ArticlePDF Available

Abstract and Figures

We describe a new species of Amphisbaena from the Caatinga of northeastern Brazil. The new taxon is identified mainly by having 216–239 body annuli, 13–17 caudal annuli without autotomic site, 4–8 (usually six) precloacal pores without a median hiatus, 18–24 dorsal and 18–24 ventral segments at a midbody annulus, 4 supralabials, 3 infralabials, and postmalar row present. The continued discovery of new amphisbaenians from Caatinga highlights the insufficient current knowledge regarding the diversity of this group in this semiarid region.
Content may be subject to copyright.
A New Worm Lizard Species (Squamata:
Amphisbaenidae: Amphisbaena) with Non-autotomic
Tail, from Northeastern Brazil
Authors: Ribeiro, Leonardo B., Gomides, Samuel C., and Costa,
Henrique C.
Source: Journal of Herpetology, 54(1) : 9-18
Published By: Society for the Study of Amphibians and Reptiles
URL: https://doi.org/10.1670/19-043
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.
Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-o-use.
Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
Journal of Herpetology, Vol. 54, No. 1, 9–18, 2020
Copyright 2020 Society for the Study of Amphibians and Reptiles
A New Worm Lizard Species (Squamata: Amphisbaenidae: Amphisbaena) with Non-
autotomic Tail, from Northeastern Brazil
LEONARDO B. RIBEIRO,
1,4,5
SAMUEL C. GOMIDES,
2,4
AND HENRIQUE C. COSTA
3,4
1
Universidade Federal do Vale do Sa˜o Francisco (UNIVASF), Campus Ci ˆ
encias Agra´ rias, Centro de Conserva ¸ca˜o e Manejo de Fauna da Caatinga
(CEMAFAUNA-CAATINGA), BR-407, Km 12, Lote 543, Projeto de Irriga ¸ca˜o Nilo Coelho, s/n, C1, 56300-000, Petrolina, Pernambuco, Brazil
2
Programa de P ´
os-gradua¸ca˜o em Biodiversidade, Universidade Federal do Oeste do Para´ , Campus Oriximina´. Rodovia PA-254, n8257, Bairro Santı´ssimo,
68.270-000, Oriximina´, Para´ , Brazil
3
Programa de P ´
os-Gradua ¸ca˜o em Biologia Animal, Universidade Federal de Vi¸cosa, 36570-900, Vi ¸cosa, Minas Gerais, Brazil
ABSTRACT.—We describe a new species of Amphisbaena from the Caatinga of northeastern Brazil. The new taxon is identified mainly by
having 216–239 body annuli, 13–17 caudal annuli without autotomic site, 4–8 (usually six) precloacal pores without a median hiatus, 18–24
dorsal and 18–24 ventral segments at a midbody annulus, 4 supralabials, 3 infralabials, and postmalar row present. The continued
discovery of new amphisbaenians from Caatinga highlights the insufficient current knowledge regarding the diversity of this group in
this semiarid region.
RESUMO.—N´
os descrevemos uma nova espe´cie de Amphisbaena da Caatinga no nordeste do Brasil. O novo ta´xon e´ identificado
principalmente por possuir 216–239 ane´ is corporais; 13–17 ane´is caudais sem ponto de autotomia; 4–8 (geralmente seis) poros pre´-cloacais
sem hiato medial; 18–24 segmentos dorsais e 18–24 segmentos ventrais em um anel do meio do corpo; 4 supralabiais; 3 infralabiais; fileira
p´
os-malar presente. A contı´nua descoberta de novas anfisb ˆ
enias na Caatinga destaca o conhecimento ainda insuficiente que temos sobre a
diversidade deste grupo nesta regia˜ o semia´rida.
Brazil has the greatest Amphisbaenia species richness (Costa
and Be´rnils, 2018; Uetz and Ho ˇ
sek, 2018), and new discoveries
continue to be made every year (Almeida et al., 2018; Oliveira et
al., 2018; Ribeiro et al., 2018a,b, 2019). However, gaps in the
knowledge of worm lizard diversity in Brazil (Colli et al., 2016)
not only impair the understanding of the dimensions of
Brazilian biodiversity but also hamper appropriate conservation
measures (Bo¨ hm et al., 2013). Collection in localities not
previously sampled, or still understudied, is one important
action in the search for new or poorly known species (Colli et
al., 2016). However, funding cuts to the sciences by the Brazilian
government (Gibney, 2015; Angelo, 2016, 2019; Fernandes et al.,
2017) are imposing serious threats to critical areas of research,
including taxonomy and systematics.
While funding for science in Brazil declines, the conversion of
native areas continues—mostly to croplands, pastures, and
power plants—paradoxically contributing to the discovery of
new species. Environmental impact assessments, wildlife
rescues during vegetation removal, and wildlife monitoring
are literally digging up new species of worm lizards from
different Brazilian regions (Teixeira et al., 2014; Costa et al.,
2015; Ribeiro et al., 2016, 2019; Oliveira et al., 2018).
Unfortunately, scientific advances that co-occur with develop-
ment are costly because critical habitat is being lost.
In the semiarid Caatinga of northeastern Brazil, wind farms
are spreading rapidly in a trade-off between development and
environmental stewardship (Fonseca et al., 2018). During the
construction of a wind farm in Campo Formoso, state of Bahia,
a new worm lizard taxon was discovered and later described by
us (Ribeiro et al., 2018a). Here, we describe another new worm
lizard species from the same region.
MATERIALS AND METHODS
Environmental analysts collected 31 specimens of an unde-
scribed species in a wildlife rescue during the construction of a
wind farm in the semiarid region of the state of Bahia, Brazil,
although the authors did not participate in specimen collection.
Collectors fixed the specimens in formalin and subsequently
preserved them in 70% ethanol at the herpetological collection
of Museu de Fauna da Caatinga (MFCH), located at the Centro
de Conserva ¸ca˜o e Manejo de Fauna da Caatinga, Universidade
Federal do Vale do Sa˜o Francisco, municipality of Petrolina,
state of Pernambuco.
Scale counts and nomenclature follow Gans and Alexander
(1962). We measured the snout–vent length (SVL) and tail
length (TL) to the nearest 1.0 mm by using a ruler and the head
length (HL) and width (HW) to the nearest 0.1 mm by using a
digital caliper. Color descriptions are based on preserved
specimens. We determined the sex of specimens by making a
small incision at the base of tail to confirm the presence of
hemipenes, or by direct examination of the gonads after a small
incision in the venter. One specimen (MFCH 4670; 187 mm SVL)
could not be sexed. We based comparisons with other species on
specimens previously examined by us (Costa et al., 2018a,b,
2019; Ribeiro et al., 2018a), newly examined specimens
(Appendix 1), and on literature (Gans, 1964; Gans and
Diefenbach, 1972; Gans and Mathers, 1977; Vanzolini, 2002;
Dal Vechio et al., 2016).
We tested sexual dimorphism for a group of meristic variables
(the number of body annuli, caudal annuli, and total midbody
segments), and a group of morphometric variables: SVL, TL,
HL, and HW. To remove the effects of size from the last three
variables, we used their ratios with SVL included as a covariate
in the analyses. For meristic variables, we used all available
specimens of known sex (N=30; 12 females and 18 males),
whereas for morphometric variables we used only adult
specimens (N=26; 10 females and 16 males). To avoid
damaging all specimens during the determination of sexual
4
All authors contributed equally to this article.
5
Corresponding Author. E-mail: leonardo.ribeiro@univasf.edu.br
DOI: 10.1670/19-043
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
maturity when we examined the gonads, we used data of a
sympatric species of similar size, A. vermicularis, as surrogate,
considering males >180 mm and females >220 mm SVL as
adults (Santos, 2013). We assessed normality of values through
the Shapiro-Wilk test, and for sexual dimorphism we used the
Student’s t-test for data with normal distribution and Mann-
Whitney U-test for data with non-normal distribution. All
statistical analyses were conducted using Past 3.3 software
(Hammer et al., 2001).
RESULTS
Amphisbaena acangaoba sp. nov. Ribeiro, Gomides, and Costa
(Zoobank ID: lsid:zoobank.org:act:46F18AAA-1020-4FB1-84C4-
534A4FB8510A)
(Figs. 1–3; Tables 1–3)
Holotype.—Adult male, MFCH 4654, from the area of
Complexo E ´
olico Campo Largo (10.47258S, 41.45938W, datum
WGS 84, 1,061 m above sea level), municipality of Umburanas,
state of Bahia, Brazil. The specimen was collected on 13 June 2017
by Adrien Bessane.
Paratypes.—Five specimens, MFCH 4652, 4653, 4669, 4670, and
4671, from the type locality; 25 specimens, MFCH 4467, 4479,
4481, 4482, 4486, 4487, 4492, 4495, 4649, 4650, 4651, 4655–4658,
4660–4668, and 4749, from Complexo E ´
olico Campo Largo,
municipality of Sento Se´, state of Bahia (Tables 1 and 2). The
coordinates of each collection site are presented in Appendix 1.
Definition.—A species of Amphisbaena identified by the
following combination of characters: 1) head round, highly
domed from rostral to frontal shields, with a prognathous snout
terminating in a horizontal edge in dorsal and ventral views; 2)
suture lengths: frontal >prefrontal >nasal; 3) precloacal pores,
4–8 (usually six), without median hiatus; 4) body annuli, 216–239;
5) lateral annuli, 2–4; 6) caudal annuli, 13–17; 7) caudal autotomy,
absent; 8) tail tip slightly dorsally depressed; 9) dorsal segments,
18–24, and ventral segments, 18–24 at a midbody annulus (38–48
total segments); 10) supralabials, 4; 11) infralabials, 3; 12) parietals
variable in size and shape; 13) postoculars, 1 or 2; 14) temporals,
1 or 2; 15) postgenials in 1 or 2 rows; 16) postmalar row present;
17) lateral sulcus present, dorsal and ventral sulci absent; 18)
color (in preservative) brown with cream narrow to wide
segment sutures on dorsum (sometimes giving a reticulate
appearance), becoming paler toward venter, which is immaculate
cream after the first to fourth segment below the lateral sulcus;
tail brown dorsally and cream ventrally.
