Available via license: CC BY 4.0
Content may be subject to copyright.
Molecules2020,25,63;doi:10.3390/molecules25010063www.mdpi.com/journal/molecules
Review
Quercetin,EpigallocatechinGallate,Curcumin,
andResveratrol:FromDietarySourcestoHuman
MicroRNAModulation
ErikaCione
1
,ChiaraLaTorre
1
,RobertoCannataro
1,2
,MariaCristinaCaroleo
1
,
PierluigiPlastina
1
andLucaGallelli
2,
*
1
DepartmentofPharmacy,HealthandNutritionalSciences,DepartmentofExcellence2018–2022,
UniversityofCalabria,EdificioPolifunzionale,87036Rende(CS),Italy;erika.cione@unical.it(E.C.);
latorre.chiara@libero.it(C.L.T.);r.cannataro@gmail.com(R.C.);mariacristinacaroleo@virgilio.it(M.C.C.);
pierluigi.plastina@unical.it(P.P.)
2
DepartmentofHealthScience,SchoolofMedicine,UniversityofMagnaGraecia,ClinicalPharmacology
Unit,MaterDominiHospital,88100Catanzaro,Italy
*Correspondence:gallelli@unicz.it;Tel.:+39‐0961‐712322
Received:30November2019;Accepted:20December2019;Published:23December2019
AcademicEditor:SusanaM.Cardoso;AlessiaFazio
Abstract:Epidemiologicstudiessuggestthatdietarypolyphenolintakeisassociatedwithalower
incidenceofseveralnon‐communicablediseases.Althoughseveralfoodscontaincomplexmixtures
ofpolyphenols,numerousfactorscanaffecttheircontent.Besidesthewell‐knowncapabilityofthese
moleculestoactasantioxidants,theyareabletointeractwithcell‐signalingpathways,modulating
geneexpression,influencingtheactivityoftranscriptionfactors,andmodulatingmicroRNAs.Here
wedeeplydescribefourpolyphenolsusedasnutritionalsupplements:quercetin,resveratrol,
epigallocatechingallate(ECGC),andcurcumin,summarizingthecurrentknowledgeaboutthem,
spanningfromdietarysourcestotheepigeneticcapabilitiesofthesecompoundsonmicroRNA
modulation.
Keywords:nutrients;antioxidants;commonuse;phenoliccompounds
1.Introduction
Epidemiologicstudiessuggestthatdietarypolyphenolintakeisassociatedwithalower
incidenceofseveralnon‐communicablediseasesincludingtype2diabetesandcardiovascular
disease(CVD)[1].Theyareoftenlinkedtoexcessiveproductionofreactiveoxygenspecies(ROS)
[2,3].Polyphenolsarethemostabundantantioxidantsinourdietandarecommonlypresentinfruits
[4],vegetables,cereals,olives[5],drylegumes[6],licorice[7],chocolateandbeverages,suchastea,
coffee,andwine.Dividedintodifferentclasses,accordingtotheirchemicalstructure,polyphenols
describeessentiallyphenolicacids,stilbenes,flavonoids,lignans,andcurcuminoids(seeFigure1).
Besidesthewell‐knowncapabilityofthesemoleculestoactasantioxidants,theyareabletointeract
withcell‐signalingpathways,modulatinggeneexpressionintwodifferentways:i)influencingthe
activityoftranscriptionfactorsandii)epigenetically,modulatingmicroRNAs.Herewedeeply
describefourpolyphenolsusedasnutritionalsupplements:quercetin,epigallocatechingallate
(ECGC),curcumin,andresveratrol,summarizingthecurrentknowledgeaboutthem,spanningfrom
dietarysourcestotheirepigeneticcapabilities.
Molecules2020,25,632of21
2
Figure1.Contentofphenolicacids,stilbenes,flavonoids,lignans,andcurcuminoids(expressedas
mg/100goffood)inthemainfoodsourcesofthesepolyphenolicclasses,accordingtothedatabase
Phenol‐Explore(http://phenol‐explorer.eu/).
2.Polyphenols
2.1.DietarySources
Polyphenols,mainlyflavonoids,aresecondaryplantmetabolitescontainedinfruitsand
vegetables[8].Someofthemarespecificofparticularfoods,suchasflavanonesincitrusfruits[9],
isoflavonesinsoy,andphloridzininapples.Ontheotherhand,otherpolyphenols,suchasquercetin,
arefoundinaplethoraofvegetableproducts[10].Biochemicalandchemicalactivitiesofpolyphenols
havebeentestedwithdifferentanti‐inflammatoryandantioxidantmethods[9,11].Although,several
foodscontaincomplexmixturesofpolyphenols,numerousfactorssuchclimate(sunexposure,
precipitation)and/oragronomyandstorageaswellasmaturityatthetimeofharvest,canaffecttheir
contentinplants.Furthermore,simplypeelingfruitsorvegetablescansignificantlyreduce
polyphenoliccontent,sincethesesubstancesareoftenpresentinhighconcentrationsintheexternal
parts.
2.1.1.PhenolicAcids
Phenolicacidsarederivedfromtwomainphenoliccompounds:benzoicandcinnamicacids.
Examplesofhydroxybenzoicderivativesaregallic,vanillic,andsyringicacids,whereascaffeic,
ferulic,sinapic,andp‐coumaricacidsbelongtohydroxycinnamicacids[12,13].Fruitsandvegetables
arecharacterizedmainlybythepresenceoffreephenolicacids,whereasgrainsandderivativesby
boundphenolicacids[14].Hydroxycinnamicacidsarepresentathighconcentrationsinfruits,
vegetables,tea,cocoa,wine,coffee,andwholegrains[15].Theyexisteitherinfreeorconjugatedform
Molecules2020,25,633of21
3
inplants[16].Thegreatinterestinphenolicacidsisassociatedwiththeiruseinfoodtechnologydue
totheirhighpotentialinfoodpreservation[17].
2.1.2.Lignans
Lignansarepresentinawidevarietyofplantfoods,includingseeds(flax,pumpkin,sunflower,
poppy,sesame),wholegrains(rye,oats,barley),bran(wheat,oat,rye),beans,fruit(berriesin
particular),andvegetables[18–20].Amongedibleplantcomponents,themostconcentratedlignan
sourcesaresesameandflaxseeds.Sesameseedsexhibitthesecondhighestconcentrationof
sesaminolfollowedbycashewnuts(seeFigure2).Regardingvegetables,theBrassicafamilycontains
pinoresinol,whilespinach,whitepotatoes,andmushroomscontainlowamountsoflignin[21–23].
Secoisolariciresinolandmatairesinolwerethefirstlignansidentifiedinfoods[24,25].Avarietyof
factorscouldaffectlignancontentsinplants,includinggeographiclocation,climate,maturity,and
storageconditions.
Figure2.Mainfoodscontaininglignans,mostlysesaminol,accordingtothedatabasePhenol‐Explore
(http://phenol‐explorer.eu/).
2.1.3.Flavonoids
Amongseveralflavonoidspresentinfoods,quercetin(aflavonol)andepigallocatechin‐3‐gallate
(aflavanol)gainedourscientificinterest.Quercetinprimarilyentersintothedietasquercetin‐3‐
glucoside(isoquercetin).Thisishydrolyzedinthesmallintestineandisrapidlyabsorbed.Foodsrich
inquercetinincludeprincipallyapples,berries,grapes,butalsoredonions,broccoli,blacktea,green
tea,pepper,redwine,tomatoes,andsomefruitjuices(seeFigure3).Theamountofquercetinreceived
fromfoodisprimarilydependentonanindividual’sdietaryhabits[26,27].Itisalsoimportanttonote
thatthefoodcontentofquercetinreflectsvariationsinsoilquality,timeofharvest,andstorage
conditions.Thewayofcookingfoodalsohasanoticeableeffectonquercetincontent:forexample,
onionsloseabout75%oftheirinitialquercetincontentafterboilingfor15min,65%after
microwavingand30%afterfrying.Recentworksdescribetheroleofthismoleculeagainstchronic
diseases,suchastype2diabetesbystimulatinginsulinsecretion[28–31].
Molecules2020,25,634of21
4
Figure3.Foodsthatcontainsquercetin,accordingtothedatabasePhenol‐Explore(http://phenol‐
explorer.eu/).
Epigallocatechin‐3‐gallate(EGCG)isthemoststudiedmoleculeoftheflavanolclass.Itisa
catechinconjugatedwithgallicacidandisabundantingreentea(seeFigure4)[32]andcocoabased
products[33].Themaindietarysourcesofcatechins,determiningtheintake,inEuropeandUSAare
cocoaproducts,tea,andpomefruits[34].Cocoahasthehighestcontentofcatechins,followedby
prunejuiceandbroadbeanpod.Moreover,açaíoil,obtainedfromthefruitoftheaçaípalminthe
formof(−)‐epicatechinand(+)‐catechin,ispresentinarganoil[35].Itwasreportedthatgreentea
consumptionhasbeencorrelatedwithalowincidenceofchroniccardiovasculardisease[36].Inany
case,comparedtoothercatechinsfoundintea,EGCGpossessesthemostimportantbiological
activitiesoninhibitionofangiogenesisand,therefore,cancerprogressionlikelyduetoitsgalloyl
moiety[37,38].
Figure4.Epigallocatechin‐3‐gallate(EGCG)fromgreentea,accordingtothedatabasePhenol‐
Explore(http://phenol‐explorer.eu/).
2.1.4.Stilbenes
Lowquantitiesofstilbenesarepresentinthehumandiet,andthemainrepresentativeis
resveratrol.ThiscompoundwasfirstisolatedfromtherootsofVeratrumgrandiflorumO.Loesin1940
andlaterfromtherootsofPolygonumcuspidatum[39].Itisproducedbyplantsinresponsetoinfection
bypathogens[40–42]ortoavarietyofstressconditions.Ithasbeendetectedinmorethan70plant
species,includinggrapes,berries,andpeanuts(seeFigure5).Severalstudieshighlightedthatthis
compoundhasawiderangeofbiologicalactivities[43,44].
Molecules2020,25,635of21
5
Figure5.Structureofresveratrolanditscontentinmainfoods,accordingtothedatabasePhenol‐
Explore.
2.1.5.Curcumin
Curcuministhemostwidelystudiedamongcurcuminoids.Itisanaturalphenolicthatis
responsiblefortheyellowcolorofturmeric(Curcumalonga),amemberofthegingerfamily,
Zingiberaceae.Themostcommonapplicationsareasaningredientindietarysupplements,in
cosmetics,andasflavoringforfoods,suchasturmeric‐flavoredbeveragesinSouthandSoutheast
Asia.Asafoodadditivefororange–yellowcoloringinpreparedfoods,itsEnumberisE100inthe
EuropeanUnion.Curcuminisnotverywidespreadinfood,infactthefoodsrichestincurcuminare
onlyturmericplantandcurrypowder(Figure6)[45].
Figure6.Structureofcurcuminanditscontentinmainfoods,accordingtothedatabasePhenol‐
Explore.
2.2.Chemistry
Polyphenolsrepresentthemostabundantcompoundsamongthesecondarymetabolites
producedbyplants,withmorethan8000identifiedcompounds,rangingfromsmallmoleculessuch
asphenolicacidstohighlypolymerizedsubstancessuchastannins[46].Theyareproducedviathe
phenylpropanoidpathwayinwhichphenylalaninerepresentsthestartingcompound[47].Froma
chemicalpointofview,polyphenolsarecharacterizedbythepresenceofoneormorearomaticrings
bearingoneormorehydroxylgroups.AnearlyclassificationwasfirstsuggestedbyManachand
Molecules2020,25,636of21
6
colleagues[48],whodistinguishedfourclassesofpolyphenols,namely:1)phenolicacids,2)
flavonoids,3)stilbenes,and4)lignans.Phenolicacidscanbefurthersub‐dividedintotwoclasses:
hydroxybenzoicandhydroxycinnamicacids(seeTable1).Thesecompoundsexistinthefreeformas
wellasintheesterifiedform.Caffeicacidismostoftenconjugatedwithquinicacidtoform
chlorogenicacid,whichisthemajorphenoliccompoundincoffee,whileferulicacidisabundantly
presentincerealswhereitisesterifiedtohemicellulosesinthecellwall[49].
