Conference PaperPDF Available

A HOLISTIC ASSESSMENT APPROACH FOR CLEAN SHIPPING INVESTMENTS

Authors:
  • Hochschule Wismar & TalTech University
  • Tallinn University of Technology/Wismar Business School

Abstract

Since the introduction of the amended Sulphur Emission Control Areas (SECA) regulations in 2015, the Baltic Sea has witnessed high compliance rate. However, a closer look to the experiences in the Baltic Sea reveals that the currently preferred compliance strategies depend on low oil price, where ship owners shun investments in abatement and maritime energy efficiency technologies, which may lead into an economic trap in the event of oil price increase. The research considers incentive provisions for maritime investors who make investment decisions related to clean shipping and maritime energy management against the background of the Global Sulphur Cap, which just entered into force at the beginning of this year 2020. Traditionally, the financial assessments of these decisions are based on capital budgeting methods comprising cash flow analyses and net present value calculations. The findings reveal that a Real Option approach represents a more realistic, reliable and promising method for the evaluation of abatement and energy efficiency projects, especially under uncertainty and high volatility in material resource markets. The results can be applied to the assessment of all types of projects in the maritime industry that depends on the price variation of the underlying asset during a specific period.
A HOLISTIC ASSESSMENT APPROACH FOR CLEAN SHIPPING
INVESTMENTS
Christopher Meyer*, Eunice O. Olaniyi*, Robert Philipp*, Gunnar Prause*
* Wismar University of Applied Sciences, Germany
* Tallinn University of Technology, Estonia.
Abstract
Since the introduction of the amended Sulphur Emission Control Areas (SECA)
regulations in 2015, the Baltic Sea has witnessed high compliance rate. However, a closer
look to the experiences in the Baltic Sea reveals that the currently preferred compliance
strategies depend on low oil price, where ship owners shun investments in abatement and
maritime energy efficiency technologies, which may lead into an economic trap in the
event of oil price increase.
The research considers incentive provisions for maritime investors who make investment
decisions related to clean shipping and maritime energy management against the
background of the Global Sulphur Cap, which just entered into force at the beginning of
this year 2020. Traditionally, the financial assessments of these decisions are based on
capital budgeting methods comprising cash flow analyses and net present value
calculations. The findings reveal that a Real Option approach represents a more realistic,
reliable and promising method for the evaluation of abatement and energy efficiency
projects, especially under uncertainty and high volatility in material resource markets. The
results can be applied to the assessment of all types of projects in the maritime industry
that depends on the price variation of the underlying asset during a specific period.
Introduction
Green and environmentally friendly shipping have received much attention based on
concerns for its local and global contribution to air pollution and environmental problems.
Therefore, the International Maritime Organization (IMO) implemented stricter Emission
Control Areas (ECA) from 2015 in order to realize a reduction of emissions from shipping
and to ensure a greener and more sustainable maritime transportation system. The first
measure within the ECAs was dedicated to the restricted use of marine fuels with a lower
amount than 0.1% of sulphur content so that the ECAs became Sulphur Emission Control
Areas (SECA) due to their focus on sulphur (IMO, 2015, 2016).
There are three primary SECA regulations compliance options for the ship owners. First,
to switch from the use of the marine heavy fuel oil (HFO) to the cleaner low-sulphur fuel
such as Marine Gas Oil (MGO) and Marine Diesel Oil (MDO). The second alternative is
to continue with the high-sulphur fuel (i.e. HFO) and installing an exhaust gas treatment
system, an abatement technology called the scrubber, which gives room for the continuous
use of the HFO. The third option is to switch to other alternative sources of fuel such as
Liquefied Natural Gas (LNG), methanol or hydrogen cells. These alternative fuels are
being considered for future solutions to meet the SECA requirements (Gerlitz et al., 2017;
Henesey & Philipp, 2019; Madjidian et al., 2017; Philipp et al., 2018). The investigations
of Olaniyi, Atari and Prause (2018) in the Baltic Sea Region (BSR) revealed that most of
the ships are switching to the use of low sulphur fuel because it removes the hassles of
capital compliance investments. Moreover, fuel costs represent one of the most critical
factors in shipping industry so that the optimisation of fuel consummation as well as the
choice of the best options for abatement and energy efficiency technologies are not only
important for environmental reasons but are also crucial for the maritime industry due to
economic conditional.
