Aerojet Rocketdyne is working with NASA, the Department of Energy, and other industry to define a more affordable path to nuclear propulsion and power use for lunar, Mars and broader solar system exploration missions.
Aerojet Rocketdyne's (AR) recent work builds on the legacy design, analysis, and testing knowledge gained from the Rover/NERVA (Nuclear Engine for Rocket Vehicle Applications) to create a feasible Low Enriched Uranium (LEU) design that has been shown to provide high thrust capability (e.g., 25,000 lbf) for faster trajectories and a higher specific impulse (Isp) (e.g., 850 to 900 seconds) than can be achieved with chemical propulsion (e.g., 460 seconds) systems. Some evolutionary approaches with carbide fuel may be able to provide over 1,000 seconds of specific impulse. Evolving and modernizing Nuclear Thermal Propulsion (NTP) engine designs to use LEU reactor fuel has proven to be feasible, and affordable approaches to manufacturing and testing are being pursued using an organized technology maturity plan (TMP) with NASA oversight. LEU NTP engine and reactor development activity is proceeding in 2019 and architecture analysis is showing NTP will provide enabling benefits for multiple solar system missions. Making LEU NTP practical for use in Lunar and Mars missions is foremost and is the expected first use of the engine system. Later missions can evolve using the NASA Space Launch System (SLS) and LEU NTP stages to send orbiters to the gas giants and to the interstellar medium.
This paper discusses and provides background on the analysis and results from the work that is proceeding on developing a LEU NTP system. It is expected that this propulsion system can be used for lunar tugs, crewed and cargo missions to Mars and as a rapid transfer space transport stage.