ArticlePDF AvailableLiterature Review

Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation

MDPI
Molecules
Authors:
  • Dynamical Business & Science Society - DBSS International SAS
  • Universita' degli Studi "Magna Græcia" di Catanzaro (Italy)

Abstract and Figures

Epidemiologic studies suggest that dietary polyphenol intake is associated with a lower incidence of several non-communicable diseases. Although several foods contain complex mixtures of polyphenols, numerous factors can affect their content. Besides the well-known capability of these molecules to act as antioxidants, they are able to interact with cell-signaling pathways, modulating gene expression, influencing the activity of transcription factors, and modulating microRNAs. Here we deeply describe four polyphenols used as nutritional supplements: quercetin, resveratrol, epigallocatechin gallate (ECGC), and curcumin, summarizing the current knowledge about them, spanning from dietary sources to the epigenetic capabilities of these compounds on microRNA modulation.
Content may be subject to copyright.
Molecules2020,25,63;doi:10.3390/molecules25010063www.mdpi.com/journal/molecules
Review
Quercetin,EpigallocatechinGallate,Curcumin,
andResveratrol:FromDietarySourcestoHuman
MicroRNAModulation
ErikaCione
1
,ChiaraLaTorre
1
,RobertoCannataro
1,2
,MariaCristinaCaroleo
1
,
PierluigiPlastina
1
andLucaGallelli
2,
*
1
DepartmentofPharmacy,HealthandNutritionalSciences,DepartmentofExcellence2018–2022,
UniversityofCalabria,EdificioPolifunzionale,87036Rende(CS),Italy;erika.cione@unical.it(E.C.);
latorre.chiara@libero.it(C.L.T.);r.cannataro@gmail.com(R.C.);mariacristinacaroleo@virgilio.it(M.C.C.);
pierluigi.plastina@unical.it(P.P.)
2
DepartmentofHealthScience,SchoolofMedicine,UniversityofMagnaGraecia,ClinicalPharmacology
Unit,MaterDominiHospital,88100Catanzaro,Italy
*Correspondence:gallelli@unicz.it;Tel.:+390961712322
Received:30November2019;Accepted:20December2019;Published:23December2019
AcademicEditor:SusanaM.Cardoso;AlessiaFazio
Abstract:Epidemiologicstudiessuggestthatdietarypolyphenolintakeisassociatedwithalower
incidenceofseveralnoncommunicablediseases.Althoughseveralfoodscontaincomplexmixtures
ofpolyphenols,numerousfactorscanaffecttheircontent.Besidesthewellknowncapabilityofthese
moleculestoactasantioxidants,theyareabletointeractwithcellsignalingpathways,modulating
geneexpression,influencingtheactivityoftranscriptionfactors,andmodulatingmicroRNAs.Here
wedeeplydescribefourpolyphenolsusedasnutritionalsupplements:quercetin,resveratrol,
epigallocatechingallate(ECGC),andcurcumin,summarizingthecurrentknowledgeaboutthem,
spanningfromdietarysourcestotheepigeneticcapabilitiesofthesecompoundsonmicroRNA
modulation.
Keywords:nutrients;antioxidants;commonuse;phenoliccompounds
1.Introduction
Epidemiologicstudiessuggestthatdietarypolyphenolintakeisassociatedwithalower
incidenceofseveralnoncommunicablediseasesincludingtype2diabetesandcardiovascular
disease(CVD)[1].Theyareoftenlinkedtoexcessiveproductionofreactiveoxygenspecies(ROS)
[2,3].Polyphenolsarethemostabundantantioxidantsinourdietandarecommonlypresentinfruits
[4],vegetables,cereals,olives[5],drylegumes[6],licorice[7],chocolateandbeverages,suchastea,
coffee,andwine.Dividedintodifferentclasses,accordingtotheirchemicalstructure,polyphenols
describeessentiallyphenolicacids,stilbenes,flavonoids,lignans,andcurcuminoids(seeFigure1).
Besidesthewellknowncapabilityofthesemoleculestoactasantioxidants,theyareabletointeract
withcellsignalingpathways,modulatinggeneexpressionintwodifferentways:i)influencingthe
activityoftranscriptionfactorsandii)epigenetically,modulatingmicroRNAs.Herewedeeply
describefourpolyphenolsusedasnutritionalsupplements:quercetin,epigallocatechingallate
(ECGC),curcumin,andresveratrol,summarizingthecurrentknowledgeaboutthem,spanningfrom
dietarysourcestotheirepigeneticcapabilities.
Molecules2020,25,632of21
2
Figure1.Contentofphenolicacids,stilbenes,flavonoids,lignans,andcurcuminoids(expressedas
mg/100goffood)inthemainfoodsourcesofthesepolyphenolicclasses,accordingtothedatabase
PhenolExplore(http://phenolexplorer.eu/).
2.Polyphenols
2.1.DietarySources
Polyphenols,mainlyflavonoids,aresecondaryplantmetabolitescontainedinfruitsand
vegetables[8].Someofthemarespecificofparticularfoods,suchasflavanonesincitrusfruits[9],
isoflavonesinsoy,andphloridzininapples.Ontheotherhand,otherpolyphenols,suchasquercetin,
arefoundinaplethoraofvegetableproducts[10].Biochemicalandchemicalactivitiesofpolyphenols
havebeentestedwithdifferentantiinflammatoryandantioxidantmethods[9,11].Although,several
foodscontaincomplexmixturesofpolyphenols,numerousfactorssuchclimate(sunexposure,
precipitation)and/oragronomyandstorageaswellasmaturityatthetimeofharvest,canaffecttheir
contentinplants.Furthermore,simplypeelingfruitsorvegetablescansignificantlyreduce
polyphenoliccontent,sincethesesubstancesareoftenpresentinhighconcentrationsintheexternal
parts.
2.1.1.PhenolicAcids
Phenolicacidsarederivedfromtwomainphenoliccompounds:benzoicandcinnamicacids.
Examplesofhydroxybenzoicderivativesaregallic,vanillic,andsyringicacids,whereascaffeic,
ferulic,sinapic,andpcoumaricacidsbelongtohydroxycinnamicacids[12,13].Fruitsandvegetables
arecharacterizedmainlybythepresenceoffreephenolicacids,whereasgrainsandderivativesby
boundphenolicacids[14].Hydroxycinnamicacidsarepresentathighconcentrationsinfruits,
vegetables,tea,cocoa,wine,coffee,andwholegrains[15].Theyexisteitherinfreeorconjugatedform
Molecules2020,25,633of21
3
inplants[16].Thegreatinterestinphenolicacidsisassociatedwiththeiruseinfoodtechnologydue
totheirhighpotentialinfoodpreservation[17].
2.1.2.Lignans
Lignansarepresentinawidevarietyofplantfoods,includingseeds(flax,pumpkin,sunflower,
poppy,sesame),wholegrains(rye,oats,barley),bran(wheat,oat,rye),beans,fruit(berriesin
particular),andvegetables[18–20].Amongedibleplantcomponents,themostconcentratedlignan
sourcesaresesameandflaxseeds.Sesameseedsexhibitthesecondhighestconcentrationof
sesaminolfollowedbycashewnuts(seeFigure2).Regardingvegetables,theBrassicafamilycontains
pinoresinol,whilespinach,whitepotatoes,andmushroomscontainlowamountsoflignin[21–23].
Secoisolariciresinolandmatairesinolwerethefirstlignansidentifiedinfoods[24,25].Avarietyof
factorscouldaffectlignancontentsinplants,includinggeographiclocation,climate,maturity,and
storageconditions.
Figure2.Mainfoodscontaininglignans,mostlysesaminol,accordingtothedatabasePhenolExplore
(http://phenolexplorer.eu/).
2.1.3.Flavonoids
Amongseveralflavonoidspresentinfoods,quercetin(aflavonol)andepigallocatechin3gallate
(aflavanol)gainedourscientificinterest.Quercetinprimarilyentersintothedietasquercetin3
glucoside(isoquercetin).Thisishydrolyzedinthesmallintestineandisrapidlyabsorbed.Foodsrich
inquercetinincludeprincipallyapples,berries,grapes,butalsoredonions,broccoli,blacktea,green
tea,pepper,redwine,tomatoes,andsomefruitjuices(seeFigure3).Theamountofquercetinreceived
fromfoodisprimarilydependentonanindividual’sdietaryhabits[26,27].Itisalsoimportanttonote
thatthefoodcontentofquercetinreflectsvariationsinsoilquality,timeofharvest,andstorage
conditions.Thewayofcookingfoodalsohasanoticeableeffectonquercetincontent:forexample,
onionsloseabout75%oftheirinitialquercetincontentafterboilingfor15min,65%after
microwavingand30%afterfrying.Recentworksdescribetheroleofthismoleculeagainstchronic
diseases,suchastype2diabetesbystimulatinginsulinsecretion[28–31].
Molecules2020,25,634of21
4
Figure3.Foodsthatcontainsquercetin,accordingtothedatabasePhenolExplore(http://phenol
explorer.eu/).
Epigallocatechin3gallate(EGCG)isthemoststudiedmoleculeoftheflavanolclass.Itisa
catechinconjugatedwithgallicacidandisabundantingreentea(seeFigure4)[32]andcocoabased
products[33].Themaindietarysourcesofcatechins,determiningtheintake,inEuropeandUSAare
cocoaproducts,tea,andpomefruits[34].Cocoahasthehighestcontentofcatechins,followedby
prunejuiceandbroadbeanpod.Moreover,açaíoil,obtainedfromthefruitoftheaçaípalminthe
formof()epicatechinand(+)catechin,ispresentinarganoil[35].Itwasreportedthatgreentea
consumptionhasbeencorrelatedwithalowincidenceofchroniccardiovasculardisease[36].Inany
case,comparedtoothercatechinsfoundintea,EGCGpossessesthemostimportantbiological
activitiesoninhibitionofangiogenesisand,therefore,cancerprogressionlikelyduetoitsgalloyl
moiety[37,38].
Figure4.Epigallocatechin3gallate(EGCG)fromgreentea,accordingtothedatabasePhenol
Explore(http://phenolexplorer.eu/).
2.1.4.Stilbenes
Lowquantitiesofstilbenesarepresentinthehumandiet,andthemainrepresentativeis
resveratrol.ThiscompoundwasfirstisolatedfromtherootsofVeratrumgrandiflorumO.Loesin1940
andlaterfromtherootsofPolygonumcuspidatum[39].Itisproducedbyplantsinresponsetoinfection
bypathogens[40–42]ortoavarietyofstressconditions.Ithasbeendetectedinmorethan70plant
species,includinggrapes,berries,andpeanuts(seeFigure5).Severalstudieshighlightedthatthis
compoundhasawiderangeofbiologicalactivities[43,44].
Molecules2020,25,635of21
5
Figure5.Structureofresveratrolanditscontentinmainfoods,accordingtothedatabasePhenol
Explore.
2.1.5.Curcumin
Curcuministhemostwidelystudiedamongcurcuminoids.Itisanaturalphenolicthatis
responsiblefortheyellowcolorofturmeric(Curcumalonga),amemberofthegingerfamily,
Zingiberaceae.Themostcommonapplicationsareasaningredientindietarysupplements,in
cosmetics,andasflavoringforfoods,suchasturmericflavoredbeveragesinSouthandSoutheast
Asia.Asafoodadditivefororange–yellowcoloringinpreparedfoods,itsEnumberisE100inthe
EuropeanUnion.Curcuminisnotverywidespreadinfood,infactthefoodsrichestincurcuminare
onlyturmericplantandcurrypowder(Figure6)[45].
Figure6.Structureofcurcuminanditscontentinmainfoods,accordingtothedatabasePhenol
Explore.
2.2.Chemistry
Polyphenolsrepresentthemostabundantcompoundsamongthesecondarymetabolites
producedbyplants,withmorethan8000identifiedcompounds,rangingfromsmallmoleculessuch
asphenolicacidstohighlypolymerizedsubstancessuchastannins[46].Theyareproducedviathe
phenylpropanoidpathwayinwhichphenylalaninerepresentsthestartingcompound[47].Froma
chemicalpointofview,polyphenolsarecharacterizedbythepresenceofoneormorearomaticrings
bearingoneormorehydroxylgroups.AnearlyclassificationwasfirstsuggestedbyManachand
Molecules2020,25,636of21
6
colleagues[48],whodistinguishedfourclassesofpolyphenols,namely:1)phenolicacids,2)
flavonoids,3)stilbenes,and4)lignans.Phenolicacidscanbefurthersubdividedintotwoclasses:
hydroxybenzoicandhydroxycinnamicacids(seeTable1).Thesecompoundsexistinthefreeformas
wellasintheesterifiedform.Caffeicacidismostoftenconjugatedwithquinicacidtoform
chlorogenicacid,whichisthemajorphenoliccompoundincoffee,whileferulicacidisabundantly
presentincerealswhereitisesterifiedtohemicellulosesinthecellwall[49].
Table1.Structureandclassificationofphenolicacids.
Hydroxybenzoicacids
NameR1R2R3
pHydroxybenzoicacidHOHH
ProtocatechuicacidOHOHH
VanillicacidOCH3OHH
GallicacidOHOHOH
SyringicacidOCH3OHOCH3

Hydroxycinnamicacids
AcidR1R2R3
pCoumaricacidHOHH
CaffeicacidOHOHH
FerulicacidOCH3OHH
SinapicacidOCH3OHOCH3
Theflavonoidfamilyrepresentsthelargestclassofpolyphenols.Thebasicflavonoidstructure
containstwoaromaticrings(labeledAandB)connectedbyaC3linkagewhichisnormally
incorporatedintoanotherring(labeledC)[50].Flavonoidsaresubdividedintosixmainsubgroups:
flavones,isoflavones,flavonols,flavanones,anthocyanins,andflavan3ols,accordingtothe
oxidationstateofthecentralCring.Structuralvariationineachsubgroupdependsonthenumber
andpositionofhydroxylandmethoxylgroups.Moreover,thesecompoundsexistintheirfreeform,
aswellasintheesterified,prenylated,andglycosylatedforms(seeFigure7)[51,52].
FlavoneIsoflavoneFlavonol
FlavanoneAnthocyaninFlavan3ol
Figure7.Basicstructureandclassificationofthemostimportantflavonoids.
