Available via license: CC BY
Content may be subject to copyright.
Micromachines2020,11,48;doi:10.3390/mi11010048www.mdpi.com/journal/micromachines
Review
FocusedElectronBeam‐Based3DNanoprinting
forScanningProbeMicroscopy:AReview
HaraldPlank
1,2,3,
*,RobertWinkler
1
,ChristianH.Schwalb
4
,JohannaHütner
4
,JasonD.Fowlkes
5,6
,
PhilipD.Rack
5,6
,IvoUtke
7
andMichaelHuth
8
1
ChristianDopplerLaboratoryforDirect–WriteFabricationof3DNano–Probes(DEFINE),InstituteofElectron
MicroscopyandNanoanalysis,GrazUniversityofTechnology,8010Graz,Austria;robertwinkler@felmi‐zfe.at
2
InstituteofElectronMicroscopyandNanoanalysis,GrazUniversityofTechnology,8010Graz,Austria
3
GrazCentreforElectronMicroscopy,8010Graz,Austria
4
GETecMicroscopyGmbH,1220Vienna,Austria;chris.schwalb@getec‐afm.com(C.H.S.);
johanna.huetner@getec‐afm.com(J.H.)
5
CenterforNanophaseMaterialsSciences,OakRidgeNationalLaboratory,OakRidge,TN37831,USA;
fowlkesjd@ornl.gov(J.D.F.);prack@utk.edu(P.D.R.)
6
MaterialsScienceandEngineering,TheUniversityofTennessee,Knoxville,Knoxville,TN37996,USA
7
MechanicsofMaterialsandNanostructuresLaboratory,Empa‐SwissFederalLaboratoriesforMaterials
ScienceandTechnology,Feuerwerkerstrasse39,3602Thun,Switzerland;ivo.utke@empa.ch
8
PhysicsInstitute,GoetheUniversityFrankfurt,60323FrankfurtamMain,Germany;
michael.huth@physik.uni‐frankfurt.de
*Correspondence:harald.plank@felmi‐zfe.at
Received:29November2019;Accepted:20December2019;Published:30December2019
Abstract:Scanningprobemicroscopy(SPM)hasbecomeanessentialsurfacecharacterization
techniqueinresearchanddevelopment.Byconcept,SPMperformancecruciallydependsonthe
qualityofthenano‐probeelement,inparticular,theapexradius.Now,withthedevelopmentof
advancedSPMmodesbeyondmorphologymapping,newchallengeshaveemergedregardingthe
design,morphology,function,andreliabilityofnano‐probes.Totacklethesechallenges,versatile
fabricationmethodsforprecisenano‐fabricationareneeded.Asidefromwell‐establishedtechnologies
forSPMnano‐probefabrication,focusedelectronbeam‐induceddeposition(FEBID)hasbecome
increasinglyrelevantinrecentyears,withthedemonstrationofcontrolled3Dnanoscaledeposition
andtailoreddepositchemistry.Moreover,FEBIDiscompatiblewithpracticallyanygivensurface
morphology.Inthisreviewarticle,weintroducethetechnology,withafocusonthemostrelevant
demands(shapes,featuresize,materialsandfunctionalities,substratedemands,andscalability),
discusstheopportunitiesandchallenges,andrationalizehowthosecanbeusefulforadvancedSPM
applications.Aswillbeshown,FEBIDisanidealtoolforfabrication/modificationandrapid
prototypingofSPM‐tipswiththepotentialtoscaleupindustriallyrelevantmanufacturing.
Keywords:scanningprobemicroscopy;atomicforcemicroscopy;tipfabrication;nano‐printing;
focusedelectronbeam‐induceddeposition;3Dprinting;nano‐fabrication;additivemanufacturing
1.Introduction
Scanningprobemicroscopy(SPM)techniques,likeatomicforcemicroscopy(AFM),scanning
tunnelingmicroscopy(STM),ortip‐enhancedRamanscattering(TERS),havebecomeanintegralpart
ofsurfacecharacterizationinresearchanddevelopment.Duringthelastdecades,avarietyof
measurementmodeshavebeendeveloped,whichgobeyondsimplemorphologyassessmentto
characterizinglaterally‐resolvedsurfaceproperties,likeelectricalconductivity[1],temperature[2],
magnetization[3],surfacepotentials[4],chemicalmapping[5],andothers[6,7].Dedicatednano‐probes
arerequiredtorealizetheseadvancedSPMmodes,andarejustasimportantasadvancementsin
Micromachines2020,11,482of30
mechanicaldesignandelectroniccontrols.Theproperfabricationofsuchspecializedtips,however,is
challengingduetothehighdemands:tipsharpnessforhigh‐resolutionimaging,long‐termmechanical
durability,specificmaterialchemistryforfunction,andspecialshapesareonlyafewissuesthathave
tobeconsideredduringfabrication.
Amongthevariousnanofabricationmethods,focusedelectronbeam‐induceddeposition(FEBID)
isapromisingcandidatefortailoredmanufacturingofSPMtips.Inbrief,FEBIDdecomposessurface
physisorbed/chemisorbedprecursormoleculesundercontinuouselectronbeamexposure[8–10].
Traditionally,FEBIDhasbeenusedforthefabricationofprotectivecoatingsduringtransmission
electronmicroscopy(TEM)lamellapreparation[8,11],photomaskrepair[12–14],circuitediting[8],or
forelectricallycontactingnanowiresorcarbonnanotubes[15].Duringthelast15years,dedicated
FEBIDapplicationshavebeendemonstrated,suchasnanolithography[16,17],stress–strainsensors[18],
hallsensors[19],gassensors[20,21],andothers[8,22–24].Furthermore,opticalapplications,suchas
polarizationfilters[25],spiralphaseplatesforvortexbeams[26],andphotonic–magneticmetaatoms
[27]havebeendemonstrated.InthecontextofSPMnano‐probes,FEBIDiswellsuitedtodeposit
narrow,freestandingnanoscalepillarsusingthestationaryelectronbeammode(oftendenotedasquasi‐
1Dnano‐pillarinliterature).SPMtipswithahighaspectratioandatipapexradiusoflessthan10nm
[28–32]mayberoutinelyachievedusingthisapproach,asdiscussedinmoredetaillater.Inthelastfive
years,3D‐FEBIDhasexperiencedarenaissanceduetoanimprovedfundamentalunderstandingofthe
process.3D‐FEBIDreliesonthecontrolledlateralmovementoftheelectronbeamatslowscanspeeds,
intherangeofnanometerpermilliseconds[33].Thismodeenablesthefabricationoffreestanding,
inclinednanowires,orsegments,actingasfundamentalbuildingblocks,whichcanbecombinedinto
complex,mesh‐like3Dnanoarchitectures.Recentprogressinthis3Dnano‐printingmode[34]now
opensupnewpathwaysforSPMtipfabrication.
ThisarticlereviewstheliteraturerelevanttoSPMtipconceptsusing3D‐FEBIDtodemonstrate
currentcapabilitiesandtotriggerfurtherideasinthistechnologicallychallengingfield.Thearticle
beginswithanintroductionconcerningFEBIDandits3Dcapabilities,complementedbyanoverview
ofboundaryconditionsforthesubstrates.TheadvantagesofusingFEBIDforSPMnano‐probe
depositionarehighlightedtogetherwithalreadydemonstratedSPMexamples,complementedbya
shortdiscussionconcerningfurtheropportunitiesandremainingchallenges.Forabroaderoverviewof
potential3D‐FEBIDapplicationsbeyondSPMnano‐probes,werefertotheliterature[34,35].