Diagnosis.—The combination of a round head, 4–8 precloacal
pores, 216–239 body annuli, 18–24 dorsal and 18–24 ventral
segments at a midbody annulus, distinguishes A. acangaoba sp.
nov. from other South American amphisbaenians, except A.
angustifrons,A. borelli,A. brasiliana,A. fuliginosa,A. leucocephala,A.
mertensii,A. plumbea,A. pretrei,A. spurrelli,andA. vermicularis.
Amphisbaena borelli,A. fuliginosa,A. leucocephala,A. pretrei,andA.
spurrelli, however, present three supralabials (four in A.
acangaoba sp. nov.). The number of caudal annuli (13–17)
further distinguishes A. acangaoba sp.nov.fromA. fuliginosa
FIG. 1. Holotype of Amphisbaena acangaoba sp. nov. (MFCH 4654). Dorsal (A), lateral (B), and ventral (C) views of the head; dorsal (D), lateral (E),
and ventral (F) views of the tail.
10 L. B. RIBEIRO ET AL.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
FIG. 2. Holotype of Amphisbaena acangaoba sp. nov. (MFCH 4654). Body in dorsal (A) and ventral (B) views.
TABLE 1. Summary of meristic data of specimens of Amphisbaena acangaoba sp. nov. All specimens have four supralabials and three infralabials.
When counts differ from both sides, they are indicated as left/right.
Character
b
Specimen Sex
a
BA LA CA DS VS PO TE PG PM SHA PP PRC POC
MFCH 4467 M 235 2 17 24 24 2/1 2/3 2+513 14 6 6 16
MFCH 4479 F 229 3 16 20 22 1 1 2+311 11 7 8 18
MFCH 4481 F 229 2 15 20 24 2 1 2+511 5 7 8 14
MFCH 4482 M 239 3 16 20 22 1 1/2 2+512 8 6 8 14
MFCH 4486 M 232 3 16 20 22 1 1 2+311 10 6 7 15
MFCH 4487 F 236 2 15 22 22 1/2 1 2+410 12 6 8 15
MFCH 4492 F 235 2 15 20 24 2 1 3+511 12 6 8 15
MFCH 4495 M 228 2 13 22 20 1 1/2 2+311 4 6 8 14
MFCH 4649 M 234 3 16 18 20 1/2 1 3+210 7 6 6 14
MFCH 4650 F 235 2 15 18 22 1 1/2 2+411 7 6 10 14
MFCH 4651 F 231 4 15 18 22 1 1 2+411 9 6 6 13
MFCH 4652 M 234 2 16 20 24 1 1 3+011 7 6 8 14
MFCH 4653 M 236 3 15 20 24 2 1 2+410 3 6 6 14
MFCH 4654
c
M 230 2 15 22 24 1 1 2+511 9 6 8 16
MFCH 4655 M 219 2 14 20 20 2/1 1 4+011 3 5 8 14
MFCH 4656 F 234 3 15 18 22 2 1 2+511 0 6 7 15
MFCH 4657 M 222 2 13 23 20 1 1 3+412 3 5 7 15
MFCH 4658 F 237 3 15 18 22 2 1 2+511 12 6 8 14
MFCH 4660 M 234 2 14 18 23 1 1 2+511 3 6 8 16
MFCH 4661 M 224 2 15 22 20 2/1 1 5+011 4 6 6 14
MFCH 4662 M 230 2 16 20 20 1 1 2+513 10 6 9 13
MFCH 4663 F 216 2 13 20 18 2/1 1 2+210 5 4 6 14
MFCH 4664 F 237 3 15 18 22 2 1 1+39 86 816
MFCH 4665 M 236 2 16 19 21 1 1 4+08 86 614
MFCH 4666 M 230 2 14 22 24 2 1 2+311 9 6 8 15
MFCH 4667 M 233 3 15 18 22 2/1 1 3+011 8 8 6 14
MFCH 4668 M 238 3 16 20 24 2 1 2+511 8 6 7 18
MFCH 4669 F 236 3 16 20 24 1 1 2+511 0 6 9 16
MFCH 4670 ? 235 2 16 20 24 2/1 1 2+411 2 6 8 14
MFCH 4671 M 236 3 15 18 22 1 1 2+511 4 6 6 14
MFCH 4749 F 234 3 14 20 20 1 1 2+39 84 614
a
F=female; M =male; ? =undetermined.
b
BA =body annuli; LA =lateral annuli; CA =caudal annuli; DS =dorsal segments at midbody; VS =ventral segments at midbody; PO =postoculars; TE =
temporals; PG =postgenials (first +second row); PM =postmalars; SHA =segments in the dorsal half annuli (between first and second complete body annuli); PP =
precloacal pores; PRC =precloacal segments; POC =postcloacal segments.
c
Holotype.
A NEW WORM LIZARD SPECIES FROM BRAZIL 11
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
(20–30), A. leucocephala (25–29), A. mertensii (25–32), A. pretrei (21–
26), A. spurrelli (18–20), and A. vermicularis (25–35). Amphisbaena
angustifrons and A. brasiliana share with A. acangaoba sp. nov. the
absence of autotomic caudal annuli, although having a rounded
tail tip (slightly dorsally compressed in A. acangaoba sp. nov.).
Amphisbaena acangaoba sp. nov. further differs from A. angusti-
frons,A. fuliginosa,A. leucocephala,A. mertensii,A. pretrei,A.
spurrelli,andA. vermicularis by the head highly domed (not
highly domed in those species). Finally, the precloacal pores
sequentially arranged distinguish A. acangaoba sp.nov.fromA.
brasiliana (pores interrupted by non-pore–bearing segments).
Description of the Holotype.—An adult male specimen, SVL 290
mm; caudal length 26.4 mm; head short (7.9 mm, 2.7% of SVL),
rounded, highly domed from rostral to frontals, not distinct from
the neck; body slenderness proportion (SVL/HW), 52.1; rostrum
projecting beyond the jaw, with a blunt horizontal tip in dorsal
and ventral views. Rostral triangular in dorsal view, clearly
visible, in contact with nasals and first supralabial; in ventral
view it is rectangular, although concave posteriorly. Nasal single,
trapezoidal in lateral view and triangular in dorsal view;
middorsal suture 0.4 mm (4.8% of head length), in broad contact
with rostral anteriorly, and with first supralabials and prefrontals
posteriorly. Nasals in narrow contact with second supralabials
with nostrils in the inferior portion of nasals. Prefrontals paired,
parallelogram shaped, middorsal suture 1.7 mm (21.5% of head
length), in contact with nasals anteriorly, second supralabials
inferiorly, ocular and frontals posteriorly. Frontals paired,
triangular, middorsal suture, 2.6 mm (32.9% of head length), in
contact with oculars and postoculars inferiorly, prefrontals
anteriorly, parietals and an adjacent segment of first body
annulus posteriorly. Parietals small and somewhat triangular,
middorsal suture 0.5 mm (6.3% of head length), in contact with
frontals anteriorly, adjacent segment of first body annulus
inferiorly, and second body annulus posteriorly. Ocular diamond
shaped, in contact with second and third supralabials below, with
the prefrontal anteriorly, with the frontal above, and with the
postocular posteriorly. Eye visible. Temporal diamond shaped,
contacting third supralabial anteriorly, postocular dorsally, fourth
supralabial inferiorly, and first body annulus posteriorly. Supra-
labials four, the first triangular is as long as high, contacting
rostral anteriorly, nasal dorso-anteriorly, and second supralabial
posteriorly. Second, supralabial pentagonal, higher than long, in
contact with nasal anteriorly, contacting prefrontal dorsally,
ocular posterodorsally, and third supralabial posteriorly. Third
supralabial pentagonal, higher than long, as high as second
supralabial, contacting it anteriorly, the fourth supralabial and
temporal posteriorly, ocular and postocular dorsally; fourth
supralabial smallest, rectangular, contacting third supralabial
anteriorly, temporal dorsally, the first body annulus posteriorly,
and third infralabial inferiorly. Mental shield wedge shaped,
convex anteriorly, contacting postmental posteriorly and first
infralabials laterally. Postmental pentagonal, contacting mental
anteriorly, first infralabial laterally, and postgenials posteriorly.
Postgenials in two rows, the first with two scales, followed by the
second with five scales. Postgenials of the first row and the first
postgenial of both sides of the second row in contact with malars
laterally. Postgenials of the first row also in short contact with
first infralabial. Postgenials of the second row in contact with
some postmalars posteriorly. Postmalar row with 11 scales. Three
infralabials, first triangular and smaller than second. Second
infralabial trapezoidal, largest; third infralabial rectangular,
smallest. First infralabial contacting mental and postmental
laterally, and second infralabial and postgenials posteriorly;
second infralabial contacting third infralabial and malar posteri-
orly; third infralabial in contact with second infralabial anteriorly,
malar and first scale of postmalar row laterally, and the first body
annulus posteriorly. First body annulus dorsally includes a row
of 12 segments posterior to the fourth supralabial, parietals
included; ventrally it includes a row of 18 segments posterior to
postmalars. Dorsally, the second body annulus is divided,
forming a dorsal half annulus with nine segments.
Body annuli 230; 22 dorsal and 24 ventral rectangular
segments. There are no dorsal or ventral sulci, but a lateral
sulcus is visible from the 50th body annulus to the cloacal
region. Precloacal pores six, round, medium sized, half the size
of the rectangular pore-bearing segments; these segments are
adjacent to each other, each with one pore posteriorly. Precloacal
segments 8, postcloacal segments 16; lateral annuli 2, caudal
annuli 15, with no autotomic site; tail round in cross section, the
tip slightly depressed dorsally.
Coloration in Preservative.—Head cream. Dorsum pale brown;
some dorsal segments are brown with cream intersegmental
sutures, whereas other segments are cream with a brown central
spot. Ventral segments are uniform cream colored, except for the
two first segments below the lateral sulcus, which are pale
brown, similar to dorsum. Color in life unknown.
FIG. 3. Holotype of Amphisbaena acangaoba sp. nov. (MFCH 4654).
Head in anterior view (A) and the tip of the tail in posterior view (B).
12 L. B. RIBEIRO ET AL.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
Variation.—Nasals are completely separated by rostral in
MFCH 4664. In MFCH 4467, the left postocular and the right
temporal are divided in two smaller scales. In MFCH 4481,
MFCH 4492, MFCH 4653, MFCH 4656, MFCH 4658, MFCH
4664, MFCH 4666, and MFCH 4668 there is a small upper
postocular on each side. The right temporal is divided in two
smaller scales in MFCH 4482, MFCH 4495, and MFCH 4650.