Quercetinusuallyoccursinplantsasglycosides,linkedwithvarioussugarmoieties,mostly
glucose,butalsogalactose,rhamnose,andothers.Flavan3olscanbefoundintheiresterifiedforms,
linkedtoagallatemoiety,asinthecaseofepigallocatechin3gallate(EGCG).Anthocyanins(from
theGreek‘anthos’,flower)areresponsiblefortheorange,red,blue,andpurplecolorsofflowersand
fruitsofmanyplants.Theyaretheglycosylatedformofthecorrespondinganthocyanidins
(aglycones)[52].
Molecules2020,25,637of21
7
Tanninsrepresentanimportantgroupofpolymericphenoliccompoundsandareusually
dividedintotwosubgroups:hydrolyzabletanninsandcondensedtannins.Hydrolyzabletannins
containacentralcoreofglucoseesterifiedwithgallicacidmoieties(gallotannins),orwith
hexahydroxydiphenicacid(ellagitannins).Thesecompoundshaveamolecularweightrangingfrom
2000to5000Daltons.Condensedtannins,alsoreferredtoasproanthocyanidins,areoligomersor
polymersofflavan3olslinkedthroughaninterflavancarbonbond[49].
Stilbenesandlignansarelesscommonplantphenolics.Resveratrol(3,4,5trihydroxystilbene,
seeFigure8)isthemostinvestigatedcompoundbelongingtothestilbeneclassexistingincisand
transforms.Itispredominantlyfoundingrapesandgrapejuiceastransresveratrolglucoside(trans
piceid).
Figure8.Structureofresveratrol(R=H)andresveratrolglucoside(R=glucose).
Curcumin[1,7bis(4hydroxy3methoxyphenyl)1,6heptadiene3,5dione]isanonpolar
polyphenol.Itisabis‐α,β‐unsaturatedβ‐diketoneandexistsindifferenttautomericforms(seeFigure
9).Theβdiketoneformprevailsinacidicandneutralaqueoussolutions,whiletheenolform
predominatesinmorealkalinemedia[53].Inthecaseofcurcumin,thearomaticringsare
functionalizedwithhydroxyandmethoxygroups,whereastheothercurcuminoidslackoneorboth
methoxygroups(desmethoxycurcuminandbisdesmethoxycurcumin,respectively).
Figure9.Structureandketo–enoltautomerismofcurcumin(R1=R2=OMe),desmethoxycurcumin(R1
=OMe,R2=H),andbisdesmethoxycurcumin(R1=R2=H).
2.3.NutritionalSupplements
Followingthepromisingresultfrominvivoandinvitrostudies,overthelastdecade,therewas
astrongdevelopmentofnutritionalsupplementsbasedonpolyphenols.However,strongandsolid
studiesonhumanefficacyarestilllacking.Despitethat,quercetin,EGCG,curcumin,andresveratrol
aremarketedasdietarysupplements.ThesemoleculeshavebeenrecognizedasGRAS(generally
recognizedassafe)bytheFoodandDrugAdministration(FDA)aswellasbytheEuropeanFood
SafetyAuthority(EFSA)forthebeneficialeffectsontheprotectionofDNA,proteins,andlipidsfrom
oxidativedamage,highlightingtheirantioxidantpower.
Quercetinisusedasanergogenicsupplement(asupplementthatcouldimprovesports
performance)buttheresultsonthiscapabilityarecontroversial.Forexample,Neimanandcoworkers
supplementedquercetintocyclistsfortwoweeks(1gperday)andanalyzedmuscularbiopsyfinding
Molecules2020,25,638of21
8
aslightlysignificantimprovementinmitochondrialdensity[54].Ontheotherhands,metaregression
analysisrelativetosubjects’fitnesslevelandplasmaquercetinconcentrationachievedby
supplementationwasnotsignificant[55].ThepointofviewofKerksickandtheInternationalSociety
ofSportNutritionisthatquercetinissafeandisagoodantioxidant,butitneedsmorestudiesto
evaluateitsergogenicpower[56].
EGCGfromgreenteaandgreenteaextractsiswidelyusedintraditionalChinesemedicine,so
itisconsideredsafeeveninhugedosages(>1–3gperday)itcanbeaprooxidantbringingnegative
effectssuchreactiveoxygenspecies(ROS)production[54,57].Despitethisdichotomiceffect,todate
nostudiesconfirmedthenegativeeffectofEGCGinhumans.Incontrast,aninterestingstudy
performedbyPervinandcoworkersshowedthatgreenteaconsumptionleadstoanimprovementin
cognitivefunction[58].Recently,XicotaandcoworkersshowedthatEGCGhasmodestbeneficial
effectonweightmanagementinDownsyndromesubjectsandcognitivefunction[59].Furthermore,
EGCGhasalsobeenseentohaveasexdependenteffectonlipidprofilethatwasrelatedtochanges
inbodymassandcomposition.
CurcuminiswidespreadinmanyAsiancuisinesaswellasinAyurvedicmedicine[60].Besides
that,theantioxidantandantiinflammatorypropertiesofcurcuminarewellknown[61],dealingwith
variouspathologiessucharthritisandosteoarthritis[62–67],obesityanddiabetes[68,69].Inaddition
toitsverylowbioavailability,therealmechanismofactionofcurcuminisstilluncertain.Itwas
speculatedthatitprobablyactsviathe“sanitation”ofthegutandtheconsequenthealingof
inflammation.Therefore,itwassupposedthatthemicrobiomecouldyieldactivemetabolitesfrom
curcumin.However,themechanismsofactionremainunclear;itprobablypossessesanepigenetic
modulatingpowerbuttodateonlyinvitrostudiesareinsupportoftheseimportanteffects[70].
Inthe1992,Renaudandcoworkerspublishedaninterestingstudy,pointingoutwhatisknown
asthe“Frenchparadox”[71].ThelowsusceptibilityofFrenchpeopletoCVDlinkedtotheuseofred
wine.Redwineandobviouslygrapeareasourceofresveratrol,apowerfulantioxidantwithbenefits
formusclestrengthwithantiinflammatoryeffects[72,73].Resveratrolisabletoregulatemetabolism
[74],anditisusefulinthetreatmentofneurodegenerativediseases[75],diabetes[76],cardiovascular
diseases[77–79],andcancer[80].Inhumans,adoseof450mgperdayisconsideredsafe[81].
2.4.MicroRNAs
Usedasnutritionalsupplements,polyphenolsareabletoinfluencetheactivityoftranscription
factorsortomodulatemicroRNAs(miRNAs).miRNAsaredefinedassmallnoncodingRNA
molecules,havingfrom21to22nucleotides.Theirsynthesisproceedsthroughwelldefined
biochemicalsteps:theprimarytranscriptsalsocalledhairpinshaped(knownaspremiRNAs)are
derivedfrom:i)intronsoftheircorrespondingtranscriptionpartsandii)intergenicregionsofDNA,
catalyzedbyRNaseII;thecatalyticcleavageofthepremiRNAsgeneratessmallertranscripts,called
premiRNAsabout70nucleotideslong[82].ThisbiochemicalstepiscatalyzedbythepolymeraseIII
Drosha.Then,DGCR8aproteinasadsRNA(doublestrandRNA)bindingmoleculemakesa
complexwithDrosha,forminga“microprocessor”abletocuttheinitialtranscripttoa70nucleotide
lengthwithanincompletestemloopstructure,calledpremiRNA.ThepremiRNAsareasubstrate
thateasilyproceedtothecytoplasmthroughthecarrierExportin5[83].Then,aspecifichelicase,
knownasDicerRNase,togetherwithaseconddsRNAbindingprotein,calledTARRNAbinding
protein(TRBP)performsthelastcleavageprocessofpremiRNAsintheirhairpinsiteandconverts
themtosmalldoublestrandedRNAs,containingthematuremiRNAanditscomplementarystrand.
TRBPisabletorecruittheargonaute(AGO)proteinasthemainfactorforRNAinduced
silencingcomplex(RISC)loading[83].Finally,maturemiRNAsarepackagedintoexosomesfor
extracellularandbloodstreamtransport[84].
Theireffectisrecognizedafterspecificbindingtocomplementarynucleotidesoftheseedregion
(about2–8nucleotideslong)oftargetmRNAsuppressingitstranslationandstability[85].Recently,
theroleofnutritionand
microRNAs
aspowerfulregulators
meta
bolicfunctionsandthe
maintenanceofoxidativestressisemerging[86–88].Sincedietary
factors
mayhaveaninfluenceon
Molecules2020,25,639of21
9
miRNAbiogenesis,itseemsreasonabletoassumethatsome
bioactive
compounds
presentin
different
foods
may
modulatethe
development
and
progressionof
certain
diseases
.Therefore,
bioactivecompoundspresentinfoodsmayaffectendogenousmiRNAsynthesis.
Itwasdemonstratedthatnaturalcompoundssuchaspolyphenolscanstimulatetumor
suppressorgenes,alteringmiRNAexpressions.Inthisregard,s
everalinvitrostudiesshowthe
effectofquercetin,EGCG,curcumin,andresveratrolonmiRNAexpressioninmodelsystems.
Currently,manyinvestigationshavefocusedonmodifyingthemiRNAfunctionsincancercellsto
achievetherapeuticapproaches.Inaddition,inthecaseofresveratrol,ahumanstudyhasalsobeen
carriedout.Atthemomentofthewritingofthisarticle,2675humanmaturemiRNAsequencehave
beendescribedinmiRBase22(http://www.mirbase.org/).
2.4.1.QuercetinandMicroRNAs
Theprotectiveeffectsofquercetinonhumanhealtharemediatedbymultifaceted,pleiotropic
actionevenfromanepigeneticpointofview.Currently,muchresearchhasfocusedonmodulating
themiRNAexpressionincancercellsinordertoachievetherapeuticapproaches.Quercetinperse,
wasabletoincreasetheexpressionofmiR146ainhumanbreastcancercells[89].Similarresultswere
achievedbyquercetinderivativesonmiR146ainlipopolysaccharide(LPS)treatednormalcolon
cells,aswellasinmurinemacrophagesinwhichmiR155expressionwasdecreased[90].The
upregulationofmiR146ainducedTolllikereceptor4(TLR4)stimulationwhichregulatesnuclear
factorkappalightchainenhancerofactivatedBcells(NF‐κB)andotherTLRmediatorsof
inflammation[91].
Theinfluenceofquercetinwasalsostudiedinseveraltypesofhumancancercelllinespointing
outtheupregulationoflet7a,let7c,miR200b3p,andmiR1423pinpancreaticductal
adenocarcinoma[92–95].Theupregulationofmirlet7familyfunctionasinhibitormoleculesableto
targetKRasgeneandthereforeaffectsproliferationfunctioningasbiomarkersforbothprognosis
andtherapyforprecisionmedicineincancer[92,96];whilemiR200b3pandmiR1423pregulates
themodeofselfrenewingdivisionsandtheheatshockprotein70,respectively[92–95].
Furthermore,miR16,miR217,andmiR145weremodulatedbyquercetininlung
adenocarcinoma,osteosarcoma,andovariancancercells,respectively[97–99].Inthelung,miR16
wasabletodownregulateClaudin2whichisalsoamediatorofleakygutbarrierduringintestinal
inflammation[97,100].Ontheotherhand,miR217enhancescisplatinsensitivityinterferingwithK
Raspathways[98]andmiR145inhibitsandcontroltargetinggenesthathavesimilarbehaviorin
apoptosisandindifferentGeneExpressionOmnibus(GEO)databases[99,101].
2.4.2.EGCGandMicroRNAs
Similartootherpolyphenols,EGCGwasextensivelystudiedininflammation.Inparticular,
whenEGCGisusedininterleukin1beta(IL1β)stimulatedhumanosteoarthritischondrocytescell
line,itwasabletoupregulateanddownregulateaplethoraofmiRNAs.Especially,let7family(let
7a5p,let7b5p,let7c,let7d5p,let7f5p,let7i5p),miR1403p,miR193a3p,miR199a3p,miR
27b3p,miR29a3p,miR320b,miR34a5p,miR3960,miR4284,miR4454,miR4975p,miR5100,
andmiR1005pwereupregulated[102].ItisofnotethatmiRsexosomecargoistodayproposedin
theosteoarthritismanagement[103].Withregardtothis,recentstudiesshowedthattheexosomes
derivedfrommesenchymalstemcellsmaintainchondrocytehomeostasis,amelioratingthe
pathologicalseverityofthediseasethisisduetothemiR1005pwhichinturnsinhibitsthemTOR
autophagypathway[104].Inthesamesetofexperiments,researcherdocumentedthatEGCGwas
abletodecreaselet7e5p,miR103a3p,miR151a5p,miR1955p,miR2223p,miR23a3p,miR23b
3p,miR26a5p,miR27a3p,miR29b3p,miR3195,miR3651,miR4281,miR4459,miR4516,miR
762,andmiR125b5pexpression[102].ThedecreaseofthislattermiRisnotpositiveforthe
preventionofcartilagebreakdowninosteoarthritis[105].
SincemodulationofmiRNAexpressionincancercellscouldbeatherapeuticstrategy,EGCG’s
biochemicaleffectswerealsostudiedincancer.EGCGwasabletoupregulatemiR1403pandmiR
Molecules2020,25,6310of21
10
221inmelanomaandhepatomacelllines,respectively[106,107]inhibitingosteopontinininduced
liverfibrosis[107].SimilarresultsformiR1403pwereobtainedunderEGCGtreatmentin
chondrocyte[102].Furthermore,EGCGinducedtheincreaseofmiR36633p,miR1181,miR3613
3p,miR1281,andmiR1539andthedecreaseofmiR2215p,miR374b,miR4306,miR500a5p,and
miR5905pinhumandermalpapillacells[108]fromscalphair.Thesensitivityofthescalpisalso
higherinmigraine,andthislattermiRwasfounddownregulatedinhumanssufferingfrompain
migraine.ThelevelofthismiR5905pwasrestoredwithdiet[109].Interestingly,greenteais
recommendedtorelievemigraineattackfrequency[110].