Options trading is a major part of investments in the capital market and its use in the
evaluation of investment appraisals is popular. It is important to emphasize that the real
option valuation method of investment projects is the extension of financial options theory
on real property. Black and Schools (1973) introduced options trading approach into
investment appraisal by using the option pricing to evaluate an investment from the zero
points of the project. By incorporating a constant price variation of the asset, the money
value of the time, the option's exercise price and the option's expiration value, the Black
and Schools model calculates the price of a call option and put option in general. A newer
option valuation approach is based on Monte Carlo Simulation (MCS) where the options
traders generate random variables to get the pricing value. With this approach, a simplified
simulation is to generate an optional quantity of random variables. However, it has been
less acceptable than other approaches for the evaluation of an option price.
Maritime investors, especially in the shipping industry, appreciate investment decisions,
which allow reaction and adaption on price movements for energy commodities since there
is no reliable method to predict future price trends. Thus, the authors propose that it might
be of a higher value to obtain a scrubber or install engines that allow them to switch
between energy sources to be able to use the most economical fuel. Atari et al. (2019)
suggested such an abatement technology installation model for maritime industry and used
the model to determine the optimal time for deferrals of investments and to evaluate
investments at the present or in the future. This investment model was empirically tested
and validated with an abatement project on a handy size vessel and the approach can be
applied to the assessment of a large number of clean shipping investments comprising
maritime energy efficiency concepts. Hence, the presented methodology bears the
potential of a holistic assessment approach for a variety of clean shipping investments.
Keywords: SECA regulations; global cap; clean shipping investments, real-options,
Monte Carlo simulation
Bibliography
Bakkar, Y.; Robal, T.; Prause, G. (2020). A web-based economic decision tool for abatement
investments for shipping industry. In: Springer Lecture Notes in Networks and Systems, forthcoming.
Atari, S.; Bakkar, Y.; Olaniyi, E.O.; Prause, G. (2019). Real options analysis of abatement investments
for sulphur emission control areas compliance. Journal of Entrepreneurship and Sustainability Issues, 6
(3), 1062−1086.10.9770/jesi.2019.6.3(1).
Olaniyi, E.O.; Atari, S.; Prause, G. (2018). Maritime energy contracting for clean shipping. Transport
and Telecommunication, 19 (1), 31−44.10.2478/ttj-2018-0004.
Olaniyi EO, Viirmäe M (2016) The Economic Impact of Environmental Regulations on a maritime Fuel
Production Company. Research in Economics and Business: Central and Eastern Europe, 8 (2), 58−84.
Gerlitz L., Philipp R., Beifert A. (2017) Smart and Sustainable Cross-Sectoral Stakeholder Integration
into Macro-Regional LNG Value Chain. In: Kabashkin I., Yatskiv I., Prentkovskis O. (eds) Reliability
and Statistics in Transportation and Communication. RelStat 2017. Lecture Notes in Networks and
Systems. Springer 2017:36:112–126. doi:10.1007/978-3-319-74454-4_11
Henesey, L. & Philipp, R. (2019) Evaluating LNG Bunkering Automation Technology. In: Casaca (eds.):
Summary Report – 2019 World of Shipping Portugal, An International Research Conference on
Maritime Affairs, 16 17, Carcavelos, ISBN: 978-989-33-0042-8,
https://www.researchgate.net/publication/336899809 (accessed: December 2019)
Madjidian, J.; Gerlitz, L.; Paulauskas, V.; Jankowski, S.; Henesey, L.; Ölcer, A.; Dalaklis, D.; Ballini,
F.; Kitada, M.; Philipp, R. (2017). Developing a strategy for LNG powered transport corridors in the
Baltic Sea Region.