There are two right postoculars in MFCH 4487, MFCH 4649, and
two left postoculars in MFCH 4655, MFCH 4661, MFCH 4663,
MFCH 4667, and MFCH 4670. The size and shape of parietals
vary in the sample. There is only one row of postgenials in
MFCH 4652, MFCH 4655, MFCH 4661, MFCH 4665, and MFCH
4667, whereas all other specimens have two rows. Although the
number of dorsal and ventral midbody segments vary from 18 to
24, the modal values are 20 dorsal (N=14; 45%) and 22 ventral
(N=11; 35%) midbody segments. Precloacal pores vary between
four and eight, although most specimens (N=24; 77%) have six
pores. Most specimens (N=29; 93%) have a half dorsal annulus
between the first and second complete body annuli. The number
of segments of the half dorsal annulus varies from 4 to 14. A
summary of variation in meristic characters is shown in Table 1
and variation in morphometry in Table 2.
In color pattern, most specimens have a pale brown dorsum
with broad cream intersegmental sutures; MFCH 4479, MFCH
4481, MFCH 4492, MFCH 4658, MFCH 4660, MFCH 4668,
MFCH 4670, and MFCH 4671 have a dark brown dorsum with
narrow cream intersegmental sutures. The venter is uniformly
cream, but the first to fourth segments below the lateral sulcus
are the same color as the dorsum.
TABLE 2. Summary of morphometric data (in mm) of specimens of Amphisbaena acangaoba sp. nov. with SVL, TL, HL (from the tip of the snout to
the second body annulus).
Morphometric data (mm)
b
Specimen Sex
a
SVL TL HL HW NSL PFSL FSL PSL HL/SVL SVL/HW
MFCH 4467 M 194.0 19.0 6.3 4.0 0.4 1.4 2.1 0.3 3.2 48.4
MFCH 4479 F 246.0 23.8 6.7 5.4 0.4 1.7 2.4 0.3 2.7 46.0
MFCH 4481 F 246.0 24.4 6.9 4.4 0.6 1.7 2.2 0.4 2.8 55.5
MFCH 4482 M 186.0 19.4 6.0 3.8 0.5 1.5 2.1 0.2 3.2 49.6
MFCH 4486 M 274.0 27.6 7.8 5.6 0.3 1.6 2.7 0.5 2.8 48.9
MFCH 4487 F 241.0 22.4 6.6 4.6 0.3 1.5 2.4 0.4 2.7 52.6
MFCH 4492 F 250.0 20.3 7.0 4.3 0.3 1.7 2.2 0.2 2.8 57.6
MFCH 4495 M 232.0 18.4 7.8 5.3 0.7 1.4 2.4 0.3 3.4 43.9
MFCH 4649 M 220.0 20.4 7.1 5.1 0.2 1.8 2.1 0.2 3.2 43.0
MFCH 4650 F 245.0 21.0 6.8 4.6 0.2 1.5 2.3 0.0 2.8 53.1
MFCH 4651 F 231.0 20.9 6.8 4.6 0.4 1.6 2.3 0.4 2.9 50.7
MFCH 4652 M 252.0 25.5 7.5 5.6 0.4 1.8 2.7 0.0 3.0 44.8
MFCH 4653 M 185.0 17.5 6.1 4.0 0.3 1.4 2.1 0.3 3.3 46.6
MFCH 4654
c
M 290.0 26.4 7.9 5.6 0.4 1.7 2.6 0.5 2.7 52.1
MFCH 4655 M 212.0 17.2 7.5 5.2 0.7 1.6 2.7 0.5 3.5 41.0
MFCH 4656 F 232.0 21.4 6.6 4.4 0.2 1.4 2.4 0.2 2.8 52.7
MFCH 4657 M 241.0 20.2 8.4 5.8 0.9 2.0 2.9 0.1 3.5 41.6
MFCH 4658 F 258.0 20.3 6.4 4.4 0.2 1.6 2.3 0.2 2.5 59.2
MFCH 4660 M 248.0 20.2 7.2 5.2 0.5 1.7 2.5 0.2 2.9 47.7
MFCH 4661 M 226.0 20.5 7.9 5.7 0.9 1.8 2.5 0.3 3.5 39.4
MFCH 4662 M 216.0 19.4 6.9 4.5 0.4 1.6 2.3 0.3 3.2 48.4
MFCH 4663 F 172.0 16.0 6.0 4.1 0.5 1.3 2.2 0.4 3.5 42.2
MFCH 4664 F 194.0 19.0 6.1 3.8 0.0
d
1.6 2.0 0.2 3.1 51.1
MFCH 4665 M 252.0 24.6 7.8 5.0 0.4 1.7 2.8 0.4 3.1 50.2
MFCH 4666 M 222.0 18.9 7.4 4.9 0.5 1.4 2.5 0.5 3.3 45.4
MFCH 4667 M 247.0 23.8 7.4 5.6 0.5 1.5 2.3 0.3 3.0 44.4
MFCH 4668 M 236.0 22.1 7.1 4.7 0.4 1.7 2.5 0.3 3.0 50.4
MFCH 4669 F 222.0 20.6 6.5 4.2 0.2 1.6 2.4 0.6 2.9 53.1
MFCH 4670 ? 187.0 16.6 6.1 3.7 0.5 1.4 2.2 0.3 3.3 50.7
MFCH 4671 M 217.0 20.1 7.0 4.6 0.1 1.6 2.1 0.0 3.2 47.5
MFCH 4749 F 237.0 18.5 6.9 4.5 0.4 1.3 2.3 0.3 2.9 52.5
a
F=female; M =male; ? =undetermined.
b
NSL =nasal suture length; PFSL =prefrontal suture length; FSL =frontal suture length; PSL =parietal suture length.
c
Holotype.
d
Nasals separated by rostral.
TABLE 3. Variation of a set of morphological characters (mean 6SD) in males and females of Amphisbaena acangaoba sp. nov.
Character
a
Female Male
BA 216–237 (232.4 65.9) 219–239 (231.7 65.5)
CA 13–16 (14.9 60.8) 13–17 (15.1 61.1)
MS 38–44 (41.3 62.1) 38–48 (42.3 62.6)
SVL 222–258 mm (240.8 610.5) 194–290 mm (236.2 624.3)
TL 18.5–24.4 mm (21.4 61.7) 17.2–27.6 mm (21.5 63.1)
HL
b
6.4–7.0 mm (6.7 60.2) 6.3– 8.4 mm (7.4 60.5)
HW
b
4.2–5.3 mm (4.5 60.3) 4.0–5.8 mm (5.1 60.5)
a
BA =body annuli; CA =caudal annuli; MS =segments at a midbody annulus (dorsals +ventrals).
b
Sexually dimorphic characters.
A NEW WORM LIZARD SPECIES FROM BRAZIL 13
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
Etymology.—In the Tupi indigenous language, acangaoba is a
head ornament, a ‘‘helmet’’ or ‘‘cap’’ by neologism (D’Abbeville,
1945; Barbosa, 1970). Used here as a noun in apposition, the name
acangaoba refers to the highly domed head of the new species, in
the region formed by the nasal, prefrontal, and frontal scales. We
suggest that the vernacular names ‘‘Helmeted Worm Lizard’ in
English and ‘‘Anfisbena-de-Capacete’’ in Portuguese.
Distribution.—Amphisbaena acangaoba sp. nov. is known from
the municipalities of Umburanas and Sento Se´, state of Bahia,
northeastern Brazil (Fig. 4). The region has a hot semiarid climate
(BSh in Ko¨ppen’s climate classification; Alvares et al., 2013) and is
located in the Caatinga ecoregion (Dinerstein et al., 2017)—
considered a biome by the Brazilian government (IBGE, 2004).
Native vegetation is composed by steppic savanna (caatinga),
rupestrian grassland (campos rupestres), and arboreal savanna
(cerrado tı´pico). The soil is mostly sandy, composed by litholic
neosol (leptosol) and haplic cambisol. The region of Umburanas
and Sento Se´ is in the so-called ‘‘Depressa˜ o Sertaneja Meridional,’
composed mostly of low plains with rugged relief, dissected with
deep valleys at some areas (Velloso et al., 2001). Specimens of A.
FIG. 4. Geographic distribution map of Amphisbaena acangaoba sp. nov. Locality records of A. acangaoba and the sympatric A. kiriri (A);
magnification detailing the elevation gradient of the region where A. acangaoba and A. kiriri were found (B); remnants of the Caatinga ecoregion/
biome (MMA/IBAMA, 2011) (C); soil classification (Santos et al., 2018) in the study region (D). APA =´
Area de Prote ¸ca˜ o Ambiental (Environmental
Protection Area); P.N. =Parque Nacional (National Park).
14 L. B. RIBEIRO ET AL.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
acangaoba sp. nov. were collected in an area of approximately
360 km
2
at elevations ranging from 760 to 1,105 m.
Sexual Dimorphism.—All examined variables showed non-
normal distribution. Statistical analyses indicate there is sexual
dimorphism in A. acangaoba sp. nov. only for head length (P<
0.001) and head width (P=0.01), with greater values in males
(Table 3).
DISCUSSION
New species of amphisbaenians have been discovered at a
constant rate of 1.4 new taxa per year in Brazil over the last
decade (Costa and Be´ rnils, 2018). Many of the new descriptions
were made in areas within the Caatinga (Mott et al., 2008, 2009;
Roberto et al., 2014; Almeida et al., 2018; Ribeiro et al., 2018a),
highlighting our lack of knowledge on the biodiversity of this
biome. Among the species of Amphisbaena known for the
Caatinga, six occur, or may occur, in sympatry with A. acangaoba
sp. nov.: Amphisbaena alba Linnaeus, 1758; A. bahiana Vanzolini,
1964; A. frontalis Vanzolini, 1991; A. kiriri Ribeiro, Gomides and
Costa, 2018a; A. pretrei Dume´ril and Bibron, 1839; and A.
vermicularis Wagler, 1824 (Santos et al., 2008; Colli et al., 2016;
Ribeiro et al., 2018a). The new species described here is easily
distinguished from all previously described species (Table 4).