2.4.3.CurcuminandMicroRNAs
Curcumin treatmentonschwannomacellsbymiRsarrayrevealedthatmiR350,miR1723p,
let7e3p,miR1224,miR466b13p,miR18a5p,andmiR3225pweredownregulatedwhilemiR
1225p,miR3473,miR182,andmiR344a3pwereupregulated.ThislattermiRshavearoleinthe
controlofapoptosisinschwannomacells[111].Inaddition,inseveraltypesofcancer,curcuminhas
beenshowntoplayaroleinthemodulationofmiRscontrollingapoptosis,i.e.,miR33bandmiR
2055pareupregulatedinmelanomacancercellswhilemiR21wasdownregulated.Onthecontrary,
incolorectalcancer,upontreatmentwithcurcumin,miR21,miR3a/c,andmiR27awere
upregulated,andmiR200b/c,miR141,miR101,miR429,andmiR34adisplayedlowerexpression
withrespecttotheuntreatedcells[112].
UpregulationoftheclustermiR1925p/215wasreportedinlungcanceruponcurcumin
treatmentaswellasmiR9,miR205,miR200a/b,miR15a/161,andmiR203inovarian,prostate,
hepatocellular,leukemia,andbladdercancercells,respectively.Inbreastcancercells,miR19and
miR15a/161werefoundupregulated,whereasmiR34aandmiR181bweredownregulated.In
thyroidcarcinomasmiR21andmiRNA200cwerefoundupregulatedwhilelet7c,miR26a,miR215,
miR1925p,andmiR125bweredownregulated[112].Thelatterwasalsofounddownregulated
uponcurcumintreatmentinnasopharyngealcarcinoma[112].
Furthermore,curcumininducedapoptosisincisplatinresistanthumanovariancancercells
throughcaspase3activationandpoly(ADPribose)polymerase(PARP)cleavage,viaupregulation
ofmiR9[113].
AltogetherthemiRsmodulatedbythepolyphenolsdiscussedhereresultedtoinfluenceseveral
pathwaysincludingWntandmitogenactivatedproteinkinase(MAPK)signaling,pathwaysin
cancerandbasalcellcarcinoma,aswellasinadherencejunction,neurotrophinsignaling,andaxon
guidance,and,lastbutnotleast,cytokine–cytokinereceptorinteractionasitispresentinKEGG
(KyotoEncyclopediaofGenesandGenomes)database
(https://www.genome.jp/kegg/pathway.html).
2.4.4.ResveratrolandMicroRNAs
Currently,morethanahundredscientificdocumentshaveconfirmedthattheeffectof
resveratrolinthepreventionortreatmentofvariousdiseases,includingcancer,ismediatedbymiRs.
Thebiologicaleffectsofresveratrolwerestudiedinhumancoloncancerinwhichitsignificantly
decreasedthelevelsofmiR17,miR21,miR25,miR92a2,miR1031,andmiR1032.ThosemiRsin
certaincontextshavebeenshowntoactasoncomiRs[114].Inprostatecancer[115]andinmelanoma,
resveratroldecreasedmiR221levels[116].Whileinlungtumors,resveratrolledtoanupregulation
ofmiR200c[117].Inaddition,itactstodecreasemiR5423pandincreasemiR1225pinestrogen
responsiveandtriplenegativebreastcancercells,whileonlymir1225pisincreasedinthetriple
negativecells[118].ResveratrolshowedeffectivenessviamiRsnotonlyinaberrantpathophysiology
suchascancer,butinphysiologicalcellsystemssuchaswhiteadiposecelllinesalsoresveratrol
inducedtheexpressionofmiR5395pinhibitingdenovolipogenesis[119].
Inprimaryhumanfibroblasts,resveratrolwasabledecreasemiR566andmiR23a,restoring
mitochondrialfattyacidβoxidationratesinprimaryhumanfibroblastsformpatientsharboring
carnitinepalmitoyltransferase2mutationassociatedwithtwodifferentphenotypes(neonatal
Molecules2020,25,6311of21
11
lethalityormyopathyinmildforms)[120].Therefore,resveratrol,independentlyofthedisease,led
tomiR566andmiR23amodulationspecifically[120].MicroarrayanalysisshowedthathumanTHP
1monocyticcellstreatedwithresveratrolincreasedtheexpressionofmiR663decreasingmiR155
[121].Ontheotherhand,thereductionofproliferationanddifferentiationofpreadipocytesdueto
resveratroltreatment,ledtotheoverexpressionofmiR155[122].
Althoughofinterest,theinvitrostudiesconductedsofarhavenotbeentranslatedtohumans
yet.Onlyresveratrolhasbeenstudiedinhumansubjects[81].Thedailyintakeusedwasone
capsule/dayofgrapeextract(139mg)containingresveratrol(8.1mg)bymenwithT2D,hypertension,
andBMI>30kg/m2forsixmonthsandtwocapsules/dayforfurthersixmonths.Thistreatment
yieldedtheupregulationofmiR21,miR181b,miR663,andmiR30candtheconcomitantlower
levelsofinflammatorycytokinessuchasIL6,chemokine(CCmotif)ligand3(CCL3),IL1β,and
tumornecrosisfactorα(TNF‐α).Additionally,miR155increasedaswellinperipheralblood
mononuclearcells.TheincreaseinthesemiRNAswasassociatedwithareductionofinflammation
mediatedbytheregulationoftheTLRandNFkBpathwaysandinflammatorycytokinegene
expression[81].
2.5.PharmacokineticProfile
Variousreportsunveiledpolyphenolsaspromisingtherapeuticagentsowingtotheirbroad
spectrumofbiologicalactivities.Thesecompoundshavelongbeenrecognizedtopossessfreeradical
scavengingproperties,however,thepresenceofbothhydrophobicandhydrophilicdomainswithin
thechemicalstructureenablespolyphenolstoaffectmembranedynamicsthroughthearrangement
ofmembraneproteinsandtheformationoffunctionalcomplexesresponsibleforcellsignal
transductionandtheregulationofthemetabolism[123].Thismechanismofactionunderliesmostof
thebeneficialeffectsofpolyphenols,howevertheeffectivenessofthesecompoundsindisease
preventionandhumanhealthimprovementistightlyrelatedandlimitedtotheirbioavailability[48].
Theconceptofbioavailabilityencompassesseveralvariablessuchasintestinalabsorption,
metabolismbygutmicrobiota,intestinalandlivermetabolism,biologicalpropertiesofmetabolites,
distributionattissueslevel,andexcretion,whichinturndependuponthechemicalstructureof
xenobiotics.
Thevariouschemicalformsofpolyphenolsleadtohighvariabilityintheirrateandextentof
intestinalabsorptionaswellasinthenatureofcirculatingmetabolites[48].Mostofthesecompounds
areintheglycosylatedformresultinginalowgradeofabsorptionoftheirnativemolecule.
Commonlyflavonoidsshowassugarmoietyglucoseorrhamnose,andfollowingtheiringestion,
thesecompoundsundergodeglycosylationpriortobeingabsorbed[124].Hydrolysisofsaccharide
moietyoccursatthelevelofgastrointestinalcells,anditiscarriedoutbyintracellularcytoplasmicβ‐
glucosidase(CBG)[125],ofnote,theexpressionpatternistissuespecificandoftenregulatedduring
development.Inhumans,differentglycosidaseshavebeendocumented:i)lactasephlorizin
hydrolase(LPH)andCBGatthelevelofredbloodcellsandcytosol,respectively.Bothenzymes
hydrolyzedglycosylatedflavonoidsinthemorehydrophobicaglycones,thuspromotingpassive
diffusionthroughenterocytes[126–128].However,determinedglycosylatedflavonoids,suchas
quercetin4′‐glucoside,werefoundtobealsoactivelytransportedintoenterocytesthroughtheactive
sodiumdependentglucosetransport(SGLT1)[128].Itisworthmentioningthatflavonoidswith
rhamnosemoietyarenotsubstratesforhumanβ‐glycosylasesbeingcleavedbycolonmicrofloraα
rhamnosidasesbeforetheabsorptionprocess[129].Alargeproportionofpolyphenolsisconstituted
byflavan3olssuchas()epicatechins.Thesecompoundsareneverglycosylatedbutoften
acetylatedbygallicacid.Asrevealedbypharmacokineticstudies,catechins,andparticularlyEGCG,
arepredominantlyabsorbedinthejejunumandtheileum,viaaparacellulardiffusionthrough
epithelialcellswithoutanydeconjugationorhydrolysis[130].
Animportantsteplimitingtheabsorptionofthedeterminedflavonoidsisrepresentedby
intestinalefflux[131].Thisprocessisaffectedbymembranetransportersand,amongthese,members
oftheadenosinetriphosphate(ATP)bindingcassette(ABC)superfamilysuchasmultidrug
Molecules2020,25,6312of21
12
resistanceprotein(MRP),Pglycoprotein(Pgp),andbreastcancerresistanceprotein(BCRP)have
beenreportedtobeinvolvedintheregulationofsomeflavonoidsintestinaleffluxandultimatelyto
influencethenetamountthatisabsorbedintosystemiccirculation[132,133].Theeffluxofquercetin
andepicatechinmetabolitesisthoughttooccurbyMRP2,locatedontheluminalsideofepithelial
cells[131]whilethemonocarboxylatetransporterPgp,MRP1,andMPR2playsignificantrolesinthe
cellularaccumulationandpossibleeffectsof()epicatechingallate[134].SinceABCtransportersare
ubiquitouslypresentinmosttissues,theinterplaybetweenflavonoidsandABCtransporterscould
notonlymodulatetheextentofintestinaleffluxandbioavailabilitybutalsothedistributionof
flavonoidconjugatestothetargetsitesandtheirelimination.Moreover,bioavailabilityofthese
compoundsmaybeamplifiedorreducedbyaselectiveinteractionwithABCtransporters[135]when
coadministered.
BothquercetinandEGCGundergotoextensivemetabolismatbothenterocytesandliverlevels
byglucuronidation,sulfation,andmethylationreactions[136–138].Someoftheliverconjugatesare
excretedasbilecomponentsandundergoenterohepaticrecirculation.Thedeconjugatedcompounds
arethenregeneratedbygutmicrobialenzymesbeforebeingreabsorbedagain[139–142]whilethe
unabsorbedmetabolitesareeliminatedviafeces.Alltheconjugationmechanismsarehighlyefficient,
thereforeconsiderableamountsofmetabolitesreachthebloodstream[143].Theseproductsretainthe
biologicalactivityproducingsimilar,stronger,orweakereffectscomparedwithparentcompounds
[144,145].Anexceptionisgreenteacatechins,whoseaglyconesconstituteasubstantialproportionof
thetotalamountinplasma,astheyaredevoidofthesugarmoietyand,hence,quicklyabsorbedat
thesmallintestinewithoutfurthermodifications[146].
Thepoorsystemicbioavailabilityalsoaffectsthemechanismofactionacrossconditionsand
dosesofresveratrolasdemonstratedbytheinvivononreproducibilityofinvitroeffects[147,148].
Inhumans,resveratrolishighlyabsorbedorally.However,arapidandextensivebiotransformation
ofthepolyphenoloccursaftertheabsorptionphaseintotheenterocytes.Specifically,resveratrol
undergoessulfationandglucuronidationmediatedbysulfotransferase1A1(SULT1A1)andUDP
glucuronosyltransferase1family,polypeptideA1(UGT1A1)andUDPglucuronosyltransferase1
family,polypeptideA9(UGT1A9)enzymes,respectively.Themetabolismtakesplaceinmultiple
organsandcelltypes,andtheobservedbiotransformationdiffersinmetabolitelevels[149],according
totissueexpressionofthespecificenzymesinvolvedinthebiotransformation[150].Ofnote,thereis
aninterspeciesvariationofphaseIImetabolismand,inthisrespect,resveratrolsulfatesarethemain
conjugatesinhumans,whileglucuronidesconjugatesaredominantinpigsandrats[151].Itisworth
mentioningthat,drugmetabolismisawelldocumentedcauseofinterindividualvariabilityandfor
bothSULTsandUGTsgeneticpolymorphismshavebeenreported[152,153].Afterabsorptionand
conjugation,resveratrolsulfatesandglucuronidesthroughtheABCtransportersexpressedatboth
apicalandbasolateralportionsofenterocytemembranecanbetransportedeitherintheintestinal
lumenorinthebloodstreamwheretheybindtolipoproteinsoralbuminbeforedistributingto
peripheraltissues[154].Ofnote,transportersarenotlimitedtoparticipatingintheabsorptionand
distributionofresveratrolandmetabolitesintheduodenumandjejunum,astheyarealsoexpressed
inothertissues,suchaskidneys[155–158],thuscontributingtoexcretionprocesses.Unlike
resveratrol,thelowavailabilityofcurcumininhumansafteroralintakeisprimarilyduetoalow
gradeofabsorptionbythesmallintestinecoupledwithfastmetabolismandelimination.
Thepoorbioavailabilityisalsointensifiedbythecurcumin’scapabilitytobindtoenterocyte
proteinsthatcanmodifyitsstructure[159–161].TheliveristheprimarysiteofphaseIandII
curcuminbiotransformationalongwithintestineandgutmicrobiota[162].Extensivemetabolic
reductionalsooccursatenterocyteandhepatocytelevelsleadingtotheformationof
dihydrocurcumin,tetrahydrocurcumin,hexahydrocurcumin,andoctahydrocurcuminwhichinturn
areconvertedthroughconjugationintophysiologicallyinactiveconstituents[163].Ofnote,these
reducedcompoundscanexistbothinfreeformorasglucuronides[162].PhaseIImetabolismtakes
placeintheintestinalandhepaticcytosolonbothcurcuminanditsphaseIproductsbyconjugation
withglucuronicacidorsulfationatphenolicsite.CurcuminissulfatedbySULT1A1,SULT1A3inthe
cytosolicfractionwhileUGTscatalyzetheglucuronidationatthelevelofhepaticmicrosomes.Gut
Molecules2020,25,6313of21
13
microfloraalsocontributetocurcuminmetabolismmainlythroughsulfationordemethylation
reactionsleadingtotetrahydrocurcumin[164]anddemethylcurcuminandbisdemethylcurcumin
[165],respectively.Ofnote,curcuminmetabolitesretainallpharmacologicalpropertiesoftheparent
compoundshowingantioxidant,antiinflammatory,antitumor,cardioprotective,andantidiabetic
effects[5,19,20].Gendercanalsosignificantlyaffectcurcuminpharmacokinetics.Thedifferencesare
relatedtogenderspecificfactors,amongthese,ahigheractivityofhepaticdrugeffluxtransporters
inmenandthepresenceofhigherbodyfatinwomen[166,167].