Philipp, R., Gerlitz, L. & Prause, G. (2018). Regionale Häfen auf Digitalisierungskurs: Intelligentes
Wachstum und nachhaltige Wertschöpfung entlang der kleinen und mittel-großen Häfen des
Ostseeraumes, In: Cleve, Alde, Wißotzki (eds.): Proceedings of WiWiTa 2018 Conference, 77 – 86,
Wismar, ISBN 978-3-942100-58-8, https://www.researchgate.net/publication/326113557 (accessed:
July 2019)
... These potential trends were chosen for the present study, since they are currently highly discussed in the research landscape on maritime industry (e.g. Henesey & Philipp, 2019; Madjidian et al., 2017;Meyer et al., 2020;Philipp et al., 2018Philipp et al., , 2019bPhilipp et al., , 2019cPhilipp et al., & 2020. By doing so, a five item scale was given with "(-2) Very negative", "(-1) Rather negative", "(0) Neutral", "(+1) Rather positive" and "(+2) Very positive", whereby participants also had the option to choose "Not aware", whichof courseis excluded from the following analysis. ...
Article
Full-text available
The Baltic Sea Region (BSR) stands for a flagship maritime region in Europe with dominating SME sector. Nevertheless, compared with other European regions, the cooperation and promotion activities of companies that belong to the Blue Economy in South Baltic Sea Region (SBSR) are not sufficient. As a response to this, the EU-project INTERMARE South Baltic aims to support the maritime economy in the SBSR by the creation of a network of companies and stakeholders. In line with the project, this study aims to analyse the future potential of the maritime economy and to identify trends that impact the sustainable development of the blue sector in SBSR. Based on primary data from a SBSR wide survey, descriptive statistical analysis is applied and Compound Annual Growth Rate is used as an indicator. The findings reveal need for actions regarding the sub-sectors Transport, Offshore oil & gas, Aquaculture, Fishery, Mineral resources and Biotechnology.
Chapter
Full-text available
Since 2015 in Norther Europe comprising North Sea and Baltic Sea, Emission Control Areas (ECA) were established that require additional compliance costs from maritime industry. Shipping companies have different options to cope with the environmental regulations but all abatement investments are related with high risks due to high investment sums and long lifetime of the investments. After the global financial and economic crisis shipping industry is facing new economic and environmental challenges. The authors participated in the EU project “EnviSuM” investigating the impact of SECA regulations in Baltic Sea Region (BSR). One important output of the project was to develop a web-based economic decision tool for shipping industry in order to empower ship operators to assess abatement investments. The paper highlights the main results of the economic appraisal of abatement investments together with the transfer of the results into a web-based decision tool. The research is based on surveys, expert interviews, case studies and mathematic modelling approaches.
Conference Paper
Full-text available
Automation technology has gained much traction over the last few years and its applicability to the maritime industry offers diverse opportunities, such as improved bunkering of Liquefied Natural Gas. To showcase this, an analysis is conducted in this research, starting with an outline of the current state of the art, which is then extended to consider future developments and implementations of automated solutions for LNG bunkering. It is argued that automation technologies and their progression in being accepted by industry will help to attain sustainable growth. Thereby, in order to save time and improve staff productivity in terminals there are factors that must be considered. Crucial factors that have been identified and thus, need be taken into account are among other things: fuel transfer flow, which includes the gasification and re-gasification characteristics; ship status; LNG tanks and their capacities; as well as methods of conventional bunkering that are currently applied in practice. In this context, reliable measurements are required to ensure trustworthiness for such risk factors involved in LNG bunkering.