2.TheTechnology
2.1.FocusedElectronBeam‐InducedDeposition(FEBID)
Imageacquisitionwithascanningelectronmicroscope(SEM)isaccompaniedbytheformationof
acarbonlayerintheexposedsurfacearea.Thelayerformsinresponsetotheelectronbeam‐induced
dissociationofhydrocarbonresidueseverpresentinthevacuumchamberofSEMs[36].These
contaminationlayersareusuallyunwanted;ontheotherhand,thislocalizeddepositionofmaterialcan
beusedforacontrolleddirect‐writeofnanostructuresbyscanningtheelectronbeamina
preprogrammedwayinthepresenceofasuitablyselectedadsorbedprecursor.Thistechnique,called
FEBID,hasevolvedintoapowerfulnanofabricationtechnology.Agasinjectionnozzleisusedto
constantlysupplyprecursormoleculesforcontinuousdeposition,anddependingontheprecursor
chemistry,otherelementsbeyondcarboncanbedeposited(seeFigure1b).Thenozzleofthegas
injectionsystem(GIS)isbroughtclosetothesubstratetoachievealocallyhighprecursorsurface
coverageinthebeamimpactregion,withoutexceedingthepressurelimitsoftheSEM.Inmostcases,
thegaseousprecursorphysisorbs,ratherthanchemisorbs,atthesurface,andthemoleculesdiffuse
until,afterashortresidencetime,theydesorbagain,leavingthesubstrateunaffected.However,inthe
physisorbedstate,theprecursorcanalsobedissociatedunderelectronirradiationbythefocused
electronbeam.Thiselectron‐induceddecompositionoftheprecursorresultsinvolatilefragments,
whichcanleavethebeamimpactregion,whilenon‐volatilefragmentssticktothesurface,forminga
soliddeposit.Byguidingthefocusedelectronbeamacrossthesurface,depositsinalldimensionalities,
fromquasi0‐dimensional(singledots[37]),1D(lines[38]),2D(thinfilms[39]),2.5D(pads[40]),bulky
Micromachines2020,11,483of30
3D[41],toverticalpillars[42],arefeasible.Beyondthat,true3D‐geometriescanbeattainedasdiscussed
inthefollowing,openingupcompletelynewpossibilities,thankstothemajorprogressachievedin
recentyears[34].
Figure1.Aspectsof3Dnano‐printingviafocusedelectronbeam‐induceddeposition(FEBID):(a)Feature
sizesofaPt–Cmulti‐podstructurein52°tiltedview.Thediameterofindividualnanowiresisroutinely
wellbelow100nm,while20nmcanbeachievedforspecialFEBIDconditions;(b)Materials:alarge
numberofprecursorsallowthedepositionofmaterialscontainingdifferentchemicalelements[43].
Whileforsome,thefabricationoffreestanding3Dobjectshasbeendemonstrated(green)invarious
studies(numbersintheleftcornerscorrespondtothenumberofarticlesfortherespectiveelement)[34],
thesuitabilityfor3D‐FEBIDofother(2D)‐FEBIDprecursors(yellow)isstillpending;(c)Pt–Cbased
FEBID3Dnano‐towersfabricatedontopofmineralwires,whichisextremelychallengingviaalternative
techniques.AdaptedandreprintedfromWinkleretal.,ACSAppl.Mater.Interfaces2017[44];(d)In
additiontostraightsegments,arbitrarilycurvednano‐wiresarepossible;(e)Fabricationofmultiple3D
geometrieswith640elementsoverseveralμm²inasingleprocessstep.
2.2.3D‐FEBID
MovingtheelectronbeamintheX/Yplanenormallyresultsindepositiononthesurface.Ifthe
beamscanningspeed(alsodenotedaspatterningvelocityorwritingspeed)isreducedtotheorderof
tensofnmperseconds,thedepositcanliftoffthesubstrateandformafreestandingnanowire.
Furthermore,thenanowire(segment)inclinationangledependsonthepatterningvelocity.Conversely,
iftheelectronbeamiskeptstationaryatonepoint,averticalpillarevolves.Bythat,verticalandtilted
nanowireswithatypicaldiameterbetween20and50nmcanbegrown(seeFigure1a).Segment
inclinationanglesrangingfromverticaltohorizontalarepossible,althoughreliablefabricationinthe
sub‐5°rangeforsegmentslongerthan1μmcanbechallenging.Sincepositionandexposuretime(dwell
time,DT)oftheelectronbeamintheX/Yplanecanbecontrolledaccurately,curvedwires(seeFigure
1d)andcomplexmulti‐branchgeometriescanbealsofabricated.Avarietyofprocessparameters(beam,
gas,patterning,temperature)influencethe3Dgrowth[33];themostimportantaretheprimarybeam
energy,beamcurrent,andthepatterningvelocity.Amoredetaileddiscussionwillbeprovidedinthe
respectivesectionsbeloworcanbefoundinliterature[33].
2.3.DemandsontheSubstrate
Micromachines2020,11,484of30
Asmentionedintheprevioussection,FEBIDisatrueadditive,direct‐write3Dfabrication
technology,whichminimizesthedemandsonthesupportingsubstratematerialandsurfacetopology.
Thesubstratesurfaceneedonly(1)bevacuumcompatible,(2)provideatleastlowelectrical
conductivity,(3)withstandelectronexposuretoacertaindegree,and(4)bechemicallyinerttothe
precursormaterial.Demands(1)and(2)canbesoftenedbyusinganenvironmental‐SEM(ESEM),which
allowsfabricationinpressureconditionsuptoabout1mbar[15],orbythinconductivecoatingsto
preventelectricalcharging,respectively.Demand(3)canbemitigatedbytheapplicationoflow‐current
3D‐FEBID,withthedownsideoflongerfabricationtimes.Demand(4)isinherentlydictatedbythe
precursorchemistry,thereforebeinginvariable.However,formosttargetelements,alternative
precursorsareavailable.NotethatmanyFEBIDprecursorsarenon‐reactiveincombinationwithmost
surfacematerials,althoughbio‐materialsareoftenmoresensitive.WhenconsideringtheSPM
cantilever,mostmaterialsystemsarecompatiblewithallfourdemands,astheyaretypicallyfabricated
invacuumconditionsanyway.Conveniently,thesubstrateprecursorsurfacecoverageisindependent
ofthesurfacemorphology.Therefore,FEBIDcanbeperformedonanysubstratetopology/geometry
whichcanbeaccessedbytheelectronbeam[8,45].Forthisreason,FEBIDsupersedesalternative(3D)
nano‐fabricationtechniquesthatarelimitedtoflatoronlyslightlycurvedsubstrates.Figure1cshows
anexample,where3D‐FEBIDobjectshavebeenplacedonamineralwire,whichisextremely
challengingtoachievebyothernano‐fabricationtechnologies.Althoughofminorrelevanceinmost
cases,wewanttomentionprecursorsurfaceimpingementfluxaspectsinthiscontext.Whilethe
adsorptionofprecursormoleculestakesplaceonanymorphology,shadowingeffectscanoccurdueto
thedirectionalgasfluxcharacterfromthegasinjectionnozzle.Substratediffusionandnon‐directional
precursoradsorptionpartlycompensatefortheinhomogeneoussurfacecoverageintheshadowofa
morphologicalbarrier[46,47].Nevertheless,lowerdepositionratesarenotonlypresentbehindlarge
obstacles(e.g.,higherelectrodestructures),butalsothedeposititselfcancauseshadowingeffects
[48,49].Thus,aproperpatterningsequencehastobeconsideredtoreducenon‐homogeneousgrowth
rateeffectsduringdeposition[40].Also,edges,astypicallypresentwhenplacinga3D‐FEBIDtipatthe
endofacantilever,resultindifferentdepositionratescomparedtoaflatsubstrate.Unfortunately,
topographyvariationsand/orshadowingcandegradepredictabilityinthe3Dgrowthprocess.The
influenceoftheprecursorsurfacecoveragecanberelaxedbyoperatingintheso‐calledelectronlimited
workingregime,wheresufficientprecursorsurfacecoverageismaximizedandconstantatagiven
position,thuslesseningtheinfluenceoflocalcoveragevariations[33].Often,suchworkingconditions
aredifficulttoestablishandanoptimizationoftheGISalignmentand/ordesignoftheGISareneeded.
3.FeatureSizes
3.1.IntrinsicFEBIDFeatureShapes
Asdiscussedinthe“Technology”section,thefocusedelectronbeamdrivesprecursordissociation
atthesurface.Thefocusedelectronbeamdiameterthereforeplaysasignificantroleindictatingthe
spatialresolutionofthefinaldeposit.MostSEMsprovidebeamdiametersdowntoafewnanometers
full‐widthhalf‐maximum(FWHM).Consequently,thisshouldtheoreticallyallowforthefabricationof
featurediametersinthesamerange.However,localizednano‐synthesisismostefficientviasecondary
electrons[50],whicharegeneratednotonlybyprimarybutalsobyscatteredelectronsnearthesurface.