3.Methods
PubMed,Embase,Cochranelibrary,andreferencelistsweresearchedforarticlespublisheduntil
1November2019,usingthekeywords“polyphenols”,“radicaloxygenspeciesandantioxidant
activity”,“inflammatorybiomarkers”,“epidemiology”,“foodsource”,“geneexpression”,
“microRNAs”,“microRNAsandinflammatorybiomarkers”.Secondarysearchesincludedarticles
citedinsourcesidentifiedbytheprevioussearch.
4.Conclusions
Understandingpolyphenolconsumptionisessentialtodeterminethenatureandthe
distributionofthesecompoundsinourdiet.Despitetheirpoorbioavailability,quercetin,EGCG,
curcumin,andresveratrolaremarketedassupplements.Onlyforthelatterone,studieswere
conductedinhumansubjectspointingoutitscapabilitytoinfluencemiRNAexpressionpattern
relatedtoinflammation.Inthisview,asafuturedirection,wesuggestusingthemicroRNAslinked
toinflammatory,antioxidant,orimmunestatusasmarker(s)formonitoringnutraceuticaleffectsof
polyphenols.Atthemoment,polyphenolsarebecomingprotagonistsinthenutraceuticalscenario
withoutstudiesonhumansubjects.Themainfactorresponsibleforthisdelayisthevarietyandthe
complexityoftheirchemicalstructureandtosomeextenttheirgutmicroflorametabolite.
AuthorContributions:E.C.coordinatedandrevisedtheworkandwrotethesectiononmicroRNAs;C.L.T.
wrotethesectionondietarysources;R.C.wrotethesectionondietarysupplements,P.P.wrotethesectionon
chemistry;M.C.C.wrotethesectiononpharmacology;L.G.facilitatedtheworkandwrotetheconclusions.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding: Thisresearchreceivednoexternalfunding
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Gollucke,A.P.;Peres,R.C.;Odair,A.,Jr.;Ribeiro,D.A.Polyphenols:Anutraceuticalapproachagainst
diseases.RecentPat.Foodnutr.Agric.2013,5,214–219.
2. ZamoraRos,R.;Cayssials,V.;Jenab,M.;Rothwell,J.A.;Fedirko,V.;Aleksandrova,K.;Tjonneland,A.;
Kyro,C.;Overvad,K.;BoutronRuault,M.C.;etal.Dietaryintakeoftotalpolyphenolandpolyphenol
classesandtheriskofcolorectalcancerintheeuropeanprospectiveinvestigationintocancerandnutrition
(epic)cohort.Eur.J.Epidemiol.2018,33,1063–1075.
3. Arts,I.C.;Hollman,P.C.Polyphenolsanddiseaseriskinepidemiologicstudies.Am.J.Clin.Nutr.2005,81,
317S–325S.
4. Fazio,A.;Iacopetta,D.;LaTorre,C.;Ceramella,J.;Muia,N.;Catalano,A.;Carocci,A.;Sinicropi,M.S.
Findingsolutionsforagriculturalwastes:Antioxidantandantitumorpropertiesofpomegranateakkopeel
extractsandbetaglucanrecovery.FoodFunct.2018,9,6618–6631.
5. Roman,G.C.;Jackson,R.E.;Gadhia,R.;Roman,A.N.;Reis,J.Mediterraneandiet:Theroleoflongchain
omega3fattyacidsinfish;polyphenolsinfruits,vegetables,cereals,coffee,tea,cacaoandwine;probiotics
andvitaminsinpreventionofstroke,agerelatedcognitivedecline,andalzheimerdisease.Rev.Neurol.
2019,175,724741.
6. Scotto,G.;Fazio,V.;LoMuzio,L.;Coppola,N.Screeningforinfectiousdiseasesinnewlyarrived
asymptomaticimmigrantsinsouthernitaly.East.Mediterr.HealthJ.2019,25,246–253.
Molecules2020,25,6314of21
14
7. Gabriele,B.;Fazio,A.;Carchedi,M.;Plastina,P.Invitroantioxidantactivityofextractsofsybarisliquorice
rootsfromsouthernitaly.Nat.Prod.Res.2012,26,2176–2181.
8. ZamoraRos,R.;Knaze,V.;Rothwell,J.A.;Hemon,B.;Moskal,A.;Overvad,K.;Tjonneland,A.;Kyro,C.;
Fagherazzi,G.;BoutronRuault,M.C.;etal.Dietarypolyphenolintakeineurope:Theeuropeanprospective
investigationintocancerandnutrition(epic)study.Eur.J.Nutr.2016,55,1359–1375.
9. Plastina,P.;Fazio,A.;Gabriele,B.Comparisonoffattyacidprofileandantioxidantpotentialofextractsof
sevencitrusrootstockseeds.Nat.Prod.Res.2012,26,2182–2187.
10. Erlund,I.;Freese,R.;Marniemi,J.;Hakala,P.;Alfthan,G.Bioavailabilityofquercetinfromberriesandthe
diet.Nutr.Cancer2006,54,13–17.
11. Plastina,P.;Benincasa,C.;Perri,E.;Fazio,A.;Augimeri,G.;Poland,M.;Witkamp,R.;Meijerink,J.
Identificationofhydroxytyrosyloleate,aderivativeofhydroxytyrosolwithantiinflammatoryproperties,
inoliveoilbyproducts.FoodChem.2019,279,105–113.
12. Gu,C.;Howell,K.;Dunshea,F.R.;Suleria,H.A.R.Lcesiqtof/mscharacterisationofphenolicacidsand
flavonoidsinpolyphenolrichfruitsandvegetablesandtheirpotentialantioxidantactivities.Antioxidants
(Basel)2019,8,405.
13. Galani,J.H.Y.;Patel,J.S.;Patel,N.J.;Talati,J.G.Storageoffruitsandvegetablesinrefrigeratorincreases
theirphenolicacidsbutdecreasesthetotalphenolics,anthocyaninsandvitamincwithsubsequentlossof
theirantioxidantcapacity.Antioxidants(Basel)2017,6,59.
14. Khadem,S.;Marles,R.J.Monocyclicphenolicacids;hydroxyandpolyhydroxybenzoicacids:Occurrence
andrecentbioactivitystudies.Molecules2010,15,7985–8005.
15. SantanaGalvez,J.;CisnerosZevallos,L.;JacoboVelazquez,D.A.Chlorogenicacid:Recentadvancesonits
dualroleasafoodadditiveandanutraceuticalagainstmetabolicsyndrome.Molecules2017,22,358.
16. Pei,K.;Ou,J.;Huang,J.;Ou,S.Pcoumaricacidanditsconjugates:Dietarysources,pharmacokinetic
propertiesandbiologicalactivities.J.Sci.FoodAgric.2016,96,2952–2962.
17. BialeckaFlorjanczyk,E.;Fabiszewska,A.;Zieniuk,B.Phenolicacidsderivativesbiotechnological
methodsofsynthesisandbioactivity.Curr.Pharm.Biotechnol.2018,19,1098–1113.
18. Zanella,I.;Biasiotto,G.;Holm,F.;diLorenzo,D.Cereallignans,naturalcompoundsofinterestforhuman
health?Nat.Prod.Commun.2017,12,139–146.
19. Hallmans,G.;Zhang,J.X.;Lundin,E.;Stattin,P.;Johansson,A.;Johansson,I.;Hulten,K.;Winkvist,A.;
Aman,P.;Lenner,P.;etal.Rye,lignansandhumanhealth.Proc.Nutr.Soc.2003,62,193–199.
20. Adlercreutz,H.Lignansandhumanhealth.Crit.Rev.Clin.Lab.Sci.2007,44,483–525.
21. Possemiers,S.;Bolca,S.;Eeckhaut,E.;Depypere,H.;Verstraete,W.Metabolismofisoflavones,lignansand
prenylflavonoidsbyintestinalbacteria:Producerphenotypingandrelationwithintestinalcommunity.
Fems.Microbiol.Ecol.2007,61,372–383.
22. Clavel,T.;Borrmann,D.;Braune,A.;Dore,J.;Blaut,M.Occurrenceandactivityofhumanintestinalbacteria
involvedintheconversionofdietarylignans.Anaerobe2006,12,140–147.
23. Wang,L.Q.;Meselhy,M.R.;Li,Y.;Qin,G.W.;Hattori,M.Humanintestinalbacteriacapableoftransforming
secoisolariciresinoldiglucosidetomammalianlignans,enterodiolandenterolactone.Chem.Pharm.Bull.
2000,48,1606–1610.
24. Ososki,A.L.;Kennelly,E.J.Phytoestrogens:Areviewofthepresentstateofresearch.Phytother.Res.Ptr.
2003,17,845–869.
25. AnandhiSenthilkumar,H.;Fata,J.E.;Kennelly,E.J.Phytoestrogens:Thecurrentstateofresearch
emphasizingbreastpathophysiology.Phytother.Res.Ptr.2018,32,1707–1719.
26. Ranka,S.;Gee,J.M.;Biro,L.;Brett,G.;Saha,S.;Kroon,P.;Skinner,J.;Hart,A.R.;Cassidy,A.;Rhodes,M.;
etal.Developmentofafoodfrequencyquestionnairefortheassessmentofquercetinandnaringeninintake.
Eur.J.Clin.Nutr.2008,62,1131–1138.
27. Formica,J.V.;Regelson,W.Reviewofthebiologyofquercetinandrelatedbioflavonoids.Foodandchem.
Toxicol.1995,33,1061–1080.
28. Rienks,J.;Barbaresko,J.;Oluwagbemigun,K.;Schmid,M.;Nothlings,U.Polyphenolexposureandriskof
type2diabetes:Doseresponsemetaanalysesandsystematicreviewofprospectivecohortstudies.Am.J.
Clin.Nutr.2018,108,49–61.
29. Badolato,M.;Carullo,G.;Perri,M.;Cione,E.;Manetti,F.;DiGioia,M.L.;Brizzi,A.;Caroleo,M.C.;Aiello,
F.Quercetin/oleicacidbasedgproteincoupledreceptor40ligandsasnewinsulinsecretionmodulators.
FutureMed.Chem.2017,9,1873–1885.
Molecules2020,25,6315of21
15
30. Kittl,M.;Beyreis,M.;Tumurkhuu,M.;Furst,J.;Helm,K.;Pitschmann,A.;Gaisberger,M.;Glasl,S.;Ritter,
M.;Jakab,M.Quercetinstimulatesinsulinsecretionandreducestheviabilityofratins1betacells.Cell.
Physiol.Biochem.Int.J.Exp.Cell.Physiol.Biochem.Phar.2016,39,278–293.
31. Carullo,G.;Perri,M.;Manetti,F.;Aiello,F.;Caroleo,M.C.;Cione,E.Quercetin3oleoylderivativesasnew
gpr40agonists:Moleculardockingstudiesandfunctionalevaluation.BioorganicMed.Chem.Lett.2019,29,
1761–1764.
32. Lambert,J.D.;Lee,M.J.;Lu,H.;Meng,X.;Hong,J.J.;Seril,D.N.;Sturgill,M.G.;Yang,C.S.Epigallocatechin
3gallateisabsorbedbutextensivelyglucuronidatedfollowingoraladministrationtomice.J.Nutr.2003,
133,4172–4177.
33. RodriguezCarrasco,Y.;Gaspari,A.;Graziani,G.;Santini,A.;Ritieni,A.Fastanalysisofpolyphenolsand
alkaloidsincocoabasedproductsbyultrahighperformanceliquidchromatographyandorbitraphigh
resolutionmassspectrometry(uhplcqorbitrapms/ms).FoodRes.Int.2018,111,229–236.
34. Vogiatzoglou,A.;Mulligan,A.A.;Lentjes,M.A.;Luben,R.N.;Spencer,J.P.;Schroeter,H.;Khaw,K.T.;
Kuhnle,G.G.Flavonoidintakeineuropeanadults(18to64years).PLoSOne2015,10,e0128132.
35. PachecoPalencia,L.A.;MertensTalcott,S.;Talcott,S.T.Chemicalcomposition,antioxidantproperties,and
thermalstabilityofaphytochemicalenrichedoilfromacai(euterpeoleraceamart.).J.Agric.FoodChem.
2008,56,4631–4636.
36. Peluso,I.;Serafini,M.Antioxidantsfromblackandgreentea:Fromdietarymodulationofoxidativestress
topharmacologicalmechanisms.Br.J.Pharm.2017,174,1195–1208.
37. Kondo,T.;Ohta,T.;Igura,K.;Hara,Y.;Kaji,K.Teacatechinsinhibitangiogenesisinvitro,measuredby
humanendothelialcellgrowth,migrationandtubeformation,throughinhibitionofvegfreceptorbinding.
CancerLett.2002,180,139–144.
38. Baliga,M.S.;Meleth,S.;Katiyar,S.K.Growthinhibitoryandantimetastaticeffectofgreenteapolyphenols
onmetastasisspecificmousemammarycarcinoma4t1cellsinvitroandinvivosystems.Clin.CancerRes.
Off.J.Am.Assoc.CancerRes.2005,11,1918–1927.
39. Pangeni,R.;Sahni,J.K.;Ali,J.;Sharma,S.;Baboota,S.Resveratrol:Reviewontherapeuticpotentialand
recentadvancesindrugdelivery.ExpertOpin.DrugDeliv.2014,11,1285–1298.
40. Delmas,D.;Lancon,A.;Colin,D.;Jannin,B.;Latruffe,N.Resveratrolasachemopreventiveagent:A
promisingmoleculeforfightingcancer.Curr.DrugTargets2006,7,423–442.
41. Fimognari,C.;Hrelia,P.Sulforaphaneasapromisingmoleculeforfightingcancer.Mutat.Res.2007,635,
90–104.
42. Lenzi,M.;Fimognari,C.;Hrelia,P.Sulforaphaneasapromisingmoleculeforfightingcancer.CancerTreat.
Res.2014,159,207–223.
43. Singh,A.P.;Singh,R.;Verma,S.S.;Rai,V.;Kaschula,C.H.;Maiti,P.;Gupta,S.C.Healthbenefitsof
resveratrol:Evidencefromclinicalstudies.Med.Res.Rev.2019,39,1851–1891.
44. DenHartogh,D.J.;Tsiani,E.Healthbenefitsofresveratrolinkidneydisease:Evidencefrominvitroandin
vivostudies.Nutrients2019,11,1624.