Table1.Structureandclassificationofphenolicacids.
Hydroxybenzoicacids
NameR1R2R3
p‐HydroxybenzoicacidHOHH
ProtocatechuicacidOHOHH
VanillicacidOCH3OHH
GallicacidOHOHOH
SyringicacidOCH3OHOCH3
Hydroxycinnamicacids
AcidR1R2R3
p‐CoumaricacidHOHH
CaffeicacidOHOHH
FerulicacidOCH3OHH
SinapicacidOCH3OHOCH3
Theflavonoidfamilyrepresentsthelargestclassofpolyphenols.Thebasicflavonoidstructure
containstwoaromaticrings(labeledAandB)connectedbyaC3linkagewhichisnormally
incorporatedintoanotherring(labeledC)[50].Flavonoidsaresub‐dividedintosixmainsubgroups:
flavones,isoflavones,flavonols,flavanones,anthocyanins,andflavan‐3‐ols,accordingtothe
oxidationstateofthecentralCring.Structuralvariationineachsubgroupdependsonthenumber
andpositionofhydroxylandmethoxylgroups.Moreover,thesecompoundsexistintheirfreeform,
aswellasintheesterified,prenylated,andglycosylatedforms(seeFigure7)[51,52].
FlavoneIsoflavoneFlavonol
FlavanoneAnthocyaninFlavan‐3‐ol
Figure7.Basicstructureandclassificationofthemostimportantflavonoids.
Quercetinusuallyoccursinplantsasglycosides,linkedwithvarioussugarmoieties,mostly
glucose,butalsogalactose,rhamnose,andothers.Flavan‐3‐olscanbefoundintheiresterifiedforms,
linkedtoagallatemoiety,asinthecaseofepigallocatechin‐3‐gallate(EGCG).Anthocyanins(from
theGreek‘anthos’,flower)areresponsiblefortheorange,red,blue,andpurplecolorsofflowersand
fruitsofmanyplants.Theyaretheglycosylatedformofthecorrespondinganthocyanidins
(aglycones)[52].
Molecules2020,25,637of21
7
Tanninsrepresentanimportantgroupofpolymericphenoliccompoundsandareusually
dividedintotwosubgroups:hydrolyzabletanninsandcondensedtannins.Hydrolyzabletannins
containacentralcoreofglucoseesterifiedwithgallicacidmoieties(gallotannins),orwith
hexahydroxydiphenicacid(ellagitannins).Thesecompoundshaveamolecularweightrangingfrom
2000to5000Daltons.Condensedtannins,alsoreferredtoasproanthocyanidins,areoligomersor
polymersofflavan‐3‐olslinkedthroughaninterflavancarbonbond[49].
Stilbenesandlignansarelesscommonplantphenolics.Resveratrol(3,4′,5‐trihydroxystilbene,
seeFigure8)isthemostinvestigatedcompoundbelongingtothestilbeneclassexistingincisand
transforms.Itispredominantlyfoundingrapesandgrapejuiceastrans‐resveratrolglucoside(trans‐
piceid).
Figure8.Structureofresveratrol(R=H)andresveratrolglucoside(R=glucose).
Curcumin[1,7‐bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6heptadiene‐3,5‐dione]isanon‐polar
polyphenol.Itisabis‐α,β‐unsaturatedβ‐diketoneandexistsindifferenttautomericforms(seeFigure
9).Theβ‐diketoneformprevailsinacidicandneutralaqueoussolutions,whiletheenolform
predominatesinmorealkalinemedia[53].Inthecaseofcurcumin,thearomaticringsare
functionalizedwithhydroxyandmethoxygroups,whereastheothercurcuminoidslackoneorboth
methoxygroups(desmethoxycurcuminandbisdesmethoxycurcumin,respectively).
Figure9.Structureandketo–enoltautomerismofcurcumin(R1=R2=OMe),desmethoxycurcumin(R1
=OMe,R2=H),andbisdesmethoxycurcumin(R1=R2=H).
2.3.NutritionalSupplements
Followingthepromisingresultfrominvivoandinvitrostudies,overthelastdecade,therewas
astrongdevelopmentofnutritionalsupplementsbasedonpolyphenols.However,strongandsolid
studiesonhumanefficacyarestilllacking.Despitethat,quercetin,EGCG,curcumin,andresveratrol
aremarketedasdietarysupplements.ThesemoleculeshavebeenrecognizedasGRAS(generally
recognizedassafe)bytheFoodandDrugAdministration(FDA)aswellasbytheEuropeanFood
SafetyAuthority(EFSA)forthebeneficialeffectsontheprotectionofDNA,proteins,andlipidsfrom
oxidativedamage,highlightingtheirantioxidantpower.
Quercetinisusedasanergogenicsupplement(asupplementthatcouldimprovesports
performance)buttheresultsonthiscapabilityarecontroversial.Forexample,Neimanandcoworkers
supplementedquercetintocyclistsfortwoweeks(1gperday)andanalyzedmuscularbiopsyfinding
Molecules2020,25,638of21
8
aslightlysignificantimprovementinmitochondrialdensity[54].Ontheotherhands,meta‐regression
analysisrelativetosubjects’fitnesslevelandplasmaquercetinconcentrationachievedby
supplementationwasnotsignificant[55].ThepointofviewofKerksickandtheInternationalSociety
ofSportNutritionisthatquercetinissafeandisagoodantioxidant,butitneedsmorestudiesto
evaluateitsergogenicpower[56].
EGCGfromgreenteaandgreenteaextractsiswidelyusedintraditionalChinesemedicine,so
itisconsideredsafeeveninhugedosages(>1–3gperday)itcanbeapro‐oxidantbringingnegative
effectssuchreactiveoxygenspecies(ROS)production[54,57].Despitethisdichotomiceffect,todate
nostudiesconfirmedthenegativeeffectofEGCGinhumans.Incontrast,aninterestingstudy
performedbyPervinandcoworkersshowedthatgreenteaconsumptionleadstoanimprovementin
cognitivefunction[58].Recently,Xicotaandco‐workersshowedthatEGCGhasmodestbeneficial
effectonweightmanagementinDownsyndromesubjectsandcognitivefunction[59].Furthermore,
EGCGhasalsobeenseentohaveasex‐dependenteffectonlipidprofilethatwasrelatedtochanges
inbodymassandcomposition.
CurcuminiswidespreadinmanyAsiancuisinesaswellasinAyurvedicmedicine[60].Besides
that,theantioxidantandanti‐inflammatorypropertiesofcurcuminarewellknown[61],dealingwith
variouspathologiessucharthritisandosteoarthritis[62–67],obesityanddiabetes[68,69].Inaddition
toitsverylowbioavailability,therealmechanismofactionofcurcuminisstilluncertain.Itwas
speculatedthatitprobablyactsviathe“sanitation”ofthegutandtheconsequenthealingof
inflammation.Therefore,itwassupposedthatthemicrobiomecouldyieldactivemetabolitesfrom
curcumin.However,themechanismsofactionremainunclear;itprobablypossessesanepigenetic
modulatingpowerbuttodateonlyinvitrostudiesareinsupportoftheseimportanteffects[70].
Inthe1992,Renaudandco‐workerspublishedaninterestingstudy,pointingoutwhatisknown
asthe“Frenchparadox”[71].ThelowsusceptibilityofFrenchpeopletoCVDlinkedtotheuseofred
wine.Redwineandobviouslygrapeareasourceofresveratrol,apowerfulantioxidantwithbenefits
formusclestrengthwithanti‐inflammatoryeffects[72,73].Resveratrolisabletoregulatemetabolism
[74],anditisusefulinthetreatmentofneurodegenerativediseases[75],diabetes[76],cardiovascular
diseases[77–79],andcancer[80].Inhumans,adoseof450mgperdayisconsideredsafe[81].
2.4.MicroRNAs
Usedasnutritionalsupplements,polyphenolsareabletoinfluencetheactivityoftranscription
factorsortomodulatemicroRNAs(miRNAs).miRNAsaredefinedassmallnoncodingRNA
molecules,havingfrom21to22nucleotides.Theirsynthesisproceedsthroughwell‐defined
biochemicalsteps:theprimarytranscriptsalsocalledhairpin‐shaped(knownaspre‐miRNAs)are
derivedfrom:i)intronsoftheircorrespondingtranscriptionpartsandii)intergenicregionsofDNA,
catalyzedbyRNaseII;thecatalyticcleavageofthepre‐miRNAsgeneratessmallertranscripts,called
pre‐miRNAsabout70nucleotideslong[82].ThisbiochemicalstepiscatalyzedbythepolymeraseIII
Drosha.Then,DGCR8aproteinasadsRNA(doublestrand‐RNA)bindingmoleculemakesa
complexwithDrosha,forminga“microprocessor”abletocuttheinitialtranscripttoa70‐nucleotide
lengthwithanincompletestem‐loopstructure,calledpre‐miRNA.Thepre‐miRNAsareasubstrate
thateasilyproceedtothecytoplasmthroughthecarrierExportin5[83].Then,aspecifichelicase,
knownasDicerRNase,togetherwithaseconddsRNAbindingprotein,calledTAR‐RNAbinding
protein(TRBP)performsthelastcleavageprocessofpre‐miRNAsintheirhairpinsiteandconverts
themtosmalldouble‐strandedRNAs,containingthematuremiRNAanditscomplementarystrand.
TRBPisabletorecruittheargonaute(AGO)proteinasthemainfactorforRNA‐induced
silencingcomplex(RISC)loading[83].Finally,maturemiRNAsarepackagedintoexosomesfor
extracellularandbloodstreamtransport[84].
Theireffectisrecognizedafterspecificbindingtocomplementarynucleotidesoftheseedregion
(about2–8nucleotideslong)oftargetmRNAsuppressingitstranslationandstability[85].Recently,
theroleofnutritionand
microRNAs
aspowerfulregulators
meta
bolicfunctionsandthe
maintenanceofoxidativestressisemerging[86–88].Sincedietary
factors
mayhaveaninfluenceon
Molecules2020,25,639of21
9
miRNAbiogenesis,itseemsreasonabletoassumethatsome
bioactive
compounds
presentin
different
foods
may
modulatethe
development
and
progressionof
certain
diseases
.Therefore,
bioactivecompoundspresentinfoodsmayaffectendogenousmiRNAsynthesis.
Itwasdemonstratedthatnaturalcompoundssuchaspolyphenolscanstimulatetumor
suppressorgenes,alteringmiRNAexpressions.Inthisregard,s
everalinvitrostudiesshowthe
effectofquercetin,EGCG,curcumin,andresveratrolonmiRNAexpressioninmodelsystems.
Currently,manyinvestigationshavefocusedonmodifyingthemiRNAfunctionsincancercellsto
achievetherapeuticapproaches.Inaddition,inthecaseofresveratrol,ahumanstudyhasalsobeen
carriedout.Atthemomentofthewritingofthisarticle,2675humanmaturemiRNAsequencehave
beendescribedinmiRBase22(http://www.mirbase.org/).
2.4.1.QuercetinandMicroRNAs
Theprotectiveeffectsofquercetinonhumanhealtharemediatedbymultifaceted,pleiotropic
actionevenfromanepigeneticpointofview.Currently,muchresearchhasfocusedonmodulating
themiRNAexpressionincancercellsinordertoachievetherapeuticapproaches.Quercetinperse,
wasabletoincreasetheexpressionofmiR‐146ainhumanbreastcancercells[89].Similarresultswere
achievedbyquercetinderivativesonmiR‐146ainlipopolysaccharide(LPS)‐treatednormalcolon
cells,aswellasinmurinemacrophagesinwhichmiR‐155expressionwasdecreased[90].The
upregulationofmiR‐146ainducedToll‐likereceptor4(TLR4)stimulationwhichregulatesnuclear
factorkappa‐light‐chain‐enhancerofactivatedBcells(NF‐κB)andotherTLRmediatorsof
inflammation[91].