Hence,backscatteredelectrons(BSE)andforward‐scatteredelectrons(FSE)areinvolvedaswell,which
expandthespatialrangeofpotentialdissociationprocesses(see[51–56]fordetailedsimulationsof
FEBIDgrowth).Thisexplainswhyrealfeaturesizesareaboutanorderofmagnitudelargerthanthe
primarybeamdiameter.Theexactlyachievabledimensionsvarywiththeprimarybeamparameters
andtheprecursormaterial,bothimpactingtheelectronmeanfreepathsand,bythat,thestatistical
interactionvolumeinsolidmaterials.Togiveconcretenumbersfornanowiresproducedbytheoften
usedPt‐basedMe3CpMePt(IV)precursor(seeFigure1b),featuredimensionsmostlyrangebetween20
nmand60nmin3Dspace,butcangobelow5nmunderspecialconditions[8,57,58].Withsuchsmall
featuresizes,3D‐FEBIDexceedstheachievableresolutionofother3Dprintingtechniques[10].Together
Micromachines2020,11,485of30
withthelowdemandsonthesubstrateandthehigharchitecturalflexibility,3D‐FEBIDfulfillsthehigh
demandsforcontrolledSPMtipfabricationfromamorphologicalpointofview.
3.2.SPMRelevantTailoring
ThelateralresolutionachievableinSPM‐basedmethodsisconceptuallyrelatedtothetipradiusat
theapex[59].Thefirststudiesgobacktotheearly1990s,whereHübneretal.[60]andSchiffmannetal.
[61]studiedtherelationshipbetweentipshapes(diameter,height,andconicalangle)andfabrication
parameters,simplyusingcarboncontaminantsinsidetheSEM,anddeliveredoneofthefirstproof‐of‐
principlesforFEBID‐basedAFMtipmodification.Meanwhile,thebasicunderstandingoftheprocess
hasstronglyimproved,whichallowsspecifictailoring.For3D‐FEBIDstructures,theachievabletip
resolutiondependsonseveralprocessparameters.Figure2showsatiltedSEMimageofanano‐pillar,
depositedusingMe2Au(acac)astheprecursor.Theoverallshapeofapillarcanbedividedintothree
distinctregions,asindicatedinFigure2:(1)thecylindricalshaftwithhighparallelism(<2°)if
fabricatedproperly,(2)thetopmostconicalregion,and(3)theapexregion[8].Inmanycases,asmall
narrowingatthebaseoccurs(seelowestpartsinFigure2),whichappearsformediumandhighbeam
currents.Thismorphologicalpeculiarityistheresultofanenhancedlateraldepositionrateduetothe
strongerprecursordiffusionfromthelargesubstratereservoirandpillardiameters,whichvariesover
alengthscalecomparabletotheprecursor‐specificaveragediffusionlength(~150nmfor
Me3CpMePt(IV)[48,51,62]).SuchwideningcanbeadvantageousforSPMapplicationsduetothe
improvedbondingasaconsequenceofthelargerinterfacearea.Thelengthoftheshaftcanbeprecisely
adjustedbythegrowthtime,whichallowsforheight‐to‐widthaspectratioshigherthan100.Thevertical
dimensionofthetopmostconicalregionscaleswiththeprimaryenergy[63],asitdirectlymimicsthe
upperpartoftheelectroninteractionvolumeinthedepositmaterial,whichstatisticallyformsbythe
energydependentmeanfreepathsofelectronsinmatter/scatteringevents.TherightgraphinFigure2
givesadirectcomparisonofthetopmostpillarregion,wherethesharperconicalshapeforhigher
primaryelectronenergiesisevident.Asmentionedatthebeginning,sub‐10nmapexradiicanbe
routinelyachievedviaFEBIDforlowbeamcurrents(<100pA)withoutanyfurthertreatments,as
exemplarilyshownbythetransmissionelectronmicroscopy(TEM)micrographinsettopleft.
Micromachines2020,11,486of30
Figure2.FEBIDnano‐pillarcharacteristics.Thetiltedscanningelectronmicroscope(SEM)imageatthe
leftshowsthetypicalnano‐pillarmorphology,whichcanbecategorizedintothreeverticalsections:a
slightlybroaderbasesectionclosetothesubstrate,acylindricalshaftregion,andthetopmostcone,
terminatedbytheapex.Thelattercanexhibittipradiidownto5nm,asshownbythetransmission
electronmicroscopy(TEM)insettopleft.Whiletheshaftlengthisproportionaltothegrowthtime,the
verticalexpansionoftheconicalregionscaleswiththeprimaryelectronenergyduetothevaryingmean
freepathsofelectrons,statisticallydescribedbytheinteractionvolume.Theverticalexpansionofthe
latterdecreaseswithlowerprimaryenergies,whichexplainsthehighercurvatureofthetipregion
(compare5keV/squareswith30keV/invertedtriangles).TheinsetsshowrepresentativeSEMimagesof
thetipregioninatitledview.
Inprinciple,FEBID‐based3Dtipdepositioncanbeperformedintwodifferentconfigurations.In
oneconfiguration,thetipismountedverticallyintheSEM(paralleltotheelectronbeamaxis)andthe
electronbeamisheldstationary;thedepositgrowsverticallyalongtheelectronbeamaxis.Inthe
alternativeconfiguration,thetipismountedsidewaysintheSEMandtheelectronbeamisscanned
alongtheAFMtipaxis;thedepositgrowslaterally.Ineitherconfiguration,theresultingdeposit
orientationwithrespecttotheAFMtipisthesame,buttheresolutionisdifferent.Thelatter,orlateral
scanningapproach,ismorefavorabletoachievethesmallesttipwidths.SuchatipisshowninFigure
3,withalengthof700nmandanalmostconstantwidthof18nm.Theminimumresolutionisachieved
usingthehighestpossibleprimaryelectronenergyontheSEMs(mostly30keV),whichreducesthe
elasticscatteringprobabilityduringbeamtransmissionthroughthethinnanowire.Consequently,the
numberofBSE,FSE,andrelatedsecondaryelectrons(SE‐IIandSE‐III,respectively)emittedfromthe
surfacearereducedandthebeamdiameteralone,broadenedbythesecondaryelectron(SE‐I)action
radius,determinesthedepositwidth.Thethicknessofthegrowingwire,paralleltotheincoming
electronbeam,canbecontrolledbythepatterningvelocityand,intheidealcase,approachesthesame
valuesasforthewidth[29].Tipsdepositedinthiswayareidealforpinholecharacterizationorimaging
ofhighaspectratiosidewalls.Theproblemwithsuchtips,however,istheirfragilecharacterdueto
theirsmallcross‐sectionalareaandacomparablesmallinterfaceareaatthepillar–tipinterface.The
verticalfabricationconfigurationcanbeofadvantageunderthesecircumstances.Forexample,whilea
singlepillarfabricatedbystationarybeamexposure(Figure2)stillhasasmallinterfacearea,3D‐FEBID
canbeusedasshowninFigure3btoovercomethisfragilityproblem.Thefour‐leggedstructure(Figure
3b)depositedby3D‐FEBIDprovidesamorestablebase,whilestillconvergingtotherequiredvertical
singlepillar.Whilethesinglepillariswell‐connectedtothemergingbranchesofthetetrapod,the
FEBID/sampleinterfaceareaisfour‐timeshigherthanforsinglepillars.Idealpillarheightsarebelow1
μmtominimizelateralflexingforreliableAFMoperation.Comparedtolaterallygrowntips(seeFigure
Micromachines2020,11,487of30
3a),vertical3Dtipshavelargertipdiametersof~50nmbutareradiallysymmetrical,whileapexradii
aretypicallybelow10nm(Figure2).Asmentionedbefore,themainproblemwithbothtiptypesisthe
lateralflexduetothehighcarboncontents.This,however,canberemediedbypost‐growthprocessing,
asdiscussedinthechapter“MaterialsandFunctionalities”.