45. Esatbeyoglu,T.;Huebbe,P.;Ernst,I.M.;Chin,D.;Wagner,A.E.;Rimbach,G.Curcumin‐‐frommoleculeto
biologicalfunction.Angew.Chem.Int.Ed.Engl.2012,51,5308–5332.
46. Roche,A.;Ross,E.;Walsh,N.;O’Donnell,K.;Williams,A.;Klapp,M.;Fullard,N.;Edelstein,S.
Representativeliteratureonthephytonutrientscategory:Phenolicacids.Crit.Rev.FoodSci.Nutr.2017,57,
1089–1096.
47. Weijn,A.;vandenBergSomhorst,D.B.;Slootweg,J.C.;Vincken,J.P.;Gruppen,H.;Wichers,H.J.;Mes,J.J.
Mainphenoliccompoundsofthemelaninbiosynthesispathwayinbruisingtolerantandbruisingsensitive
buttonmushroom(agaricusbisporus)strains.J.Agric.FoodChem.2013,61,8224–8231.
48. Manach,C.;Scalbert,A.;Morand,C.;Remesy,C.;Jimenez,L.Polyphenols:Foodsourcesand
bioavailability.Am.J.Clin.Nutr.2004,79,727–747.
49. Dai,J.;Mumper,R.J.Plantphenolics:Extraction,analysisandtheirantioxidantandanticancerproperties.
Molecules2010,15,7313–7352.
50. SantosBuelga,C.;GonzalezParamas,A.M.;Oludemi,T.;AyudaDuran,B.;GonzalezManzano,S.Plant
phenolicsasfunctionalfoodingredients.Adv.FoodNutr.Res.2019,90,183–257.
51. Alu’datt,M.H.;Rababah,T.;Alhamad,M.N.;AlRabadi,G.J.;Tranchant,C.C.;Almajwal,A.;Kubow,S.;
Alli,I.Occurrence,types,propertiesandinteractionsofphenoliccompoundswithotherfoodconstituents
inoilbearingplants.Crit.Rev.FoodSci.Nutr.2018,58,3209–3218.
Molecules2020,25,6316of21
16
52. Crozier,A.;Jaganath,I.B.;Clifford,M.N.Dietaryphenolics:Chemistry,bioavailabilityandeffectson
health.Nat.Prod.Rep.2009,26,1001–1043.
53. Beneduci,A.;Corrente,G.A.;Marino,T.;Aiello,D.;Bartella,L.;DiDonna,L.;Napoli,A.;Russo,N.;Romeo,
I.;Furia,E.Insightonthechelationofaluminum(iii)andiron(iii)bycurcumininaqueoussolution.J.Mol.
Liq.2019,296,111805.
54. Nieman,D.C.;Williams,A.S.;Shanely,R.A.;Jin,F.;McAnulty,S.R.;Triplett,N.T.;Austin,M.D.;Henson,
D.A.Quercetin’sinfluenceonexerciseperformanceandmusclemitochondrialbiogenesis.Med.Sci.Sports
Exerc.2010,42,338–345.
55. Kressler,J.;MillardStafford,M.;Warren,G.L.Quercetinandenduranceexercisecapacity:Asystematic
reviewandmetaanalysis.Med.Sci.Sports.Exerc.2011,43,2396–2404.
56. Kerksick,C.M.;Wilborn,C.D.;Roberts,M.D.;SmithRyan,A.;Kleiner,S.M.;Jager,R.;Collins,R.;Cooke,
M.;Davis,J.N.;Galvan,E.;etal.Issnexercise&sportsnutritionreviewupdate:Research&
recommendations.J.Int.Soc.SportsNutr.2018,15,38.
57. Halliwell,B.Arepolyphenolsantioxidantsorprooxidants?Whatdowelearnfromcellcultureandinvivo
studies?Arch.Biochem.Biophys.2008,476,107–112.
58. Pervin,M.;Unno,K.;Ohishi,T.;Tanabe,H.;Miyoshi,N.;Nakamura,Y.Beneficialeffectsofgreentea
catechinsonneurodegenerativediseases.Molecules2018,23,1297.
59. Xicota,L.;Rodriguez,J.;Langohr,K.;Fito,M.;Dierssen,M.;delaTorre,R.Effectofepigallocatechingallate
onthebodycompositionandlipidprofileofdownsyndromeindividuals:Implicationsforclinical
management.Clin.Nutr.2019,inpress.
60. Bashang,H.;Tamma,S.Theuseofcurcuminasaneffectiveadjuvanttocancertherapy:Ashortreview.
Biotechnol.Appl.Biochem.2019.
61. Giordano,A.;Tommonaro,G.Curcuminandcancer.Nutrients2019,11,2376.
62. Kang,C.;Jung,E.;Hyeon,H.;Seon,S.;Lee,D.Acidactivatablepolymericcurcuminnanoparticlesas
therapeuticagentsforosteoarthritis.Nanomed.:Nanotechnol.Biol.Med.2019,23,102104.
63. Yan,D.;He,B.;Guo,J.;Li,S.;Wang,J.Involvementoftlr4intheprotectiveeffectofintraarticular
administrationofcurcuminonratexperimentalosteoarthritis.ActaCir.Bras.2019,34,e201900604.
64. Gupte,P.A.;Giramkar,S.A.;Harke,S.M.;Kulkarni,S.K.;Deshmukh,A.P.;Hingorani,L.L.;Mahajan,M.P.;
Bhalerao,S.S.Evaluationoftheefficacyandsafetyofcapsulelongvida((r))optimizedcurcumin(solidlipid
curcuminparticles)inkneeosteoarthritis:Apilotclinicalstudy.J.Inflamm.Res.2019,12,145–152.
65. Wu,J.;Lv,M.;Zhou,Y.Efficacyandsideeffectofcurcuminforthetreatmentofosteoarthritis:Ameta
analysisofrandomizedcontrolledtrials.Pak.J.Pharm.Sci.2019,32,43–51.
66. Zhang,Y.;Zeng,Y.Curcuminreducesinflammationinkneeosteoarthritisratsthroughblocking
tlr4/myd88/nfkappabsignalpathway.DrugDev.Res.2019,80,353–359.
67. Zeng,J.J.;Wang,H.D.;Shen,Z.W.;Yao,X.D.;Wu,C.J.;Pan,T.Curcumininhibitsproliferationofsynovial
cellsbydownregulatingexpressionofmatrixmetalloproteinase3inosteoarthritis.Orthop.Surg.2019,11,
117–125.
68. Yang,Y.S.;Su,Y.F.;Yang,H.W.;Lee,Y.H.;Chou,J.I.;Ueng,K.C.Lipidloweringeffectsofcurcuminin
patientswithmetabolicsyndrome:Arandomized,doubleblind,placebocontrolledtrial.Phytother.Res.
Ptr.2014,28,1770–1777.
69. FrancoRobles,E.;CamposCervantes,A.;MurilloOrtiz,B.O.;Segovia,J.;LopezBriones,S.;Vergara,P.;
PerezVazquez,V.;SolisOrtiz,M.S.;RamirezEmiliano,J.Effectsofcurcuminonbrainderived
neurotrophicfactorlevelsandoxidativedamageinobesityanddiabetes.Appl.Physiol.Nutr.Metab.2014,
39,211–218.
70. Hassan,F.U.;Rehman,M.S.;Khan,M.S.;Ali,M.A.;Javed,A.;Nawaz,A.;Yang,C.Curcuminasan
alternativeepigeneticmodulator:Mechanismofactionandpotentialeffects.Front.Genet.2019,10,514.
71. Renaud,S.;deLorgeril,M.Wine,alcohol,platelets,andthefrenchparadoxforcoronaryheartdisease.
Lancet1992,339,1523–1526.
72. deLorgeril,M.;Salen,P.;Paillard,F.;Laporte,F.;Boucher,F.;deLeiris,J.Mediterraneandietandthefrench
paradox:Twodistinctbiogeographicconceptsforoneconsolidatedscientifictheoryontheroleofnutrition
incoronaryheartdisease.Cardiovasc.Res.2002,54,503–515.
73. SanchezFidalgo,S.;Cardeno,A.;Villegas,I.;Talero,E.;delaLastra,C.A.Dietarysupplementationof
resveratrolattenuateschroniccolonicinflammationinmice.Eur.J.Pharm.2010,633,78–84.
Molecules2020,25,6317of21
17
74. Palsamy,P.;Subramanian,S.Modulatoryeffectsofresveratrolonattenuatingthekeyenzymesactivities
ofcarbohydratemetabolisminstreptozotocinnicotinamideinduceddiabeticrats.Chem.Biol.Interact.2009,
179,356–362.
75. Sun,A.Y.;Wang,Q.;Simonyi,A.;Sun,G.Y.Resveratrolasatherapeuticagentforneurodegenerative
diseases.Mol.Neurobiol.2010,41,375–383.
76. Shin,J.A.;Lee,H.;Lim,Y.K.;Koh,Y.;Choi,J.H.;Park,E.M.Therapeuticeffectsofresveratrolduringacute
periodsfollowingexperimentalischemicstroke.J.Neuroimmunol.2010,227,93–100.
77. Bradamante,S.;Barenghi,L.;Villa,A.Cardiovascularprotectiveeffectsofresveratrol.Cardiovasc.DrugRev.
2004,22,169–188.
78. Cho,S.;Namkoong,K.;Shin,M.;Park,J.;Yang,E.;Ihm,J.;Thu,V.T.;Kim,H.K.;Han,J.Cardiovascular
protectiveeffectsandclinicalapplicationsofresveratrol.J.Med.Food2017,20,323–334.
79. Yan,F.;Sun,X.;Xu,C.Protectiveeffectsofresveratrolimprovecardiovascularfunctioninratswith
diabetes.Exp.Med.2018,15,1728–1734.
80. Sun,W.;Wang,W.;Kim,J.;Keng,P.;Yang,S.;Zhang,H.;Liu,C.;Okunieff,P.;Zhang,L.Anticancereffect
ofresveratrolisassociatedwithinductionofapoptosisviaamitochondrialpathwayalignment.Adv.Exp.
Med.Biol.2008,614,179–186.
81. Smoliga,J.M.;Blanchard,O.L.Recentdatadonotprovideevidencethatresveratrolcauses‘mainly
negative’or‘adverseeffectsonexercisetraininginhumans.J.Physiol.2013,591,5251–5252.
82. Lee,Y.;Kim,M.;Han,J.;Yeom,K.H.;Lee,S.;Baek,S.H.;Kim,V.N.Micrornagenesaretranscribedbyrna
polymeraseii.Embo.J.2004,23,4051–4060.
83. Winter,J.;Jung,S.;Keller,S.;Gregory,R.I.;Diederichs,S.Manyroadstomaturity:Micrornabiogenesis
pathwaysandtheirregulation.Nat.CellBiol.2009,11,228–234.
84. Alexander,M.;Hu,R.;Runtsch,M.C.;Kagele,D.A.;Mosbruger,T.L.;Tolmachova,T.;Seabra,M.C.;Round,
J.L.;Ward,D.M.;O’Connell,R.M.Exosomedeliveredmicrornasmodulatetheinflammatoryresponseto
endotoxin.Nat.Commun.2015,6,7321.
85. Perri,M.;Caroleo,M.C.;Liu,N.;Gallelli,L.;DeSarro,G.;Kagechika,H.;Cione,E.9cisretinoicacid
modulatesmyotrophinexpressionanditsmirinphysiologicalandpathophysiologicalcellmodels.Exp.
CellRes.2017,354,25–30.
86. Cui,J.;Zhou,B.;Ross,S.A.;Zempleni,J.Nutrition,micrornas,andhumanhealth.Adv.Nutr.2017,8,105–
112.
87. Cannataro,R.;Perri,M.;Gallelli,L.;Caroleo,M.C.;DeSarro,G.;Cione,E.Ketogenicdietactsonbody
remodelingandmicrornasexpressionprofile.Microrna2019,8,116–126.
88. Cannataro,R.;Caroleo,M.C.;Fazio,A.;LaTorre,C.;Plastina,P.;Gallelli,L.;Lauria,G.;Cione,E.Ketogenic
dietandmicrornaslinkedtoantioxidantbiochemicalhomeostasis.Antioxidants(Basel)2019,8,269.
89. Tao,S.F.;He,H.F.;Chen,Q.Quercetininhibitsproliferationandinvasionactsbyupregulatingmir146a
inhumanbreastcancercells.Mol.Cell.Biochem.2015,402,93–100.
90. BoeschSaadatmandi,C.;Loboda,A.;Wagner,A.E.;Stachurska,A.;Jozkowicz,A.;Dulak,J.;Doring,F.;
Wolffram,S.;Rimbach,G.Effectofquercetinanditsmetabolitesisorhamnetinandquercetin3glucuronide
oninflammatorygeneexpression:Roleofmir155.J.Nutr.Biochem.2011,22,293–299.
91. Taganov,K.D.;Boldin,M.P.;Chang,K.J.;Baltimore,D.Nfkappabdependentinductionofmicrornamir
146,aninhibitortargetedtosignalingproteinsofinnateimmuneresponses.Proc.Natl.Acad.Sci.USA2006,
103,12481–12486.
92. Appari,M.;Babu,K.R.;Kaczorowski,A.;Gross,W.;Herr,I.Sulforaphane,quercetinandcatechins
complementeachotherineliminationofadvancedpancreaticcancerbymirlet7inductionandkras
inhibition.Int.J.Oncol.2014,45,1391–1400.
93. Nwaeburu,C.C.;Bauer,N.;Zhao,Z.;Abukiwan,A.;Gladkich,J.;Benner,A.;Herr,I.Upregulationof
micrornalet7cbyquercetininhibitspancreaticcancerprogressionbyactivationofnumbl.Oncotarget2016,
7,58367–58380.
94. Nwaeburu,C.C.;Abukiwan,A.;Zhao,Z.;Herr,I.Quercetininducedmir200b3pregulatesthemodeof
selfrenewingdivisionsinpancreaticcancer.Mol.Cancer2017,16,23.
95. MacKenzie,T.N.;Mujumdar,N.;Banerjee,S.;Sangwan,V.;Sarver,A.;Vickers,S.;Subramanian,S.;Saluja,
A.K.Triptolideinducestheexpressionofmir1423p:Anegativeregulatorofheatshockprotein70and
pancreaticcancercellproliferation.Mol.Cancer2013,12,1266–1275.
