Content uploaded by Fakhraddin A Kadirov
Author content
All content in this area was uploaded by Fakhraddin A Kadirov on Dec 08, 2019
Content may be subject to copyright.
G.Babayev et al. / ANAS Transactions, Earth Sciences 2 / 2019, 47-53; DOI: 10.33677/ggianas20190200031
47
ANAS Transactions Earth Sciences 2 / 2019
Geology and geophysics
http://www.journalesgia.com
DYNAMIC TRIGGERING OF MUD VOLCANOS
IN AZERBAIJAN BY CASPIAN EARTHQUAKES
Babayev G.1, Kadirov F.1, Tibaldi A.2, Bonali F.2, Aliyev Y.1
1Institute of Geology and Geophysics, Azerbaijan National Academy of Sciences
119, H. Javid Ave., Baku, AZ1143, Azerbaijan: babayev74@gmail.com
2 University of Milan Bicocca,
4, Piazza della Scienza, Milan, 20126, Italy
Keywords: earthquake,
triggering mechanism,
mud volcano, dynamic stress,
Azerbaijan
Summary. There are several viewpoints about the relationship of mud volcano eruptions with
earthquakes, or earthquake occurrences with mud volcano eruptions. This paper demonstrates
evaluation of dynamic strains triggered by Caspian earthquakes which occurred on the 25th of No-
vember, 2000, south of Baku city with Mw 6.1 and 6.2. Consequently, we researched the relation-
ship between seismic regime and mud volcano eruptions in Azerbaijan located in Shamakhi-
Gobustan-Absheron. We investigated over 30 mud volcanoes with over 100 km distance from near
epicentres of Caspian earthquakes in terms of time within five years before and after Caspian
earthquakes in 2000. As a result of computation, dynamic strain demonstrates that all the volca-
noes in the study area are affected mostly by Caspian earthquake-induced transient strain. A larger
number of mud eruptions occurred at a distance greater than 50-60 km from the 2000 Caspian epi-
centres. Mud volcanoes were erupted within 2-3 years at the range of 40 and 110 km from the epi-
centres. After three years from earthquake occurrence in Caspian Sea, mud volcanoes were erupted
at the distance more than 70 km. The largest number of eruptions occurred within two years from
the earthquakes, in particular the highest frequency is within six months. In particular, several
eruptions occurred within 8 months from the shock, after this period the number of eruption for
months is more scattered and discontinuous The comparison made us conclude that dynamic
stresses are predominantly interlinked with triggering demonstrating higher magnitude, and conse-
quently eruptions are favored up to 1-2 years following the earthquakes.
© 2019 Earth Science Division, Azerbaijan National Academy of Sciences. All rights reserved.
Introduction
The relationship between mud volcano erup-
tions and earthquake occurrences has been studied
for years. Researches demonstrate that mud volca-
noes erupt quickly or periodically after earthquakes
occur with the epicenters locating closely (Manga et
al., 2009). Many studies were done researching the
triggering mechanism of magma eruptions by earth-
quake (Linde and Sacks, 1998; Nostro et al., 1998;
Walter and Amelung, 2007; Eggert and Walter,
2009; Walter et al., 2009; Watt et al., 2009; Bonali
et al., 2013) and this effect was observed also in
terms of mud volcanos in recent years (Mellors et
al., 2007).
Azerbaijan is well-known worldwide with 190
mud volcanoes on land, a few tens of kilometers
from the capital Baku, and other 150 offshore in the
Caspian Sea (Guliyev and Feyzullayev, 1997; Kad-
irov, Mukhtarov, 2004; Aliyev et.al., 2009;
Feyzullayev, 2012; Babayev et.al., 2014; Aliyev et.
al., 2015). Azerbaijan mud volcanoes are preserved
as natural phenomenon in line with representing a
threat to the infrastructure in Baku, small villages
nearby Baku city, roads, critical objects (e.g., pipe-
lines) and buildings. Mud volcanoes have been
considered to be linked to the ongoing tectonics for
what concerns both fault activity which may guide
the rate of mud extrusion (Kopf, 2008) and the state
of stress that dictates the volcano shape and vent
distribution (Bonini and Mazzarini, 2010; Bonini,
2012). Theoretically mud volcanoes are mostly lo-
cated in compressional belts, have several morpho-
logical and structural similarities with lava volca-
noes and thus represent a good proxy to analyze the
feeding systems under contractional tectonics (Gu-
liyev and Feyzullayev, 1997; Kadirov, Mukhtarov,
Geology and geophysics
48
2004; Aliyev et.al., 2009; Feyzullayev, 2012; Ba-
bayev et.al., 2014; Aliyev et. al., 2015). For all
these reasons the study of the relationships between
tectonics and mud volcanism is an important recent
task of research and more work is still necessary to
unravel the complex picture (Tibaldi, 2008; Tibaldi
et al., 2010).
