.1g/kg/dayofprotein.Itisinterestingtonotethatmenwhoreceivedahigh‐protein(2.2
g/kg/day)groupingestedlowercarbohydrate(notlow‐carbdiet)thanthenormalprotein(1.1
g/kg/day)group.Ontheotherhand,inwell‐trainedmalecyclistswhoperformedanacuteexercise
session(high‐intensitycyclingand100drop‐jumps),20ghydrolysateproteinsupplementation
associatedwithahabitualhigh‐proteindiet(1.2g/kg/day)andmoderateincarbohydrate(6g/kg/day)
didnotalleviateexercise‐inducedmuscledamage[7].
Althoughtrainingenhancestheeffectivenessofsupplementationproteinduringresistance
exercise[24],theeffectsofhabitualconsumptionofahigh‐proteindietonmusclestrengthduring
concurrenttrainingarelimited[5].Itwouldbeinterestingiffuturestudiesevaluatetheeffectsof
creatinesupplementationunderhigh‐andlow‐habitualproteinandcarbohydrateintakes.
Althoughwedidnotmeasurethetimingofproteinintake,nosignificanteffectonmuscle
strengthisfoundduringtheresistancetraining[25].Thus,furtherstudiesarewarrantedtoexamine
theeffectsofahigh‐proteindietonmusclestrengthduringaCEbout.
4.1.StudyLimitations
Therewereseverallimitationstothisstudy.First,weuseda14dayswashoutperiodbetween
creatineandplaceboingestionwhichmaynothavebeenlongenoughtoabolishtheresidual(carry‐
over)effectsofcreatine.Forexample,Vandenbergheetal.[26]showedthatcreatinesupplementation
(20g/dayfor4days)increasedintramuscularPCrconcentrations,whichweremaintainedwitha
maintenancedosageofcreatine(5g/day)for10weeks.Uponcreatinecessation,intramuscularPCr
concentrationsremainedelevatedfor28days.Second,nomeasureofintramuscularcreatine(PCr,
freeCr)wasassessedpriortoeachtestingphase.Initialintramuscularcreatinelevelstypically
determinetheresponsivenesstocreatinesupplementation[27].Third,participantsmayhavealready
beenconsuminghighamountsofdietarycreatinefromprotein‐containingfoodproducts(i.e.,
seafood,meat,poultry)[28,29],whichattenuatedtheergogenicresponsetocreatine
supplementation.Foodrecordspriortothestartofsupplementationshowedthatparticipantswere
consumingapproximately1.5±0.3g/dayofprotein.Unfortunately,thefooddiariesdidnot
determinetheamountofdietarycreatineconsumed.Fourth,themajorityofintramuscularcreatine
isfoundintypeIImusclefibers.Youngindividualswiththehighestconcentrationandmusclecross‐
sectionalareaoftypeIIfibersrespondmorefavorablytocreatinesupplementation[30].
Unfortunately,nomeasureofmusclefibermorphologywasmadeinthisstudy.Finally,theabsence
ofpositiveeffectfoundcouldbeduetothefactofasmallsamplesize.Thus,astudywithalarge
samplesizeandparticipantswithdifferenttrainingstagesshouldbeexploredinthefuture.
5.Conclusions
Insummary,short‐termcreatinesupplementationhasnoeffectonlower‐limbmuscleendurance
followinganacuteboutofAEintrainedyoungmales.Ourresultsshownewinformationregarding
musclestrengthrecoveryafteranacuteboutofAEandraiseahypothesisthattheincreasein
carbohydrateintakecombinedwiththehigh‐proteindietshouldbeinvestigated.
Sports2020,8,128of9
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/xxx/s1,FigureS1:Deltablood
glucose(A)andlactate(B)concentrationsforparticipantseitheronplacebooroncreatinesupplementation.No
significantdifferencesobservedbetweengroups.
AuthorContributions:Conceptualization,I.P.V.,A.G.d.P.,P.G.,C.P.,D.G.C.andG.D.P.;DataCuration,I.P.V.,
A.G.d.P.,P.G.,G.D.P.;FormalAnalysis,I.P.V.,A.G.d.P.andG.D.P.;Investigation,I.P.V.,A.G.d.P.,P.G.and
G.D.P.;Supervision,P.G.,andG.D.P.;Writing—OriginalDraft,I.P.V.,A.G.d.P.,P.G.,C.P.andD.G.C.;Writing—
Review&Editing,P.G.,D.G.C.,andG.D.P.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:Thisresearchreceivednoexternalfunding.
ConflictsofInterest:Nopotentialconflictofinteresttothisarticlehasbeenreported.