Molecules2020,25,6318of21
18
96. Chirshev,E.;Oberg,K.C.;Ioffe,Y.J.;Unternaehrer,J.J.Let7asbiomarker,prognosticindicator,andtherapy
forprecisionmedicineincancer.Clin.Transl.Med.2019,8,24.
97. Sonoki,H.;Sato,T.;Endo,S.;Matsunaga,T.;Yamaguchi,M.;Yamazaki,Y.;Sugatani,J.;Ikari,A.Quercetin
decreasesclaudin2expressionmediatedbyupregulationofmicrornamir16inlungadenocarcinoma
a549cells.Nutrients2015,7,4578–4592.
98. Zhang,X.;Guo,Q.;Chen,J.;Chen,Z.Quercetinenhancescisplatinsensitivityofhumanosteosarcomacells
bymodulatingmicrorna217krasaxis.Mol.Cells2015,38,638–642.
99. Zhou,J.;Gong,J.;Ding,C.;Chen,G.Quercetininducestheapoptosisofhumanovariancarcinomacellsby
upregulatingtheexpressionofmicrorna145.Mol.Med.Rep.2015,12,3127–3131.
100. Luettig,J.;Rosenthal,R.;Barmeyer,C.;Schulzke,J.D.Claudin2asamediatorofleakygutbarrierduring
intestinalinflammation.TissueBarriers2015,3,e977176.
101. Pashaei,E.;Guzel,E.;Ozgurses,M.E.;Demirel,G.;Aydin,N.;Ozen,M.Ametaanalysis:Identificationof
commonmir145targetgenesthathavesimilarbehaviorindifferentgeodatasets.PLoSONE2016,11,
e0161491.
102. Rasheed,Z.;Rasheed,N.;AlShaya,O.Epigallocatechin3ogallatemodulatesglobalmicrornaexpression
ininterleukin1betastimulatedhumanosteoarthritischondrocytes:Potentialroleofegcgonnegativeco
regulationofmicrorna1403pandadamts5.Eur.J.Nutr.2018,57,917–928.
103. Ju,C.;Liu,R.;Zhang,Y.;Zhang,F.;Sun,J.;Lv,X.B.;Zhang,Z.Exosomesmaybethepotentialnewdirection
ofresearchinosteoarthritismanagement.Biomed.Res.Int.2019,2019,7695768.
104. Wu,J.;Kuang,L.;Chen,C.;Yang,J.;Zeng,W.N.;Li,T.;Chen,H.;Huang,S.;Fu,Z.;Li,J.;etal.Mir1005p
abundantexosomesderivedfrominfrapatellarfatpadmscsprotectarticularcartilageandameliorategait
abnormalitiesviainhibitionofmtorinosteoarthritis.Biomaterials2019,206,87–100.
105. Rasheed,Z.;Rasheed,N.;Abdulmonem,W.A.;Khan,M.I.Microrna125b5pregulatesil1betainduced
inflammatorygenesviatargetingtraf6mediatedmapksandnfkappabsignalinginhumanosteoarthritic
chondrocytes.Sci.Rep.2019,9,6882.
106. Chen,X.;Chang,L.;Qu,Y.;Liang,J.;Jin,W.;Xia,X.Teapolyphenolsinhibittheproliferation,migration,
andinvasionofmelanomacellsthroughthedownregulationoftlr4.Int.J.Immunopathol.Pharmacol.2018,
32,394632017739531.
107. Arffa,M.L.;Zapf,M.A.;Kothari,A.N.;Chang,V.;Gupta,G.N.;Ding,X.;AlGayyar,M.M.;Syn,W.;
Elsherbiny,N.M.;Kuo,P.C.;etal.Epigallocatechin3gallateupregulatesmir221toinhibitosteopontin
dependenthepaticfibrosis.PLoSONE2016,11,e0167435.
108. Shin,S.;Kim,K.;Lee,M.J.;Lee,J.;Choi,S.;Kim,K.S.;Ko,J.M.;Han,H.;Kim,S.Y.;Youn,H.J.;etal.
Epigallocatechingallatemediatedalterationofthemicrornaexpressionprofilein5alpha
dihydrotestosteronetreatedhumandermalpapillacells.Ann.Dermatol.2016,28,327–334.
109. Gallelli,L.;Cione,E.;Caroleo,M.C.;Carotenuto,M.;Lagana,P.;Siniscalchi,A.;Guidetti,V.Micrornasto
monitorpainmigraineanddrugtreatment.Microrna2017,6,152–156.
110. Greentea.Nationalcenterforcomplementaryandintegrativehealth.Availableonline:
https://nccih.Nih.Gov/health/greentea(accessedon14December2019).
111. Sohn,E.J.;Bak,K.M.;Nam,Y.K.;Park,H.T.Upregulationofmicrorna344a3pisinvolvedincurcumin
inducedapoptosisinrt4schwannomacells.CancerCellInt.2018,18,199.
112. Mirzaei,H.;Masoudifar,A.;Sahebkar,A.;Zare,N.;SadriNahand,J.;Rashidi,B.;Mehrabian,E.;
Mohammadi,M.;Mirzaei,H.R.;Jaafari,M.R.Microrna:Anoveltargetofcurcuminincancertherapy.J.
Cell.Physiol.2018,233,3004–3015.
113. Zhao,S.F.;Zhang,X.;Zhang,X.J.;Shi,X.Q.;Yu,Z.J.;Kan,Q.C.Inductionofmicrorna9mediates
cytotoxicityofcurcuminagainstskov3ovariancancercells.AsianPac.J.CancerPrev.2014,15,3363–3368.
114. Tili,E.;Michaille,J.J.Resveratrol,micrornas,inflammation,andcancer.J.NucleicAcids2011,2011,102431.
115. Kumar,A.;Rimando,A.M.;Levenson,A.S.Resveratrolandpterostilbeneasamicrornamediated
chemopreventiveandtherapeuticstrategyinprostatecancer.Ann.NewYorkAcad.Sci.2017,1403,15–26.
116. Wu,F.;Cui,L.Resveratrolsuppressesmelanomabyinhibitingnfkappab/mir221andinducingtfg
expression.Arch.Dermatol.Res.2017,309,823–831.
117. Bai,T.;Dong,D.S.;Pei,L.Synergisticantitumoractivityofresveratrolandmir200cinhumanlungcancer.
Oncol.Rep.2014,31,2293–2297.
118. Venkatadri,R.;Muni,T.;Iyer,A.K.;Yakisich,J.S.;Azad,N.Roleofapoptosisrelatedmirnasinresveratrol
inducedbreastcancercelldeath.CellDeathDis.2016,7,e2104.
Molecules2020,25,6319of21
19
119. Gracia,A.;Miranda,J.;FernandezQuintela,A.;Eseberri,I.;GarciaLacarte,M.;Milagro,F.I.;Martinez,J.A.;
Aguirre,L.;Portillo,M.P.Involvementofmir5395pintheinhibitionofdenovolipogenesisinducedby
resveratrolinwhiteadiposetissue.FoodFunct.2016,7,1680–1688.
120. Aires,V.;Delmas,D.;Djouadi,F.;Bastin,J.;CherkaouiMalki,M.;Latruffe,N.Resveratrolinducedchanges
inmicrornaexpressioninprimaryhumanfibroblastsharboringcarnitinepalmitoyltransferase2gene
mutation,leadingtofattyacidoxidationdeficiency.Molecules2017,23,7.
121. Tili,E.;Michaille,J.J.;Adair,B.;Alder,H.;Limagne,E.;Taccioli,C.;Ferracin,M.;Delmas,D.;Latruffe,N.;
Croce,C.M.Resveratroldecreasesthelevelsofmir155byupregulatingmir663,amicrornatargetingjunb
andjund.Carcinogenesis2010,31,1561–1566.
122. Eseberri,I.;Lasa,A.;Miranda,J.;Gracia,A.;Portillo,M.P.Potentialmirnainvolvementintheanti
adipogeniceffectofresveratrolanditsmetabolites.PLoSONE2017,12,e0184875.
123. Bennick,A.Interactionofplantpolyphenolswithsalivaryproteins.Crit.Rev.Oral.Biol.Med.2002,13,184–
196.
124. Depeint,F.;Gee,J.M.;Williamson,G.;Johnson,I.T.Evidenceforconsistentpatternsbetweenflavonoid
structuresandcellularactivities.Proc.Nutr.Soc.2002,61,97–103.
125. Nemeth,K.;Plumb,G.W.;Berrin,J.G.;Juge,N.;Jacob,R.;Naim,H.Y.;Williamson,G.;Swallow,D.M.;
Kroon,P.A.Deglycosylationbysmallintestinalepithelialcellbetaglucosidasesisacriticalstepinthe
absorptionandmetabolismofdietaryflavonoidglycosidesinhumans.Eur.J.Nutr.2003,42,29–42.
126. Day,A.J.;Canada,F.J.;Diaz,J.C.;Kroon,P.A.;McLauchlan,R.;Faulds,C.B.;Plumb,G.W.;Morgan,M.R.;
Williamson,G.Dietaryflavonoidandisoflavoneglycosidesarehydrolysedbythelactasesiteoflactase
phlorizinhydrolase.Febs.Lett.2000,468,166–170.
127. Day,A.J.;DuPont,M.S.;Ridley,S.;Rhodes,M.;Rhodes,M.J.;Morgan,M.R.;Williamson,G.
Deglycosylationofflavonoidandisoflavonoidglycosidesbyhumansmallintestineandliverbeta
glucosidaseactivity.Febs.Lett.1998,436,71–75.
128. Gee,J.M.;DuPont,M.S.;Day,A.J.;Plumb,G.W.;Williamson,G.;Johnson,I.T.Intestinaltransportof
quercetinglycosidesinratsinvolvesbothdeglycosylationandinteractionwiththehexosetransport
pathway.J.Nutr.2000,130,2765–2771.
129. Bang,S.H.;Hyun,Y.J.;Shim,J.;Hong,S.W.;Kim,D.H.Metabolismofrutinandponcirinbyhuman
intestinalmicrobiotaandcloningoftheirmetabolizingalphalrhamnosidasefrombifidobacterium
dentium.J.Microbiol.Biotechnol.2015,25,18–25.
130. Nakagawa,K.;Okuda,S.;Miyazawa,T.Dosedependentincorporationofteacatechins,()
epigallocatechin3gallateand()epigallocatechin,intohumanplasma.Biosci.Biotechnol.Biochem.1997,61,
1981–1985.
131. Walgren,R.A.;Karnaky,K.J.,Jr.;Lindenmayer,G.E.;Walle,T.Effluxofdietaryflavonoidquercetin4’beta
glucosideacrosshumanintestinalcaco2cellmonolayersbyapicalmultidrugresistanceassociated
protein2.J.Pharmacol.Exp.Ther.2000,294,830–836.
132. Brand,W.;Schutte,M.E.;Williamson,G.;vanZanden,J.J.;Cnubben,N.H.;Groten,J.P.;vanBladeren,P.J.;
Rietjens,I.M.Flavonoidmediatedinhibitionofintestinalabctransportersmayaffecttheoral
bioavailabilityofdrugs,foodbornetoxiccompoundsandbioactiveingredients.Biomed.Pharmacother.
Biomed.Pharmacother.2006,60,508–519.
133. Litman,T.;Druley,T.E.;Stein,W.D.;Bates,S.E.Frommdrtomxr:Newunderstandingofmultidrug
resistancesystems,theirpropertiesandclinicalsignificance.Cell.Mol.LifeSci.Cmls2001,58,931–959.
134. Vaidyanathan,J.B.;Walle,T.Cellularuptakeandeffluxoftheteaflavonoid()epicatechin3gallateinthe
humanintestinalcelllinecaco2.J.Pharmacol.Exp.Ther.2003,307,745–752.
135. Morris,M.E.;Zhang,S.Flavonoiddruginteractions:Effectsofflavonoidsonabctransporters.LifeSci.2006,
78,2116–2130.
136. vanderWoude,H.;Boersma,M.G.;Vervoort,J.;Rietjens,I.M.Identificationof14quercetinphaseiimono
andmixedconjugatesandtheirformationbyratandhumanphaseiiinvitromodelsystems.Chem.Res.
Toxicol.2004,17,1520–1530.
137. Meng,X.;Sang,S.;Zhu,N.;Lu,H.;Sheng,S.;Lee,M.J.;Ho,C.T.;Yang,C.S.Identificationand
characterizationofmethylatedandringfissionmetabolitesofteacatechinsformedinhumans,mice,and
rats.Chem.Res.Toxicol.2002,15,1042–1050.
Molecules2020,25,6320of21
20
138. Williamson,G.;Dionisi,F.;Renouf,M.Flavanolsfromgreenteaandphenolicacidsfromcoffee:Critical
quantitativeevaluationofthepharmacokineticdatainhumansafterconsumptionofsingledosesof
beverages.Mol.Nutr.FoodRes.2011,55,864–873.
139. Rechner,A.R.;Smith,M.A.;Kuhnle,G.;Gibson,G.R.;Debnam,E.S.;Srai,S.K.;Moore,K.P.;RiceEvans,
C.A.Colonicmetabolismofdietarypolyphenols:Influenceofstructureonmicrobialfermentation
products.FreeRadic.Biol.Med.2004,36,212–225.
140. Mansoorian,B.;Combet,E.;Alkhaldy,A.;Garcia,A.L.;Edwards,C.A.Impactoffermentablefibresonthe
colonicmicrobiotametabolismofdietarypolyphenolsrutinandquercetin.Int.J.Environ.Res.PublicHealth
2019,16,292.
141. MorenoIndias,I.Benefitsofthebeerpolyphenolsonthegutmicrobiota.Nutr.Hosp.2017,34,41–44.
142. Cardona,F.;AndresLacueva,C.;Tulipani,S.;Tinahones,F.J.;QueipoOrtuno,M.I.Benefitsofpolyphenols
ongutmicrobiotaandimplicationsinhumanhealth.J.Nutr.Biochem.2013,24,1415–1422.
143. Sesink,A.L.;O’Leary,K.A.;Hollman,P.C.Quercetinglucuronidesbutnotglucosidesarepresentinhuman
plasmaafterconsumptionofquercetin3glucosideorquercetin4’glucoside.J.Nutr.2001,131,1938–1941.
144. Day,A.J.;Bao,Y.;Morgan,M.R.;Williamson,G.Conjugationpositionofquercetinglucuronidesandeffect
onbiologicalactivity.FreeRadic.Biol.Med.2000,29,1234–1243.