The principal aim of the present study was to
research the relationship between seismic regime
and mud volcano eruptions in Azerbaijan located in
Shamakhi-Gobustan-Absheron, following two
earthquakes with Mw 6.1 and 6.2 occurred in the
Caspian Sea on November 25, 2000, south of Baku
city (Fig. 1). For that we applied the influential
mechanism of dynamic strain changes triggered by
those Caspian earthquakes on the activity of volca-
nos close to the earthquake epicenters.
Fig. 1. Study area with distribution of mud volcanoes and loca-
tion of the studied earthquakes of November 25, 2000
Seismicity
The study area Shamakhi-Gobustan-Absheron
is close to the epicentres of Caspian earthquakes.
Greater and Lesser Caucasus is the main orogen
(Alizadeh et. al., 2017) of the Azerbaijan earth-
quake-prone country. Azerbaijan itself is situated in
the active continent collision of the Arabian-
Eurasian plates and involved in dynamics of litho-
spheric structural units of those plates. The Arabian-
Eurasian collision continues to be accommodated by
lithospheric shortening and lateral displacement of
lithosphere out of the collision zone along the right-
lateral strike-slip faults (Reilinger et. al., 2006; Kad-
irov et. al., 2012; Alizadeh et. al., 2017). These re-
gional tectonic processes give rise to earthquakes
that have devastated the Caucasus region (Babayev
et.al., 2014). Since earthquakes result from stress
concentrations at zones of weakness, one approach
to advance the level of hazard assessment is to per-
form geodynamic numerical models to compute
stress concentrations within the crust.The ongoing
regional tectonic processes and lithosphere defor-
mations produced earthquakes that have devastated
the Caucasus region also during recent historic times
(e.g. the 1902 Shamakhi earthquake; Veber, 1904).
The Absheron peninsula together with its offshore
part (the Azerbaijan sector of the Caspian Sea) is
located in the south-eastern extremity of the Greater
Caucasus, where the orogenic active processes still
occur (Babayev et.al., 2014). Earthquakes in the re-
gion migrate along the Alpine-Himalayan seismic
belt (Ismail-Zadeh, 1996) and are associated with
the fault zones located in the Absheron peninsula
(Fig. 1). Whereas the Gobustan zone can be consid-
ered even aseismic based on the available data, the
Absheron peninsula is affected by low-magnitude
but frequent earthquakes (Telesca et. al., 2012). The
larger potential threat to the Absheron peninsula
comes from the earthquakes originating under the
Caspian Sea. The Caspian Sea in fact is another
seismically-active zone of Azerbaijan; the seismicity
is mostly crustal (depths typically <30 km), although
events as deep as 80 km have been reported and may
represent incipient subduction across the mid-
Caspian (Jackson et al., 2002). November 25, 2000
earthquakes of Mw 6.2 band 6.081, which occurred
in the Caspian Sea close to Baku city (Fig. 1), were
characterized by focal depths of 40 and 33 km re-
spectively (Jackson et al., 2002).
Eruptions following the November 25, 2000
earthquakes
After the two earthquakes of 2000, 33 eruptions
occurred at 24 different mud volcanoes within a
maximum distance of 108 km from the epicentres
(Fig. 2).
Fig. 2. Eruptions occurred in the five years following the studied
earthquakes: time-gap versus averaged distance from the 2000
earthquake epicentres
A larger number of mud eruptions occurred at a
distance greater than 50-60 km from the epicentres
(Fig. 3A). The largest number of eruptions occurred
within two years from the earthquakes, in particular
the highest frequency is within six months (Fig. 3B).