Theinfluenceofquercetinwasalsostudiedinseveraltypesofhumancancercelllinespointing
outtheupregulationoflet‐7a,let‐7c,miR‐200b‐3p,andmiR‐142‐3pinpancreaticductal
adenocarcinoma[92–95].Theupregulationofmir‐let‐7familyfunctionasinhibitormoleculesableto
targetK‐Rasgeneandthereforeaffectsproliferationfunctioningasbiomarkersforbothprognosis
andtherapyforprecisionmedicineincancer[92,96];whilemiR‐200b‐3pandmiR‐142‐3pregulates
themodeofself‐renewingdivisionsandtheheatshockprotein70,respectively[92–95].
Furthermore,miR‐16,miR‐217,andmiR‐145weremodulatedbyquercetininlung
adenocarcinoma,osteosarcoma,andovariancancercells,respectively[97–99].Inthelung,miR‐16
wasabletodownregulateClaudin‐2whichisalsoamediatorofleakygutbarrierduringintestinal
inflammation[97,100].Ontheotherhand,miR‐217enhancescisplatinsensitivityinterferingwithK‐
Raspathways[98]andmiR‐145inhibitsandcontroltargetinggenesthathavesimilarbehaviorin
apoptosisandindifferentGeneExpressionOmnibus(GEO)databases[99,101].
2.4.2.EGCGandMicroRNAs
Similartootherpolyphenols,EGCGwasextensivelystudiedininflammation.Inparticular,
whenEGCGisusedininterleukin‐1‐beta(IL‐1β)‐stimulatedhumanosteoarthritischondrocytescell
line,itwasabletoupregulateanddownregulateaplethoraofmiRNAs.Especially,let‐7family(let‐
7a‐5p,let‐7b‐5p,let‐7c,let‐7d‐5p,let‐7f‐5p,let‐7i‐5p),miR‐140‐3p,miR‐193a‐3p,miR‐199a‐3p,miR‐
27b‐3p,miR‐29a‐3p,miR‐320b,miR‐34a‐5p,miR‐3960,miR‐4284,miR‐4454,miR‐497‐5p,miR‐5100,
andmiR‐100‐5pwereupregulated[102].ItisofnotethatmiRsexosomecargoistodayproposedin
theosteoarthritismanagement[103].Withregardtothis,recentstudiesshowedthattheexosomes
derivedfrommesenchymalstemcellsmaintainchondrocytehomeostasis,amelioratingthe
pathologicalseverityofthediseasethisisduetothemiR‐100‐5pwhichinturnsinhibitsthemTOR‐
autophagypathway[104].Inthesamesetofexperiments,researcherdocumentedthatEGCGwas
abletodecreaselet‐7e‐5p,miR‐103a‐3p,miR‐151a‐5p,miR‐195‐5p,miR‐222‐3p,miR‐23a‐3p,miR‐23b‐
3p,miR‐26a‐5p,miR‐27a‐3p,miR‐29b‐3p,miR‐3195,miR‐3651,miR‐4281,miR‐4459,miR‐4516,miR‐
762,andmiR‐125b‐5pexpression[102].ThedecreaseofthislattermiRisnotpositiveforthe
preventionofcartilagebreakdowninosteoarthritis[105].
SincemodulationofmiRNAexpressionincancercellscouldbeatherapeuticstrategy,EGCG’s
biochemicaleffectswerealsostudiedincancer.EGCGwasabletoupregulatemiR‐140‐3pandmiR‐
Molecules2020,25,6310of21
10
221inmelanomaandhepatomacelllines,respectively[106,107]inhibitingosteopontinininduced
liverfibrosis[107].SimilarresultsformiR‐140‐3pwereobtainedunderEGCGtreatmentin
chondrocyte[102].Furthermore,EGCGinducedtheincreaseofmiR‐3663‐3p,miR‐1181,miR‐3613‐
3p,miR1281,andmiR‐1539andthedecreaseofmiR‐221‐5p,miR‐374b,miR‐4306,miR‐500a‐5p,and
miR590‐5pinhumandermalpapillacells[108]fromscalphair.Thesensitivityofthescalpisalso
higherinmigraine,andthislattermiRwasfounddownregulatedinhumanssufferingfrompain‐
migraine.ThelevelofthismiR‐590‐5pwasrestoredwithdiet[109].Interestingly,greenteais
recommendedtorelievemigraineattackfrequency[110].
2.4.3.CurcuminandMicroRNAs
Curcumin treatmentonschwannomacellsbymiRsarrayrevealedthatmiR‐350,miR‐17‐2‐3p,
let7e‐3p,miR‐1224,miR‐466b‐1‐3p,miR‐18a‐5p,andmiR‐322‐5pweredownregulatedwhilemiR‐
122‐5p,miR‐3473,miR‐182,andmiR‐344a‐3pwereupregulated.ThislattermiRshavearoleinthe
controlofapoptosisinschwannomacells[111].Inaddition,inseveraltypesofcancer,curcuminhas
beenshowntoplayaroleinthemodulationofmiRscontrollingapoptosis,i.e.,miR‐33bandmiR‐
205‐5pareupregulatedinmelanomacancercellswhilemiR‐21wasdownregulated.Onthecontrary,
incolorectalcancer,upontreatmentwithcurcumin,miR‐21,miR‐3a/c,andmiR‐27awere
upregulated,andmiR‐200b/c,miR‐141,miR‐101,miR‐429,andmiR‐34adisplayedlowerexpression
withrespecttotheuntreatedcells[112].
UpregulationoftheclustermiR‐192‐5p/215wasreportedinlungcanceruponcurcumin
treatmentaswellasmiR‐9,miR‐205,miR‐200a/b,miR‐15a/16‐1,andmiR‐203inovarian,prostate,
hepatocellular,leukemia,andbladdercancercells,respectively.Inbreastcancercells,miR‐19and
miR‐15a/16‐1werefoundupregulated,whereasmiR‐34aandmiR‐181bweredownregulated.In
thyroidcarcinomasmiR‐21andmiRNA‐200cwerefoundupregulatedwhilelet7c,miR‐26a,miR‐215,
miR‐192‐5p,andmiR‐125bweredownregulated[112].Thelatterwasalsofounddownregulated
uponcurcumintreatmentinnasopharyngealcarcinoma[112].
Furthermore,curcumininducedapoptosisincisplatin‐resistanthumanovariancancercells
throughcaspase‐3activationandpoly(ADP‐ribose)polymerase(PARP)cleavage,viaupregulation
ofmiR‐9[113].
AltogetherthemiRsmodulatedbythepolyphenolsdiscussedhereresultedtoinfluenceseveral
pathwaysincludingWntandmitogen‐activatedproteinkinase(MAPK)signaling,pathwaysin
cancerandbasalcellcarcinoma,aswellasinadherencejunction,neurotrophinsignaling,andaxon
guidance,and,lastbutnotleast,cytokine–cytokinereceptorinteractionasitispresentinKEGG
(KyotoEncyclopediaofGenesandGenomes)database
(https://www.genome.jp/kegg/pathway.html).
2.4.4.ResveratrolandMicroRNAs
Currently,morethanahundredscientificdocumentshaveconfirmedthattheeffectof
resveratrolinthepreventionortreatmentofvariousdiseases,includingcancer,ismediatedbymiRs.
Thebiologicaleffectsofresveratrolwerestudiedinhumancoloncancerinwhichitsignificantly
decreasedthelevelsofmiR‐17,miR‐21,miR‐25,miR‐92a‐2,miR‐103‐1,andmiR‐103‐2.ThosemiRsin
certaincontextshavebeenshowntoactasoncomiRs[114].Inprostatecancer[115]andinmelanoma,
resveratroldecreasedmiR‐221levels[116].Whileinlungtumors,resveratrolledtoanupregulation
ofmiR‐200c[117].Inaddition,itactstodecreasemiR‐542‐3pandincreasemiR‐122‐5pinestrogen‐
responsiveandtriple‐negativebreastcancercells,whileonlymir‐122‐5pisincreasedinthetriple‐
negativecells[118].ResveratrolshowedeffectivenessviamiRsnotonlyinaberrantpathophysiology
suchascancer,butinphysiologicalcellsystemssuchaswhiteadiposecelllinesalsoresveratrol
inducedtheexpressionofmiR‐539‐5pinhibitingdenovolipogenesis[119].
Inprimaryhumanfibroblasts,resveratrolwasabledecreasemiR‐566andmiR‐23a,restoring
mitochondrialfattyacidβ‐oxidationratesinprimaryhumanfibroblastsformpatientsharboring
carnitinepalmitoyltransferase‐2mutationassociatedwithtwodifferentphenotypes(neonatal
Molecules2020,25,6311of21
11
lethalityormyopathyinmildforms)[120].Therefore,resveratrol,independentlyofthedisease,led
tomiR‐566andmiR‐23amodulationspecifically[120].MicroarrayanalysisshowedthathumanTHP‐
1monocyticcellstreatedwithresveratrolincreasedtheexpressionofmiR‐663decreasingmiR‐155
[121].Ontheotherhand,thereductionofproliferationanddifferentiationofpre‐adipocytesdueto
resveratroltreatment,ledtotheoverexpressionofmiR‐155[122].
Althoughofinterest,theinvitrostudiesconductedsofarhavenotbeentranslatedtohumans
yet.Onlyresveratrolhasbeenstudiedinhumansubjects[81].Thedailyintakeusedwasone
capsule/dayofgrapeextract(139mg)containingresveratrol(8.1mg)bymenwithT2D,hypertension,
andBMI>30kg/m2forsixmonthsandtwocapsules/dayforfurthersixmonths.Thistreatment
yieldedtheupregulationofmiR‐21,miR‐181b,miR‐663,andmiR‐30candtheconcomitantlower
levelsofinflammatorycytokinessuchasIL‐6,chemokine(C‐Cmotif)ligand3(CCL3),IL‐1β,and
tumornecrosisfactorα(TNF‐α).Additionally,miR‐155increasedaswellinperipheralblood
mononuclearcells.TheincreaseinthesemiRNAswasassociatedwithareductionofinflammation
mediatedbytheregulationoftheTLRandNF‐kBpathwaysandinflammatorycytokinegene
expression[81].
2.5.PharmacokineticProfile
Variousreportsunveiledpolyphenolsaspromisingtherapeuticagentsowingtotheirbroad
spectrumofbiologicalactivities.Thesecompoundshavelongbeenrecognizedtopossessfreeradical
scavengingproperties,however,thepresenceofbothhydrophobicandhydrophilicdomainswithin
thechemicalstructureenablespolyphenolstoaffectmembranedynamicsthroughthearrangement
ofmembraneproteinsandtheformationoffunctionalcomplexesresponsibleforcellsignal
transductionandtheregulationofthemetabolism[123].Thismechanismofactionunderliesmostof
thebeneficialeffectsofpolyphenols,howevertheeffectivenessofthesecompoundsindisease
preventionandhumanhealthimprovementistightlyrelatedandlimitedtotheirbioavailability[48].
Theconceptofbioavailabilityencompassesseveralvariablessuchasintestinalabsorption,
metabolismbygutmicrobiota,intestinalandlivermetabolism,biologicalpropertiesofmetabolites,
distributionattissueslevel,andexcretion,whichinturndependuponthechemicalstructureof
xenobiotics.
Thevariouschemicalformsofpolyphenolsleadtohighvariabilityintheirrateandextentof
intestinalabsorptionaswellasinthenatureofcirculatingmetabolites[48].Mostofthesecompounds
areintheglycosylatedformresultinginalowgradeofabsorptionoftheirnativemolecule.
