Engineering a Kerr-based Deterministic Cubic Phase Gate via Gaussian Operations

  • NTT Research and Cornell University
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.


We propose a deterministic, measurement-free implementation of a cubic phase gate for continuous-variable quantum information processing. In our scheme, the applications of displacement and squeezing operations allow us to engineer the effective evolution of the quantum state propagating through an optical Kerr nonlinearity. Under appropriate conditions, we show that the input state evolves according to a cubic phase Hamiltonian, and we find that the cubic phase gate error decreases inverse-quartically with the amount of quadrature squeezing, even in the presence of linear loss. We also show how our scheme can be adapted to deterministically generate a nonclassical approximate cubic phase state with high fidelity using a ratio of native nonlinearity to linear loss of only 1e−4, indicating that our approach may be experimentally viable in the near term even on all-optical platforms, e.g., using quantum solitons in pulsed nonlinear nanophotonics.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Silicon waveguides are promising chi(3)-based photon pair sources. Demonstrations so far have been based on picosecond pulsed lasers. Here, we present the first investigation of photon pair generation in silicon waveguides in a continuous regime. The source is characterized by coincidence measurements. We uncover the presence of unexpected noise which had not been noticed in earlier experiments. Subsequently, we present advances towards integration of the photon pair source with other components on the chip. This is demonstrated by photon pair generation in a Sagnac loop interferometer and inside a micro-ring cavity. Comparison with the straight waveguide shows that these are promising avenues for improving the source. In particular photon pair generation in the micro-ring cavity yields a source with a spectral width of approximately 150 pm resulting in a spectral brightness increased by more than 2 orders of magnitude.
Full-text available
Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric pi-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.
Full-text available
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multimode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
Full-text available
We demonstrate phase and frequency stabilization of a diode laser at the thermal noise limit of a passive optical cavity. The system is compact and exploits a cavity design that reduces vibration sensitivity. The subhertz laser is characterized by comparison with a second independent system with similar fractional frequency stability (1 X 10(-15) at 1 s). The laser is further characterized by resolving a 2 Hz wide, ultranarrow optical clock transition in ultracold strontium. (c) 2007 Optical Society of America
We develop a quantum theory of propagation in dispersive nonlinear media. Quantum fluctuations are handled via the coherent-state positive-P representation. A stochastic nonlinear Schr\"odinger equation in the field variables is obtained which predicts wide band squeezing in the region of anomalous dispersion. For soliton inputs, fluctuations are reduced over the soliton bandwidth. This leads to quantum solitons which have quadrature fluctuations less than the level of vacuum fluctuations.
This paper is the first part of a two-part study on the quantum nonlinear Schrödinger equation [the second paper follows: Lai and Haus, Phys. Rev. A 39, 854 (1989)]. The quantum nonlinear Schrödinger equation is solved analytically and is shown to have bound-state solutions. These bound-state solutions are closely related to the soliton phenomenon. This fact has not been pursued in the literature. In this paper we use the time-dependent Hartree approximation to construct approximate bound states and then superimpose these bound states to construct soliton states. This construction enables us to study the quantum effects of soliton propagation and soliton collisions.
The quantum theory of pulse propagation in a nonlinear optical fiber is presented using the time-dependent Hartree approximation. This formulation clarifies the connections between the quantum theory of soliton propagation and single-mode theories that have been used to describe the effects of self-phase modulation. An approximate solution is obtained for coherent-state soliton pulses that gives excellent agreement with numerical calculations for the quadrature phase amplitudes of the field. These amplitudes are found to undergo a series of collapses and revivals with propagation; the first collapse is related to the appearance of interference fringes in the field Q function.
Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.
We review recent research on nonlinear optical interactions in waveguides with sub-micron transverse dimensions, which are termed photonic nanowires. Such nanowaveguides, fabricated from glasses or semiconductors, provide the maximal confinement of light for index guiding structures enabling large enhancement of nonlinear interactions and group-velocity dispersion engineering. The combination of these two properties make photonic nanowires ideally suited for many nonlinear optical applications including the generation of single-cycle pulses and optical processing with sub-mW powers.
  • R W Ziolkowski
  • J B Judkins
R. W. Ziolkowski and J. B. Judkins, J. Opt. Soc. Am. B 10, 186 (1993).
  • M H P Pfeiffer
  • J Liu
  • A S Raja
  • T Morais
  • B Ghadiani
  • T J Kippenberg
M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, Optica 5, 884 (2018).
  • L Dicarlo
  • J M Chow
  • J M Gambetta
  • L S Bishop
  • B R Johnson
  • D I Schuster
  • J Majer
  • A Blais
  • L Frunzio
  • S M Girvin
L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, et al., Nature 460, 240 (2009).
  • J H Plantenberg
  • P C De Groot
  • C J P M Harmans
  • J E Mooij
J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, Nature 447, 836 (2007).
  • D Gottesman
  • A Kitaev
  • J Preskill
D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).
  • S L Braunstein
  • P Van Loock
S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
  • H J Kimble
H. J. Kimble, Nature 453, 1023 (2008).
  • C Weedbrook
  • S Pirandola
  • R García-Patrón
  • N J Cerf
  • T C Ralph
  • J H Shapiro
  • S Lloyd
C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).
  • S Takeda
  • A Furusawa
S. Takeda and A. Furusawa, Phys. Rev. Lett. 119, 120504 (2017).
  • S Takeda
  • A Furusawa
S. Takeda and A. Furusawa, APL Photonics 4, 060902 (2019).
  • W Asavanant
  • Y Shiozawa
  • S Yokoyama
  • B Charoensombutamon
  • H Emura
  • R N Alexander
  • S Takeda
  • J I Yoshikawa
  • N C Menicucci
  • H Yonezawa
W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. I. Yoshikawa, N. C. Menicucci, H. Yonezawa, et al., Science 366, 373 (2019).