Conference Paper
Full-text available
Seit einigen Jahren wächst verstärkt die Bedeutung digitaler Technologien und deren Fortschritt in unterschiedlichen Industrie-und Dienstleistungssektoren. Bezugnehmend auf das erkennbare Wertversprechen, die steigende sektorübergreifende Verbreitung sowie das Wertschöpfungspotential der digitalen Technologien finden diese immer mehr Anerkennung auch im maritimen Industriesektor und Verkehr. Große Seehäfen, die sog. Kernhäfen des ‚TEN-V', wie z. B. Rotterdam oder Turku sind mit digitalen datengestützten Technologien, wie z. B. ‚Blockchain' oder ‚Internet der Dinge' bereits vertraut und setzen weiterhin auf den nachhaltigen Ausbau dieser fortschrittlichen Technologien, die Sicherheit, Prozessoptimierung sowie Nachhaltigkeit versprechen. Sie entwickeln sich schnell und verschmelzen zu riesigen digitalen Netzwerken und Plattformen wie ‚Internet der Dinge' oder Industrie 4.0. Damit verbinden und konvergieren sie physische und digitale Welten-Maschinen, Geräte und Menschen-über das Internet zu einem Netzwerk. Das Hauptziel solcher neuen digitalen Technologien ist es, die wirtschaftliche Leistung und den Energiebedarf zu optimieren, den Verbrauch von Ressourcen und Abfall zu reduzieren und das Leistungsportfolio besser zu qualifizieren. In der Tat sind die Seehäfen auf die großen Transport-und Logistikunternehmen angewiesen, wenn es um die Entwicklung erkenntnisreicher Lösungen und ‚Internet der Dinge'-Anwendungen geht (Deloitte, 2017). Da die großen Transportunternehmen wie Maersk auf die ‚Blockchain'-Technologie setzen, um den Fracht-und Informationsfluss zu optimieren, ist es wichtig, dass die anderen Häfen, darunter insbesondere auch die kleineren und mittelgroßen Häfen, die Gelegenheit nutzen, diese technologische Lösung anzuwenden, um sich in die globalen Lieferketten zu integrieren. Andernfalls erwachsen hieraus uneinholbare Wettbewerbsnachteile. Somit ist eine Auseinandersetzung mit neuen digitalen Technologien auch für die großen Kernhäfen sowie kleine und mittelgroße Häfen entlang der südlichen Ostsee von entscheidender Bedeutung. In dieser Region ist die Verteilung von ‚Blockchain'-und anderen ‚Internet der Dinge'-Technologien in den Häfen und ihren Dienstleistungsportfolios sehr begrenzt, nicht kohärent und nicht auf grenzüberschreitender Ebene integriert. Innerhalb eines Anschubprojektes (‚Interreg' ‚Connect2SmallPorts' (sog. ‚Seed-Money')) führte das Konsortium Interviews mit mehr als zehn CEOs von kleinen Häfen und 30 Experten aus der Region durch. Ergänzend wurden sieben Workshops und Veranstaltungen organisiert, um Primärdaten zu sammeln, die einen entsprechenden Handlungsbedarf untermauern. Im Einklang mit allen Beteiligten standen die Digitalisierung und die damit verbundenen Probleme, wie die Automatisierung, Entkarbonisierung und Sicherheit im Mittelpunkt der Problem-und Herausforderungsdarstellung. Während einige Häfen der Region, z. B. Wismar, Karlskrona und Klaipeda deutlich die Notwendigkeit äußern, augenblicklich Digitalisierungsmaßnahmen durchzuführen, um die Wettbewerbsfähigkeit zu erhöhen oder zu erhalten, bleiben die polnischen Häfen weiterhin in dieser Ansicht zurück. Sie konzentrieren sich nach wie vor auf die Entwicklung der wichtigsten harten Infrastrukturen ohne klare Vision und Digitalisierungsstrategie. Dies hat ungleiche zukünftige Entwicklungschancen für die Region zur Folge und behindert alle Perspektiven des nachhaltigen und blauen Wachstums. Der vorliegende Beitrag befasst sich mit der Kluft zwischen marginalisierten Forschungsschwerpunkten kleiner und mittelgroßer Häfen innerhalb dieser technologischen Netzwerke und Plattformen, und baut darauf auf, dass kleinere, wirtschaftlich schwächere oder regional gebundene Akteure, wie kleinere Häfen oder regionale KMUs, in der südlichen Ostseeregion auch von sich entwickelnden digitalen Netzen und der Nutzung digitaler Technologien neben ihren größeren Akteuren profitieren könnten, um Innovationen zu fördern sowie die Wertschöpfung und Wettbewerbsfähigkeit zu verbessern. Aus praktischer Sicht werden spezifische Herausforderungen in der Digitalisierung kleiner und mittelgroßer Häfen der Region „Südliche Ostsee“ angesprochen und behandelt. Mit Hilfe der grenzüberschreitenden Kooperationsplattform ‚Interreg‘ und dem im Jahr 2017 umgesetzten Projekt ‚Connect2SmallPorts‘ schlagen die Forscher einen konzeptionellen Ansatz vor, der die Digitalisierung in kleinen und mittelgroßen Häfen erleichtern soll. Es ist klar, dass die Digitalisierung die nächste Innovationswelle ist und sein wird. Daher erscheint es notwendig, Schlüsselstrategien und -instrumente für kleine und mittelgroße Häfen aufzuzeigen, um die Prioritätsbereiche bei der Verteilung der Investitionen im Hinblick auf die bevorstehende Digitalisierung festlegen zu können, und die politischen Entscheidungsträger informativ zu unterstützen.