Commonlyflavonoidsshowassugarmoietyglucoseorrhamnose,andfollowingtheiringestion,
thesecompoundsundergodeglycosylationpriortobeingabsorbed[124].Hydrolysisofsaccharide
moietyoccursatthelevelofgastrointestinalcells,anditiscarriedoutbyintracellularcytoplasmicβ‐
glucosidase(CBG)[125],ofnote,theexpressionpatternistissuespecificandoftenregulatedduring
development.Inhumans,differentglycosidaseshavebeendocumented:i)lactasephlorizin
hydrolase(LPH)andCBGatthelevelofredbloodcellsandcytosol,respectively.Bothenzymes
hydrolyzedglycosylatedflavonoidsinthemorehydrophobicaglycones,thuspromotingpassive
diffusionthroughenterocytes[126–128].However,determinedglycosylatedflavonoids,suchas
quercetin‐4′‐glucoside,werefoundtobealsoactivelytransportedintoenterocytesthroughtheactive
sodium‐dependentglucosetransport(SGLT1)[128].Itisworthmentioningthatflavonoidswith
rhamnosemoietyarenotsubstratesforhumanβ‐glycosylasesbeingcleavedbycolonmicrofloraα‐
rhamnosidasesbeforetheabsorptionprocess[129].Alargeproportionofpolyphenolsisconstituted
byflavan‐3‐olssuchas(−)‐epicatechins.Thesecompoundsareneverglycosylatedbutoften
acetylatedbygallicacid.Asrevealedbypharmacokineticstudies,catechins,andparticularlyEGCG,
arepredominantlyabsorbedinthejejunumandtheileum,viaaparacellulardiffusionthrough
epithelialcellswithoutanyde‐conjugationorhydrolysis[130].
Animportantsteplimitingtheabsorptionofthedeterminedflavonoidsisrepresentedby
intestinalefflux[131].Thisprocessisaffectedbymembranetransportersand,amongthese,members
oftheadenosinetriphosphate(ATP)‐bindingcassette(ABC)superfamilysuchasmultidrug‐
Molecules2020,25,6312of21
12
resistanceprotein(MRP),P‐glycoprotein(P‐gp),andbreastcancerresistanceprotein(BCRP)have
beenreportedtobeinvolvedintheregulationofsomeflavonoidsintestinaleffluxandultimatelyto
influencethenetamountthatisabsorbedintosystemiccirculation[132,133].Theeffluxofquercetin
andepicatechinmetabolitesisthoughttooccurbyMRP2,locatedontheluminalsideofepithelial
cells[131]whilethemonocarboxylatetransporterP‐gp,MRP1,andMPR2playsignificantrolesinthe
cellularaccumulationandpossibleeffectsof(−)‐epicatechingallate[134].SinceABCtransportersare
ubiquitouslypresentinmosttissues,theinterplaybetweenflavonoidsandABCtransporterscould
notonlymodulatetheextentofintestinaleffluxandbioavailabilitybutalsothedistributionof
flavonoidconjugatestothetargetsitesandtheirelimination.Moreover,bioavailabilityofthese
compoundsmaybeamplifiedorreducedbyaselectiveinteractionwithABCtransporters[135]when
co‐administered.
BothquercetinandEGCGundergotoextensivemetabolismatbothenterocytesandliverlevels
byglucuronidation,sulfation,andmethylationreactions[136–138].Someoftheliverconjugatesare
excretedasbilecomponentsandundergoenterohepaticrecirculation.Thede‐conjugatedcompounds
arethenregeneratedbygutmicrobialenzymesbeforebeingreabsorbedagain[139–142]whilethe
unabsorbedmetabolitesareeliminatedviafeces.Alltheconjugationmechanismsarehighlyefficient,
thereforeconsiderableamountsofmetabolitesreachthebloodstream[143].Theseproductsretainthe
biologicalactivityproducingsimilar,stronger,orweakereffectscomparedwithparentcompounds
[144,145].Anexceptionisgreenteacatechins,whoseaglyconesconstituteasubstantialproportionof
thetotalamountinplasma,astheyaredevoidofthesugarmoietyand,hence,quicklyabsorbedat
thesmallintestinewithoutfurthermodifications[146].
Thepoorsystemicbioavailabilityalsoaffectsthemechanismofactionacrossconditionsand
dosesofresveratrolasdemonstratedbytheinvivonon‐reproducibilityofinvitroeffects[147,148].
Inhumans,resveratrolishighlyabsorbedorally.However,arapidandextensivebiotransformation
ofthepolyphenoloccursaftertheabsorptionphaseintotheenterocytes.Specifically,resveratrol
undergoessulfationandglucuronidationmediatedbysulfotransferase1A1(SULT1A1)andUDP
glucuronosyltransferase1family,polypeptideA1(UGT1A1)andUDPglucuronosyltransferase1
family,polypeptideA9(UGT1A9)enzymes,respectively.Themetabolismtakesplaceinmultiple
organsandcelltypes,andtheobservedbiotransformationdiffersinmetabolitelevels[149],according
totissueexpressionofthespecificenzymesinvolvedinthebiotransformation[150].Ofnote,thereis
aninter‐speciesvariationofphaseIImetabolismand,inthisrespect,resveratrolsulfatesarethemain
conjugatesinhumans,whileglucuronidesconjugatesaredominantinpigsandrats[151].Itisworth
mentioningthat,drugmetabolismisawell‐documentedcauseofinter‐individualvariabilityandfor
bothSULTsandUGTsgeneticpolymorphismshavebeenreported[152,153].Afterabsorptionand
conjugation,resveratrolsulfatesandglucuronidesthroughtheABCtransportersexpressedatboth
apicalandbasolateralportionsofenterocytemembranecanbetransportedeitherintheintestinal
lumenorinthebloodstreamwheretheybindtolipoproteinsoralbuminbeforedistributingto
peripheraltissues[154].Ofnote,transportersarenotlimitedtoparticipatingintheabsorptionand
distributionofresveratrolandmetabolitesintheduodenumandjejunum,astheyarealsoexpressed
inothertissues,suchaskidneys[155–158],thuscontributingtoexcretionprocesses.Unlike
resveratrol,thelowavailabilityofcurcumininhumansafteroralintakeisprimarilyduetoalow
gradeofabsorptionbythesmallintestinecoupledwithfastmetabolismandelimination.
Thepoorbioavailabilityisalsointensifiedbythecurcumin’scapabilitytobindtoenterocyte
proteinsthatcanmodifyitsstructure[159–161].TheliveristheprimarysiteofphaseIandII
curcuminbiotransformationalongwithintestineandgutmicrobiota[162].Extensivemetabolic
reductionalsooccursatenterocyteandhepatocytelevelsleadingtotheformationof
dihydrocurcumin,tetrahydrocurcumin,hexa‐hydrocurcumin,andoctahydrocurcuminwhichinturn
areconvertedthroughconjugationintophysiologicallyinactiveconstituents[163].Ofnote,these
reducedcompoundscanexistbothinfreeformorasglucuronides[162].PhaseIImetabolismtakes
placeintheintestinalandhepaticcytosolonbothcurcuminanditsphaseIproductsbyconjugation
withglucuronicacidorsulfationatphenolicsite.CurcuminissulfatedbySULT1A1,SULT1A3inthe
cytosolicfractionwhileUGTscatalyzetheglucuronidationatthelevelofhepaticmicrosomes.Gut
Molecules2020,25,6313of21
13
microfloraalsocontributetocurcuminmetabolismmainlythroughsulfationordemethylation
reactionsleadingtotetrahydrocurcumin[164]anddemethylcurcuminandbis‐demethylcurcumin
[165],respectively.Ofnote,curcuminmetabolitesretainallpharmacologicalpropertiesoftheparent
compoundshowinganti‐oxidant,anti‐inflammatory,antitumor,cardioprotective,andanti‐diabetic
effects[5,19,20].Gendercanalsosignificantlyaffectcurcuminpharmacokinetics.Thedifferencesare
relatedtogender‐specificfactors,amongthese,ahigheractivityofhepaticdrugeffluxtransporters
inmenandthepresenceofhigherbodyfatinwomen[166,167].
3.Methods
PubMed,Embase,Cochranelibrary,andreferencelistsweresearchedforarticlespublisheduntil
1November2019,usingthekeywords“polyphenols”,“radicaloxygenspeciesandantioxidant
activity”,“inflammatorybiomarkers”,“epidemiology”,“foodsource”,“geneexpression”,
“microRNAs”,“microRNAsandinflammatorybiomarkers”.Secondarysearchesincludedarticles
citedinsourcesidentifiedbytheprevioussearch.
4.Conclusions
Understandingpolyphenolconsumptionisessentialtodeterminethenatureandthe
distributionofthesecompoundsinourdiet.Despitetheirpoorbioavailability,quercetin,EGCG,
curcumin,andresveratrolaremarketedassupplements.Onlyforthelatterone,studieswere
conductedinhumansubjectspointingoutitscapabilitytoinfluencemiRNAexpressionpattern
relatedtoinflammation.Inthisview,asafuturedirection,wesuggestusingthemicroRNAslinked
toinflammatory,antioxidant,orimmunestatusasmarker(s)formonitoringnutraceuticaleffectsof
polyphenols.Atthemoment,polyphenolsarebecomingprotagonistsinthenutraceuticalscenario
withoutstudiesonhumansubjects.Themainfactorresponsibleforthisdelayisthevarietyandthe
complexityoftheirchemicalstructureandtosomeextenttheirgutmicroflorametabolite.
AuthorContributions:E.C.coordinatedandrevisedtheworkandwrotethesectiononmicroRNAs;C.L.T.
wrotethesectionondietarysources;R.C.wrotethesectionondietarysupplements,P.P.wrotethesectionon
chemistry;M.C.C.wrotethesectiononpharmacology;L.G.facilitatedtheworkandwrotetheconclusions.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding: Thisresearchreceivednoexternalfunding
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Gollucke,A.P.;Peres,R.C.;Odair,A.,Jr.;Ribeiro,D.A.Polyphenols:Anutraceuticalapproachagainst
diseases.RecentPat.Foodnutr.Agric.2013,5,214–219.
2. Zamora‐Ros,R.;Cayssials,V.;Jenab,M.;Rothwell,J.A.;Fedirko,V.;Aleksandrova,K.;Tjonneland,A.;
Kyro,C.;Overvad,K.;Boutron‐Ruault,M.C.;etal.Dietaryintakeoftotalpolyphenolandpolyphenol
classesandtheriskofcolorectalcancerintheeuropeanprospectiveinvestigationintocancerandnutrition
(epic)cohort.Eur.J.Epidemiol.2018,33,1063–1075.
3. Arts,I.C.;Hollman,P.C.Polyphenolsanddiseaseriskinepidemiologicstudies.Am.J.Clin.Nutr.2005,81,
317S–325S.
4. Fazio,A.;Iacopetta,D.;LaTorre,C.;Ceramella,J.;Muia,N.;Catalano,A.;Carocci,A.;Sinicropi,M.S.
Findingsolutionsforagriculturalwastes:Antioxidantandantitumorpropertiesofpomegranateakkopeel
extractsandbeta‐glucanrecovery.FoodFunct.2018,9,6618–6631.
5. Roman,G.C.;Jackson,R.E.;Gadhia,R.;Roman,A.N.;Reis,J.Mediterraneandiet:Theroleoflong‐chain
omega‐3fattyacidsinfish;polyphenolsinfruits,vegetables,cereals,coffee,tea,cacaoandwine;probiotics
andvitaminsinpreventionofstroke,age‐relatedcognitivedecline,andalzheimerdisease.Rev.Neurol.
2019,175,724‐741.