Figure3.Featuresizes,3Dshapeflexibility,andscanningprobemicroscopy(SPM)advantages:(a)
showsahorizontallygrownPt–CFEBIDtip,wherethebeammovesacrosstheoriginaltipedge(top‐
downinthisimage)withscanspeedsaround30nm/s.Theresultingnanowiresrevealconstantwidths
inthesub‐20nmregimealongtheentiretip;(b)verticallygrown3Dtip,composedofafour‐leggedbase,
whichthenconvergestoatallsinglepillar.Whilethelatterenableshighaspectratiomeasurements,the
formerincreasesthemechanicalstabilityandtheadhesiontothesurface;(c)showsaFEBIDmodification
(greenarrow)ofaPt–Ircoatedconductive‐atomicforcemicroscopy(C‐AFM)tip(redarrow).Thetip
wasalsofullypurified,revealingatipradiusbelow10nm,whichstronglyimprovesthelateral
resolutioncapabilities,asshownin(d)byadirectcomparisonofFEBID(top)andtheoriginalPt–Irtip
(bottom),performedonananogranulargoldsample.Thescanwidthis1μm,whilebothZscalesspan
across14nm,asindicated.
3.3.Applications
Theperformanceofsimplepillar‐basedtipmodificationsofSPMprobeshasbeendemonstrated
bydifferentgroups.Thefirstreportsgobackto1993,bySchiffmanetal.,whodemonstratedthesuperior
characteristicsofhighaspectratioFEBIDcarbontipscomparedtoconventional,pyramid‐likeAFMtips
[61].Morerecently,Chenetal.[64]showedtheimprovedlateralresolutioncapabilitiesofsuchtips
usingmica,copper,andSiNsamplesindryand,inparticular,inliquidconditions,whichmaintaintheir
qualityevenafter7hcontinuousmeasurements(seeFigure4a,b).UsingasimilarFEBIDtip
modificationapproach,Brownetal.couldclearlydemonstratetheadvantageofthehighaspectratio
characteristics,asshowninFigure4c[28].Inmoredetail,theyusedcloselypackedpolystyrenespheres
astestsamplesandcouldshowthatFEBIDtipswentabout200nmdeeperthancommercialtips,which
alsoimprovedthelateraldiameteranalysesforsuchchallengingsamplesurfaces(seeFigure4d).
AnotherveryimpressiveapplicationwasshownbyNievergeltetal.,whousedFEBID‐modifiedSitips
forhigh‐speedmeasurementsofbiologicalsystems[65].Figure5ashowstheassemblyprocessofcoiled‐
coil/globularheadCrSAS‐6homodimersinliquids.Thesystemendsupincentriolarcartwheel
arrangements,whichactasscaffoldsfortheformationofanewcentrioleviatherecruitmentof
additionalperipheralcomponents(shadedyellow).Figure5bshowsatime‐resolvedseriesofhigh‐
resolutionmeasurements,whichdirectlyrevealstheformationprocessofthefirstcartwheel.Inthat
study,theapplicationofFEBIDtipswasessentialfromanadhesionpointofview,whilehigh‐resolution
capabilitieswereindispensablyneededandsuccessfullydemonstrated(scalebarsare50nm).Further
applications,whichstronglybenefitfromtheresolutioncapabilitiesofFEBIDtips,arediscussedlater
inthefunctionalitycontext.
Micromachines2020,11,488of30
Figure4.Atomicforcemicroscopy(AFM)imagingwithFEBIDnano‐pillars.(a)and(b)showtapping
modeheightimagesofSiNafter0.5hand7hcontinuousoperation,respectively,wherethemaintained
imagequalityreflectsthetiprobustness.TheZ‐rangeis3nminbothhigh‐resolutionimages.(c)shows
acommerciallyavailableAFMtip,modifiedbyaPt–Cnanopillar,revealinganendradiusof∼4nm,as
shownbyacircleintheinset(scalebaris200nm).(d)showsadirectcomparisonofclose‐packed
polystyrenespheresobtainedwiththeaforementionedstandardtipandtheFEBIDtipattheleftand
right,respectively(scalebaris400nm).Selectedlinescansalongthewhitelinesareshownbelowand
clearlydemonstratetheadvantageofdeeperprofilingabilitiesviaFEBIDtips.(a)and(b)wereadapted
andreprintedfromChenetal.,Nanotechnology2006[64],(c)and(d)wereadaptedandreprintedfrom
Brownetal.,Ultramicroscopy2013[28].
Figure5.High‐speedAFMimagingofbiologicalsystemsusingFEBIDmodifiedSitips.(a)Formation
processofcartwheelsandcentriolesbytheassemblyofCrSAS‐6homodimers,whicharrangedueto
theircoiled‐coil/globularheaddomains.(b)High‐speed,high‐resolutionimagingusingFEBIDtips,
whichmakeitpossibletofollowtheformationofacartwheel.Scalebaris50 nm;Zrange,6.3 nm.
AdaptedandreprintedfromNievergeltetal.,Nat.Nanotechnol.2018[65].
3.4.Challenges
Theactualchallengesintermsoffeaturesizearemainlyrelatedtothecross‐sectionalshapesof
individuallyinclined3D‐FEBIDnanowires,especiallywhenelementsarenotparalleltotheincoming
electronbeam.AscanbeseeninFigure1a,freestandingwirescanrevealablade‐likecharacterwiththe
longerdimensionoftheverticalcross‐sectionbeingorientedalongtheelectronbeamaxis.Suchnon‐
circularshapesentailspatiallyinhomogeneousmechanicalstiffness,whichcanbecomedetrimental
Micromachines2020,11,489of30
duringAFMmeasurements,wherethestructuretwistingorinhomogeneousbendingconvolutesthe
finalimage[66].Perfectlycircularshapesonlyariseforverticalpillarsdepositedviastationary
exposure,whileconversely,inclinedsegmentsrevealanon‐linearvariationofitsthickness‐to‐width
aspectratio.Thesenon‐symmetricalcross‐sectionsarehighlycorrelatedwiththeelectron–solid
interactionvolumeandthereforedependontheprimarybeamenergy,thedensityofthedeposited
materialandontheinclinationangle.Averygoodcompromise,however,istheapplicationoflow
primaryenergies(around5keVandless),leadingtothickness:widthaspectratiosaround1.2:1fora
wideinclinationanglerange.Thephysicsgoverningtheshapeoftheinclinedsegmentcross‐section,
andthescalingbehavior,arecurrentlyunderinvestigationandwillbedisseminatedinafuture
publication.Thelong‐termgoalbasedoncurrentresearchactivitiesisapatterning‐basedcompensation
thatenablesclosetocircularcross‐sectionalshapes,independentofprocessparametersandinclination
angles[67].Subsequently,thiscapabilitywillbeextendedtotunethecross‐sectionalshapesalongsingle
branches,whichwouldopenupentirelynewpossibilitiesforapplication‐specifictailoring(e.g.,
mechanical,magnetic,oropticalanisotropyin3Dspace).
4.MaterialsandFunctionalities
Apartfromfeaturesizeaspects,thefunctionalitybecomesrelevantwhenfocusingonspecialSPM
operationmodes,suchaselectrostaticforcemicroscopy(EFM),Kelvinforcemicroscopy(KFM),
magneticforcemicroscopy(MFM),orscanningthermalmicroscopy(SThM),tonameafew.
Consequently,theavailabilityofsuitableprecursormaterialsisofessentialimportance.Figure1bshows
theperiodictableandindicateselementsthathavesuccessfullybeenusedforFEBID(yellowandgreen)
and3D‐FEBID(green).Whileamoredetailedoverviewofmetallicandmagneticmaterialpropertiesof
FEBIDmaterialsisgivenbyHuthetal.[23]anddeTeresaetal.[24],here,welimitourdiscussionto
3D‐FEBIDstructures.
Withafewexceptions[8,24,68–74],FEBIDmaterialsnotoriouslysufferfromhighlevelsof
contaminants(usuallycarbon)duetoincompleteprecursormoleculedissociation.Thecontamination
accumulatesaspartiallydissociatedmolecularfragmentsbecomeincorporatedinthedeposit.The
precursorsareoftenorganometallicinnature,whichexplainsthehighcarbonlevelsobserved[23,75].