G.Babayev et al. / ANAS Transactions, Earth Sciences 2 / 2019, 47-53; DOI: 10.33677/ggianas20190200031
49
It is also possible to see that 6 eruptions occurred
within 1.5 year from the earthquake at a distance
<40 km (Fig. 2). Eruptions within 2-3 years occurred
at a distance between 40 and 110 km from the epi-
centres, on the contrary eruptions after 3 years oc-
curred only at a distance greater than 70 km (Baba-
yev et al., 2014). In particular, several eruptions oc-
curred within 8 months from the shock, after this
period the number of eruption for months is more
scattered and discontinuous (Fig. 4).
Fig. 3. Frequency of eruptions occurred in the five years follow-
ing the studied earthquakes plotted versus (A) distance from the
epicentres and (B) time-gap. The data have been classified in 10
classes
Method for dynamic strain
An earthquake generates also dynamic pertur-
bations (Hill et al., 2002; Manga and Brodsky,
2006). Seismic waves travel at great distances
without losing much of their energy (Hill et al.,
2002) and dynamic stress change decreases more
slowly than static stress change (Hill and Prejean,
2007). We estimated the peak transient strain ap-
plying the formula ε = PGV / Vs, where ε is strain
amplitude and Vs is the shear wave velocity (Man-
ga et al., 2009) assumed equal to 2500 m/s (Kanno
et al., 2006) and PGV is the Peak Ground Veloci-
ty, although we are aware of some uncertainty of
this method because it does not account for the
earthquake focal mechanism (Babayev et al.,
2014) or the effect of directivity and approximates
rupture location by the hypocenter (Manga et al.,
2009).
Fig. 4. Eruptions occurred in the five years following the studied
earthquakes: it is reported the number of eruptions per month
(blue) and the cumulative number per month/number of months
(yellow)
The PGV values for the studied mud volcano
region have been estimated using the relationship
between moment magnitude of the events (Mw6.1
and Mw6.2) and the epicentral distance R (in km).
The equation by Akkar and Bommer (2010) was
derived from the data of Europe, Mediterranean
and Middle East. The selected equation for PGV is
well-suited for our study area with soft to hard bed-
rocks, typical for the site conditions of the Shama-
khi-Gobustan-Absheron region of Azerbaijan (Ba-
bayev et. al., 2010). Using the PGV values at bed-
rock as the seismic input motion parameters, all
dynamic parameters of both subsurface soil and the
surface PGA (Peak Ground Acceleration) can be
determined (Babayev et al., 2010). Site effects, de-
tailed surface geology, the amplification factor and
the seismic response of subsurface soils have been
analyzed to illustrate the influence of the site-
effects terms and determine the surface motion ve-
locity for the mud volcanoes in the study area (Ba-
bayev et al., 2014).
Results
Computation of dynamic strain demonstrates
that all the volcanoes in the researched area are af-
fected by Caspian earthquake-induced transient
strain (Fig. 5). The magnitude of dynamic effects
decreases with distance from the epicenters (Fig.
5A), while the time-gap increases with a decrease in
earthquake-induced dynamic strains (Fig. 5B).
Geology and geophysics
50
Fig. 5. Cumulated dynamic strain demonstrating the dependency
of the distance from the epicentres (a) and the time delay (b).
The dots represent mud volcanoes in the study area
Discussion
Theoretically dynamic stress changes also de-
crease more slowly with distance making them a
more effective triggering agent at long distances
(Mellors et al., 2007). Mud volcanoes are commonly
thought to be sourced from deep, highly overpres-
sured shales (e.g., diapirs), liquefaction of clays, or
shallow overpressured gas, hydrate, or water-rich
sequences (Brown, 1990; Galli, 2000; Kopf, 2002).
A trigger effect is the final step that precedes the
manifestation or the initiation of an eruption (Maz-
zini et al., 2009). Based on our results, in the 5 years
following the two 2000 Azerbaijan earthquakes, 33
eruptions occurred at a maximum distance of about
108 km from these seismic events. The first eruption
occurred after 6 days and 19 eruptions occurred
within 2 years (Babayev et al., 2014). Out of 33 mud
volcano eruptions researching in the current study 26
mud volcanoes are implied to be dynamically-
triggered by Caspian earthquakes, and the rest seven
eruptions are triggered not only by dynamic stress
change.