The tip of the tail of Amphisbaena acangaoba sp. nov. is
slightly depressed dorsally. Two closely related Brazilian species
that also inhabit mountain regions in northeastern Brazil, A.
uroxena Mott, Rodrigues, Freitas and Silva, 2008 and A.
caetitensis Almeida, Freitas, Silva, Valverde, Rodrigues, Pires
and Mott, 2018, exhibit an extremely dorsally depressed and
tuberculate tail tip (Mott et al., 2008; Almeida et al., 2018). The
shape of the tail tip was previously used to recognize
amphisbaenian genera (Vanzolini, 1992), but today it is known
to be a very homoplastic character, along with the number of
precloacal pores and even head shape (Mott and Vieites, 2009).
The highly domed head of Amphisbaena acangaoba sp. nov.
resembles A. carli (Pinna et al., 2010), and the species previously
assigned to the genus Bronia Gray, 1865, among which B. kraoh
Vanzolini, 1971 (now placed in Amphisbaena) is the only species
described to present the nasals contacting each other plus a non-
autotomic tail. But Bronia was found to be paraphyletic (Mott
and Vieites, 2009), and the resemblances of Amphisbaena
acangaoba sp. nov. with those species, particularly A. kraoh,
could simply be due to convergence. Tissue samples were not
taken from any A. acangaoba, precluding tests of its phyloge-
netic relationships using molecular markers. The acquisition of
tissue samples rarely occurs during environmental assessment
studies and wildlife rescue activities in Brazil but should be
encouraged in the future.
Our data suggest that males of A. acangaoba sp. nov. have
longer and broader heads than do females. Relatively broad
heads in males compared to females have been recorded for the
South American species A. nigricauda,Leposternon microcepha-
lum, and Leposternon wuchereri (Filogonio et al., 2009; Souza e
Lima et al., 2014). In the African species Monopeltis anchietae,
females have a broader head (Webb et al., 2000), whereas in
Trogonophis wiegmanni males have a larger head (Martı
´n et al.,
2012), and in the Iberian taxon Blanus cinereus males have both
longer and broader heads (Gil et al., 1993). The dimorphism in
head size suggests that males and females of A. acangaoba sp.
nov. may either exploit different prey sizes (Gil et al., 1993) or
show differences in burrowing ability (Filogonio et al., 2009). In
the shovel-headed Leposternon spp., broader heads allow more
compression force for burrowing, although relatively slowly
(Hohl et al., 2017), lending support for the latter hypothesis.
Because soil compaction increases with depth, male Amphisbae-
na acangaoba sp. nov. could be able to burrow deeper than
females.
Specimens of Amphisbaena acangaoba sp. nov. were collected
close to the area where another species, A. kiriri, was recently
discovered (Fig. 4; Ribeiro et al., 2018a). Moreover, new
specimens of A. kiriri were collected in sympatry with A.
acangaoba sp. nov. in Umburanas and Sento Se´ (Appendix 1),
100 km west from its type locality (Campo Formoso) and 80 km
southwest of the closest paratype locality. The Umburanas and
Sento Se´ region, locally known as Boqueira˜ o da On ¸ca (Jaguar ’s
Canyon), supports large patches of native vegetation (Fig. 4)
and is classified as extremely high biological importance for the
conservation of Caatinga’s biodiversity (Brasil, 2007). In 2018,
after many years of debate, two adjacent protected areas were
created in the region: a national park (Parque Nacional do
Boqueira˜ o da On ¸ca [PNBO]) of 347,000 ha, and an ‘‘environ-
mental protection area’’ ( ´
Area de Prote ¸ca˜ o Ambiental Boqueira˜o
da On ¸ca [APABO]), of approximately 505,000 ha (Fig. 4), and
both areas fall under International Union for Conservation of
Nature’s category II and V, respectively (OECD, 2015).
Most records of A. acangaoba sp. nov. and A. kiriri are within
the APABO. The elevation gradient of the region is better
represented in the APABO than in the PNBO, and most of the
highlands are in the APABO (Fig. 4). The APABO is a category
of protected area that is composed of public and private lands
and is designed to safeguard biodiversity allowing sustainable
use of natural resources (Brasil, 2011). For this reason, wind
farms were constructed at the APABO highlands, where most
TABLE 4. Morphological comparison between Amphisbaena acangaoba sp. nov. and other species of Amphisbaena to which sympatry is known to
occur or expected. Modal values, when available, are in parentheses.
Amphisbaena species
Character
a
acangaoba alba bahiana frontalis kiriri pretrei vermicularis
BA 216–239 198–248 204–233 252–272 158–165 231–255 211–254
CA 13–17 13–21 14–17 23–29 12–14 22–26 24–30
AA Absent Absent Absent 6–7 3–4 5–7 4–8
DS 18–24 (20) 30–42 (36) 12–16 (14) 14–16 14–16 (14) 20–27 (24) 18–26 (22)
VS 18–24 (22) 35–46 (38, 40) 14–16 (14) 14–16 15–16 (16) 22–28 (24) 18–25 (22)
PP 4–8 (6) 4–12 4 4 2 5–9 (8) 4
SL 4 3–4 (4) 3 3 4 3 4
IL3333333
a
BA =body annuli; CA =caudal annuli; AA =autotomic annuli; DS =dorsal segments at a midbody annulus; VS =ventral segments at a midbody annulus; PP =
precloacal pores; SL =supralabials; IL =infralabials.
A NEW WORM LIZARD SPECIES FROM BRAZIL 15
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
specimens of A. acangaoba sp. nov. and A. kiriri were unearthed
by bulldozers during vegetation removal.
We do not have detailed records of the soil where each
specimen of A. acangaoba sp. nov. was collected. However, data
indicate that the collection sites contain the two soil types haplic
cambisol and litholic neosol (leptosol; Santos et al., 2018), with
medium textures varying from sandy loam to loam (Nachter-
gaele et al., 2009). Most specimens were collected above 700 m,
where litholic neosols, a very thin soil type common in
mountainous regions (IUSS Working Group WRB, 2015), prevail
in rupestrian grasslands. Below 700 m, specimens were
collected in areas of cambisol, a very diversified soil type (IUSS
Working Group WRB, 2015). In Boqueira˜ o da On ¸ca, cambisols
seem to be restricted to the slopes of the plateau (Fig. 4). Because
most specimens were collected in highlands during the
installation of a wind farm, the lower number of records from
lowlands is not necessarily because of habitat preferences but
probably because of a sampling bias.
The fauna of the Caatinga has historically been thought to be
simply composed of a subset of species inhabiting the South
American diagonal of open formations and devoid of endemism
(Vanzolini, 1974, 1988). However, the increase in collection
efforts over the last decades has dispelled the notion of little
endemism in the Caatinga region (Rodrigues, 2003; Garda et al.,
2018). With the description of A. acangaoba sp. nov., 25 species
of amphisbaenians are now known for Caatinga, many of which
are endemic (Almeida et al., 2018; Ribeiro et al., 2018a). But the
Caatinga is still under sampled (Oliveira et al., 2016). More than
63% of this semiarid region, unique to the Brazilian northeast,
has been degraded by human activities (Silva and Barbosa,
2017), with 7.5% within protected areas, mostly in less restricted
categories, such as APABO. Strictly protected areas such as the
PNBO comprise only 1.13% of the Caatinga (Fonseca et al.,
2017). The creation of this national park was a long-waited step
to improve the conservation network of northeastern Brazil, in a
time when the country faces pressures to weaken environmental
laws (Abessa et al., 2019). Given the proximity to the collection
sites of A. acangaoba sp. nov. and A. kiriri, we believe that these
two species can be found inside the PNBO. We hope that an
effort will be soon directed to sampling the amphibians and
reptiles of the park, including its subterranean herpetofauna, to
test our hypothesis.
Acknowledgments.—We thank B. Sousa from Universidade
Federal de Juiz de Fora and P. Garcia from Universidade Federal
de Minas Gerais (UFMG) for kindly allowing the use of facilities
and equipment to examine specimens of the new taxon. B.
Zaidan and D. Fonseca (UFMG) helped with photographs, and
C. Santos from Caruso Jr. Estudos Ambientais and Engenharia
provided georeferenced coordinates of specimens. We also
thank A. Garda and M. Rodrigues for allowing access to
specimens under their care and R. MacCulloch and an
anonymous reviewer for comments and suggestions. This study
was financed in part by the Coordena ¸ca˜o de Aperfei ¸coamento
de Pessoal de Nı´vel Superior–Finance Code 001, through a
postdoctoral scholarship to HCC.
LITERATURE CITED
ABESSA, D., A. FAMA
´,AND L. BURUAEM. 2019. The systematic dismantling
of Brazilian environmental laws risks losses on all fronts. Nature
Ecology and Evolution 3:510–511.
ALMEIDA, J. P. F. A., M. A. FREITAS,M.B.SILVA,M.C.C.VALVERDE,M.T.
RODRIGUES,A.M.PIRES,AND T. M OTT. 2018. A new four-pored
Amphisbaena (Squamata: Amphisbaenidae) from northeastern Brazil.
Zootaxa 4514:553–562.
ALVARES, C. A., J. L. STA P E,P.C.SENTELHAS,J.L.M.GONC¸ ALVES,AND G.
SPAROVEK. 2013. K ¨
oppen’s climate classification map for Brazil.
Meteorologische Zeitschrift 22:711–728.
ANGELO, C. 2016. Brazil’s scientists battle to escape 20-year funding
freeze. Nature 539:480–480.
———. 2019. Brazil’s government freezes nearly half of its science
spending. Nature 568:155–156.
BARBOSA, A. L. 1970. Pequeno Vocabul ´
ario Portugu ˆes-Tupi. Livraria S ˜
ao
Jos ´
e, Rio de Janeiro, Brazil.
BO
¨HM, M., B. COLLEN,J.E.M.BAILLIE,P.BOWLES,J.CHANSON,N.COX,G.
HAMMERSON,M.HOFFMANN,S.R.LIVINGSTONE,M.RAM,ET AL. 2013. The
conservation status of the world’s reptiles. Biological Conservation
157:372–385.
BRASIL. 2007. ´
Areas Priorit ´
arias para a Conserva ¸c ˜
ao, Uso Sustent ´
avel e
Reparti ¸c ˜
ao de Benef ´
ıcios da Biodiversidade Brasileira: Atualiza ¸c ˜
ao-
Portaria MMA n809, de 23 de janeiro de 2007. Minist ´
erio do Meio
Ambiente, Bras ´
ılia.