6. Scotto,G.;Fazio,V.;LoMuzio,L.;Coppola,N.Screeningforinfectiousdiseasesinnewlyarrived
asymptomaticimmigrantsinsouthernitaly.East.Mediterr.HealthJ.2019,25,246–253.
Molecules2020,25,6314of21
14
7. Gabriele,B.;Fazio,A.;Carchedi,M.;Plastina,P.Invitroantioxidantactivityofextractsofsybarisliquorice
rootsfromsouthernitaly.Nat.Prod.Res.2012,26,2176–2181.
8. Zamora‐Ros,R.;Knaze,V.;Rothwell,J.A.;Hemon,B.;Moskal,A.;Overvad,K.;Tjonneland,A.;Kyro,C.;
Fagherazzi,G.;Boutron‐Ruault,M.C.;etal.Dietarypolyphenolintakeineurope:Theeuropeanprospective
investigationintocancerandnutrition(epic)study.Eur.J.Nutr.2016,55,1359–1375.
9. Plastina,P.;Fazio,A.;Gabriele,B.Comparisonoffattyacidprofileandantioxidantpotentialofextractsof
sevencitrusrootstockseeds.Nat.Prod.Res.2012,26,2182–2187.
10. Erlund,I.;Freese,R.;Marniemi,J.;Hakala,P.;Alfthan,G.Bioavailabilityofquercetinfromberriesandthe
diet.Nutr.Cancer2006,54,13–17.
11. Plastina,P.;Benincasa,C.;Perri,E.;Fazio,A.;Augimeri,G.;Poland,M.;Witkamp,R.;Meijerink,J.
Identificationofhydroxytyrosyloleate,aderivativeofhydroxytyrosolwithanti‐inflammatoryproperties,
inoliveoilby‐products.FoodChem.2019,279,105–113.
12. Gu,C.;Howell,K.;Dunshea,F.R.;Suleria,H.A.R.Lc‐esi‐qtof/mscharacterisationofphenolicacidsand
flavonoidsinpolyphenol‐richfruitsandvegetablesandtheirpotentialantioxidantactivities.Antioxidants
(Basel)2019,8,405.
13. Galani,J.H.Y.;Patel,J.S.;Patel,N.J.;Talati,J.G.Storageoffruitsandvegetablesinrefrigeratorincreases
theirphenolicacidsbutdecreasesthetotalphenolics,anthocyaninsandvitamincwithsubsequentlossof
theirantioxidantcapacity.Antioxidants(Basel)2017,6,59.
14. Khadem,S.;Marles,R.J.Monocyclicphenolicacids;hydroxy‐andpolyhydroxybenzoicacids:Occurrence
andrecentbioactivitystudies.Molecules2010,15,7985–8005.
15. Santana‐Galvez,J.;Cisneros‐Zevallos,L.;Jacobo‐Velazquez,D.A.Chlorogenicacid:Recentadvancesonits
dualroleasafoodadditiveandanutraceuticalagainstmetabolicsyndrome.Molecules2017,22,358.
16. Pei,K.;Ou,J.;Huang,J.;Ou,S.P‐coumaricacidanditsconjugates:Dietarysources,pharmacokinetic
propertiesandbiologicalactivities.J.Sci.FoodAgric.2016,96,2952–2962.
17. Bialecka‐Florjanczyk,E.;Fabiszewska,A.;Zieniuk,B.Phenolicacidsderivatives‐biotechnological
methodsofsynthesisandbioactivity.Curr.Pharm.Biotechnol.2018,19,1098–1113.
18. Zanella,I.;Biasiotto,G.;Holm,F.;diLorenzo,D.Cereallignans,naturalcompoundsofinterestforhuman
health?Nat.Prod.Commun.2017,12,139–146.
19. Hallmans,G.;Zhang,J.X.;Lundin,E.;Stattin,P.;Johansson,A.;Johansson,I.;Hulten,K.;Winkvist,A.;
Aman,P.;Lenner,P.;etal.Rye,lignansandhumanhealth.Proc.Nutr.Soc.2003,62,193–199.
20. Adlercreutz,H.Lignansandhumanhealth.Crit.Rev.Clin.Lab.Sci.2007,44,483–525.
21. Possemiers,S.;Bolca,S.;Eeckhaut,E.;Depypere,H.;Verstraete,W.Metabolismofisoflavones,lignansand
prenylflavonoidsbyintestinalbacteria:Producerphenotypingandrelationwithintestinalcommunity.
Fems.Microbiol.Ecol.2007,61,372–383.
22. Clavel,T.;Borrmann,D.;Braune,A.;Dore,J.;Blaut,M.Occurrenceandactivityofhumanintestinalbacteria
involvedintheconversionofdietarylignans.Anaerobe2006,12,140–147.
23. Wang,L.Q.;Meselhy,M.R.;Li,Y.;Qin,G.W.;Hattori,M.Humanintestinalbacteriacapableoftransforming
secoisolariciresinoldiglucosidetomammalianlignans,enterodiolandenterolactone.Chem.Pharm.Bull.
2000,48,1606–1610.
24. Ososki,A.L.;Kennelly,E.J.Phytoestrogens:Areviewofthepresentstateofresearch.Phytother.Res.Ptr.
2003,17,845–869.
25. AnandhiSenthilkumar,H.;Fata,J.E.;Kennelly,E.J.Phytoestrogens:Thecurrentstateofresearch
emphasizingbreastpathophysiology.Phytother.Res.Ptr.2018,32,1707–1719.
26. Ranka,S.;Gee,J.M.;Biro,L.;Brett,G.;Saha,S.;Kroon,P.;Skinner,J.;Hart,A.R.;Cassidy,A.;Rhodes,M.;
etal.Developmentofafoodfrequencyquestionnairefortheassessmentofquercetinandnaringeninintake.
Eur.J.Clin.Nutr.2008,62,1131–1138.
27. Formica,J.V.;Regelson,W.Reviewofthebiologyofquercetinandrelatedbioflavonoids.Foodandchem.
Toxicol.1995,33,1061–1080.
28. Rienks,J.;Barbaresko,J.;Oluwagbemigun,K.;Schmid,M.;Nothlings,U.Polyphenolexposureandriskof
type2diabetes:Dose‐responsemeta‐analysesandsystematicreviewofprospectivecohortstudies.Am.J.
Clin.Nutr.2018,108,49–61.
29. Badolato,M.;Carullo,G.;Perri,M.;Cione,E.;Manetti,F.;DiGioia,M.L.;Brizzi,A.;Caroleo,M.C.;Aiello,
F.Quercetin/oleicacid‐basedg‐protein‐coupledreceptor40ligandsasnewinsulinsecretionmodulators.
FutureMed.Chem.2017,9,1873–1885.
Molecules2020,25,6315of21
15
30. Kittl,M.;Beyreis,M.;Tumurkhuu,M.;Furst,J.;Helm,K.;Pitschmann,A.;Gaisberger,M.;Glasl,S.;Ritter,
M.;Jakab,M.Quercetinstimulatesinsulinsecretionandreducestheviabilityofratins‐1beta‐cells.Cell.
Physiol.Biochem.Int.J.Exp.Cell.Physiol.Biochem.Phar.2016,39,278–293.
31. Carullo,G.;Perri,M.;Manetti,F.;Aiello,F.;Caroleo,M.C.;Cione,E.Quercetin‐3‐oleoylderivativesasnew
gpr40agonists:Moleculardockingstudiesandfunctionalevaluation.BioorganicMed.Chem.Lett.2019,29,
1761–1764.
32. Lambert,J.D.;Lee,M.J.;Lu,H.;Meng,X.;Hong,J.J.;Seril,D.N.;Sturgill,M.G.;Yang,C.S.Epigallocatechin‐
3‐gallateisabsorbedbutextensivelyglucuronidatedfollowingoraladministrationtomice.J.Nutr.2003,
133,4172–4177.
33. Rodriguez‐Carrasco,Y.;Gaspari,A.;Graziani,G.;Santini,A.;Ritieni,A.Fastanalysisofpolyphenolsand
alkaloidsincocoa‐basedproductsbyultra‐highperformanceliquidchromatographyandorbitraphigh
resolutionmassspectrometry(uhplc‐q‐orbitrap‐ms/ms).FoodRes.Int.2018,111,229–236.
34. Vogiatzoglou,A.;Mulligan,A.A.;Lentjes,M.A.;Luben,R.N.;Spencer,J.P.;Schroeter,H.;Khaw,K.T.;
Kuhnle,G.G.Flavonoidintakeineuropeanadults(18to64years).PLoSOne2015,10,e0128132.
35. Pacheco‐Palencia,L.A.;Mertens‐Talcott,S.;Talcott,S.T.Chemicalcomposition,antioxidantproperties,and
thermalstabilityofaphytochemicalenrichedoilfromacai(euterpeoleraceamart.).J.Agric.FoodChem.
2008,56,4631–4636.
36. Peluso,I.;Serafini,M.Antioxidantsfromblackandgreentea:Fromdietarymodulationofoxidativestress
topharmacologicalmechanisms.Br.J.Pharm.2017,174,1195–1208.
37. Kondo,T.;Ohta,T.;Igura,K.;Hara,Y.;Kaji,K.Teacatechinsinhibitangiogenesisinvitro,measuredby
humanendothelialcellgrowth,migrationandtubeformation,throughinhibitionofvegfreceptorbinding.
CancerLett.2002,180,139–144.
38. Baliga,M.S.;Meleth,S.;Katiyar,S.K.Growthinhibitoryandantimetastaticeffectofgreenteapolyphenols
onmetastasis‐specificmousemammarycarcinoma4t1cellsinvitroandinvivosystems.Clin.CancerRes.
Off.J.Am.Assoc.CancerRes.2005,11,1918–1927.
39. Pangeni,R.;Sahni,J.K.;Ali,J.;Sharma,S.;Baboota,S.Resveratrol:Reviewontherapeuticpotentialand
recentadvancesindrugdelivery.ExpertOpin.DrugDeliv.2014,11,1285–1298.
40. Delmas,D.;Lancon,A.;Colin,D.;Jannin,B.;Latruffe,N.Resveratrolasachemopreventiveagent:A
promisingmoleculeforfightingcancer.Curr.DrugTargets2006,7,423–442.
41. Fimognari,C.;Hrelia,P.Sulforaphaneasapromisingmoleculeforfightingcancer.Mutat.Res.2007,635,
90–104.
42. Lenzi,M.;Fimognari,C.;Hrelia,P.Sulforaphaneasapromisingmoleculeforfightingcancer.CancerTreat.
Res.2014,159,207–223.
43. Singh,A.P.;Singh,R.;Verma,S.S.;Rai,V.;Kaschula,C.H.;Maiti,P.;Gupta,S.C.Healthbenefitsof
resveratrol:Evidencefromclinicalstudies.Med.Res.Rev.2019,39,1851–1891.
44. DenHartogh,D.J.;Tsiani,E.Healthbenefitsofresveratrolinkidneydisease:Evidencefrominvitroandin
vivostudies.Nutrients2019,11,1624.
45. Esatbeyoglu,T.;Huebbe,P.;Ernst,I.M.;Chin,D.;Wagner,A.E.;Rimbach,G.Curcumin‐‐frommoleculeto
biologicalfunction.Angew.Chem.Int.Ed.Engl.2012,51,5308–5332.
46. Roche,A.;Ross,E.;Walsh,N.;O’Donnell,K.;Williams,A.;Klapp,M.;Fullard,N.;Edelstein,S.
Representativeliteratureonthephytonutrientscategory:Phenolicacids.Crit.Rev.FoodSci.Nutr.2017,57,
1089–1096.
47. Weijn,A.;vandenBerg‐Somhorst,D.B.;Slootweg,J.C.;Vincken,J.P.;Gruppen,H.;Wichers,H.J.;Mes,J.J.
Mainphenoliccompoundsofthemelaninbiosynthesispathwayinbruising‐tolerantandbruising‐sensitive
buttonmushroom(agaricusbisporus)strains.J.Agric.FoodChem.2013,61,8224–8231.