Themicrostructureofsuchdepositsrevealsananogranularcharacter,wheremetallicnano‐grains(~2–
5nm)areembeddedina(hydro‐)carbonmatrix,asevidentbydark‐andbright‐appearingregionsin
theTEMmicrographinFigure2.Contaminatedmicrostructuresreduceorevenentirelymaskthe
intendedfunctionality.Detailedstudiesconcerningcompositiontunabilityusingbothprimarybeam
parametersandpatterningstrategiesrevealedalimitedabilitytocontrolcontaminationlevels[76,77].
Thisissuewasaddressedinrecentyearsbythesuccessfulintroductionofseveralprotocolstotuneboth
chemicalpurityandfunctionalproperties[23,75].Forexample,thefunctionalpropertiescanbetuned
viapost‐growthelectronbeamexposure,denotedase‐beamcuring(EBC)[78].EBCinitiatestwo
processes:(1)thedissociationofincompletelydissociatedprecursormolecules,whichreleasetarget
atoms,leadingtoslightgrain‐growth[22,23,78–80];and(2)themodificationandcross‐linkingofthe
carbonmatrix(sp3tosp2)[21,29,80,81].Theformereffectallowsprecisetuningoftheelectrical
conductivity[78]andevenenablesacontrolledinsulator–metaltransition,asdemonstratedforPtund
Au[18,22,23,78].TheunderlyingprocessisthemodulationoftheCoulombbarrierduetoreducedgrain‐
to‐graindistances,whichenableschemical[39,82]orthermalsensing,asdiscussedlater.TheEBCcross‐
linkingeffecthasmechanicalimplications,astheYoungmoduluscanpreciselybetuned,as
demonstratedforPtbasedmaterials[21].Pleasenote,EBChasaminoreffectonthechemistrybuta
majoreffectonthe(electric)functionality,whichisextremelyuseful,asdiscussedlater.Inothercases,
materialpurityisofhighestimportance.Inrecentyears,differentapproacheshavebeendemonstrated,
includinggas‐/laser‐/temperature‐assistedapproachesduring[72,83–88]orafterdeposition[44,89–91].
Althoughdifferentinexecution,thecommonelementformostoftheseapproachesisthetendencyfor
morphologicaldisruptionduringcarbonremoval,whichbecomesevenmorechallengingfor
freestanding3Dnano‐architectures[44,84].Thisaspectisdiscussedinthe“Challenges”sectionbelow.
Inthefollowing,wereviewdifferentSPMapplications,whichtakeadvantageofbothitsmorphology
anditsmaterialproperties.
Micromachines2020,11,4810of30
4.1.Applications
4.1.1.GeneralAFM
Carbon‐containing3D‐FEBIDstructuresexhibithighelasticityduringforceload[29],which
originatesfromthehighcarboncontentofupto90at.%[75],equivalenttomorethan70vol.%.During
AFMoperation,thetipexperiencesforcesinverticalandlateraldirections,whichimmediatelyimplies
mechanicalpropertiesofsinglepillars,whichcanbeconsideredasfundamentalbuildingblocksfor
morecomplex3D‐FEBIDarchitectures.ThistopicisreviewedingreatdetailbyUtkeetal.inanother
articleofthisspecialissue,whichgivesacomprehensiveinsightintomechanicalproperties,andtheir
dependencyonfabricationandonpost‐growthtreatmentapproaches[92].Inbrief,FEBIDpillarsare
muchstifferalongthemainaxiscomparedtosituationswherelateralforcesbecomerelevant[66].As
thelatterdependsonthepillarlengthsaswell,single‐pillar‐likeFEBIDstructuresshouldbeaslongas
needed,butasshortaspossible.
EBChasbeendemonstratedtochangetheYoungmodulusfromabout14GPato80GPa(even
highervaluesarepossible[92]),withoutaffectingtheoverallmorphology,includingtheapexradii[21].
ThegreatadvantageofEBCistheminimallydisruptiveinfluence,evenonfragile3Dnanostructures,
whichmakesthisapproachalmoststraightforward.AlthoughthematerialgetsstifferbyEBC,therisk
ofbreakingattheinterfaceduringSPMoperationremainsandgetsevenhigher,asarisingforcesget
moreconcentratedtothoseregions[66].Thesolutionforthisproblemcanbemorecomplex3Ddesigns,
whereoneconceptualexampleisshowninFigure3b.Inarecentstudy,therelationshipbetween3D
designandtheresultantstiffnessinverticalandlateraldirectionwasexplored[66].Itwasfoundthat
thetri‐podandtetra‐podarrangementsstronglyincreasethestiffness—upto60N/mand5N/minthe
verticalandlateraldirection,respectively—whichcomesintotherelevantrangewhenaimingforSPM
applications.Thetetra‐podarrangementprovidedthebestoverallmechanicalpropertieswithradially
symmetricstiffnesses.EBCtreatmentfurtherincreasedthestiffnessupto200N/minthevertical
direction,whichissufficientforstableAFMoperation.Inthesamestudy,theadvantageous
implicationsofEBCtreatmentsonthewearresistanceofthetipapexcouldbeshown,whichfinally
allowedhigh‐speed(~80μm/s)andlong‐termAFMmeasurements(uptofourhourswere
demonstratedwithoutweareffects)[66].Importantly,thestudyconclusivelydemonstratedthe
suitabilityofFEBID‐based3DnanostructuresforAFMoperationwithhigh‐resolutioncapabilities.
Fromacommercialpointofview,FEBID‐basedtipmodificationhasalreadyfounditswayinto
commercialproductsbythecompanyNanoTools(Munich,Germany),whoprovideabroadvarietyof
shapes,dimensions,andfabricationangles,basedonFEBID’s3Dcapabilities[93].
4.1.2.Electric
Next,wefocusonelectrically‐basedSPMmodessuchasC‐AFM,EFM,andKFM.Theearliest
reportsontheapplicationofFEBIDnano‐pillarsaselectricallyconductivetipsgobacktotheearly1990s,
whereHübneretal.demonstratedthatevencarbontipscanbeusedforSTM[60].Shortlyafter,
Schössleretal.deliveredoneofthefirstreportsontheapplicationofametal‐organicprecursorforSTM
tipmodification.Inmoredetail,anAu‐basedprecursorwasusedforthefabricationoffieldemitters
withsub‐10nmapexradiiandanangularemissiondensityof0.2mA/sr,whichweresuccessfully
appliedasSTMtipsandasSTM‐basednano‐lithographytools[16].Thelatterapplicationwasalso
demonstratedbyWendeletal.,whousedFEBID‐based,ultrahard,amorphouscarbontipsfornano‐
lithography.Byacombinationofhardtappingandtriangularvoltagepulses,theycouldfabricate25
nmlines(FWHM)inphotoresist,whichfinallyallowedthefabricationof30nmmetalstructures[17].
Morerecently,Chenetal.modifiedcommerciallyavailable,Pt–IrcoatedconductiveAFMtipsby20nm
wideand250nmlong,Pt‐basedFEBIDpillars[94].ThetipswerethenusedforEFMandKFM
measurementsofSi–Gequantumrings,wheretheycouldrevealtheexistenceofacentralSi–Ge‐like
areawithinthequantumringsthemselves,asshowninFigure6a–d.Theimprovedlateralresolution
wasduetothesmallpillardiametersand,inparticular,duetothesmallapexradiiforFEBIDpillars
(sub10‐nm;seeFigure2a),whichisabout2–3timessmallerthancoatedSitips(nominallyspecified
with20–25nm).ThatsituationisshowninmoredetailinFigure3c,whichisatiltedSEMimageofa
Micromachines2020,11,4811of30
coatedtip(redarrow),furthermodifiedbyaPtFEBID‐nano‐pillar(greenarrow).Whilethemuch
smallerapexradiusforthelatterisimmediatelyevident,Figure3dshowsadirectcomparisonofAFM
heightimagesonanAunano‐particlesampleincontactmode.Theimprovedlateralresolution
achievablewithFEBIDtips(upper)comparedtoPt–Ircoatedtips(lower)reliesonthefactthatfully
purifiedFEBIDtipsdonothave/needaconductivecoating,whichmakestheminherentlysharper.