———. 2011. SNUC–Sistema Nacional de Unidades de Conserva ¸c ˜
aoda
Natureza: Lei n89.985, de 18 de julho de 2000; Decreto n84.340, de 22
de agosto de 2002; Decreto n85.746, de 5 de abril de 2006. Plano
Estrat ´
egico Nacional de ´
Areas Protegidas: Decreto n85.758, de 13 de
abril de 2006. Minist ´
erio do Meio Ambiente, Bras ´
ılia.
COLLI, G. R., J. FENKER,L.G.TEDESCHI,A.F.BARRETO-LIMA,T.MOTT,AND S.
L. B. RIBEIRO. 2016. In the depths of obscurity: knowledge gaps and
extinction risk of Brazilian worm lizards (Squamata, Amphisbaeni-
dae). Biological Conservation 204:51–62.
COSTA, H. C., AND R. S. BE
´RNILS. 2018. R ´
epteis do Brasil e suas Unidades
Federativas: lista de esp ´
ecies. Herpetologia Brasileira 7:11–57.
COSTA, H. C., F. C. RESENDE,M.TEIXEIRA,JR., F. DAL VECHIO,AND C. A.
CLEMENTE. 2015. A new Amphisbaena (Squamata: Amphisbaenidae)
from southern Espinha ¸co Range, southeastern Brazil. Anais da
Academia Brasileira de Ci ˆencias 87:891–901.
COSTA, H. C., J. C. SEN
˜ARIS,F.J.M.ROJAS-RUNJAIC,H.ZAHER,AND P. C. A.
GARCIA. 2018a. Redescription of the rare South American worm
lizard Amphisbaena rozei (Squamata: Amphisbaenidae). Amphibia-
Reptilia 39:21–30.
COSTA, H. C., L. J. WELTON,AND J. HALLERMANN . 2018b. An updated
diagnosis of the rare Amphisbaena slateri Boulenger, 1907, based on
additional specimens (Squamata, Amphisbaenia, Amphisbaenidae).
Evolutionary Systematics 2:125–135.
COSTA, H. C., R. GRABOSKI,AND H. ZAHER. 2019. Amphisbaena mensae
Catro-Mello, 2000 is a synonym of Amphisbaena talisiae Vanzolini,
1995 (Squamata: Amphisbaenia: Amphisbaenidae). Zootaxa 4559:
166–174.
D’ABBEVILLE, C. 1945. Hist ´
oria da Miss ˜
ao dos Padres Capuchinhos na
Ilha do Maranh ˜
ao e terras circunvizinhas; em que se trata das
singularidades admir ´
aveis e dos costumes estranhos dos ´
ındios
habitantes do pa ´
ıs. Livraria Martins Editora, S ˜
ao Paulo, Brazil.
DAL VECHIO, F., M. TEIXEIRA,JR., M. SENA,A.ARGO
ˆLO,C.GARCIA,AND M. T.
RODRIGUES. 2016. Taxonomic status and the phylogenetic placement
of Amphisbaena leucocephala Peters, 1878 (Squamata, Amphisbaeni-
dae). South American Journal of Herpetology 11:157–175.
DINERSTEIN,E.,D.OLSON,A.JOSHI,C.VYNNE,N.D.BURGESS,E.
WIKRAMANAYAKE,N.HAHN,S.PALMINTERI,P.HEDAO,R.NOSS,ET AL.
2017. An ecoregion-based approach to protecting half the terrestrial
realm. BioScience 67:534–545.
DUME
´RIL, A. M. C., AND G. BIBRON. 1839. Erp ´
etologie G ´
en´
erale ou Histoire
Naturelle Compl `
ete des Reptiles. Tome Cinqui `
eme. Librairie
Encyclop ´
edique de Roret, Paris, France.
FERNANDES, G. W., M. M. VALE,G.E.OVERBECK,M.M.C.BUSTAMANTE,C.
E. V. GRELLE,H.G.BERGALLO,W.E.MAGNUSSON,A.AKAMA,S.S.ALVE S,
A. AMORIM,ET AL. 2017. Dismantling Brazil’s science threatens global
biodiversity heritage. Perspectives in Ecology and Conservation 15:
239–243.
FILOGONIO, R., C. A. B. GALDINO,D.P.R.CABRAL,A.F.RIGHI,M.F.LOPES,
AND L. B. NASCIMENTO. 2009. Sexual dimorphism in Leposternon
microcephalum and L. wuchereri (Squamata: Amphisbaenidae) from
Minas Gerais, southeastern Brazil. Herpetologica 65:353–362.
FONSECA, C. R., M. ANTONGIOVANNI,M.MATSUMOTO,E.BERNARD,AND E. M.
VENTICINQUE. 2017. Conservation opportunities in the Caatinga. Pp.
429–443 in J. M. C. Silva, I. R. Leal, and M. Tabarelli (eds.), Caatinga:
The Largest Tropical Dry Forest Region in South America. Springer
International Publishing, Cham, Switzerland.
16 L. B. RIBEIRO ET AL.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
———. 2018. Oportunidades de conserva ¸c ˜
ao na Caatinga. Ci ˆ
encia e
Cultura 70:44–51.
GANS, C. 1964. The South American species of Amphisbaena with a
vertically keeled tail (Reptilia, Amphisbaenidae). Notes on amphis-
baenids 15. Senckenbergiana Biologica 45:387–416.
GANS, C., AND A. A. ALEXANDER. 1962. Studies on the amphisbaenids
(Amphisbaenia; Reptilia). 2. On the amphisbaenids of the Antilles.
Bulletin of the Museum of Comparative Zoology 128:65–158.
GANS, C., AND C. O. C. DIEFENBACH. 1972. Description and geographical
variation of the South American Amphisbaena angustifrons:the
southernmost amphisbaenian in the World (Reptilia, Amphisbaenia).
American Museum Novitates 2494:1–20.
GANS, C., AND S. MATHERS. 1977. Amphisbaena medemi, an interesting new
species from Colombia (Amphisbaenia, Reptilia), with a key to the
amphisbaenians of the Americas. Fieldiana (Zoology) 72:21–46.
GARDA, A. A., M. B. LION,S.M.Q.LIMA,D.O.MESQUITA,H.F.P.ARAUJO,
AND M. F. NAPOLI. 2018. Os animais vertebrados do Bioma Caatinga.
Ci ˆencia e Cultura 70:29–34.
GIBNEY, E. 2015. Brazilian science paralysed by economic slump. Nature
526:16–17.
GIL, M. J., F. GUERRERO,AND V. PE
´REZ-MELLADO. 1993. Observations on
morphometrics and ecology in Blanus cinereus (Reptilia: Amphisbae-
nia). Journal of Herpetology 27:205–209.
GRAY, J. E. 1865. A revision of the genera and species of amphisbaenians
with the descriptions of some new species now in the collection of
the British Museum. Proceedings of the Zoological Society of London
1865:442–455.
HAMMER, Ø., D. A. T. HARPER,AND P. D. RYAN . 2001. PAST: paleontological
statistics software package for education and data analysis. Palae-
ontologia Electronica 4:1–9.
HOHL, L. S. L., M. F. C. LOGUERCIO,F.L.SICURO,J.D.BARROS-FILHO,AND O.
ROCHA-BARBOSA. 2017. Body and skull morphometric variations
between two shovel-headed species of Amphisbaenia (Reptilia:
Squamata) with morphofunctional inferences on burrowing. PeerJ
5:e3581.
IBGE (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATI
´STICA). 2004. Mapa de
Biomas do Brasil. Primeira Aproxima ¸c ˜
ao. Minist ´
erio do Meio
Ambiente e IBGE, Bras ´
ılia.
IUSS WORKING GROUP WRB (INTERNATIONAL UNION OF SOIL SCIENCES WORLD
REFERENCE BASE). 2015. World reference base for soil resources 2014,
update 2015 International soil classification system for naming soils
and creating legends for soil maps. World Soil Resources Reports
(Volume 106). Food and Agriculture Organization of the United
Nations, Rome, Italy.
LINNAEUS, C. 1758. Systema naturae per regna tria naturae, secundum
classes, ordines, genera, species, cum characteribus, differentiis,
synonymis, locis. Tomus 1. 10th ed. L. Salvii, Stockholm. Sweden.
MARTI
´N, J., N. POLO-CAVIA,A.GONZALO ,P.LO
´PEZ,AND E. CIVANTOS. 2012.
Sexual dimorphism in the North African amphisbaenian Trogonophis
wiegmanni. Journal of Herpetology 46:338–341.
MMA/IBAMA (MINISTE
´RIO DO MEIO AMBIENTE/INSTITUTO BRASILEIRO DO
MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVA
´VEIS). 2011. Monitor-
amento do desmatamento nos biomas brasileiros por sat ´
elite:
Monitoramento do bioma Caatinga 2008–2009. Minist ´
erio do Meio
Ambiente/Instituto Brasileiro do Meio Ambiente e dos Recursos
Naturais Renov ´
aveis, Bras ´
ılia.
MOTT,T.,AND D. R. VIEITES. 2009. Molecular phylogenetics reveals
extreme morphological homoplasy in Brazilian worm lizards
challenging current taxonomy. Molecular Phylogenetics and Evolu-
tion 51:190–200.
MOTT, T., M. T. RODRIGUES,M.A.FREITAS,AND T. F. S. SILVA. 2008. New
species of Amphisbaena with a nonautotomic and dorsally tuberculate
blunt tail from state of Bahia, Brazil (Squamata, Amphisbaenidae).
Journal of Herpetology 42:172–175.
MOTT, T., M. T. RODRIGUES,AND E. M. SANTOS. 2009. A new Amphisbaena
with chevron-shaped anterior body annuli from state of Pernambu-
co: Brazil (Squamata: Amphisbaenidae). Zootaxa 2165:52–58.
NACHTERGAELE, F., H. VAN VELTHUIZEN,AND L. VERELST. 2009. Harmonized
World Soil Database. Version 1.1. Food and Agricultue Organizon of
the United Nations, Rome, Italy, and International Institute for
Applied Systems Analysis, Laxenburg, Austria.
OECD (ORGANISATION FOR ECONOMIC COOPERATION AND DEVELO PMENT
PUBLISHING). 2015. OECD Environmental performance reviews: Brazil
2015. Organisation for Economic Cooperation and Development
Publishing, Paris, France.