Conclusion
In conclusion it can be stated that after two earth-
quakes of 2000, 33 eruptions occurred at 24 different
mud volcanoes within a maximum distance of over
100 km from the epicentres, while a significant number
of mud eruptions occurred at a distance larger than 50-
60 km from the epicentres. In addition, the largest
number of eruptions occurred within two years from
the earthquakes, in particular within six months. After
this period the number of eruption for months is scat-
tered and discontinuous, although a large number of
eruptions occurred 13 months after the earthquake.
Dynamic strain is observed in all researched eruptions.
Besides, the analysis of the research revealed that the
eruption was intensified within five years after the
Caspian earthquake occurrences in 2000. This time
delay might happen due to the complexity and various
mechanisms that are manifested in the substratum at
the plumbing system in the mud volcano.
REFERENCES
Akkar S., Bommer J. Empirical equations for the prediction of
PGA, PGV, and spectral accelerations in Europe, the Medi-
terranean Region, and the Middle East. Seismological Re-
search Letters, V. 81, No. 2, 2010, pp. 195-206.
Aliyev A., Guliyev I., Dadashov F., Rahmanov R. Atlas of the
world mud volcanoes. Nafta-Press. Sandro Teti Editor.
2015, 322 p.
Aliyev A.A., Guliyev I.S., Rakhmanov R.R. Catalogue of mud
volcano eruptions of Azerbaijan (1810-2001 yrs). Nafta-
Press. 2009, 110 p.
Alizadeh A., Guliyev I., Kadirov F., Eppelbaum L. Geosciences
of Azerbaijan. Volume II: Economic geology and applied
geophysics. Springer International Publishing. Switzerland,
2017, 348 p. DOI: 10.1007/978-3-319-40493-6.
Babayev G., Ismail-Zadeh A., Le Moüel J.-L. Scenario-based earth-
quake hazard and risk assessment for Baku (Azerbaijan). Nat.
Hazards Earth Syst. Sci., V. 10, 2010, pp. 2697-2712.
Babayev G., Tibaldi A., Bonali F., Kadirov F. Evaluation of
earthquake-induced strain in promoting mud eruptions: the
ЛИТЕРАТУРА
Akkar S., Bommer J. Empirical equations for the prediction of
PGA, PGV, and spectral accelerations in Europe, the Medi-
terranean Region, and the Middle East. Seismological Re-
search Letters, V. 81, No. 2, 2010, pp. 195-206.
Aliyev A., Guliyev I., Dadashov F., Rahmanov R. Atlas of the
world mud volcanoes. Nafta-Press. Sandro Teti Editor.
2015, 322 p.
Aliyev A.A., Guliyev I.S., Rakhmanov R.R. Catalogue of mud
volcano eruptions of Azerbaijan (1810-2001 yrs). Nafta-
Press. 2009, 110 p.
Alizadeh A., Guliyev I., Kadirov F., Eppelbaum L. Geosciences
of Azerbaijan. Volume II: Economic geology and applied
geophysics. Springer International Publishing. Switzerland,
2017, 348 p. DOI: 10.1007/978-3-319-40493-6.
Babayev G., Ismail-Zadeh A., Le Moüel J.-L. Scenario-based earth-
quake hazard and risk assessment for Baku (Azerbaijan). Nat.
Hazards Earth Syst. Sci., V. 10, 2010, pp. 2697-2712.
Babayev G., Tibaldi A., Bonali F., Kadirov F. Evaluation of
earthquake-induced strain in promoting mud eruptions: the
G.Babayev et al. / ANAS Transactions, Earth Sciences 2 / 2019, 47-53; DOI: 10.33677/ggianas20190200031
51
case of Shamakhi-Gobustan-Absheron areas, Azerbaijan.
Natural hazards, V. 72, No. 2, 2014, pp. 789-808.
Bonali F.L., Tibaldi A., Corazzato C., Tormey D.R., Lara L.E.
Quantifying the effect of large earthquakes in promoting
eruptions due to stress changes on magma pathway: The
Chile case. Tectonophysics, V. 583, 2013, pp. 54-67.
Bonini M. Mud volcanoes: Indicators of stress orientation and
tectonic controls. Earth-Science Reviews, V. 115, No. 3,
2012, pp. 121-152.
Bonini M., Mazzarini F. Mud volcanoes as potential indicators
of regional stress and pressurized layer depth. Tectono-
physics, V. 494, 2010, pp. 32-47.