  • M Gu
  • C Weedbrook
  • N C Menicucci
  • T C Ralph
  • P Van Loock
M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, Phys. Rev. A 79, 062318 (2009).
  • K Marshall
  • R Pooser
  • G Siopsis
  • C Weedbrook
K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook, Phys. Rev. A 91, 032321 (2015).
  • P Marek
  • R Filip
  • A Furusawa
P. Marek, R. Filip, and A. Furusawa, Phys. Rev. A 84, 053802 (2011).
  • M Yukawa
  • K Miyata
  • H Yonezawa
  • P Marek
  • R Filip
  • A Furusawa
M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, and A. Furusawa, Phys. Rev. A 88, 053816 (2013).
  • S D Bartlett
  • B C Sanders
S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042304 (2002).
  • P Marek
  • R Filip
  • H Ogawa
  • A Sakaguchi
  • S Takeda
  • J I Yoshikawa
  • A Furusawa
P. Marek, R. Filip, H. Ogawa, A. Sakaguchi, S. Takeda, J. I. Yoshikawa, and A. Furusawa, Phys. Rev. A 97, 022329 (2018).
  • K Miyata
  • H Ogawa
  • P Marek
  • R Filip
  • H Yonezawa
  • J I Yoshikawa
  • A Furusawa
K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J. I. Yoshikawa, and A. Furusawa, Phys. Rev. A 93, 022301 (2016).
  • N K Langford
  • S Ramelow
  • R Prevedel
  • W J Munro
  • G J Milburn
  • A Zeilinger
N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011).
  • S Ramelow
  • A Farsi
  • Z Vernon
  • S Clemmen
  • X Ji
  • J E Sipe
  • M Liscidini
  • M Lipson
  • A L Gaeta
S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, Phys. Rev. Lett. 122, 153906 (2019).
  • W Qin
  • A Miranowicz
  • P.-B Li
  • X.-Y Lü
  • J Q You
  • F Nori
W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lü, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018).
  • C Leroux
  • L C G Govia
  • A A Clerk
C. Leroux, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett. 120, 093602 (2018).
  • Y Michael
  • L Bello
  • M Rosenbluh
  • A Pe'er
Y. Michael, L. Bello, M. Rosenbluh, and A. Pe'er, npj Quantum Inf. 5, 81 (2019).
  • V V Albert
  • K Noh
  • K Duivenvoorden
  • D J Young
  • R T Brierley
  • P Reinhold
  • C Vuillot
  • L Li
  • C Shen
  • S M Girvin
V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, et al., Phys. Rev. A 97, 032346 (2018).
  • C Flühmann
  • T L Nguyen
  • M Marinelli
  • V Negnevitsky
  • K Mehta
  • J P Home
C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home, Nature 566, 513 (2019).
  • Z L Newman
  • V Maurice
  • T Drake
  • J R Stone
  • T C Briles
  • D T Spencer
  • C Fredrick
  • Q Li
  • D Westly
  • B R Ilic
Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, et al., Optica 6, 680 (2019).
  • S Ghose
  • B C Sanders
S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855 (2007).
  • R Yanagimoto
  • E Ng
  • T Onodera
  • H Mabuchi
R. Yanagimoto, E. Ng, T. Onodera, and H. Mabuchi, Phys. Rev. A 100, 033822 (2019).
  • L Boivin
  • F X Kärtner
  • H A Haus
L. Boivin, F. X. Kärtner, and H. A. Haus, Phys. Rev. Lett. 73, 240 (1994).
  • L G Joneckis
  • J H Shapiro
L. G. Joneckis and J. H. Shapiro, J. Opt. Soc. Am. B 10, 1102 (1993).
  • E Schmidt
  • J Jeffers
  • S M Barnett
  • L Knöll
  • D.-G Welsch
E. Schmidt, J. Jeffers, S. M. Barnett, L. Knöll, and D.-G. Welsch, J. Mod. Opt. 45, 377 (1998).
  • K J Blow
  • R Loudon
  • S J D Phoenix
K. J. Blow, R. Loudon, and S. J. D. Phoenix, J. Opt. Soc. Am. B 8, 1750 (1991).
  • P M Leung
  • W J Munro
  • K Nemoto
  • T C Ralph
P. M. Leung, W. J. Munro, K. Nemoto, and T. C. Ralph, Phys. Rev. A 79, 042307 (2009).
  • B Brecht
  • A Eckstein
  • A Christ
  • H Suche
  • C Silberhorn
B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, New J. Phys. 13, 065029 (2011).
  • M Shirasaki
  • H A Haus
M. Shirasaki and H. A. Haus, J. Opt. Soc. Am. B 7, 30 (1990).
  • N Korolkova
  • R Loudon
  • G Gardavsky
  • M W Hamilton
  • G Leuchs
N. Korolkova, R. Loudon, G. Gardavsky, M. W. Hamilton, and G. Leuchs, J. Mod. Opt. 48, 1339 (2001).
  • M Pu
  • L Ottaviano
  • E Semenova
  • K Yvind
M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, Optica 3, 832 (2016).
  • P Kok
  • W J Munro
  • K Nemoto
  • T C Ralph
  • J P Dowling
  • G J Milburn
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
  • Y.-S Ra
  • A Dufour
  • M Walschaers
  • C Jacquard
  • T Michel
  • C Fabre
  • N Treps
Y.-S. Ra, A. Dufour, M. Walschaers, C. Jacquard, T. Michel, C. Fabre, and N. Treps, Nat. Phys. (2019).
  • P D Drummond
  • S J Carter
P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4, 1565 (1987).
  • M Rosenbluh
  • R M Shelby
M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153 (1991).