OLIVEIRA, E. C. S., W. VAZ-SILVA,A.P.SANTOS-JR., R. GRABOSKI,M.TEIXEIRA,
JR., F. DAL VECHIO,AND S. RIBEIRO. 2018. A new four-pored
Amphisbaena Linnaeus, 1758 (Amphisbaenia, Amphisbaenidae) from
Brazilian Amazon. Zootaxa 4420:451–474.
OLIVEIRA, U., A. P. PAGLIA,A.D.BRESCOVIT,C.J.B.CARVALHO,D.P.SILVA,
D. T. REZENDE,F.S.F.LEITE,J.A.N.BATISTA,J.P.P.P.BARBOSA,J.R.
STEHMANN,ET AL. 2016. The strong influence of collection bias on
biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity.
Diversity and Distributions 22:1232–1244.
PINNA, P. H., A. F. MENDONC¸A,A.BOCCHIGLIERI,AND D. S. FERNANDES. 2010.
A new two-pored Amphisbaena Linnaeus from the endangered
Brazilian Cerrado biome (Squamata: Amphisbaenidae). Zootaxa
2569:44–54.
RIBEIRO, S., J. O. GOMES,H.L.R.SILVA,C.E.D.CINTRA,AND N. J. SILVA,JR.
2016. A new two-pored species of Amphisbaena (Squamata, Amphis-
baenidae) from the Brazilian Cerrado, with a key to the two-pored
species of Amphisbaena. Zootaxa 4147:124–142.
RIBEIRO, L. B., S. C. GOMIDES,AND H. C. COSTA. 2018a. A new species of
Amphisbaena from northeastern Brazil (Squamata: Amphisbaenidae).
Journal of Herpetology 52:234–241.
RIBEIRO, S., A. L. SILVEIRA,AND A. P. SANTOS-JR. 2018b. A new species of
Leposternon (Squamata: Amphisbaenidae) from Brazilian Cerrado
with a key to pored species. Journal of Herpetology 52:50–58.
RIBEIRO, S., V. SA
´,A.P.SANTOS-JR,R.GRABOSKI,H.ZAHER,A.G.GUEDES,S.
P. A NDRADE,AND W. VAZ-SILVA. 2019. A new species of the
Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerra-
do with a key for the two-pored species. Zootaxa 4550:301–320.
ROBERTO, I. J., L. B. M. BRITO,AND R. W. ´
AVILA. 2014. A new six-pored
Amphisbaena (Squamata: Amphisbaenidae) from the coastal zone of
northeast Brazil. Zootaxa 3753:167–176.
RODRIGUES, M. T. 2003. Herpetofauna da Caatinga. Pp. 181–236 in I. R.
Leal, M. Tabarelli, and J. M. C. Silva (eds.), Ecologia e Conserva ¸c ˜
ao
da Caatinga. Editora Universit ´
aria da UFPE, Recife, Brazil.
SANTOS, L. C. 2013. Biologia reprodutiva comparada de Amphisbaenidae
(Squamata, Amphisbaenia) do Brasil. Ph.D. diss., Universidade de
S˜
ao Paulo, S ˜
ao Paulo, Brazil.
SANTOS, F. J. M., A. P. PEN
˜A,AND V. L. F. LUZ. 2008. Considera ¸c ˜
oes
biogeogr ´
aficas sobre a herpetofauna do subm ´
edio e da foz do rio S ˜
ao
Francisco, Brasil. Estudos 35:59–78.
SANTOS, H. G., P. K. T. JACOMINE,L.H.C.ANJOS,V.A.OLIVEIRA,J.F.
LUMBRERAS,M.R.COELHO,J.A.ALMEIDA,J.C.ARAUJO FILHO,J.B.
OLIVEIRA,AND T. J. F. CUNHA. 2018. Sistema brasileiro de classifica ¸c ˜
ao
de solos. 5
a
edi ¸c ˜
ao revista e ampliada. Empresa Brasileira de
Pesquisa Agropecu ´
aria-Embrapa Solos, Bras ´
ılia.
SILVA, J. M. C., AND L. C. F. BARBOSA. 2017. Impact of human activities on
the Caatinga. Pp. 359–368 in J. M. C. Silva, I. R. Leal, and M. Tabarelli
(eds.), Caatinga: The Largest Tropical Dry Forest Region in South
America. Springer International Publishing, Cham, Switzerland.
SOUZA E LIMA, F. A. N., J. L. GASPARINI,A.P.ALMEIDA,M.V.C.VITAL,AND
T. MOTT. 2014. Sexual dimorphism in Amphisbaena nigricauda
(Reptilia, Squamata, Amphisbaenidae) from southeastern Brazil.
Iheringia S ´
erie Zoologia 104:299–307.
TEIXEIRA, M., JR., F. DAL VECHIO,A.MOLLO-NETO,AND M. T. RODRIGUES.
2014. A new two-pored Amphisbaena Linnaeus, 1758, from western
Amazonia, Brazil (Amphisbaenia: Reptilia). South American Journal
of Herpetology 9:62–74.
UETZ,P.AND J. HOS
ˇEK. 2018. The reptile database. Available at http://
www.reptile-database.org. Archived by WebCite at http://www.
reptile-database.org on 16 April 2019.
VANZOLINI, P. E. 1964. Amphisbaena bahiana species nov. Reptilia: Sauria:
Amphisbaenidae. Pilot Register of Zoology Card 8:1.
———. 1971. New Amphisbaenidae from Brasil (Sauria). Pap ´
eis Avulsos
de Zoologia 24:191–195.
———. 1974. Ecological and geographical distribution of lizards in
Pernambuco, northeastern Brasil (Sauria). Pap ´
eis Avulsos de
Zoologia 18:61–90.
———. 1988. Distributional patterns of South American lizards. Pp.
317–342 in W. R. Heyer and P. E. Vanzolini (eds.), Proceedings of a
workshop on Neotropical distribution patterns. Academia Brasileira
de Ci ˆencias, Rio de Janeiro, Brazil.
———. 1991. Two further new species of Amphisbaena from the semi-
arid northeast of Brasil (Reptilia, Amphisbaenia). Pap ´
eis Avulsos de
Zoologia 37:347–361.
———. 1992. Cercolophia, a new genus for the species of Amphisbaena
with a terminal vertical keel on the tail (Reptilia, Amphisbaenia).
Pap ´
eis Avulsos de Zoologia 37:401–412.
———. 2002. An aid to the identification of the South American species
of Amphisbaena (Squamata, Amphisbaenidae). Pap ´
eis Avulsos de
Zoologia 42:351–362.
A NEW WORM LIZARD SPECIES FROM BRAZIL 17
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
VELLOSO, A. L., E. V. S. B. SAMPAIO,AND F. G. C. PAREYN. 2001. Ecorregi ˜
oes
propostas para o bioma Caatinga. Associa ¸c ˜
ao Plantas do Nordeste,
The Nature Conservancy do Brasil, Recife, Brasil.
WAGLER, J. 1824. Serpentum Brasiliensium species nova ou histoire
naturelle des esp `
ece nouvelle des serpens recueillies et observ ´
ees
pendant le voyage dans l’interieur du Br ´
esil dans le ann ´
ees 1817,
1818, 1819, 1820 ex ´
ecut ´
epar ordre de Sa Majest ´
ele Roi de Bavi `
ere,
publi. Franc. Seraph. H ¨
ubschmanni, Munich, Germany.
WEBB, J. K., R. SHINE,W.R.BRANCH,AND P. S. HARLOW. 2000. Life
underground: food habits and reproductive biology of two
amphisbaenian species from South Africa. Journal of Herpetology
34:520–516.
Accepted: 8 July 2019.
Published online: 9 January 2020.
APPENDIX 1
Specimens Examined in Addition to Those Cited by Costa et al.
(2018a,b, 2019); Ribeiro et al. (2018a)
All from Brazil. AAGARDA: Adrian Antonio Garda field series,
to be deposited in Universidade Federal da Paraı´ba; MFCH: Museu
deFaunadaCaatinga,Cole¸ca˜o Herpetol ´
ogica, Universidade
Federal do Vale do Sa˜ o Francisco; MTR: Miguel Trefaut Rodrigues
field series, laborat ´
orio de Herpetologia, Universidade de Sa˜o
Paulo.
Amphisbaena acangaoba:B
AHIA: Sento Se´: Complexo E ´
olico Campo
Largo: MFCH 4467 (10.52998S, 41.51038W), MFCH 4479 (10.46808S,
41.49528W), MFCH 4481 (10.46388S, 41.49148W), MFCH 4482
(10.46388S, 41.49148W), MFCH 4486 (10.45638S, 41.46558W), MFCH
4487 (10.45638S, 41.46558W), MFCH 4492 (10.46248S, 41.46348W),
MFCH 4495 (10.46248S, 41.46348W), MFCH 4649 (10.50308S,
41.52238W), MFCH 4650 (10.50308S, 41.52238W), MFCH 4651
(10.50298S, 41.54018W), MFCH 4655 (10.53758S, 41.52378W), MFCH
4656 (10.50248S, 41.52738W), MFCH 4657 (10.50248S, 41.52738W),
MFCH 4658 (10.51208S, 41.54198W), MFCH 4659 (10.51208S,
41.54198W), MFCH 4660 (10.52018S, 41.46078W), MFCH 4661
(10.52898S, 41.46728W), MFCH 4662 (10.44378S, 41.49738W), MFCH
4663 (10.42768S, 41.48508W), MFCH 4664 (10.43038S, 41.49268W),
MFCH 4665 (10.43038S, 41.49268W), MFCH 4666 (10.42768S,
41.48508W), MFCH 4667 (10.52868S, 41.46648W), MFCH 4668
(10.45478S, 41.47468W) paratypes. Umburanas: Complexo E ´
olico
Campo Largo: MFCH 4652 (10.47258S, 41.45938W), MFCH 4653
(10.47258S, 41.45938W), MFCH 4669 (10.73858S, 41.39718W), MFCH
4670 (10.73858S, 41.39718W), MFCH 4671 (10.65988S, 41.43198W) –
paratypes; MFCH 4654 (10.47258S, 41.45938W) – holotype.
Amphisbaena kiriri:B
AHIA: Sento Se´: Complexo E ´
olico Campo
Largo: MFCH 4646 (10.5138S, 41.4928W), MFCH 4647 (10.5088S,
41.4968W). Umburanas: Complexo E ´
olico Campo Largo: MFCH
4642, MFCH 4643 (10.6598S, 41.4318W), MFCH 4757, MFCH 4758
(10.7428S, 41.4768W).