Brown K.M. The nature and hydrogeologic significance of mud
diapirs and diatremes for accretionary systems. Journal of Ge-
ophysical Research, V. 95, No. B6, 1990, pp. 8969-8982.
Eggert S., Walter T.R. Volcanic activity before and after large
tectonic earthquakes: Observations and statistical signifi-
cance. Tectonophysics, V. 471, No.1-2, 2009, pp. 14-26,
DOI:10.1016/j.tecto.2008.10.003.
Feyzullayev A.A. Mud volcanoes in the South Caspian basin: Na-
ture and estimated depth of its products. Natural Science, V. 4,
No. 7, 2012, pp. 445-453, DOI:10.4236/ns.2012.4706.
Galli P. New empirical relationships between magnitude and
distance for liquefaction: Tectonophysics, V. 324, No. 3,
2000, pp. 169-187.
Guliyev I.S., Feyzullayev A.A. All about mud volcanoes. Nafta
Press. Baku, 1997, 52 p.
Hill D.P., Pollitz F., Newhall C. Earthquake-volcano interac-
tions. Physics Today, V. 55, No. 11, 2002, pp. 41-47.
Hill D.P., Prejean S. Dynamic triggering. In: Earthquake
Seismology (ed. H.Kanamori), V. 4, 2007, pp. 258-288.
Treatise on Geophysics (ed. in chief G.Schubert), Else-
vier. Amsterdam.
Ismail-Zadeh A. Migration of seismic activity in the Caspian
Sea. In: Computational seismology and geodynamics (ed.
Chowdhury D.K.). V. 3. American Geophysical Union,
Washington D.C. 1996, pp. 125-129.
Jackson J., Priestley K., Allen M., Berberian M. Active tectonics
of the South Caspian Basin. Geophys. J. Int., V. 148, No. 2,
2002, pp. 214-245.
Kadirov F.A., Mukhtarov A.Sh. Deep structure and dynamics of
the Lokbatan mud volcano. Izvestiya, Physics of the Solid
Earth (Fizika zemli), V. 40, No. 4, 2004, pp. 327-333.
Kadirov F.A., Floyd M.A., Alizadeh A., Guliev I., Reilinger
R.E., Kuleli S., King R.W., Toksoz M.N. Kinematics of the
Caucasus near Baku, Azerbaijan, J. Nat. Hazards, V. 63,
2012, pp. 997-1006, DOI: 10.1007/s11069-012-0199-0.
Kanno T., Narita A., Morikawa N., Fujiwara H., Fukushima Y.
A new attenuation relation for strong ground motion in Ja-
pan based on recorded data. Bulletin of the Seismological
Society of America, V. 96, No. 3, 2006, pp. 879-897.
Kopf A.J. Significance of mud volcanism. Reviews of Geophysics, V.
40, No. 2, 2002, pp. 2.1-2.52, DOI: 10.1029/2000RG000093.
Kopf A.J. Making calderas from mud. Nature Geoscience, V. 1,
2008, pp. 500-501.
Linde A.T., Sacks I.S. Triggering of volcanic eruptions. Nature,
V. 395, 1998, pp. 888-890.
Manga M., Brumm M., Rudolph M.L. Earthquake triggering of
mud volcanoes. Marine and Petroleum Geology, V. 26, No.
9, 2009, pp. 1785-1798.
Manga M., Brodsky E. Seismic triggering of eruptions in the far
field: Volcanoes and geysers: Annual Review of Earth and
Planetary Sciences, V. 34, No. 1, 2006, pp. 263-291, DOI:
10.1146/annurev.earth.34.031405.125125.
Mazzini A., Nermoen A., Krotkiewski M., Podladchikov Y.,
Planke S., Svensen H. Strike-slip faulting as a trigger
mechanism for overpressure release through piercement
structures. Implications for the Lusi mud volcano, Indo-
case of Shamakhi-Gobustan-Absheron areas, Azerbaijan.
Natural hazards, V. 72, No.2, 2014, pp. 789-808.
Bonali F.L., Tibaldi A., Corazzato C., Tormey D.R., Lara L.E.
Quantifying the effect of large earthquakes in promoting
eruptions due to stress changes on magma pathway: The
Chile case. Tectonophysics, V. 583, 2013, pp. 54-67.