145. Manach,C.;Morand,C.;Crespy,V.;Demigne,C.;Texier,O.;Regerat,F.;Remesy,C.Quercetinisrecovered
inhumanplasmaasconjugatedderivativeswhichretainantioxidantproperties.Febs.Lett.1998,426,331–
336.
146. D’Archivio,M.;Filesi,C.;Vari,R.;Scazzocchio,B.;Masella,R.Bioavailabilityofthepolyphenols:Status
andcontroversies.Int.J.Mol.Sci.2010,11,1321–1342.
147. Baur,J.A.;Sinclair,D.A.Therapeuticpotentialofresveratrol:Theinvivoevidence.Nat.Rev.DrugDiscov.
2006,5,493–506.
148. Timmers,S.;deLigt,M.;Phielix,E.;vandeWeijer,T.;Hansen,J.;MoonenKornips,E.;Schaart,G.;Kunz,
I.;Hesselink,M.K.;SchrauwenHinderling,V.B.;etal.Resveratrolasaddontherapyinsubjectswithwell
controlledtype2diabetes:Arandomizedcontrolledtrial.DiabetesCare2016,39,2211–2217.
149. Bohmdorfer,M.;Szakmary,A.;Schiestl,R.H.;Vaquero,J.;Riha,J.;Brenner,S.;Thalhammer,T.;Szekeres,
T.;Jager,W.Involvementofudpglucuronosyltransferasesandsulfotransferasesintheexcretionandtissue
distributionofresveratrolinmice.Nutrients2017,9,1347.
150. Riches,Z.;Stanley,E.L.;Bloomer,J.C.;Coughtrie,M.W.Quantitativeevaluationoftheexpressionand
activityoffivemajorsulfotransferases(sults)inhumantissues:Thesult“pie”.DrugMetab.Dispos.Biol.Fate
Chem.2009,37,2255–2261.
151. Planas,J.M.;Alfaras,I.;Colom,H.;Juan,M.E.Thebioavailabilityanddistributionoftransresveratrolare
constrainedbyabctransporters.Arch.Biochem.Biophys.2012,527,67–73.
152. Ritter,J.K.Intestinalugtsaspotentialmodifiersofpharmacokineticsandbiologicalresponsestodrugsand
xenobiotics.ExpertOpin.DrugMetab.Toxicol.2007,3,93–107.
153. Ung,D.;Nagar,S.Variablesulfationofdietarypolyphenolsbyrecombinanthumansulfotransferase(sult)
1a1geneticvariantsandsult1e1.DrugMetab.Dispos.Biol.FateChem.2007,35,740–746.
154. Frankel,E.N.;Waterhouse,A.L.;Kinsella,J.E.Inhibitionofhumanldloxidationbyresveratrol.Lancet1993,
341,1103–1104.
155. MaierSalamon,A.;Bohmdorfer,M.;Riha,J.;Thalhammer,T.;Szekeres,T.;Jaeger,W.Interplaybetween
metabolismandtransportofresveratrol.Ann.NewYorkAcad.Sci.2013,1290,98–106.
156. Zhang,C.;Wang,L.;Zhao,X.H.;Chen,X.Y.;Yang,L.;Geng,Z.Y.Dietaryresveratrolsupplementation
preventstransportstressimpairedmeatqualityofbroilersthroughmaintainingmuscleenergy
metabolismandantioxidantstatus.Poult.Sci.2017,96,2219–2225.
157. Galtieri,A.;Tellone,E.;Ficarra,S.;Russo,A.;Bellocco,E.;Barreca,D.;Scatena,R.;Lagana,G.;Leuzzi,U.;
Giardina,B.Resveratroltreatmentinducesredoxstressinredbloodcells:Apossibleroleofcaspase3in
metabolismandaniontransport.Biol.Chem.2010,391,1057–1065.
158. Kaldas,M.I.;Walle,U.K.;Walle,T.Resveratroltransportandmetabolismbyhumanintestinalcaco2cells.
J.Pharm.Pharmacol.2003,55,307–312.
159. Heger,M.;vanGolen,R.F.;Broekgaarden,M.;Michel,M.C.Themolecularbasisforthepharmacokinetics
andpharmacodynamicsofcurcuminanditsmetabolitesinrelationtocancer.Pharmacol.Rev.2014,66,222–
307.
Molecules2020,25,6321of21
21
160. Boyanapalli,S.S.S.;Huang,Y.;Su,Z.;Cheng,D.;Zhang,C.;Guo,Y.;Rao,R.;Androulakis,I.P.;Kong,A.N.
Pharmacokineticsandpharmacodynamicsofcurcumininregulatingantiinflammatoryandepigenetic
geneexpression.Biopharm.DrugDispos.2018,39,289–297.
161. Cheng,D.;Li,W.;Wang,L.;Lin,T.;Poiani,G.;Wassef,A.;Hudlikar,R.;Ondar,P.;Brunetti,L.;Kong,A.N.
Pharmacokinetics,pharmacodynamics,andpkpdmodelingofcurcumininregulatingantioxidantand
epigeneticgeneexpressioninhealthyhumanvolunteers.Mol.Pharm.2019,16,1881–1889.
162. Luca,S.V.;Macovei,I.;Bujor,A.;Miron,A.;SkalickaWozniak,K.;Aprotosoaie,A.C.;Trifan,A.Bioactivity
ofdietarypolyphenols:Theroleofmetabolites.Crit.Rev.FoodSci.Nutr.2019,1–34.
163. Nelson,K.M.;Dahlin,J.L.;Bisson,J.;Graham,J.;Pauli,G.F.;Walters,M.A.Theessentialmedicinal
chemistryofcurcumin.J.Med.Chem.2017,60,1620–1637.
164. Hassaninasab,A.;Hashimoto,Y.;TomitaYokotani,K.;Kobayashi,M.Discoveryofthecurcuminmetabolic
pathwayinvolvingauniqueenzymeinanintestinalmicroorganism.Proc.Natl.Acad.Sci.USA2011,108,
6615–6620.
165. Burapan,S.;Kim,M.;Han,J.Curcuminoiddemethylationasanalternativemetabolismbyhumanintestinal
microbiota.J.Agric.FoodChem.2017,65,3305–3310.
166. Mahale,J.;Singh,R.;Howells,L.M.;Britton,R.G.;Khan,S.M.;Brown,K.Detectionofplasmacurcuminoids
fromdietaryintakeofturmericcontainingfoodinhumanvolunteers.Mol.Nutr.FoodRes.2018,62,
e1800267.
167. Schiborr,C.;Kocher,A.;Behnam,D.;Jandasek,J.;Toelstede,S.;Frank,J.Theoralbioavailabilityof
curcuminfrommicronizedpowderandliquidmicellesissignificantlyincreasedinhealthyhumansand
differsbetweensexes.Mol.Nutr.FoodRes.2014,58,516–527.
©2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... These cytokines impair insulin signaling and destabilize C/EBPα and PPARγ, thereby further driving the proliferation of adipocytes and the development of insulin resistance [78,79]. Therapeutic strategies that target oxidative stress and inflammation, such as antioxidants (resveratrol and curcumin) and miRNAbased therapies, show promise in reducing lipid accumulation and improving insulin sensitivity [80,81]. These approaches offer targeted solutions for the management of obesity and related metabolic disorders. ...
... Additionally, elevated ROS levels further activate NF-κB, thereby fostering a highly pro-inflammatory environment that perpetuates adipogenesis [25]. In this context, antioxidants such as resveratrol, curcumin, and various polyphenols act by directly neutralizing ROS, thereby dampening NF-κB activation [81,117,118]. This reduction in cytokine production disrupts the pro-inflammatory cycle, weakening one of the key pathways that perpetuate adipogenesis. ...
Article
Full-text available
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, “Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health”, highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
... Epigallocatechin Gallate (EGCG), a major polyphenolic compound under the category of flavone-3-ols, is commonly found in green tea leaves extracted using hot water or organic solvents. It is widely used in traditional medicine and doses of more than 1 to 3 g per day is considered safe [132]. However, some studies state that higher doses of EGCG can lead to hepatoxicity in both animals and human [133]. ...
Article
Full-text available
Eczema is a complex autoimmune condition characterised mainly by inflammation and skin lesions along with physical and psychological comorbidities. Although there have been significant advances in understanding the mechanisms behind atopic dermatitis, conventionally available treatments yield inconsistent results and have some unintended consequences. In today’s digital age, where knowledge is just a click away, natural-based supplements have been on the rise for a more “natural” treatment towards any type of disease. Natural compounds, particularly derived from medicinal plants, have piqued significant interest in the development of herbal remedies for chronic inflammatory skin conditions. Among many compounds, flavonoids have shown promise in treating eczema due to their strong anti-inflammatory, antioxidant, and anti-allergic properties, making them helpful in preventing allergic reactions, inflammation, and skin irritation. This review highlights the therapeutic potential of flavonoid-based bioactive compounds to manage eczema, emphasising the mechanisms of action. Additionally, providing a comprehensive analysis of the potential of emerging and established compounds, while bridging a gap between traditional and modern medicine. Flavonoids offer a variety of opportunities for further research and innovative formulations that can maximise its full benefits. Further combination of flavonoids with various approaches such as nanoencapsulation for enhanced bioavailability, hydrogel-based delivery systems for a controlled release, and additive manufacturing for personalised topical formulations, could align with future precision medicine needs.
... Many epidemiologic and experimental investigations have reported that specific phytochemicals, including curcumin, resveratrol, and quercetin, can influence miRNA expression patterns. The described compounds have proved their ability to suppress tumorigenesis, promote programmed cell death, and potentiate chemosensitivity via modulating miRNAs [5]. The way through which natural compounds interact to influence the dynamics of miRNA is complex. ...
Article
Full-text available
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
... Lipid peroxidation, as measured by MDA levels, was significantly elevated in the CCl4 group, which aligns with the established increase in oxidative stress markers following exposure to toxins. Antioxidants such as vitamin E, melatonin, and curcumin have demonstrated efficacy in reducing MDA levels in comparable models, reflecting their capacity to counteract oxidative lipid damage [48][49][50]. The reduction in MDA levels with PJ treatment supports its lipid-protective properties, yet PJ alone did not alter MDA levels, implying its antioxidative role is particularly relevant in mitigating CCl4-induced stress rather than as a standalone effect. ...
Article
Full-text available
Background Environmental pollution, including exposure to carbon tetrachloride (CCl4), poses serious health risks, particularly through oxidative stress, which may lead to neurodegenerative damage. Antioxidants, especially those found in natural products, show potential in mitigating these toxic effects. Pomegranate juice (PJ), rich in bioactive phytochemicals, has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties. Objective This study aimed to investigate the protective effects of PJ on neurotoxicity induced by CCl4 in rats, assessing specific markers of oxidative stress, enzymatic activity, and apoptotic cell death. Material and Methods Twenty-eight male Wistar rats were divided into four groups: Control, CCl4, PJ, and CCl4+PJ. The CCl4 group received intraperitoneal injections of CCl4 (0.2 ml/100 g) twice weekly for six weeks, while the PJ group received PJ orally (4 ml/kg) daily for 30 days. The CCl4+PJ group received both treatments in sequence. Brain tissues were analysed for malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), and carboxylesterase (CaE) activity. Apoptotic cell death was assessed using TUNEL staining. Results CCl4 exposure resulted in a marked increase in MDA levels and AChE activity in brain tissue (p<0.05), alongside a significant decrease in reduced GSH levels and GST activity (p<0.05). Treatment with PJ significantly lowered MDA levels and AChE activity in the CCl4+PJ group compared to the CCl4 group (p<0.05). However, GSH levels and GST activity showed no significant changes in the CCl4+PJ group. TUNEL staining indicated a reduction in apoptotic cells in the CCl4+PJ group versus the CCl4 group, suggesting reduced cellular damage with PJ treatment (p<0.05). Conclusions PJ demonstrates neuroprotective potential against CCl4-induced oxidative stress and neurotoxicity in rats by reducing oxidative markers and apoptosis. These findings suggest that PJ could serve as a natural protective agent against neurodegenerative risks associated with environmental pollutants like CCl4.
... In fact, a number of phytochemicals, including polyphenols, flavonoids, alkaloids and terpenoids, have demonstrated efficacy in preventing and treating CRC, even in clinical trials in combination with standard treatments (e.g., curcumin and silymarin) [25][26][27]. Moreover, some plant-derived bioactive compounds, including curcuminoids, resveratrol and quercetin, have recently been "Generally Recognized As Safe" by the US FDA for their use as dietary supplements, but they have not yet been regulated as drugs [28]. ...
Article
Full-text available
Background/Objectives: The Cucurbitaceae family represents an important source of bioactive compounds with antioxidant, antimicrobial, anti-inflammatory and antitumor activities. This study aims to investigate the potential application of Cucurbitaceae leaves and seed extracts to prevent and treat colorectal cancer (CRC). Methods: Four extracts (ethanol extracts and protein extracts and hydrolysates) from the leaves and seeds of cucurbits were tested in T-84, HCT-15 and HT-29 CRC cells. The antitumor, antiangiogenic, antioxidant and chemopreventive potentials and bioactive composition of the active extracts were characterized. Results: Cold ethanolic extracts from the leaves and seeds of two interspecific Cucurbita genera (CLU01002 and COK01001) exhibited potent antiproliferative, specific and non-hepatotoxic activity against CRC cell lines, with a slight synergistic effect in combination with oxaliplatin. This antitumor activity was related to G2/M cell cycle arrest, the extrinsic apoptosis pathway, cytokinesis inhibition and autophagy. The extracts also inhibited tumor clonogenicity and angiogenesis, and modulated cancer stem cell (CSC) gene expression, as well as expressing antioxidant and chemopreventive cellular capabilities. Finally, phenolic and cucurbitane-type triterpenoid compounds (pengxianencins and cucurbitacins) were tentatively identified in the active extracts by UPLC-MS analysis and bioguided fractionation. Conclusions: Extracts from leaves the and seeds of two interspecific Cucurbita genera (CLU01002 and COK01001) may contribute to the improvement of prevention and treatment strategies for CRC patients.