WhileChenetal.successfullydemonstratedtheEFM/KFMsuitabilityforFEBIDtipsevenintheiras‐
depositedstate,C‐AFMrequiresfullypurified(metallic)tipsforreliablemeasurements.Asmentioned
above,differentprotocolshavebeenintroduced,whichallowthechemicaltransferintocarbon‐free
FEBIDmaterials.Aparticularlygentleapproachistheelectronbeam‐assistedpurificationinanH2O
atmosphere(20–120Pa)atroomtemperature,whichhassuccessfullybeenappliedtoPt‐andAu‐based
FEBIDmaterials[44,83,90].Thechemicalpurificationapproachishighlyefficientandcreatesdefect‐
free,concerningnanoporesorcracks,structuresafterpurification.Figure6showsadirect,in‐scale
comparisonofaPt–Cnano‐pillarbefore(e)andafterfullpurification(f),whichshows:(1)thereduced
apexradius,(2)increasedPtgrainsizes,(3)densegrainpacking,and(4)themaintainedshapefidelity.
Complementaryscanningtransmissionelectronmicroscopy‐basedelectronenergylossspectroscopy
(STEM‐EELS)measurementsconfirmedthecarbonremovalunderidealpurificationconditions[44,90].
Figure6.FEBID‐basedelectricAFMmodes.(a–d)showheight(left)andKelvinforcemicroscopy(KFM)
(right)imagesofSiGequantumring,performedwithcommercial,Pt–IrcoatedAFMtips(upperrow)
andPt–Cnano‐pillarmodifiedtips(lowerrow).Whiletheresolutionimprovementisevidentbythe
morecircularfeatureshapes,theKFMimagesrevealmanymoredetails,asrepresentativelyindicated
bytheblueandwhiterings.AdaptedandreprintedfromChenetal.,IEEE2012[94].(e,f)showTEM
micrographsofthetipregionofaPt‐basedFEBIDnano‐pillarafterdeposition(e)andafterfull
purificationusinge‐beamassistedcarbonremovalinH2Oatmospheresatroomtemperature[44,90].As
evident,thepillargetssmallerinwidth,whichentailsaslightreductionoftheapexradiusinthesub‐10
nmregime.ThelargerPtcrystalsandthedensepackingareevident,whilethecarbon‐freecharacterwas
confirmedbyscanningtransmissionelectronmicroscopy‐basedelectronenergylossspectroscopy
(STEM‐EELS)measurements.SuchhighlyconductivetipsarethenusedforC‐AFMmeasurements,as
representativelyshownin(g)and(h).Theschemebelowshowsthelayersetup,consistingofAupaths
separatedbyAl2O3linesonSi.Theadvantageofthehighaspectratiopillarisanaccurateedgeprofiling
intheheightimage(g),whilethecurrentsignal(skinoverlayin(h))allowsfortheidentificationofnon‐
conductiveregionsofthick(redcircles)andnanometerthin(purplerings)impuritylayers.Image
copyrightGETecMicroscopy2019[95].
SuchtipscanthenbeusedasC‐AFMtips,whichisexemplarilyshowninFigure6g,h,wherethe
surfacetopographyisrevealedforamulti‐layerstructure,asschematicallyshownatthebottom.While
theheightimage(g)takesadvantageofboththesharpapexandthesteepsidewallstoreachthebottom
atfinetrenches,(h)showsa3Dheightplotwiththecurrentsignalasoverlay.Asevident,thecorrelated
Micromachines2020,11,4812of30
measurementsarealmostdigital,revealingconductive(turquoise)andinsulating(black)regionsand
identifyingnanometerthicksurfaceimpurities(purplecircles).Apartfromresolutionaspects,thereis
anotheressentialadvantageoffullypurifiedFEBIDtipscomparedtocoatedAFMtips:becausetheyare
entirelymadeofpurematerial(e.g.,Pt),thedelaminationproblemofcoatedAFMtipsisentirelyabsent,
alsomakingsuchprobesmoredurable.SuchFEBID‐basedconductivetipswillthenfulfillthe
requirementsforapplicationinC‐AFM,KFM,andEFM,asalreadyshownconceptually,butcanalso
beusedforpiezoelectricforcemicroscopy(PFM)andscanningspreadingresistancemicroscopy
(SSRM).Notably,Nohetal.[96]andRobertsetal.[97]havepreviouslyusedFEBIDandfocusedelectron
beam‐inducedetching(FEBIE)forthefabricationofadvancedinsulatedPFMandSPMprobesforuse
inliquidenvironments.Inshortsummary,theparticularadvantagesofFEBIDtipsforelectrically‐based
AFMmodesarethesharpapex,highaspectratioshapesifneededandtheprovenwearresistances.
Beyondthat,FEBIDallowsforspecialdesigns,whichenablemorphologicaladaptionaccordingtothe
individualsituation,asdiscussedinthe“DesignFlexibility”sectionbelow.
4.1.3.Magnetic
Now,weturntomagnetictips,wherethematerialqualityiscriticallyimportanttoprovidethe
requiredsensitivityduringMFMmeasurements.Ironandcobaltarethemostpromisingcandidatesfor
precursormaterials,basedonFigure1b.As‐depositedFeand/orCoFEBIDpuritymustbehighforthe
ferromagneticpropertytoemerge,asdiscussedinareviewbydeTeresaetal.[24].Topurifymagnetic
materials,H2OorO2assistedapproachesarenotsuitable,becausesurfaceandinternaloxidationoccurs
[24].Hence,differentresearchgroupshaveexploredtheprocesswindowduringinitialFEBIDto
minimizeunwantedimpurities.ThefirststudiesinthatdirectionstemmedfromUtkeetal.andLauet
al.,whofabricatednano‐pillarsfromCo2(CO)8precursorforMFMtests[32,98,99].TheConano‐tips
werecomposedof34at.%Co,51at.%C,and14at.%Oandallowedalateralresolutioninthesame
rangeasforcommerciallyavailable,coatedmagnetictips(~40nm),butprovidedthehighaspectratio
advantages,asdiscussedbefore.Inthefollowingdecade,strongprogresswasmadeinthefabrication,
optimization,andapplicationofmagneticmaterialsingeneral,ascomprehensivelyreviewedbyde
Teresaetal.[24].Severalstudiesexploredthevariationinchemicalcompositionasafunctionofprimary
electronbeamconditions[100,101],patterningparameters[102],gasfluximplications[103],and
substratetemperatures[101,104].Cocontentsupto95at.%werefoundathigherbeamcurrents,
primaryenergies,andelevatedtemperatures,wheretheremainingC/Ofractionstemsfromthe
unavoidablesurfaceoxidation,oncethesampleisexposedtoambientconditionsafterprocessing.
Foriron‐basedmaterials,themostrelevantprecursorsareFe(CO)5andFe2(CO)9,firststudiedby
Takeguchietal.[105]andFuruyaetal.[106].InsimilarstudiesasthosereportedaboveforCo,primary
beamandpatterningparameters,H2Oco‐exposure,substratetemperatures,andpost‐growthannealing
stepswerestudiedforFe‐containingdeposits(seereference[24]foradetailedoverview).Particularly
interestingwasthestudybyTakeguchietal[105],inwhichFEBID’s3Dcapabilitieswereusedtostudy
therelationshipsbetweenmorphology,thermalpost‐treatments,andtheresultingmagneticproperties
[105].ThatstudywasoneofthefirstwhichappliedFEBID’spowerful3Dcapabilities,bymeansofrods,
dots,rings,triangles,andevenmorecomplexstructures,forfundamentalresearch.Aparticularly
importantstudywasdonebyRodriguezetal.[107],whoinvestigatedthecoercivefieldasafunctionof
widthandthicknessinFenanowires.Thefindingsclearlyrevealedthatnarrowtipsbelow50nmin
widthshouldbehighlybeneficialforMFMapplications,whilethethicknessisnotascritical.Asimilar
resultwasfoundforCo‐basednanowires,asreportedbyVenturietal.[108]andWolfetal.[109],who
studiedthemagneticinductionaswellasmagneticstrayfieldsasafunctionofthetipdistanceforfull
optimizationofMFMtipmorphologies.Designruleswereproposedasaresultofthesestudies,which
showedthatthetiplengthscanbeadaptedaccordingtotherequirements(pinholes,sidewalls,grooves),
whilethetipdiametershouldbeassmallaspossible.Gavagninetal.[42]confirmedthesefindings
experimentallyandalsodemonstratedtheimportanceoftherelativetiltanglebetweentipandsample,
whichhastobeperpendicularforthehighestlateralresolutionandmagneticsensitivity.Froman
applicationpointofviewforCo‐basedFEBIDstructures,Stilleretal.reportedthemodificationof
Akiyamatips[110],whileBelovaetal.demonstratedtheoptimizedfabricationofCo‐basedFEBID
Micromachines2020,11,4813of30
super‐tipsasshowninFigure7a.Themetalcontentofthosetipswasaround60at.%,andallowedlateral
resolutionsdown10nm,whichcanbeconsideredasthecurrentbenchmarkforFEBID‐basedMFMtips
[111].