Article
Full-text available
e International Maritime Organization (IMO) and the European Parliament (EP) in 2005 and 2012 established Sulphur Emission Control Areas (SECA) in Northern Europe where from 2015 ships must use fuel with a sulphur content not exceeding 0.1% and 3.5% in non-SECAs. is has spurred active discussion that the regulation has created economic disadvantages for maritime stakeholders who must comply with strict regulations that competitors in other parts of the world are not subjected to. rough a case study, this work investigates the impact of environmental regulations on the business model of the maritime supply company Viru Keemia Grupp (VKG), which is of national importance to the Estonian economy, especially in the eastern region. It explores the strategic entrepreneurial compliance options for VKG based on their return on investments and associated risk. e ndings show that VKG is currently struggling to keep aoat under the weight of the consequences of changes in maritime consumer demand due to sulphur emission regulations and that the most viable compliance options are expensive and risky. JEL classification codes: L26, M11
Chapter
Since the introduction of lower sulphur content with no more than 0.10% in the Sulphur Emission Control Areas (SECAs) from 1 January 2015, the Baltic Sea Region (BSR) is increasingly becoming subject to search for new economically and environmentally competitive and survival strategies. The BSR stands for a flagship maritime region in Europe in terms of good economic, social and environmental performance. In order to sustain, and much more important, to improve the overall eco-system performance of the BSR, Liquefied Natural Gas (LNG) has been recognised as one of transitional measures, alternative strategies and business opportunities in maritime shipping and the entire transportation and energy system. LNG might become a viable stepping-stone alternative solution for business, and be considered as a regulation-driven demand to comply with environmental regulations that aim to achieve the goals set by 2020–2050. As a response, ‘Go LNG’ ERDF part-financed INTERREG V project aims at reducing technological, knowledge and business gaps by providing operational and strategic approach. In line with project, the present study aims to answer the research question how to integrate LNG stakeholders involved in diverse LNG activities, with different needs, capacities and capabilities into one macro-regional transport and energy supply and value chain.
Conference Paper
International and national policies and regulations call for faster transition to sustainable energy production and use. Within the shipping industry one way forward is the use of LNG. Despite being of fossil origin LNG is considered to be an important step towards cleaner shipping given the better properties of the exhausts. This paper will present the development of a strategy for smoother and more efficient use of LNG as a fuel for transport in the Baltic Sea Region, with the aim to enable blue transport corridors in the region. This will be done by investigating transport flows, LNG infrastructure developments, and by also including a wider value chain that incorporates all transport modalities as well as industries that today use natural gas. The strategy will further provide LNG stakeholders with a knowledge base on policies and regulation as well as on technological standards, and describe well-functioning solutions and business models already present in the transport sector.
Lecture Notes in Networks and Systems
and Statistics in Transportation and Communication. RelStat 2017. Lecture Notes in Networks and Systems. Springer 2017:36:112-126. doi:10.1007/978-3-319-74454-4_11
Real options analysis of abatement investments for sulphur emission control areas compliance
  • S Atari
  • Y Bakkar
  • E O Olaniyi
  • G Prause
Atari, S.; Bakkar, Y.; Olaniyi, E.O.; Prause, G. (2019). Real options analysis of abatement investments for sulphur emission control areas compliance. Journal of Entrepreneurship and Sustainability Issues, 6 (3), 1062−1086.10.9770/jesi.2019.6.3(1).
Maritime energy contracting for clean shipping
  • E O Olaniyi
  • S Atari
  • G Prause
Olaniyi, E.O.; Atari, S.; Prause, G. (2018). Maritime energy contracting for clean shipping. Transport and Telecommunication, 19 (1), 31−44.10.2478/ttj-2018-0004.