... Polyphenols, typically abundant in fruits and vegetables, have been demonstrated to modulate TLR and NLR signalling pathways, potentially providing anti-inflammatory benefits in IBD (Al-Khayri et al. 2022;Ferreira et al. 2024;Singh et al. 2020). Curcumin, resveratrol, quercetin, and epigallocatechin gallate (EGCG) block TLR-mediated NF-κB activation and reduce inflammatory cytokine production (Cione et al. 2019;Liu et al. 2023;Magrone et al. 2019b). Curcumin, for example, has been demonstrated to impede TLR4 dimerisation, therefore limiting downstream signalling and cytokine generation (Panaro et al. 2020;Zhu et al. 2014). ...
Article
Full-text available
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Article
Blood orange peel flour (BO-pf)—a by-product of the citrus supply chain—still contains bioactive molecules with known health benefits, such as antiradical scavenging activity or an antiproliferative activity regarding tumors. In vitro studies have demonstrated that orange polyphenols showed potential involvement in necroptosis. In addition to previous research, we tested BO-pf on two colorectal cancer cell lines. Using HT29 and Caco2 cells, our experiments confirmed the regulation of inflammasome expression. They provided valuable insights into how BO-pf influences the cancer cell features (i.e., viability, proliferation, and pro- and anti-inflammatory activity). Notably, BO-pf extract is a rich source of polyphenolic compounds with antioxidant properties. Western blot and real-time PCR analyses showed that treatment with BO-pf extract demonstrated beneficial effects by influencing the expression of both pro-inflammatory cytokines (IL-1β, IL-6) through the modulation of the TLR4/NF-kB/NLRP3 inflammasome signaling. Moreover, the results of this study demonstrate that BO-pf extracts can enhance the expression of anti-inflammatory cytokines, such as IL-10 and TGFβ, suggesting that BO-pf extracts may represent a promising functional ingredient to counteract the intestinal inflammatory responses involved in IBD.
Article
Erectile dysfunction (ED) is a medical condition characterized by the inability to achieve or maintain a satisfactory erection, primarily treated with oral phosphodiesterase type 5 inhibitors. Treatment effectiveness is diminished in severe vasculogenic ED, particularly in patients with diabetes mellitus, highlighting the need for exploring alternative/complementary interventions. Among them, dietary phenolic compounds are known for their antioxidant and anti‐inflammatory properties. This systematic review focuses on catechin (EGCG), quercetin, resveratrol, and curcumin and their influence on the pathophysiology of ED. Following PRISMA 2020 guidelines (PROSPERO registration number CRD42023402016) searches across PubMed, Scopus, and Web of Science until October 2024 were conducted using relevant keywords. Inclusion criteria required original articles in English, while in silico studies, review articles, editorials, and original studies lacking essential polyphenol administration information were excluded. After an initial search that located 409, 445, and 285 publications in each database respectively, rigorous screening resulted in 26 publications comprising animal, ex vivo, and in vitro studies. Their quality was assessed using GRADE and SYRCLE ROB tools, revealing an overall “medium‐high” or “high quality.” These polyphenols consistently demonstrated improvements in erectile function, encompassing behavioral, functional, molecular, and hormonal aspects. However, limitations were identified, such as the predominant reliance on animal models and in vitro trials, which may not precisely reflect human physiological responses. Further clinical investigations are needed to ascertain data translational potential, standardize dosages, and establish safe and effective prescription recommendations. Prioritizing clinical trials is essential for validating the widespread applicability and efficacy of polyphenols in managing ED.
Chapter
Cancer is a complex disease, with approximately six million new cases reported annually. Despite the numerous treatment strategies employed worldwide, the severity of cancer continues to increase. Conventional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are standard practices, but their clinical success is constrained by toxic side effects leading to damage to healthy tissues, unavoidable off-target effects, and significant cancer recurrence resulting from incomplete surgical removal. Therefore, interest in alternative therapies sourced primarily from natural products is increasing. The popularity of phytomedicine in cancer treatment approaches is increasing because of its efficacy, affordability, accessibility, and minimal adverse effects. Additionally, green chemistry approaches can be used to synthesize a wide array of anticancer drugs with various chemical structures, enhancing their therapeutic efficacy while minimizing or eliminating side effects and toxicity. The enhanced efficacy of cancer medicines made from plants is achieved via molecular innovations that support precise targeting. Various drug delivery systems that aim to reduce environmental pollution while reducing waste can be optimized for better results in therapy through nanotechnology. The delivery of effective cancer therapies while preserving the environment for generations to come is the objective of this approach, which includes green chemistry, sustainable production, and molecular developments.
Article
Full-text available
Neuropathic pain is a complex and debilitating condition resulting from nerve damage, characterized by sensations such as burning, tingling, and shooting pain. It is often associated with conditions such as multiple sclerosis (MS), Guillain-Barré syndrome (GBS), and diabetic polyneuropathy. Conventional pain therapies frequently provide limited relief and are accompanied by significant side effects, emphasizing the need to explore alternative treatment options. Phytochemicals, which are bioactive compounds derived from plants, have gained attention for their potential in neuropathic pain management due to their diverse pharmacological properties, including anti-inflammatory, antioxidant, and neuroprotective effects. This review evaluates the mechanisms by which specific phytochemicals, such as curcumin, resveratrol, and capsaicin, influence neuropathic pain pathways, particularly their role in modulating inflammatory processes, reducing oxidative stress, and interacting with ion channels and signaling pathways. While curcumin and resveratrol are primarily considered dietary supplements, their roles in managing neuropathic pain require further clinical investigation to establish their efficacy and safety. In contrast, capsaicin is an active ingredient derived from chili peppers that has been developed into approved topical treatments widely used for managing neuropathic and musculoskeletal pain. However, not all phytochemicals have demonstrated consistent efficacy in managing neuropathic pain, and their effects can vary depending on the compound and the specific condition. The pathophysiology of neuropathic pain, involving maladaptive changes in the somatosensory nervous system, peripheral and central sensitization, and glial cell activation, is also outlined. Overall, this review emphasizes the need for continued high-quality clinical studies to fully establish the therapeutic potential of phytochemicals in neuropathic pain management.
Article
Full-text available
Osteoarthritis (OA) is a joint degenerative disease, which is prominent in the middle-aged and elderly population, often leading to repeated pain in the joints of patients and seriously affecting the life quality of patients. At present, the treatment of OA mainly depends on the surgery and drug treatment. Nevertheless, these treatments still face many problems, such as surgical safety, complications, and drug side effects. Exosomes can be secreted and released by multiple cell types and have lipid bilayer membranes and contain abundant biological molecules, including proteins, lipids, and nucleic acids. Moreover, exosomes play a critical role in local and distal intercellular and intracellular communication. In recent years, several studies have found that exosomes can regulate the progression of OA and have a potential efficacy for OA treatment. Thus, in this article, we summarize and review the relevant research of exosomes in OA and emphasize the importance of exosomes in the development of OA.
Article
Full-text available
Curcumin, a polyphenol extracted from Curcuma longa in 1815, has gained attention from scientists worldwide for its biological activities (e.g., antioxidant, anti-inflammatory, antimicrobial, antiviral), among which its anticancer potential has been the most described and still remains under investigation. The present review focuses on the cell signaling pathways involved in cancer development and proliferation, and which are targeted by curcumin. Curcumin has been reported to modulate growth factors, enzymes, transcription factors, kinase, inflammatory cytokines, and proapoptotic (by upregulation) and antiapoptotic (by downregulation) proteins. This polyphenol compound, alone or combined with other agents, could represent an effective drug for cancer therapy.
Article
Full-text available
Polyphenols are naturally occurring compounds found largely in fruits and vegetables. The antioxidant properties of these polyphenols including total phenolic content (TPC), total flavonoid content (TFC), tannin content, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH), 2,2-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS) scavenging abilities and ferric ion reducing antioxidant power (FRAP) were measured among sixteen (16) plant foods (mango, blueberry, strawberry, black carrot, raspberry, dark grapes, garlic, ginger, onion, cherry, plum, apple, papaya, peach, pear and apricot) by modifying, standardising and translating existing antioxidant methods using a 96-well plate reader. Eighteen targeted phenolic acids and flavonoids were characterised and quantified using high-performance liquid chromatography-photometric diode array (HPLC-PDA) and verified by modifying an existing method of liquid chromatography coupled with electrospray-ionisation triple quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). While most of these compounds were accurately detected by the HPLC-PDA at a low concentration, a few polyphenols in low concentrations could be only be characterised using the LC-ESI-QTOF/MS method. Our results showed that mango possessed the highest overall antioxidant activity, phenolic acid and flavonoid content among the selected fruits. Factor analysis (FA) and Pearson's correlation tests showed high correlations among ABTS, DPPH, FRAP and phenolic acids, implying the comparable capabilities of scavenging the DPPH/ABTS free radicals and reducing ferric ions from the antioxidant compounds in the samples. Phenolic acids contributed significantly to the antioxidant activities, and flavonoids contributed more to tannin content based on the correlations. Overall, methods modified and standardized in this study can provide better understanding of high throughput technologies and increase the reliability of antioxidant data of different plant foods.
Article
Full-text available
The mechanisms of action of the dietary components of the Mediterranean diet are reviewed in prevention of cardiovascular disease, stroke, age-associated cognitive decline and Alzheimer disease. A companion article provides a comprehensive review of extra-virgin olive oil. The benefits of consumption of long-chain ω-3 fatty acids are described. Fresh fish provides eicosapentaenoic acid while α-linolenic acid is found in canola and soybean oils, purslane and nuts. These ω-3 fatty acids interact metabolically with ω-6 fatty acids mainly linoleic acid from corn oil, sunflower oil and peanut oil. Diets rich in ω-6 fatty acids inhibit the formation of healthier ω-3 fatty acids. The deleterious effects on lipid metabolism of excessive intake of carbohydrates, in particular high-fructose corn syrup and artificial sweeteners, are explained. The critical role of the ω-3 fatty acid docosahexaenoic acid in the developing and aging brain and in Alzheimer disease is addressed. Nutritional epidemiology studies, prospective population-based surveys, and clinical trials confirm the salutary effects of fish consumption on prevention of coronary artery disease, stroke and dementia. Recent recommendations on fish consumption by pregnant women and potential mercury toxicity are reviewed. The polyphenols and flavonoids of plant origin play a critical role in the Mediterranean diet, because of their antioxidant and anti-inflammatory properties of benefit in type-2 diabetes mellitus, cardiovascular disease, stroke and cancer prevention. Polyphenols from fruits and vegetables modulate tau hyperphosphorylation and beta amyloid aggregation in animal models of Alzheimer disease. From the public health viewpoint worldwide the daily consumption of fruits and vegetables has become the main tool for prevention of cardiovascular disease and stroke. We review the important dietary role of cereal grains in prevention of coronary disease and stroke. Polyphenols from grapes, wine and alcoholic beverages are discussed, in particular their effects on coagulation. The mechanisms of action of probiotics and vitamins are also included.
Article
Full-text available
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Article
Full-text available
Purpose: In view of the principal role of Toll-like receptor 4 (TLR4) in mediating sterile inflammatory response contributing to osteoarthritis (OA) pathogenesis, we used lipopolysaccharide (LPS), a known TLR4 activator, to clarify whether modulation of TLR4 contributed to the protective actions of intra-articular administration of curcumin in a classical rat OA model surgically induced by anterior cruciate ligament transection (ACLT). Methods: The rats underwent ACLT and received 50μl of curcumin at the concentration of 1 mg mL-1 and 10 μg LPS by intra-articular injection once a week for 8 weeks. Morphological changes of the cartilage and synovial tissues were observed. Apoptotic chondrocytes were detected using TUNEL assay. The concentrations of IL-1β and TNF-ɑ in synovial fluid were determined using ELISA kits. The mRNA and protein expression levels of TLR4 and NF-κB p65 were detected by real-time PCR and Western blotting, respectively. Results: Intra-articular administration of curcumin significantly improved articular cartilage injury, suppressed synovial inflammation and down-regulated the overexpression of TLR4 and its downstream NF-κB caused by LPS-induced TLR4 activation in rat osteoarthritic knees. Conclusion: The data suggested that the inhibition of TLR4 signal might be an important mechanism underlying a protective effect of local curcumin administration on OA.
Article
Curcumin, a primary active element of turmeric, has potent antioxidant and anti-inflammatory activity, but its low bioavailability is a major hurdle in its pharmaceutical applications. To enhance the therapeutic efficacy of curcumin, we exploited polymeric prodrug strategy. Here, we report rationally designed acid-activatable curcumin polymer (ACP), as a therapeutic prodrug of curcumin, in which curcumin was covalently incorporated in the backbone of amphiphilic polymer. ACP could self-assemble to form micelles that rapidly release curcumin under the acidic condition. The potential of ACP micelles as therapeutics for osteoarthritis was evaluated using a mouse model of monoidoacetic acid (MIA)-induced knee osteoarthritis. ACP micelles drastically protected the articular structures from arthritis through the suppression of tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β). Given their pathological stimulus-responsiveness and potent antioxidant and anti-inflammatory activities, ACP micelles hold remarkable potential as a therapeutic agent for not only osteoarthritis but also various inflammatory diseases.
Article
Turmeric (Curcuma longa) is a popular spice that has been used in Ayurvedic medicine for its ability to treat various common ailments. There have been statistical correlations between turmeric consumption and lower incidences of cancer development, prompting research into its primary component curcumin. Several in‐vitro and in‐vivo studies over the last decade into cancer treatment have provided experimental evidence that curcumin contains antiproliferative, antiangiogenic, and apoptotic properties. The results of human clinical trials however, have proven mostly to be inconclusive. This short review provides an insight into the properties of curcumin including its bioavailability, biological activity, and potential usage in clinical trials as a chemotherapeutic drug. This article is protected by copyright. All rights reserved
Chapter
Phenolic compounds have attracted much attention in recent times as their dietary intake has been associated with the prevention of some chronic and degenerative diseases that constitute major causes of death and incapacity in developed countries, such as cardiovascular diseases, type II diabetes, some types of cancers or neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Nowadays it is considered that these compounds contribute, at least in part, for the protective effects of fruit and vegetable-rich diets, so that the study of their role in human nutrition has become a central issue in food research. This chapter reviews the current knowledge on the phenolic compounds as food components, namely their occurrence in the diet, bioavailability and metabolism, biological activities and mechanisms of action. Besides, the approaches for their extraction from plant matrices and technological improvements regarding their preparation, stability and bioavailability in order to be used as functional food ingredients are also reviewed, as well as their legal situation regarding the possibility of making "health claims" based on their presence in food and beverages.