48. Manach,C.;Scalbert,A.;Morand,C.;Remesy,C.;Jimenez,L.Polyphenols:Foodsourcesand
bioavailability.Am.J.Clin.Nutr.2004,79,727–747.
49. Dai,J.;Mumper,R.J.Plantphenolics:Extraction,analysisandtheirantioxidantandanticancerproperties.
Molecules2010,15,7313–7352.
50. Santos‐Buelga,C.;Gonzalez‐Paramas,A.M.;Oludemi,T.;Ayuda‐Duran,B.;Gonzalez‐Manzano,S.Plant
phenolicsasfunctionalfoodingredients.Adv.FoodNutr.Res.2019,90,183–257.
51. Alu’datt,M.H.;Rababah,T.;Alhamad,M.N.;Al‐Rabadi,G.J.;Tranchant,C.C.;Almajwal,A.;Kubow,S.;
Alli,I.Occurrence,types,propertiesandinteractionsofphenoliccompoundswithotherfoodconstituents
inoil‐bearingplants.Crit.Rev.FoodSci.Nutr.2018,58,3209–3218.
Molecules2020,25,6316of21
16
52. Crozier,A.;Jaganath,I.B.;Clifford,M.N.Dietaryphenolics:Chemistry,bioavailabilityandeffectson
health.Nat.Prod.Rep.2009,26,1001–1043.
53. Beneduci,A.;Corrente,G.A.;Marino,T.;Aiello,D.;Bartella,L.;DiDonna,L.;Napoli,A.;Russo,N.;Romeo,
I.;Furia,E.Insightonthechelationofaluminum(iii)andiron(iii)bycurcumininaqueoussolution.J.Mol.
Liq.2019,296,111805.
54. Nieman,D.C.;Williams,A.S.;Shanely,R.A.;Jin,F.;McAnulty,S.R.;Triplett,N.T.;Austin,M.D.;Henson,
D.A.Quercetin’sinfluenceonexerciseperformanceandmusclemitochondrialbiogenesis.Med.Sci.Sports
Exerc.2010,42,338–345.
55. Kressler,J.;Millard‐Stafford,M.;Warren,G.L.Quercetinandenduranceexercisecapacity:Asystematic
reviewandmeta‐analysis.Med.Sci.Sports.Exerc.2011,43,2396–2404.
56. Kerksick,C.M.;Wilborn,C.D.;Roberts,M.D.;Smith‐Ryan,A.;Kleiner,S.M.;Jager,R.;Collins,R.;Cooke,
M.;Davis,J.N.;Galvan,E.;etal.Issnexercise&sportsnutritionreviewupdate:Research&
recommendations.J.Int.Soc.SportsNutr.2018,15,38.
57. Halliwell,B.Arepolyphenolsantioxidantsorpro‐oxidants?Whatdowelearnfromcellcultureandinvivo
studies?Arch.Biochem.Biophys.2008,476,107–112.
58. Pervin,M.;Unno,K.;Ohishi,T.;Tanabe,H.;Miyoshi,N.;Nakamura,Y.Beneficialeffectsofgreentea
catechinsonneurodegenerativediseases.Molecules2018,23,1297.
59. Xicota,L.;Rodriguez,J.;Langohr,K.;Fito,M.;Dierssen,M.;delaTorre,R.Effectofepigallocatechingallate
onthebodycompositionandlipidprofileofdownsyndromeindividuals:Implicationsforclinical
management.Clin.Nutr.2019,inpress.
60. Bashang,H.;Tamma,S.Theuseofcurcuminasaneffectiveadjuvanttocancertherapy:Ashortreview.
Biotechnol.Appl.Biochem.2019.
61. Giordano,A.;Tommonaro,G.Curcuminandcancer.Nutrients2019,11,2376.
62. Kang,C.;Jung,E.;Hyeon,H.;Seon,S.;Lee,D.Acid‐activatablepolymericcurcuminnanoparticlesas
therapeuticagentsforosteoarthritis.Nanomed.:Nanotechnol.Biol.Med.2019,23,102104.
63. Yan,D.;He,B.;Guo,J.;Li,S.;Wang,J.Involvementoftlr4intheprotectiveeffectofintra‐articular
administrationofcurcuminonratexperimentalosteoarthritis.ActaCir.Bras.2019,34,e201900604.
64. Gupte,P.A.;Giramkar,S.A.;Harke,S.M.;Kulkarni,S.K.;Deshmukh,A.P.;Hingorani,L.L.;Mahajan,M.P.;
Bhalerao,S.S.Evaluationoftheefficacyandsafetyofcapsulelongvida((r))optimizedcurcumin(solidlipid
curcuminparticles)inkneeosteoarthritis:Apilotclinicalstudy.J.Inflamm.Res.2019,12,145–152.
65. Wu,J.;Lv,M.;Zhou,Y.Efficacyandsideeffectofcurcuminforthetreatmentofosteoarthritis:Ameta‐
analysisofrandomizedcontrolledtrials.Pak.J.Pharm.Sci.2019,32,43–51.
66. Zhang,Y.;Zeng,Y.Curcuminreducesinflammationinkneeosteoarthritisratsthroughblocking
tlr4/myd88/nf‐kappabsignalpathway.DrugDev.Res.2019,80,353–359.
67. Zeng,J.J.;Wang,H.D.;Shen,Z.W.;Yao,X.D.;Wu,C.J.;Pan,T.Curcumininhibitsproliferationofsynovial
cellsbydownregulatingexpressionofmatrixmetalloproteinase‐3inosteoarthritis.Orthop.Surg.2019,11,
117–125.
68. Yang,Y.S.;Su,Y.F.;Yang,H.W.;Lee,Y.H.;Chou,J.I.;Ueng,K.C.Lipid‐loweringeffectsofcurcuminin
patientswithmetabolicsyndrome:Arandomized,double‐blind,placebo‐controlledtrial.Phytother.Res.
Ptr.2014,28,1770–1777.
69. Franco‐Robles,E.;Campos‐Cervantes,A.;Murillo‐Ortiz,B.O.;Segovia,J.;Lopez‐Briones,S.;Vergara,P.;
Perez‐Vazquez,V.;Solis‐Ortiz,M.S.;Ramirez‐Emiliano,J.Effectsofcurcuminonbrain‐derived
neurotrophicfactorlevelsandoxidativedamageinobesityanddiabetes.Appl.Physiol.Nutr.Metab.2014,
39,211–218.
70. Hassan,F.U.;Rehman,M.S.;Khan,M.S.;Ali,M.A.;Javed,A.;Nawaz,A.;Yang,C.Curcuminasan
alternativeepigeneticmodulator:Mechanismofactionandpotentialeffects.Front.Genet.2019,10,514.
71. Renaud,S.;deLorgeril,M.Wine,alcohol,platelets,andthefrenchparadoxforcoronaryheartdisease.
Lancet1992,339,1523–1526.
72. deLorgeril,M.;Salen,P.;Paillard,F.;Laporte,F.;Boucher,F.;deLeiris,J.Mediterraneandietandthefrench
paradox:Twodistinctbiogeographicconceptsforoneconsolidatedscientifictheoryontheroleofnutrition
incoronaryheartdisease.Cardiovasc.Res.2002,54,503–515.
73. Sanchez‐Fidalgo,S.;Cardeno,A.;Villegas,I.;Talero,E.;delaLastra,C.A.Dietarysupplementationof
resveratrolattenuateschroniccolonicinflammationinmice.Eur.J.Pharm.2010,633,78–84.
Molecules2020,25,6317of21
17
74. Palsamy,P.;Subramanian,S.Modulatoryeffectsofresveratrolonattenuatingthekeyenzymesactivities
ofcarbohydratemetabolisminstreptozotocin‐nicotinamide‐induceddiabeticrats.Chem.Biol.Interact.2009,
179,356–362.
75. Sun,A.Y.;Wang,Q.;Simonyi,A.;Sun,G.Y.Resveratrolasatherapeuticagentforneurodegenerative
diseases.Mol.Neurobiol.2010,41,375–383.
76. Shin,J.A.;Lee,H.;Lim,Y.K.;Koh,Y.;Choi,J.H.;Park,E.M.Therapeuticeffectsofresveratrolduringacute
periodsfollowingexperimentalischemicstroke.J.Neuroimmunol.2010,227,93–100.
77. Bradamante,S.;Barenghi,L.;Villa,A.Cardiovascularprotectiveeffectsofresveratrol.Cardiovasc.DrugRev.
2004,22,169–188.
78. Cho,S.;Namkoong,K.;Shin,M.;Park,J.;Yang,E.;Ihm,J.;Thu,V.T.;Kim,H.K.;Han,J.Cardiovascular
protectiveeffectsandclinicalapplicationsofresveratrol.J.Med.Food2017,20,323–334.
79. Yan,F.;Sun,X.;Xu,C.Protectiveeffectsofresveratrolimprovecardiovascularfunctioninratswith
diabetes.Exp.Med.2018,15,1728–1734.
80. Sun,W.;Wang,W.;Kim,J.;Keng,P.;Yang,S.;Zhang,H.;Liu,C.;Okunieff,P.;Zhang,L.Anti‐cancereffect
ofresveratrolisassociatedwithinductionofapoptosisviaamitochondrialpathwayalignment.Adv.Exp.
Med.Biol.2008,614,179–186.
81. Smoliga,J.M.;Blanchard,O.L.Recentdatadonotprovideevidencethatresveratrolcauses‘mainly
negative’or‘adverse’effectsonexercisetraininginhumans.J.Physiol.2013,591,5251–5252.
82. Lee,Y.;Kim,M.;Han,J.;Yeom,K.H.;Lee,S.;Baek,S.H.;Kim,V.N.Micrornagenesaretranscribedbyrna
polymeraseii.Embo.J.2004,23,4051–4060.
83. Winter,J.;Jung,S.;Keller,S.;Gregory,R.I.;Diederichs,S.Manyroadstomaturity:Micrornabiogenesis
pathwaysandtheirregulation.Nat.CellBiol.2009,11,228–234.
84. Alexander,M.;Hu,R.;Runtsch,M.C.;Kagele,D.A.;Mosbruger,T.L.;Tolmachova,T.;Seabra,M.C.;Round,
J.L.;Ward,D.M.;O’Connell,R.M.Exosome‐deliveredmicrornasmodulatetheinflammatoryresponseto
endotoxin.Nat.Commun.2015,6,7321.
85. Perri,M.;Caroleo,M.C.;Liu,N.;Gallelli,L.;DeSarro,G.;Kagechika,H.;Cione,E.9‐cisretinoicacid
modulatesmyotrophinexpressionanditsmirinphysiologicalandpathophysiologicalcellmodels.Exp.
CellRes.2017,354,25–30.
86. Cui,J.;Zhou,B.;Ross,S.A.;Zempleni,J.Nutrition,micrornas,andhumanhealth.Adv.Nutr.2017,8,105–
112.
87. Cannataro,R.;Perri,M.;Gallelli,L.;Caroleo,M.C.;DeSarro,G.;Cione,E.Ketogenicdietactsonbody
remodelingandmicrornasexpressionprofile.Microrna2019,8,116–126.
88. Cannataro,R.;Caroleo,M.C.;Fazio,A.;LaTorre,C.;Plastina,P.;Gallelli,L.;Lauria,G.;Cione,E.Ketogenic
dietandmicrornaslinkedtoantioxidantbiochemicalhomeostasis.Antioxidants(Basel)2019,8,269.
89. Tao,S.F.;He,H.F.;Chen,Q.Quercetininhibitsproliferationandinvasionactsbyup‐regulatingmir‐146a
inhumanbreastcancercells.Mol.Cell.Biochem.2015,402,93–100.