References
1. Coffey,V.G.;Hawley,J.A.Concurrentexercisetraining:Dooppositesdistract?J.Physiol.2017,595,2883–
2896,doi:10.1113/JP272270.
2. Leveritt,M.;Abernethy,P.J.;Barry,B.K.;Logan,P.A.ConcurrentStrengthandEnduranceTraining.Sport
Med.1999,28,413–427,doi:10.2165/00007256‐199928060‐00004.
3. Docherty,D.;Sporer,B.AProposedModelforExaminingtheInterferencePhenomenonbetween
ConcurrentAerobicandStrengthTraining.SportMed.2000,30,385–394,doi:10.2165/00007256‐200030060‐
00001.
4. deSallesPainelli,V.;Alves,V.T.;Ugrinowitsch,C.;Benatti,F.B.;Artioli,G.G.;Lancha,A.H.;Gualano,B.;
Roschel,H.Creatinesupplementationpreventsacutestrengthlossinducedbyconcurrentexercise.Eur.J.
Appl.Physiol.2014,114,1749–1755,doi:10.1007/s00421‐014‐2903‐0.
5. Ormsbee,M.J.;Willingham,B.D.;Marchant,T.;Binkley,T.L.;Specker,B.L.;Vukovich,M.D.Protein
SupplementationDuringa6‐MonthConcurrentTrainingProgram:EffectonBodyCompositionand
MuscularStrengthinSedentaryIndividuals.Int.J.SportNutr.Exerc.Metab.2018,28,619–28,
doi:10.1123/ijsnem.2018‐0036.
6. Gentil,P.;deLira,C.A.B.;Filho,S.G.C.;LaScalaTeixeira,C.V.;Steele,J.;Fisher,J.Highintensityinterval
trainingdoesnotimpairstrengthgainsinresponsetoresistancetraininginpremenopausalwomen.Eur.J.
Appl.Physiol.2017,117,1257–1265,doi:10.1007/s00421‐017‐3614‐0.
7. Eddens,L.;Browne,S.;Stevenson,E.J.;Sanderson,B.;vanSomeren,K.;Howatson,G.Theefficacyof
proteinsupplementationduringrecoveryfrommuscle‐damagingconcurrentexercise.Appl.Physiol.Nutr.
Metab.2017,42,716–724,doi:10.1139/apnm‐2016‐0626.
8. Gomes,R.V.;Aoki,M.S.Suplementaçãodecreatinaanulaoefeitoadversodoexercíciodeendurancesobre
osubseqüentedesempenhodeforça.Rev.Bras.Med.Esporte2005,11,131–134,doi:10.1590/S1517‐
86922005000200007.
9. deSouza,E.O.;Tricoli,V.;Franchini,E.;Paulo,A.C.;Regazzini,M.;Ugrinowitsch,C.Acuteeffectoftwo
aerobicexercisemodesonmaximumstrengthandstrengthendurance.J.StrengthCond.Res.2007,21,1286–
1290,doi:10.1519/R‐20686.1.
10. Kraemer,W.J.StrengthTesting:DevelopmentandEvaluationofMethodology.InPhysiologicalAssessment
ofHumanFitness;HumanKinetics:Champaign,IL,USA1995,pp.115–138.
11. Candow,D.G.;Forbes,S.C.;Chilibeck,P.D.;Cornish,S.M.;Antonio,J.;Kreider,R.B.Effectivenessof
CreatineSupplementationonAgingMuscleandBone:FocusonFallsPreventionandInflammation.J.Clin.
Med.2019,8,488,doi:10.3390/jcm8040488.
12. Kreider,R.B.;Kalman,D.S.;Antonio,J.;Ziegenfuss,T.N.;Wildman,R.;Collins,R.InternationalSocietyof
SportsNutritionpositionstand:Safetyandefficacyofcreatinesupplementationinexercise,sport,and
medicine.J.Int.Soc.SportsNutr.2017,14,18,doi:10.1186/s12970‐017‐0173‐z.
13. Steele,J.;Fisher,J.;Giessing,J.;Gentil,P.Clarityinreportingterminologyanddefinitionsofsetendpoints
inresistancetraining.MuscleNerve2017,56,368–374,doi:10.1002/mus.25557.
14. Jackson,A.S.;Pollock,M.L.Generalizedequationsforpredictingbodydensityofmen.Br.J.Nutr.1978,40,
497–504.
15. Fisberg,R.M.InquéritosAlimentares:MétodosEBasesCientíficas;Manole:SãoPaulo,Brazil,2005.
16. USDAFoodCompositionDatabases.Availableonline:https://ndb.nal.usda.gov/ndb/(acessedon15
Sports2020,8,129of9
August2018).