Amphisbaena pretrei:B
AHIA: Sento Se´: Complexo E ´
olico Campo
Largo: MFCH 4659 (10.51208S, 41.54198W). RIO GRANDE DO NORTE:
´sia Florestal: AAGARDA 9815 (6.0918S, 35.2098W).
Amphisbaena vermicularis:B
AHIA: Campo Formoso: Gameleira do
Dida: MTR 24884 (10.1888S, 41.0278W). Casa Nova: Alagoado: MTR
11246 (9.4838S, 41.3508W). Gentio do Ouro: Santo Ina´ cio: MTR 11162
(11.1118S, 42.7238W). Xique-Xique: Vacaria: MTR 11143 (10.6598S,
42.6048W). CEARA
´: Fortaleza: Sapiranga: MTR 18015 (3.7968S,
38.4678W). MINAS GERAIS: Jequitinhonha: MTR 17456 (16.4348S,
41.0038W). Serra do Cip ´
o: MTR 20286 (19.4178S, 43.5338W). PIAUI
´:
Sa˜o Raimundo Nonato: Parque Nacional da Serra da Capivara:
MTR 25251 (8.8278S, 42.6578W). TOCANTINS: Rio da Concei ¸ca˜o: MTR
14625 (11.4008S, 46.8838W).
18 L. B. RIBEIRO ET AL.
Downloaded From: https://bioone.org/journals/Journal-of-Herpetology on 09 Jan 2020
Terms of Use: https://bioone.org/terms-of-useAccess provided by Universidade Federal de Minas Gerais (UFMG)
... Currently, the Caatinga is a reptile diversity hotspot and a global conservation priority area, especially for lizards and snakes (Guedes et al. 2014a(Guedes et al. , 2014bRoll et al. 2017). Recent data show that the Caatinga harbors 218 species of reptiles, including 79 lizards (38 endemics), 114 snakes (24 endemics), and 25 amphisbaenians (12 endemics) (Guedes et al. 2014a(Guedes et al. , 2014bMesquita et al. 2017;Marques et al. 2017;Almeida et al. 2018;Ribeiro et al. 2020). This number of species tends to increase, as the Caatinga is also a hotspot for discovering new vertebrate species, particularly reptiles (Moura and Jetz 2021). ...
Article
Full-text available
The Caatinga is the largest seasonal dry tropical forest in South America and it has been historically neglected in terms of its bio- diversity. Regarding lizards, different studies led to the current knowledge of diversity and endemism in Caatinga, but detailed syntheses are scarce in the literature. We present the most detailed and up-to-date synthesis of knowledge about Caatinga lizards by providing a detailed (i) list of species; (ii) taxonomic richness patterns; (iii) knowledge gaps and spatial biases; and (iv) detailed distribution maps of all species that contain at least one occurrence record within Caatinga limits. We created a distribution database using occurrences of lizards in Caatinga based on scientific collections, field collection, and literature. We produce up-to-date dis- tribution maps, calculate the Extent of Occurrence and provide the environmental and bioclimatic profile for each species recorded. We draw taxonomic richness and sampling gap maps. Our database has 20,538 records of occurrence of lizards of the Caatinga. We recorded 93 lizard species (13 families), 52.7% of which are endemic. Forthy-four percent of the species present restricted distri- butions. We identified that 53% of the Caatinga area (or 70% of the municipalities) has no record of occurrence of lizards. The data presented are an important step towards synthesizing in detail the accumulated knowledge about Caatinga lizards and is crucial for accurate strategies for the conservation planning. It directs actions to advance our knowledge on Caatinga lizards: to concentrate inventories in sample void areas; continuous update of the species occurrence database, advance in the generation of autoecology data for species.
... Managers can use our method to anticipate possible effects of climate change on reintroductions. Cyanopsitta spixii is endemic to the Caatinga, where biodiversity is undersampled and new vertebrate species are still being discovered (Ribeiro et al., 2020). In addition to C. spixii, the region of Curaçá is home to 203 other bird species, 28 of which are endemic to the Caatinga (Barnett et al., 2014). ...
Article
Article impact statement Threats due to climate change may affect the suitabil-ity of areas for reintroduced species. Abstract The reintroduction of a species that is extinct in the wild demands caution because reintro-duction locations may be associated with threats, such as hunting, poor-quality habitat, and climate change. This is the case for Cyanopsitta spixii (Spix's Macaw), which has been extinct in the wild since 2000. The few living individuals were created in captivity and will be used in a reintroduction project within the species' original distribution area, the Caatinga domain (Brazil). Because the occurrence records for this bird are old and inaccurate, we investigated the current and future environmental suitability of the 14 plant species used by C. spixii as resource. These plants are key elements for the long-term reestablishment of the species in the wild, so the use of models helps in the assessment of the effects of climate change on the availability of these resources for the species and informs selection of the best places for reintroduction. We based our models of environmental suitability on 19 bioclimatic variables and nine physical soil and topography variables. Climate projections were created for the present and for the year 2070 with an optimistic (SSP2-4.5) and a pessimistic (SSP5-8.5) climate scenario. Both future climate scenarios lead to a reduction in area of environmental suitability that overlapped for all the plant species: 33% reduction for SSP2-4.5 and 63% reduction for SSP5-8.5. If our projections materialize, climate change could thus affect the distribution of key resources, and the maintenance of C. spixii would depend on restoration of degraded areas, especially riparian forests, and the preservation of already existing natural areas. The Caatinga domain is very threatened by habitat loss and, for the success of this reintroduction project, the parties involved must act to protect the species and the resources it uses. Evaluación de los Sitios de Reintroducción de Especies con base en la Futura Idoneidad Climática para los Recursos Alimenticios Resumen: La reintroducción de una especie que se encuentra extinta en vida libre exige precaución pues las localidades de reintroducción pueden estar asociadas con amenazas como la cacería, hábitats de mala calidad y el cambio climático. Éste es el caso para Cyanop-sitta spixii (Guacamaya de Spix), que ha estado extinta en vida libre desde el 2000. Los pocos individuos vivos nacieron en cautiverio y se usarán para un proyecto de reintroduc-ción dentro del área original de distribución de la especie: el dominio Caatinga (Brasil). Ya que los registros de la presencia de esta ave son viejos e imprecisos, investigamos la idonei-dad ambiental actual y a futuro de 14 especies de plantas que C. spixii usa como recurso. Estas plantas son elementos importantes para el restablecimiento a largo plazo de las especies en vida silvestre, así que el uso de modelos asiste en la evaluación de los efectos del Conservation Biology. 2021;1-12. © 2021 Society for Conservation Biology 1 wileyonlinelibrary.com/journal/cobi 2 GOMIDES ET AL. cambio climático sobre la disponibilidad de recursos para la especie e informa la selección de los mejores lugares para la reintroducción. Basamos nuestros modelos de la idoneidad ambiental en 19 variables bioclimáticas y 9 variables físicas del suelo y la topografía. Las proyecciones climáticas fueron creadas para el presente y para el año 2070 con un esce-nario climático optimista (SSP2-4.5) y uno pesimista (SSP5-8.5) Ambos escenarios climáti-cos futuros llevan a una reducción en el área de idoneidad ambiental sobrepuesta para todas las especies de plantas: 33% de reducción para SSP2-4.5 y 63% de reducción para SSP5-8.5. Si nuestras proyecciones se materializan, el cambio climático podría entonces afectar la distribución de los recursos importantes, por lo que la conservación de C. spixii dependería de la restauración de las áreas degradadas, especialmente los bosques riparios y la preservación de las áreas naturales existentes. El dominio Caatinga se encuentra muy amenazado por la pérdida del hábitat y, para el éxito de este proyecto de reintroducción, las partes involucradas deben actuar para proteger a la especie y los recursos que utiliza. PALABRAS CLAVE ave neotropical, Caatinga, calentamiento global, cambio climático, especie endémica, pérdida de hábitat, Psittaci-dae, riesgo de extinción
... Managers can use our method to anticipate possible effects of climate change on reintroductions. Cyanopsitta spixii is endemic to the Caatinga, where biodiversity is undersampled and new vertebrate species are still being discovered (Ribeiro et al., 2020). In addition to C. spixii, the region of Curaçá is home to 203 other bird species, 28 of which are endemic to the Caatinga (Barnett et al., 2014). ...
Article
The reintroduction of a species that is extinct in the wild demands caution because reintroduction locations may be associated with threats, such as hunting, poor-quality habitat, and climate change. This is the case for Cyanopsitta spixii (Spix's Macaw), which has been extinct in the wild since 2000. The few living individuals were created in captivity and will be used in a reintroduction project within the species' original distribution area, the Caatinga domain (Brazil). Because the occurrence records for this bird are old and inaccurate, we investigated the current and future environmental suitability of the 14 plant species used by C. spixii as resource. These plants are key elements for the long-term reestablishment of the species in the wild, so the use of models helps in the assessment of the effects of climate change on the availability of these resources for the species and informs selection of the best places for reintroduction. We based our models of environmental suitability on 19 bioclimatic variables and nine physical soil and topography variables. Climate projections were created for the present and for the year 2070 with an optimistic (SSP2-4.5) and a pessimistic (SSP5-8.5) climate scenario. Both future climate scenarios lead to a reduction in area of environmental suitability that overlapped for all the plant species: 33% reduction for SSP2-4.5 and 63% reduction for SSP5-8.5. If our projections materialize, climate change could thus affect the distribution of key resources, and the maintenance of C. spixii would depend on restoration of degraded areas, especially riparian forests, and the preservation of already existing natural areas. The Caatinga domain is very threatened by habitat loss and, for the success of this reintroduction project, the parties involved must act to protect the species and the resources it uses.
... Such well-documented fieldworks are particularly important, under the current scenario of cuts on the budget allocated to science by the Brazilian government, limiting research on floristic documentation, and consequently hindering the increase in available data in biodiversity databases (Angelo 2016, Fernandes et al. 2017, Gibney 2015. Thus, the cooperation between private initiatives and scientists, notably taxonomists, can assist in the process of identifying the collected specimens, revealing new occurrences or even new species for science (Moura et al. 2018, Ribeiro et al. 2020, Versieux et al. 2017. ...