Bonini M. Mud volcanoes: Indicators of stress orientation and
tectonic controls. Earth-Science Reviews, V. 115, No. 3,
2012, pp. 121-152.
Bonini M., Mazzarini F. Mud volcanoes as potential indicators
of regional stress and pressurized layer depth. Tectonophys-
ics, V. 494, 2010, pp. 32-47.
Brown K.M. The nature and hydrogeologic significance of mud di-
apirs and diatremes for accretionary systems. Journal of Geo-
physical Research, V. 95, No. B6, 1990, pp. 8969-8982.
Eggert S., Walter T.R. Volcanic activity before and after large
tectonic earthquakes: Observations and statistical signifi-
cance. Tectonophysics, V. 471, No.1-2, 2009, pp. 14-26,
DOI:10.1016/j.tecto.2008.10.003.
Feyzullayev A.A. Mud volcanoes in the South Caspian basin: Na-
ture and estimated depth of its products. Natural Science, V. 4,
No. 7, 2012, pp. 445-453, DOI:10.4236/ns.2012.4706.
Galli P. New empirical relationships between magnitude and
distance for liquefaction: Tectonophysics, V. 324, No. 3,
2000, pp. 169-187.
Guliyev I.S., Feyzullayev A.A. All about mud volcanoes. Nafta
Press. Baku, 1997, 52 p.
Hill D.P., Pollitz F., Newhall C. Earthquake-volcano interac-
tions. Physics Today, V. 55, No. 11, 2002, pp. 41-47.
Hill D.P., Prejean S. Dynamic triggering. In: Earthquake
Seismology (ed. H.Kanamori), V. 4, 2007, pp. 258-288.
Treatise on Geophysics (ed. in chief G.Schubert), Else-
vier. Amsterdam.
Ismail-Zadeh A. Migration of seismic activity in the Caspian
Sea. In: Computational seismology and geodynamics (ed.
Chowdhury D.K.). V. 3. American Geophysical Union,
Washington D.C. 1996, pp. 125-129.
Jackson J., Priestley K., Allen M., Berberian M. Active tectonics
of the South Caspian Basin. Geophys. J. Int., V. 148, No. 2,
2002, pp. 214-245.
Kadirov F.A., Mukhtarov A.Sh. Deep structure and dynamics of
the Lokbatan mud volcano. Izvestiya, Physics of the Solid
Earth (Fizika zemli), V. 40, No. 4, 2004, pp. 327-333.
Kadirov F.A., Floyd M.A., Alizadeh A., Guliev I., Reilinger
R.E., Kuleli S., King R.W., Toksoz M.N. Kinematics of the
Caucasus near Baku, Azerbaijan, J. Nat. Hazards, V. 63,
2012, pp. 997-1006, DOI: 10.1007/s11069-012-0199-0.
Kanno T., Narita A., Morikawa N., Fujiwara H., Fukushima Y.
A new attenuation relation for strong ground motion in Ja-
pan based on recorded data. Bulletin of the Seismological
Society of America, V. 96, No. 3, 2006, pp. 879-897.
Kopf A.J. Significance of mud volcanism. Reviews of Geophysics,
V. 40, No. 2, 2002, pp. 2.1-2.52, DOI: 10.1029/2000RG000093.
Kopf A.J. Making calderas from mud. Nature Geoscience, V. 1,
2008, pp. 500-501.
Linde A.T., Sacks I.S. Triggering of volcanic eruptions. Nature,
V. 395, 1998, pp. 888-890.
Manga M., Brumm M., Rudolph M.L. Earthquake triggering of
mud volcanoes. Marine and Petroleum Geology, V. 26, No. 9,
2009, pp. 1785-1798.
Manga M., Brodsky E. Seismic triggering of eruptions in the far
field: Volcanoes and geysers: Annual Review of Earth and
Planetary Sciences, V. 34, No. 1, 2006, pp. 263-291, DOI:
10.1146/annurev.earth.34.031405.125125.
Mazzini A., Nermoen A., Krotkiewski M., Podladchikov Y.,
Planke S., Svensen H. Strike-slip faulting as a trigger
mechanism for overpressure release through piercement
structures. Implications for the Lusi mud volcano, Indo-
Geology and geophysics
52
nesia. Marine and Petroleum Geology, V. 26, No. 9, 2009,
pp. 1751-1765.