Figure7.Sub‐10nmresolutionmagneticforcemicroscopy(MFM)imagingviaFEBIDsuper‐tips.(a)
showsaCo‐based,FEBIDsuper‐tipwithametalcontentof~60at.%andendradiibelow10nm.Such
tipsarethenusedforimagingbitpatternedmedia,asshownbytheheightandlift‐modephaseimages
in(b)and(c),respectively.Asevident,theMFMimage(c)clearlyrevealsthewrittenbitswithlateral
resolutioninthesub‐10nmregime.AdaptedandreprintedfromBelovaetal.,Rev.Sci.Instrum.2012
[111].
WhileFEBID‐basedCostructurescanrevealmetalcontentsupto95at.%rightafterdeposition,Fe‐
basednanowirestypicallyrangearound50at.%,whichistoolowtoexploittheirfullpotential.Jose‐
MariadeTeresaetal.demonstratedthatsuchFe‐basednanowirescanbetransformedintonominally
pure,highlycrystalline,andmorphologicallystablenano‐pillarsviathermalpost‐growthannealingat
temperaturesofatleast400°C[105,112].Thelatter,however,mightbechallengingforcantilever
platforms,whichcontainintegratedcomponents,suchasself‐sensingorresistiveelements.
AheteronuclearFe–Coprecursor(HCo3Fe(CO)12)wassynthesizedanddemonstratedtobefully
3D‐FEBIDcompatible,whichservesasanalternativetothehomonuclearparadigm[113–115].The
resultingdepositsrevealedaCo3Fecomposition,whichisnominallycarbon‐/oxygen‐freewhen
disregardingthethin,unavoidablesurfaceoxidationlayer.Thisprecursormaterialisanidealcandidate
forMFMtipmodificationowingtothelowvaporizationtemperatureandnon‐reactivecharacterwith
thesurface.Figure8ashowsanSEMsideviewofaself‐sensingcantileverwithapre‐existingtip,
modifiedbyaCo3Fenano‐pillar,showninmoredetailattheright.SuchtipsrevealtypicalFEBID
diametersandapexradiiwellbelow100nmand10nm,respectively,whichcanbeuseddirectlyafter
fabricationwithoutanyfurtherpost‐growthtreatment.Forbenchmarkpurposes,aPt/Comultilayer
systemwasstudied,asrepresentativelyshowninFigure8bbya3DheightscanwithanMFMphase
overlay.Theperpendicularmagneticanisotropyleadstoaclearmagneticphasecontrast,not
recognizableinthemorphology.Figure8cshowsthephasecontrastinmoredetail,usinganFe‐based
FEBIDnano‐pillar,fabricatedatoptimizedgrowthconditions.Individualfeaturesarewellresolved,
whiletypicalphaseshiftsrangearound5°foroptimizedliftheightsandamplitudes.Incontrast,Figure
8dshowsthesamesampleimagedbyaCo3Fesuper‐tipwithverysimilaroveralldimensions.Asclearly
evident,phaseshiftsaremorethanthree‐timeshigheratoptimizedliftheights(seescales),which
reducesthenoiseandincreasesthelateralresolution,whichwasfoundtobeclearlybelow20nm.
Togetherwiththefactthatgrowthtimesaresimilar,thesefirstattemptsshowthehighperformanceof
thisheteronuclearprecursor.Roundedupbytheuncomplicatedhandling,thismaterialhasenormous
potentialtorevolutionizeFEBID‐basedfabricationofmagnetictipsforhigh‐performanceMFM
operation.
Micromachines2020,11,4814of30
Figure8.FEBID‐based,high‐performanceMFMtips.(a)showsatiltedSEMsideviewofapre‐
structured,self‐sensingcantilever,modifiedbyamagneticCo3Fetipvia3D‐FEBIDat20keV/13pA.Such
tipsrevealtypicaldiametersandapexradiiwellbelow100nmand10nm,respectively.(b)showsa3D
heightimagewiththeMFMsignalasoverlay,takenfromaCo/Ptmultilayerstructurewith
perpendicularmagneticanisotropy.(c)and(d)showMFMphaseimagesfromthesamesample,
however,acquiredviaFeandCo3FeFEBIDtips,withsimilarmorphologies.Acloserlookrevealsthat
MFMtipsfromCo3Ferevealmuchstrongerphasecontrastsbyafactorofmorethanthree,whilelateral
resolutionisalsoimprovedtothesub‐20nmregime.ImagesarecourtesyofGETecMicroscopy[95](a–
c)andMichaelHuth(d).Copyright2019.
Apartfromtheseclassicalapplications,moreadvancedAFMoperationmodeshavebeen
demonstratedincombinationwithFEBIDtips.ApowerfulexpansiontoclassicalMFMmeasurements
viaphase‐shiftdetectionisferromagneticresonanceforcemicroscopy(FMRFM).Thisoperationmode
isbasedonthedetectionofthemagneticresonancewithamagneticsampleduetothemagneticforce
exertedonacantileverequippedwithasmallmagnetictip[116].Sangiaoetal.fabricatedsmallConano‐
spheresviaFEBIDontopofasoftAFMcantileverinaverycontrolledmanner,rangingfrom100nmto
500nm,asshowninFigure9a,b[117].ThesphericalshapeisadvantageousforFMRFMoperation,asit
minimizesthemagnetichysteresis.TheCocontentwasrevealedtoincreasewiththediameter(Figure
9c),whileaminimumdiameterof150nmwasfoundasthelowerlimitforFEBID–Cospheresfor
appropriatemagneticsensitivity[24],almosteliminatingunwantedremanenceeffects.Althoughthe
lateralresolutionduringFMRFMoperationcorrelateswiththesizeofthenanosphere,impressive
resultshavebeenshowninrecentyears[118–123].Figure9d,eshowsarepresentativeresult,inwhich
FMRFMwasusedfordefectdetection(inthiscase,morphologicallyinduced),whileclassicalMFM
operationisunabletoextractthatinformation(compare(d)with(e)).
Micromachines2020,11,4815of30
Figure9.FEBID‐basedferromagneticresonanceforcemicroscopy(FMRFM).(a)and(b)showdifferently
sizedConano‐spheres(topdown),fabricatedontopofahigh‐resolutionAFMcantileverinthetop(a)
andsideviews(b),revealingaclosetosphericalmorphology.(c)showsthecobaltcontentofthebeads
asafunctionofthediameter,whichhastobecorrelatedwithitsmagneticproperties.Additional
measurementsrevealedaminimumdiameterof150nmtoexploitthefullperformance.(d)and(e)show
FMRFMandMFMmeasurements,respectively,usingaCo‐AFMcantilevermodifiedviaFEBID.These
measurementsuseanin‐planemagneticfield,whichalignsthesamplemagnetization.Amicrowave‐
frequencycurrentisthenintroducedperpendiculartothemagneticfield,butalsoin‐plane.Thelatter
decreasesthequasi‐staticcomponentofthemagnetization,whichimpactsthemagneto‐staticforce
betweenthesampleandtip.Oncethemagneticresonanceisfound,FMRFMrevealsdefectsinducedby
chemistryormorphology,asprovokedinthisexamplebyadifferentshapeofthecentralelementinthe
3×3array.ThisexplainswhythatpartisdarkinFMRFMmode(d).Incontrast,classicalMFM
measurementsareunabletodetectsuchdefects,asshownin(e).Althoughpowerfulinitsanalytical
capabilities,thelateralresolutioniscurrentlylimitedtoabout90nm,asthatdependsonthebead
diameter.(a–c)wereadaptedandreprintedfromSangiaoetal.,BeilsteinJ.Nanotechnol.2017[117].(d)
and(e)wereadaptedandreprintedfromChiaetal.,Appl.Phys.Lett.2012[118].