Article
Full-text available
We describe Waltillia itambana, a new species placed in the previously monotypic genus Waltillia, presenting as main differences from Waltillia hatschbachii features such as a water-impounding rosette, shorter and broader leaves, divergent non-secund flowers and the light-green petals. The species is, as far as known, restricted to Pico do Itambé State Park, in Minas Gerais, growing above 1500 m of elevation in the rupestrian grasslands, of the Diamantina Plateau, Espinhaço Range, Minas Gerais State. We compare W. itambana with other similar species that occur in the rupestrian grasslands and provide illustrations, information on geographic distribution, a map, and ecological and conservation observations on the new species.
Book
Full-text available
Na presente edição, o Sistema Brasileiro de Classificação de Solos (SiBCS) mantém a mesma estrutura geral, incorpora mudanças, redefinições e correções, está liberado para o uso e pode ser citado e correlacionado com outros sistemas. Esta obra será aperfeiçoada ao longo de anos futuros, conforme determinado pelo uso efetivo em levantamentos de solos, estudos de correlação de solos e pesquisas na área de Ciência do Solo. As alterações aqui apresentadas foram disponibilizadas para testes e validação pelos usuários (Santos et al., 2016, 2017) e parcialmente apresentadas no Congresso Brasileiro de Ciência do Solo de 2017. Abrangem desde definições e conceitos básicos até reestruturações de classes em todos os níveis categóricos. Tais mudanças são reflexos das sugestões e críticas recebidas de usuários do SiBCS e, sobretudo, das ideias e propostas emanadas das últimas sete reuniões de classificação e correlação de solos (RCCs) realizadas nas regiões Sul, Sudeste e Norte do País (Reunião..., 2000, 2005, 2008, 2010a, 2010b, 2012, 2013, 2015, 2017). As RCCs tradicionalmente têm permitido a validação e o aperfeiçoamento do SiBCS, bem como a uniformização de critérios, o intercâmbio interinstitucional e a transferência de informações entre profissionais da Ciência do Solo. Dentre os aperfeiçoamentos, destacam-se ajustes, correções e redefinições de conceitos básicos relativos a definição de solo; caracteres argilúvico, alumínico e crômico; contato lítico; contato lítico fragmentário; constituição esquelética do solo; horizonte hístico e horizonte A antrópico. Alterações de redação, redefinição da seção de controle, de eliminação ou incorporação de classes de solos são propostas nos níveis categóricos de ordem (Gleissolos, Nitossolos, Organossolos, Vertissolos); de subordem (Argissolos Vermelhos, Cambissolos Hísticos, Chernossolos Argilúvicos, Neossolos Litólicos, Neossolos Regolíticos, Planossolos Nátricos); de grande grupo (inclusão dos Psamíticos nos Neossolos Regolíticos, redefinição dos Psamíticos nos Neossolos Flúvicos, exclusão dos Distroúmbricos e Eutroúmbricos nos Neossolos Litólicos e Neossolos Regolíticos, exclusão dos Alíticos em várias subordens, criação dos Hísticos e exclusão dos Húmicos nos Gleissolos Tiomórficos); e de subgrupo (inclusões de inúmeras classes de solos, exclusão dos úmbricos, redefinição dos chernossólicos, criação dos espesso-húmicos – Latossolos e Neossolos Quartzarênicos – e dos leptofragmentários – Argissolos, Cambissolos, Chernossolos, Gleissolos, Neossolos Regolíticos, Neossolos Quartzarênicos, Nitossolos, Organossolos e Plintossolos –, e substituição do termo êndicos por mésicos no 4º nível categórico dos Planossolos); bem como no nível categórico de família (como a criação dos ândicos) e série. São também apresentadas as classes de profundidade dos solos, classes de reação dos solos e uma proposta de designação dos tipos de terreno. Os subgrupos existentes e já definidos no SiBCS podem ser utilizados em outros grandes grupos, em que não constem suas ocorrências, devendo ser enviada uma justificativa e cópia do perfil para avaliação e validação da nova classe. A proposição de novas classes em qualquer nível categórico deve ser enviada ao Comitê-Executivo de classificação de solos (CE), contendo uma justificativa para a sua inserção e uma cópia do perfil correspondente para avaliação e validação a fim de que essa nova classe possa ser incorporada oficialmente ao sistema. Ao classificar um determinado perfil de solo, é permitido ao classificador fazer combinações de qualificativos para o 4º nível, desde que já definidos no SiBCS paraqualquer grande grupo de solo. Admite-se a utilização de no máximo três qualificativos de 4º nível categórico, por exemplo, Argissolo Vermelho Eutrófico solódico abrúptico plintossólico (ver Capítulo 5, Argissolo...). Esta edição substitui a classificação de solos que vinha sendo utilizada na Embrapa Solos (Camargo et al., 1987; Sistema..., 1999; Santos et al., 2006, 2013, 2014) e todas as aproximações anteriores (Sistema..., 1980, 1981; Camargo et al., 1988a; Carvalho et al., 1997). Objetivando que o SiBCS seja continuamente aprimorado, em decorrência da evolução científica e aumento do conhecimento dos solos brasileiros, solicita-se aos usuários o envio periódico de críticas e sugestões, que deverão ser encaminhadas ao CE para o endereço eletrônico <cnps.sibcs@embrapa.br>, sendo que as atualizações realizadas poderão ser acessadas permanentemente na página do SiBCS na internet2. Cabe também esclarecer que o SiBCS, que vem sendo paulatinamente construído pela comunidade científica brasileira há décadas, hoje se encontra estruturado na forma de chave taxonômica até o 4º nível categórico, com recomendações de características/propriedades a serem empregadas na classificação de solos no 5º nível categórico (família). Ainda assim, na forma em que se encontra, o SiBCS já atende a praticamente todas as demandas atualmente conhecidas no Brasil acerca dos solos. As sugestões de características/propriedades para o 6º nível categórico são de caráter preliminar. A sua implementação demandará um volume de informação específico e suporte organizacional no País para a sua validação. Notas (2) Disponível em: <http://www.embrapa.br/solos/sibcs>
Article
Full-text available
Amphisbaena talisiae and A. mensae, two worm lizard species endemic to the Cerrado ecoregion, in central Brazil, are considered synonyms based on morphological characters. With the proposed synonymy, the name A. talisiae has priority of use over A. mensae. Amphisbaena talisiae can be distinguished from its congeners by a series of morphological characters , including a round head, three supralabial and three infralabial scales, postmalar row absent, four precloacal pores without a median hiatus, 205-234 body annuli, 17-29 caudal annuli, 10-14 dorsal and 14-18 ventral segments in a mid-body annulus. The species is recorded from southeastern Mato Grosso, eastern Minas Gerais and central Tocantins states in central Brazil, and its conservation status should be changed from Data Deficient to Least Concern.
Article
Full-text available
Here, we describe a new species of Amphisbaena with two precloacal pores from open Cerrado areas of the municipality of Arenópolis, in the Brazilian state of Goiás. The new species differs from other South American amphisbaenids by the folllowing combination of characters: (1) snout rounded in dorsal view and slightly convex in lateral view; (2) two precloacal pores; (3) 161–176 dorsal half-annuli; and (4) 12–15 tail annuli. Our molecular phylogenetic analysis retrieved a monophyletic Amphisbaena silvestrii group, with A. silvestrii positioned as the sister-group of a clade formed by Amphisbaena anaemariae and the new species described herein. Members of the A. silvestrii group including A. neglecta and A. crisae not added in our phylogenetic analysis are characterized by a relatively small body, two precloacal pores, body coloration with dark and light areas, and lack of specializations on the cephalic or caudal shields. We present a key for two-pored species of Amphisbaena.
Article
Full-text available
A new species of Amphisbaena from the Espinhaço Mountain Range in Bahia State is described based on morphological and molecular data. Amphisbaena caetitensis sp nov. is a small four-pored amphisbaenian with 186–194 body annuli, 10–12 tail annuli, 16 dorsal and 19–22 ventral segments on a midbody annulus and a strikingly distinctive tail tip. The most similar species is A. uroxena, but they can be distinguished by some morphological features besides the genetic divergence of 7.65% on the mitochondrial 16S rRNA.
Article
Full-text available
Amphisbaena slateri is a rare species of worm lizard from Peru and Bolivia, known only from three specimens. We found two additional specimens of this taxon, housed at the herpetological collections of the Zoological Museum (Cenak), Universität Hamburg, and the University of Kansas Biodiversity Institute, updating its known geographic distribution and morphological variation. We also discovered an unpublished manuscript by late Carl Gans reporting the finding of the Hamburg specimen, which we reproduce here with the permission of his family. Amphisbaena slateri can be identified by a combination of characters including counts of annuli, segments, and pores, the shape of head scales and color pattern. Basic morphological data is given for all species of Amphisbaenia known for Bolivia and Peru to aid in the identification of specimens from those countries.
Article
A new species of Amphisbaena is described from Fazenda Porto Seguro, municipality of Buique, state of Pernambuco, in the Caatingas of northeastern Brazil based on four specimens. The new species is a small and slender amphisbaenian with four precloacal pores, 333–337 body annuli, 22–23 tail annuli with discrete evidence of an autotomic site on the 10–12 tail annuli, and 14 dorsal and 17–18 ventral segments per annuli at midbody. The high number of body annuli, the presence of chevron-shaped anterior body annuli, and the fusion of frontal scales distinguish Amphisbaena supernumeraria sp. nov. from its congeners.
Article
The decision could derail multi-million-dollar research projects such as the Sirius synchrotron. The decision could derail multi-million-dollar research projects such as the Sirius synchrotron. The Sirius electron accelerator complex in Campinas, Brazil
Article
The inauguration of Jair Bolsonaro as Brazil’s new president has heralded a rapid acceleration of the erosion of environmental protection measures in the country. Brazil’s scientific community should rally to provide evidence that this is economically and socially unwise.
Article
Amphisbaena carli sp. nov. is described from a Cerrado region in the southwestern of the state of Bahia, Brazil. The new species is diagnosable by having: small and separated nasal scales; two pre-cloacal pores separated from each other; 221–242 body annuli; 10–13 caudal annuli; 21–23 dorsal and 21–23 ventral segments to a midbody annulus; and tail without visible autotomic constriction. A proposition of standardization of head scalation nomenclature for amphisbaenids and comments on the current status of the genus Amphisbaena are also provided.