90. Boesch‐Saadatmandi,C.;Loboda,A.;Wagner,A.E.;Stachurska,A.;Jozkowicz,A.;Dulak,J.;Doring,F.;
Wolffram,S.;Rimbach,G.Effectofquercetinanditsmetabolitesisorhamnetinandquercetin‐3‐glucuronide
oninflammatorygeneexpression:Roleofmir‐155.J.Nutr.Biochem.2011,22,293–299.
91. Taganov,K.D.;Boldin,M.P.;Chang,K.J.;Baltimore,D.Nf‐kappab‐dependentinductionofmicrornamir‐
146,aninhibitortargetedtosignalingproteinsofinnateimmuneresponses.Proc.Natl.Acad.Sci.USA2006,
103,12481–12486.
92. Appari,M.;Babu,K.R.;Kaczorowski,A.;Gross,W.;Herr,I.Sulforaphane,quercetinandcatechins
complementeachotherineliminationofadvancedpancreaticcancerbymir‐let‐7inductionandk‐ras
inhibition.Int.J.Oncol.2014,45,1391–1400.
93. Nwaeburu,C.C.;Bauer,N.;Zhao,Z.;Abukiwan,A.;Gladkich,J.;Benner,A.;Herr,I.Up‐regulationof
micrornalet‐7cbyquercetininhibitspancreaticcancerprogressionbyactivationofnumbl.Oncotarget2016,
7,58367–58380.
94. Nwaeburu,C.C.;Abukiwan,A.;Zhao,Z.;Herr,I.Quercetin‐inducedmir‐200b‐3pregulatesthemodeof
self‐renewingdivisionsinpancreaticcancer.Mol.Cancer2017,16,23.
95. MacKenzie,T.N.;Mujumdar,N.;Banerjee,S.;Sangwan,V.;Sarver,A.;Vickers,S.;Subramanian,S.;Saluja,
A.K.Triptolideinducestheexpressionofmir‐142‐3p:Anegativeregulatorofheatshockprotein70and
pancreaticcancercellproliferation.Mol.Cancer2013,12,1266–1275.
Molecules2020,25,6318of21
18
96. Chirshev,E.;Oberg,K.C.;Ioffe,Y.J.;Unternaehrer,J.J.Let‐7asbiomarker,prognosticindicator,andtherapy
forprecisionmedicineincancer.Clin.Transl.Med.2019,8,24.
97. Sonoki,H.;Sato,T.;Endo,S.;Matsunaga,T.;Yamaguchi,M.;Yamazaki,Y.;Sugatani,J.;Ikari,A.Quercetin
decreasesclaudin‐2expressionmediatedbyup‐regulationofmicrornamir‐16inlungadenocarcinoma
a549cells.Nutrients2015,7,4578–4592.
98. Zhang,X.;Guo,Q.;Chen,J.;Chen,Z.Quercetinenhancescisplatinsensitivityofhumanosteosarcomacells
bymodulatingmicrorna‐217‐krasaxis.Mol.Cells2015,38,638–642.
99. Zhou,J.;Gong,J.;Ding,C.;Chen,G.Quercetininducestheapoptosisofhumanovariancarcinomacellsby
upregulatingtheexpressionofmicrorna‐145.Mol.Med.Rep.2015,12,3127–3131.
100. Luettig,J.;Rosenthal,R.;Barmeyer,C.;Schulzke,J.D.Claudin‐2asamediatorofleakygutbarrierduring
intestinalinflammation.TissueBarriers2015,3,e977176.
101. Pashaei,E.;Guzel,E.;Ozgurses,M.E.;Demirel,G.;Aydin,N.;Ozen,M.Ameta‐analysis:Identificationof
commonmir‐145targetgenesthathavesimilarbehaviorindifferentgeodatasets.PLoSONE2016,11,
e0161491.
102. Rasheed,Z.;Rasheed,N.;Al‐Shaya,O.Epigallocatechin‐3‐o‐gallatemodulatesglobalmicrornaexpression
ininterleukin‐1beta‐stimulatedhumanosteoarthritischondrocytes:Potentialroleofegcgonnegativeco‐
regulationofmicrorna‐140‐3pandadamts5.Eur.J.Nutr.2018,57,917–928.
103. Ju,C.;Liu,R.;Zhang,Y.;Zhang,F.;Sun,J.;Lv,X.B.;Zhang,Z.Exosomesmaybethepotentialnewdirection
ofresearchinosteoarthritismanagement.Biomed.Res.Int.2019,2019,7695768.
104. Wu,J.;Kuang,L.;Chen,C.;Yang,J.;Zeng,W.N.;Li,T.;Chen,H.;Huang,S.;Fu,Z.;Li,J.;etal.Mir‐100‐5p‐
abundantexosomesderivedfrominfrapatellarfatpadmscsprotectarticularcartilageandameliorategait
abnormalitiesviainhibitionofmtorinosteoarthritis.Biomaterials2019,206,87–100.
105. Rasheed,Z.;Rasheed,N.;Abdulmonem,W.A.;Khan,M.I.Microrna‐125b‐5pregulatesil‐1betainduced
inflammatorygenesviatargetingtraf6‐mediatedmapksandnf‐kappabsignalinginhumanosteoarthritic
chondrocytes.Sci.Rep.2019,9,6882.
106. Chen,X.;Chang,L.;Qu,Y.;Liang,J.;Jin,W.;Xia,X.Teapolyphenolsinhibittheproliferation,migration,
andinvasionofmelanomacellsthroughthedown‐regulationoftlr4.Int.J.Immunopathol.Pharmacol.2018,
32,394632017739531.
107. Arffa,M.L.;Zapf,M.A.;Kothari,A.N.;Chang,V.;Gupta,G.N.;Ding,X.;Al‐Gayyar,M.M.;Syn,W.;
Elsherbiny,N.M.;Kuo,P.C.;etal.Epigallocatechin‐3‐gallateupregulatesmir‐221toinhibitosteopontin‐
dependenthepaticfibrosis.PLoSONE2016,11,e0167435.
108. Shin,S.;Kim,K.;Lee,M.J.;Lee,J.;Choi,S.;Kim,K.S.;Ko,J.M.;Han,H.;Kim,S.Y.;Youn,H.J.;etal.
Epigallocatechingallate‐mediatedalterationofthemicrornaexpressionprofilein5alpha‐
dihydrotestosterone‐treatedhumandermalpapillacells.Ann.Dermatol.2016,28,327–334.
109. Gallelli,L.;Cione,E.;Caroleo,M.C.;Carotenuto,M.;Lagana,P.;Siniscalchi,A.;Guidetti,V.Micrornasto
monitorpain‐migraineanddrugtreatment.Microrna2017,6,152–156.
110. Greentea.Nationalcenterforcomplementaryandintegrativehealth.Availableonline:
https://nccih.Nih.Gov/health/greentea(accessedon14December2019).
111. Sohn,E.J.;Bak,K.M.;Nam,Y.K.;Park,H.T.Upregulationofmicrorna344a‐3pisinvolvedincurcumin
inducedapoptosisinrt4schwannomacells.CancerCellInt.2018,18,199.
112. Mirzaei,H.;Masoudifar,A.;Sahebkar,A.;Zare,N.;SadriNahand,J.;Rashidi,B.;Mehrabian,E.;
Mohammadi,M.;Mirzaei,H.R.;Jaafari,M.R.Microrna:Anoveltargetofcurcuminincancertherapy.J.
Cell.Physiol.2018,233,3004–3015.
113. Zhao,S.F.;Zhang,X.;Zhang,X.J.;Shi,X.Q.;Yu,Z.J.;Kan,Q.C.Inductionofmicrorna‐9mediates
cytotoxicityofcurcuminagainstskov3ovariancancercells.AsianPac.J.CancerPrev.2014,15,3363–3368.
114. Tili,E.;Michaille,J.J.Resveratrol,micrornas,inflammation,andcancer.J.NucleicAcids2011,2011,102431.
115. Kumar,A.;Rimando,A.M.;Levenson,A.S.Resveratrolandpterostilbeneasamicrorna‐mediated
chemopreventiveandtherapeuticstrategyinprostatecancer.Ann.NewYorkAcad.Sci.2017,1403,15–26.
116. Wu,F.;Cui,L.Resveratrolsuppressesmelanomabyinhibitingnf‐kappab/mir‐221andinducingtfg
expression.Arch.Dermatol.Res.2017,309,823–831.
117. Bai,T.;Dong,D.S.;Pei,L.Synergisticantitumoractivityofresveratrolandmir‐200cinhumanlungcancer.
Oncol.Rep.2014,31,2293–2297.
118. Venkatadri,R.;Muni,T.;Iyer,A.K.;Yakisich,J.S.;Azad,N.Roleofapoptosis‐relatedmirnasinresveratrol‐
inducedbreastcancercelldeath.CellDeathDis.2016,7,e2104.
Molecules2020,25,6319of21
19
119. Gracia,A.;Miranda,J.;Fernandez‐Quintela,A.;Eseberri,I.;Garcia‐Lacarte,M.;Milagro,F.I.;Martinez,J.A.;
Aguirre,L.;Portillo,M.P.Involvementofmir‐539‐5pintheinhibitionofdenovolipogenesisinducedby
resveratrolinwhiteadiposetissue.FoodFunct.2016,7,1680–1688.
120. Aires,V.;Delmas,D.;Djouadi,F.;Bastin,J.;Cherkaoui‐Malki,M.;Latruffe,N.Resveratrol‐inducedchanges
inmicrornaexpressioninprimaryhumanfibroblastsharboringcarnitine‐palmitoyltransferase‐2gene
mutation,leadingtofattyacidoxidationdeficiency.Molecules2017,23,7.
121. Tili,E.;Michaille,J.J.;Adair,B.;Alder,H.;Limagne,E.;Taccioli,C.;Ferracin,M.;Delmas,D.;Latruffe,N.;
Croce,C.M.Resveratroldecreasesthelevelsofmir‐155byupregulatingmir‐663,amicrornatargetingjunb
andjund.Carcinogenesis2010,31,1561–1566.
122. Eseberri,I.;Lasa,A.;Miranda,J.;Gracia,A.;Portillo,M.P.Potentialmirnainvolvementintheanti‐
adipogeniceffectofresveratrolanditsmetabolites.PLoSONE2017,12,e0184875.
123. Bennick,A.Interactionofplantpolyphenolswithsalivaryproteins.Crit.Rev.Oral.Biol.Med.2002,13,184–
196.
124. Depeint,F.;Gee,J.M.;Williamson,G.;Johnson,I.T.Evidenceforconsistentpatternsbetweenflavonoid
structuresandcellularactivities.Proc.Nutr.Soc.2002,61,97–103.
125. Nemeth,K.;Plumb,G.W.;Berrin,J.G.;Juge,N.;Jacob,R.;Naim,H.Y.;Williamson,G.;Swallow,D.M.;
Kroon,P.A.Deglycosylationbysmallintestinalepithelialcellbeta‐glucosidasesisacriticalstepinthe
absorptionandmetabolismofdietaryflavonoidglycosidesinhumans.Eur.J.Nutr.2003,42,29–42.
126. Day,A.J.;Canada,F.J.;Diaz,J.C.;Kroon,P.A.;McLauchlan,R.;Faulds,C.B.;Plumb,G.W.;Morgan,M.R.;
Williamson,G.Dietaryflavonoidandisoflavoneglycosidesarehydrolysedbythelactasesiteoflactase
phlorizinhydrolase.Febs.Lett.2000,468,166–170.
127. Day,A.J.;DuPont,M.S.;Ridley,S.;Rhodes,M.;Rhodes,M.J.;Morgan,M.R.;Williamson,G.
Deglycosylationofflavonoidandisoflavonoidglycosidesbyhumansmallintestineandliverbeta‐
glucosidaseactivity.Febs.Lett.1998,436,71–75.
128. Gee,J.M.;DuPont,M.S.;Day,A.J.;Plumb,G.W.;Williamson,G.;Johnson,I.T.Intestinaltransportof
quercetinglycosidesinratsinvolvesbothdeglycosylationandinteractionwiththehexosetransport
pathway.J.Nutr.2000,130,2765–2771.