4.1.4.Thermal
Asmentionedbefore,EBChasaminorinfluenceondepositmorphologybutastrongimpacton
theelectricalfunction:thenano‐granularcompositionremains,whiletheelectricaltunneling
probabilitybetweenadjacentnano‐grainsincreases[23,78].Thelattereffectalsodependson
temperature,leadingtodecreasingresistancesathighertemperaturesduetothermallyassisted
tunneling.Bythat,themacroscopiccurrentthroughsuchbridgesprovidesinformationofthematerial’s
temperatureswithanegativetemperaturecoefficient(NTC)ofelectricresistance.Thisthermistor‐based
SThMconceptwasfirstshownbyEdingeretal.in2001[124,125],butnotfollowedinmoredetail,which
mightbeexplainedbythelimitedknowledgeaboutmaterialtuningandcontrolled3Dnano‐printing
capabilitiesatthattime.Sattelkowetal.recentlyrevisitedthe3Dthermistorconcept,optimized
mechanical/electricalaspects,anddemonstratedthermalprobing[66].AssummarizedinFigure10,the
authorsusedaself‐sensingAFMcantileverplatform(a),whichwaspre‐structuredwithtwoelectrodes,
coveringthepre‐existingtipaswell(b).FEBIDtetra‐podswereusedas3Dnano‐bridgesbetweenthose
twoelectrodes,asshownbyanoverview(b)andbyclose‐upsin(c)and(d).Onceincontactwiththe
sample,thetetra‐podsheatupandchangetheirelectricconductivityduetotheNTCbehavior.Because
ofthesmallactivevolumesintheFEBID‐createdcontactregion,theheatresponseisveryfastandallows
fordynamicsensingofatleast30ms/K,asshowninFigure10e.Thisfunctionalnano‐probenotonly
demonstratesAFMcompatibilitybutalsotheusefulnessofanano‐granularmaterial,amicrostructure
whichisoftenregardedasineffectiveconcerningrealapplications.Thishallmarkdemonstrationof
functionaltransductionwascomplementedbyanapex‐radiusbelow10nmandfastfabricationtimes
around10minutes,includingEBC.
Micromachines2020,11,4816of30
Figure10.FEBID‐based3Dnano‐probesforlocalizedthermalsensing.(a)showstheself‐sensing
cantileverplatform(copyrightGETecMicroscopy,Austria[95]),wheresensingelementsandpre‐
structuredAuelectrodesareindicatedblueandyellow,respectively.(b)showsanSEMimageofthetip
region,inwhichthetruncated,pre‐existingtip,thesplitelectrodes,andthe3Dnano‐bridgeareevident.
Thelatterisshowninhighermagnificationinaside(c)andtopview(d),wherethe3Dnano‐bridgeis
showninred.Onceincontactwiththesamplesurface,thesmallactivevolumesofthe3Dstructureallow
afastresponse,asshowninadynamicresponsetestin(e)bytheredcurveincomparisontothereference
temperature(blue).Asensingratebetterthan30ms/Kwithanoiselevelbelow±0.5Kcouldbe
demonstrated,whichexhibitstheadvantagesof3D‐FEBIDnano‐structuresforadvancedAFMconcepts,
applicableonevenpre‐finishedmicro‐cantilever.AdaptedandreprintedfromSattelkowetal.,Appl.
Mater.Interfaces2019[66].
4.1.5.Optical
AfirstexampleofFEBID‐basedspectroscopywasreportedbyCastagneetal.in1999,who
modifiedSi–AFMprobesbycarbonsupertipswithvariablelengths(1.3–3.3μm),widths(130–300nm),
andapexradiidownto15nm[126].SuchprobeswerethenusedinacombinedAFM/photonscanning
tunnelingmicroscopetostudytheirnearfieldopticalbehavior.Thestudyrevealedthatevencarbon
tipsareconvenientfornearfieldopticalconversionofevanescentwavesinthenearinfra‐redrange.
Theauthorsalsostatedthatthelateralresolutionduringimagingmaybelimitedasaconsequenceof
theopticalpropertiesofcarbontipsandgavetheory‐basedrecommendationsforfurtheroptimization
towardshigh‐performanceopticalnearfieldnanoprobesforapplicationinscanningnearfieldoptical
microscopy(SNOM)orTERSmicroscopy.Shortlyafter,Sqallietal.focusedonthebeneficial
implicationsofsmallFEBID‐basedAunano‐dots/‐ellipsesonlightscatteringcapabilitiesduringSNOM
[127].Inmoredetail,lightfiber‐basedprobesweremodifiedbydifferentlyshapedFEBIDnano‐
structuresandstudiedbyacombinationoftheoryandexperiments.Theauthorscoulddemonstrate
thatsphericalstructureswith~60nmdiameterincreaseboththesignalandthecontrastinnearfield
transmissionmeasurements.Thestudyalsoshowedthatellipticalshapesallowtuningoftheresonant
wavelengthasaconsequenceoftherelativeorientationbetweenellipticnano‐structuresandthe
incomingpolarizedlight,whichdemonstratesFEBID’susefulnessduetoitsdesignflexibility.
AnimpressivestudyconcerningTERSmicroscopywasdonebyDeAngelisetal.,whointroduced
ahighlyadvancedTERStipconcept,basedonfocusedionbeam(FIB)andFEBID[128].Figure11shows
thetaperedwaveguide,fabricatedona100nmthickSi3N4AFMcantilever(a).First,FIBwasusedto
fabricatethephotoniccrystal,consistingofatriangularregionwithholeandseparationdistancesof160
nmand250nm,respectively(b).Forthecentralwaveguide,aPt‐based,3D‐FEBIDstructureactedas
scaffold,whichwascoveredwith30nmAganddown‐shapedviaFIB(c)toapexradiibetween2.5and
5nm(furtherprocessstepswereapplied,asdetailedinreference[128]).Suchprobeswerethenusedin
AFMoperation,wheretheincominglaseriscoupledviathebacksidethroughthephotonicelement,
whichlaunchessurfaceplasmon,furtherpropagatingalongtheAgtiptotheapex,wherethelocalized
plasmonresonanceoccurs(d).DetectionoftheRamansignalwasdoneintransmission.Figure11eand
fshowanAFM3Dheightimageofasub‐micrometerSinanocrystal/SiOxtrenchandthecorresponding
Ramanintensityalongtheredlines,respectively.Thevaryingintensityreflectsthecrystallinityofthe
material,whichcorrelateswellwiththewallregion(e),whichprovessub‐10nmresolution.While
FEBIDstructuresactedasscaffoldsinthiscase,recentprogressconcerningpurityandshapestability
Micromachines2020,11,4817of30
holdthepotentialtofabricatethecentraltipsolelyvia3D‐FEBID[44],whichwouldconsiderably
simplifytheentirefabricationprocess.
Figure11.FEBID/focusedionbeam(FIB)assisted,photonic/plasmonictip‐enhancedRamanscattering
(TERS)nano‐probe.(a)Overviewofa100nmthickSi3N4AFMcantilever,equippedwiththephotonic
andplasmonicelement,basedonFIBandFEBID,respectively.(b)showsacloseupinwhichtheFIB
holes(160nmdiameterand250nmdistance)areevident.ThecentralelementusesaPt‐based3D‐FEBID
pillarasscaffold,furthercoatedwithpureAgandmilleddownviaFIBtoapexradiiof5nm