17. Noakes,T.D.;Myburgh,K.H.;Schall,R.PeaktreadmillrunningvelocityduringtheVO
2
maxtestpredicts
runningperformance.J.SportsSci.1990,8,35–45,doi:10.1080/02640419008732129.
18. Kraemer,W.J.;Patton,J.F.;Gordon,S.E.;Harman,E.A.;Deschenes,M.R.;Reynolds,K.Compatibilityof
high‐intensitystrengthandendurancetrainingonhormonalandskeletalmuscleadaptations.J.Appl.
Physiol.1995,78,976–989,doi:10.1152/jappl.1995.78.3.976.
19. Hill,E.C.;Housh,T.J.;Smith,C.M.;Schmidt,R.J.;Johnson,G.O.Gender‐andMuscle‐SpecificResponses
DuringFatiguingExercise.J.StrengthCond.Res.2018,32,1471–1478,doi:10.1519/JSC.0000000000001996.
20. Johannsmeyer,S.;Candow,D.G.;Brahms,C.M.;Michel,D.;Zello,G.A.Effectofcreatinesupplementation
anddrop‐setresistancetraininginuntrainedagingadults.Exp.Gerontol.2016,83,112–119,
doi:10.1016/J.EXGER.2016.08.005.
21. Parise,G.;Mihic,S.;MacLennan,D.;Yarasheski,K.E.;Tarnopolsky,M.A.Effectsofacutecreatine
monohydratesupplementationonleucinekineticsandmixed‐muscleproteinsynthesis.J.Appl.Physiol.
2001,91,1041–1047,doi:10.1152/jappl.2001.91.3.1041.
22. Greenhaff,P.L.;Casey,A.;Short,A.H.;Harris,R.;Soderlund,K.;Hultman,E.Influenceoforalcreatine
supplementationofmuscletorqueduringrepeatedboutsofmaximalvoluntaryexerciseinman.Clin.Sci.
1993,84,565–571,doi:10.1042/cs0840565.
23. Pasiakos,S.M.;Lieberman,H.R.;McLellan,T.M.Effectsofproteinsupplementsonmuscledamage,
sorenessandrecoveryofmusclefunctionandphysicalperformance:Asystematicreview.SportsMed.2014,
44,655–670,doi:10.1007/s40279‐013‐0137‐7.
24. Morton,R.W.;Murphy,K.T.;McKellar,S.R.;Schoenfeld,B.J.;Henselmans,M.;Helms,E.Asystematic
review,meta‐analysisandmeta‐regressionoftheeffectofproteinsupplementationonresistancetraining‐
inducedgainsinmusclemassandstrengthinhealthyadults.Br.J.SportsMed.2018,52,376–384,
doi:10.1136/bjsports‐2017‐097608.
25. Schoenfeld,B.J.;Aragon,A.A.;Krieger,J.W.Theeffectofproteintimingonmusclestrengthand
hypertrophy:Ameta‐analysis.J.Int.Soc.SportsNutr.2013,10,53,doi:10.1186/1550‐2783‐10‐53.
26. Vandenberghe,K.;Goris,M.;VanHecke,P.;VanLeemputte,M.;Vangerven,L.;Hespel,P.Long‐term
creatineintakeisbeneficialtomuscleperformanceduringresistancetraining.J.Appl.Physiol.1997,83,
2055–2063,doi:10.1152/jappl.1997.83.6.2055.
27. Lemon,P.W.R.Dietarycreatinesupplementationandexerciseperformance:Whyinconsistentresults?Can.
J.Appl.Physiol.2002,27,663–681.
28. Wyss,M.;Kaddurah‐Daouk,R.Creatineandcreatininemetabolism.Physiol.Rev.2000,80,1107–1213,
doi:10.1152/physrev.2000.80.3.1107.
29. Jung,S.;Bae,Y.S.;Kim,H.J.;Jayasena,D.D.;Lee,J.H.Carnosine,anserine,creatine,andinosine5′‐
monophosphatecontentsinbreastandthighmeatsfrom5linesofKoreannativechicken.PoultSci.2013,
12,3275–3282,doi:10.3382/ps.2013‐03441.
30. Syrotuik,D.G.;Bell,G.J.AcuteCreatineMonohydrateSupplementation:ADescriptivePhysiological
ProfileofRespondersvs.Nonresponders.J.StrengthCond.Res.2004,18,610–617,doi:10.1519/00124278‐
200408000‐00039.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).