129. Bang,S.H.;Hyun,Y.J.;Shim,J.;Hong,S.W.;Kim,D.H.Metabolismofrutinandponcirinbyhuman
intestinalmicrobiotaandcloningoftheirmetabolizingalpha‐l‐rhamnosidasefrombifidobacterium
dentium.J.Microbiol.Biotechnol.2015,25,18–25.
130. Nakagawa,K.;Okuda,S.;Miyazawa,T.Dose‐dependentincorporationofteacatechins,(−)‐
epigallocatechin‐3‐gallateand(−)‐epigallocatechin,intohumanplasma.Biosci.Biotechnol.Biochem.1997,61,
1981–1985.
131. Walgren,R.A.;Karnaky,K.J.,Jr.;Lindenmayer,G.E.;Walle,T.Effluxofdietaryflavonoidquercetin4’‐beta‐
glucosideacrosshumanintestinalcaco‐2cellmonolayersbyapicalmultidrugresistance‐associated
protein‐2.J.Pharmacol.Exp.Ther.2000,294,830–836.
132. Brand,W.;Schutte,M.E.;Williamson,G.;vanZanden,J.J.;Cnubben,N.H.;Groten,J.P.;vanBladeren,P.J.;
Rietjens,I.M.Flavonoid‐mediatedinhibitionofintestinalabctransportersmayaffecttheoral
bioavailabilityofdrugs,food‐bornetoxiccompoundsandbioactiveingredients.Biomed.Pharmacother.
Biomed.Pharmacother.2006,60,508–519.
133. Litman,T.;Druley,T.E.;Stein,W.D.;Bates,S.E.Frommdrtomxr:Newunderstandingofmultidrug
resistancesystems,theirpropertiesandclinicalsignificance.Cell.Mol.LifeSci.Cmls2001,58,931–959.
134. Vaidyanathan,J.B.;Walle,T.Cellularuptakeandeffluxoftheteaflavonoid(‐)epicatechin‐3‐gallateinthe
humanintestinalcelllinecaco‐2.J.Pharmacol.Exp.Ther.2003,307,745–752.
135. Morris,M.E.;Zhang,S.Flavonoid‐druginteractions:Effectsofflavonoidsonabctransporters.LifeSci.2006,
78,2116–2130.
136. vanderWoude,H.;Boersma,M.G.;Vervoort,J.;Rietjens,I.M.Identificationof14quercetinphaseiimono‐
andmixedconjugatesandtheirformationbyratandhumanphaseiiinvitromodelsystems.Chem.Res.
Toxicol.2004,17,1520–1530.
137. Meng,X.;Sang,S.;Zhu,N.;Lu,H.;Sheng,S.;Lee,M.J.;Ho,C.T.;Yang,C.S.Identificationand
characterizationofmethylatedandring‐fissionmetabolitesofteacatechinsformedinhumans,mice,and
rats.Chem.Res.Toxicol.2002,15,1042–1050.
Molecules2020,25,6320of21
20
138. Williamson,G.;Dionisi,F.;Renouf,M.Flavanolsfromgreenteaandphenolicacidsfromcoffee:Critical
quantitativeevaluationofthepharmacokineticdatainhumansafterconsumptionofsingledosesof
beverages.Mol.Nutr.FoodRes.2011,55,864–873.
139. Rechner,A.R.;Smith,M.A.;Kuhnle,G.;Gibson,G.R.;Debnam,E.S.;Srai,S.K.;Moore,K.P.;Rice‐Evans,
C.A.Colonicmetabolismofdietarypolyphenols:Influenceofstructureonmicrobialfermentation
products.FreeRadic.Biol.Med.2004,36,212–225.
140. Mansoorian,B.;Combet,E.;Alkhaldy,A.;Garcia,A.L.;Edwards,C.A.Impactoffermentablefibresonthe
colonicmicrobiotametabolismofdietarypolyphenolsrutinandquercetin.Int.J.Environ.Res.PublicHealth
2019,16,292.
141. MorenoIndias,I.Benefitsofthebeerpolyphenolsonthegutmicrobiota.Nutr.Hosp.2017,34,41–44.
142. Cardona,F.;Andres‐Lacueva,C.;Tulipani,S.;Tinahones,F.J.;Queipo‐Ortuno,M.I.Benefitsofpolyphenols
ongutmicrobiotaandimplicationsinhumanhealth.J.Nutr.Biochem.2013,24,1415–1422.
143. Sesink,A.L.;O’Leary,K.A.;Hollman,P.C.Quercetinglucuronidesbutnotglucosidesarepresentinhuman
plasmaafterconsumptionofquercetin‐3‐glucosideorquercetin‐4’‐glucoside.J.Nutr.2001,131,1938–1941.
144. Day,A.J.;Bao,Y.;Morgan,M.R.;Williamson,G.Conjugationpositionofquercetinglucuronidesandeffect
onbiologicalactivity.FreeRadic.Biol.Med.2000,29,1234–1243.
145. Manach,C.;Morand,C.;Crespy,V.;Demigne,C.;Texier,O.;Regerat,F.;Remesy,C.Quercetinisrecovered
inhumanplasmaasconjugatedderivativeswhichretainantioxidantproperties.Febs.Lett.1998,426,331–
336.
146. D’Archivio,M.;Filesi,C.;Vari,R.;Scazzocchio,B.;Masella,R.Bioavailabilityofthepolyphenols:Status
andcontroversies.Int.J.Mol.Sci.2010,11,1321–1342.
147. Baur,J.A.;Sinclair,D.A.Therapeuticpotentialofresveratrol:Theinvivoevidence.Nat.Rev.DrugDiscov.
2006,5,493–506.
148. Timmers,S.;deLigt,M.;Phielix,E.;vandeWeijer,T.;Hansen,J.;Moonen‐Kornips,E.;Schaart,G.;Kunz,
I.;Hesselink,M.K.;Schrauwen‐Hinderling,V.B.;etal.Resveratrolasadd‐ontherapyinsubjectswithwell‐
controlledtype2diabetes:Arandomizedcontrolledtrial.DiabetesCare2016,39,2211–2217.
149. Bohmdorfer,M.;Szakmary,A.;Schiestl,R.H.;Vaquero,J.;Riha,J.;Brenner,S.;Thalhammer,T.;Szekeres,
T.;Jager,W.Involvementofudp‐glucuronosyltransferasesandsulfotransferasesintheexcretionandtissue
distributionofresveratrolinmice.Nutrients2017,9,1347.
150. Riches,Z.;Stanley,E.L.;Bloomer,J.C.;Coughtrie,M.W.Quantitativeevaluationoftheexpressionand
activityoffivemajorsulfotransferases(sults)inhumantissues:Thesult“pie”.DrugMetab.Dispos.Biol.Fate
Chem.2009,37,2255–2261.
151. Planas,J.M.;Alfaras,I.;Colom,H.;Juan,M.E.Thebioavailabilityanddistributionoftrans‐resveratrolare
constrainedbyabctransporters.Arch.Biochem.Biophys.2012,527,67–73.
152. Ritter,J.K.Intestinalugtsaspotentialmodifiersofpharmacokineticsandbiologicalresponsestodrugsand
xenobiotics.ExpertOpin.DrugMetab.Toxicol.2007,3,93–107.
153. Ung,D.;Nagar,S.Variablesulfationofdietarypolyphenolsbyrecombinanthumansulfotransferase(sult)
1a1geneticvariantsandsult1e1.DrugMetab.Dispos.Biol.FateChem.2007,35,740–746.
154. Frankel,E.N.;Waterhouse,A.L.;Kinsella,J.E.Inhibitionofhumanldloxidationbyresveratrol.Lancet1993,
341,1103–1104.
155. Maier‐Salamon,A.;Bohmdorfer,M.;Riha,J.;Thalhammer,T.;Szekeres,T.;Jaeger,W.Interplaybetween
metabolismandtransportofresveratrol.Ann.NewYorkAcad.Sci.2013,1290,98–106.
156. Zhang,C.;Wang,L.;Zhao,X.H.;Chen,X.Y.;Yang,L.;Geng,Z.Y.Dietaryresveratrolsupplementation
preventstransport‐stress‐impairedmeatqualityofbroilersthroughmaintainingmuscleenergy
metabolismandantioxidantstatus.Poult.Sci.2017,96,2219–2225.
157. Galtieri,A.;Tellone,E.;Ficarra,S.;Russo,A.;Bellocco,E.;Barreca,D.;Scatena,R.;Lagana,G.;Leuzzi,U.;
Giardina,B.Resveratroltreatmentinducesredoxstressinredbloodcells:Apossibleroleofcaspase3in
metabolismandaniontransport.Biol.Chem.2010,391,1057–1065.
158. Kaldas,M.I.;Walle,U.K.;Walle,T.Resveratroltransportandmetabolismbyhumanintestinalcaco‐2cells.
J.Pharm.Pharmacol.2003,55,307–312.
159. Heger,M.;vanGolen,R.F.;Broekgaarden,M.;Michel,M.C.Themolecularbasisforthepharmacokinetics
andpharmacodynamicsofcurcuminanditsmetabolitesinrelationtocancer.Pharmacol.Rev.2014,66,222–
307.
Molecules2020,25,6321of21
21
160. Boyanapalli,S.S.S.;Huang,Y.;Su,Z.;Cheng,D.;Zhang,C.;Guo,Y.;Rao,R.;Androulakis,I.P.;Kong,A.N.
Pharmacokineticsandpharmacodynamicsofcurcumininregulatinganti‐inflammatoryandepigenetic
geneexpression.Biopharm.DrugDispos.2018,39,289–297.
161. Cheng,D.;Li,W.;Wang,L.;Lin,T.;Poiani,G.;Wassef,A.;Hudlikar,R.;Ondar,P.;Brunetti,L.;Kong,A.N.
Pharmacokinetics,pharmacodynamics,andpkpdmodelingofcurcumininregulatingantioxidantand
epigeneticgeneexpressioninhealthyhumanvolunteers.Mol.Pharm.2019,16,1881–1889.
162. Luca,S.V.;Macovei,I.;Bujor,A.;Miron,A.;Skalicka‐Wozniak,K.;Aprotosoaie,A.C.;Trifan,A.Bioactivity
ofdietarypolyphenols:Theroleofmetabolites.Crit.Rev.FoodSci.Nutr.2019,1–34.
163. Nelson,K.M.;Dahlin,J.L.;Bisson,J.;Graham,J.;Pauli,G.F.;Walters,M.A.Theessentialmedicinal
chemistryofcurcumin.J.Med.Chem.2017,60,1620–1637.
164. Hassaninasab,A.;Hashimoto,Y.;Tomita‐Yokotani,K.;Kobayashi,M.Discoveryofthecurcuminmetabolic
pathwayinvolvingauniqueenzymeinanintestinalmicroorganism.Proc.Natl.Acad.Sci.USA2011,108,
6615–6620.
165. Burapan,S.;Kim,M.;Han,J.Curcuminoiddemethylationasanalternativemetabolismbyhumanintestinal
microbiota.J.Agric.FoodChem.2017,65,3305–3310.
166. Mahale,J.;Singh,R.;Howells,L.M.;Britton,R.G.;Khan,S.M.;Brown,K.Detectionofplasmacurcuminoids
fromdietaryintakeofturmeric‐containingfoodinhumanvolunteers.Mol.Nutr.FoodRes.2018,62,
e1800267.
167. Schiborr,C.;Kocher,A.;Behnam,D.;Jandasek,J.;Toelstede,S.;Frank,J.Theoralbioavailabilityof
curcuminfrommicronizedpowderandliquidmicellesissignificantlyincreasedinhealthyhumansand
differsbetweensexes.Mol.Nutr.FoodRes.2014,58,516–527.
©2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).