... A common feature of these applications is the need for the on-base growth of the porous nanomaterial from a processable substrate, such as transparent conducting oxides (TCOs), or on-device architecture, such as interdigitated electrodes (Romero-Gómez et al., 2010;Sánchez-Valencia et al., 2010;Cerofolini et al., 2011;Sun et al., 2012;Zhang et al., 2012;Dave and Malpani, 2014;Wu et al., 2014a,b;Barranco et al., 2016;Sk et al., 2016;Ferrando-Villalba et al., 2018;Ramirez-Gutierrez et al., 2019;Luo et al., 2020). In consequence, the number of publications devoted to the tunable deposition of metal and metal oxide porous systems including chemical solution methods, electrodeposition or electrospinning, and vacuum phase as physical vapor deposition and chemical vapor deposition has enormously increased (Hodes, 2007;Jerónimo et al., 2007;Romero-Gómez et al., 2010;Sánchez-Valencia et al., 2010;Cerofolini et al., 2011;Kim and Rothschild, 2011;Sun et al., 2012;Zhang et al., 2012;Pal and Bhaumik, 2013;Dave and Malpani, 2014;Lee and Park, 2014;Sun and Xu, 2014;Wu et al., 2014a,b;Malgras et al., 2015;Barranco et al., 2016;Sk et al., 2016;Xue et al., 2017;Ferrando-Villalba et al., 2018;Liu et al., 2018;Coll and Napari, 2019;Ramirez-Gutierrez et al., 2019;Luo et al., 2020;Siebert et al., 2020). In the case of vacuum phase approaches, the methodologies previously developed for the synthesis of highly compact films, such as thermal, electronbeam or ion-assisted evaporation, magnetron sputtering, atomic layer deposition (ALD), and plasma enhanced chemical vapor deposition (PECVD) have been thoroughly modified and expanded to produce microporous and mesoporous layers (Romero-Gómez et al., 2010;Sánchez-Valencia et al., 2010;Borras et al., 2012;Barranco et al., 2016;Coll and Napari, 2019;. ...