Mellors R., Kilb D., Aliyev A., Gasanov G., Yetirmishli G. Cor-
relations between earthquakes and large mud volcano erup-
tions: Journal of Geophysical Research, V. 112, No. B04304,
2007, DOI: 10.1029/2006JB00448.
Nostro C., Stein R.S., Cocco M., Belardinelli M.E., Marzocchi
W. Two-way coupling between Vesuvius eruptions and
southern Apennine earthquakes, Italy, by elastic stress
transfer. Journal of Geophysical Research, V. 103, No. B10,
1998, pp. 24,487-24,504.
Reilinger R.E., McClusky S.C., Vernant P., Lawrence S., Ergin-
tav S., Cakmak R., Ozener H., Kadirov F., Guliev I., Stepa-
nian R., Nadariya M., Hahubia G., Mahmoud S., Sakr K.,
Arrajehi A., Paradissis D., Al-Aydrus A., Prilepin M.,
Guseva T., Evren E., Dmirotsa A., Filikov S.V., Gomez F.,
Al-Ghazzi R., Karam G. GPS constraints on continental de-
formation in the Africa-Arabia-Eurasia continental collision
zone and implications for the dynamics of plate interac-
tions. Journal of Geophysical Research, V. 111, No. B5,
2006, DOI: 10.1029/2005JB004051.
Telesca L., Babayev G., Kadirov F. Temporal clustering of the
seismicity of the Absheron-Prebalkhan region in the Caspi-
an Sea area. Nat. Hazards Earth Syst. Sci., V. 12, No. 11,
2012, pp. 3279-3285, DOI:10.5194/nhess-12-3279-2012.
Tibaldi A. Contractional tectonics and magma paths in vol-
canoes. Journal of Volcanology and Geothermal Re-
search, V. 176, No. 2, 2008, pp. 291-301.
Tibaldi A., Pasquarè F.A., Tormey D. Volcanism in reverse and
strike-slip fault settings. In: New Frontiers in Integrated
Solid Earth Sciences (ed. S. Cloetingh, J. Negendank),
Springer-Verlag. 2010, pp. 315-348, DOI: 10.1007/978-90-
481-2737-5.
Veber M.V. Recherches preliminaries sur le tremblement de
terre a Chamakha, Comptes Rendue des Seances, Tome I,
Academie Imperiale des Sciences, St.-Petersbourg, 1904,
pp. 238-241.
Walter T.R., Amelung F. Volcanic eruptions following M≥9 meg-
athrust earthquakes: Implications for the Sumatra-Andaman
volcanoes. Geology, V. 35, No. 6, 2007, pp. 539-542.
Walter T.R., Wang R, Acocella V., Neri M., Grosser H., Zschau J.
Simultaneous magma and gas eruptions at three volcanoes
in southern Italy: An earthquake trigger? Geology, V. 37,
No. 3, 2009, pp. 251-254.
Watt S.F.L., Pyle D.M., Mather T.A. The influence of great
earthquakes on volcanic eruption rate along the Chilean
subduction zone. Earth Planetary Science Letters, V. 277,
No. 3-4, 2009, pp. 399-407.
nesia. Marine and Petroleum Geology, V. 26, No. 9, 2009,
pp. 1751-1765.
Mellors R., Kilb D., Aliyev A., Gasanov G., Yetirmishli G. Cor-
relations between earthquakes and large mud volcano erup-
tions: Journal of Geophysical Research, V. 112, No. B04304,
2007, DOI: 10.1029/2006JB00448.
Nostro C., Stein R.S., Cocco M., Belardinelli M.E., Marzocchi
W. Two-way coupling between Vesuvius eruptions and
southern Apennine earthquakes, Italy, by elastic stress
transfer. Journal of Geophysical Research, V. 103, No. B10,
1998, pp. 24,487-24,504.
Reilinger R.E., McClusky S.C., Vernant P., Lawrence S., Ergin-
tav S., Cakmak R., Ozener H., Kadirov F., Guliev I., Stepa-
nian R., Nadariya M., Hahubia G., Mahmoud S., Sakr K.,
Arrajehi A., Paradissis D., Al-Aydrus A., Prilepin M.,
Guseva T., Evren E., Dmirotsa A., Filikov S.V., Gomez F.,
Al-Ghazzi R., Karam G. GPS constraints on continental de-
formation in the Africa-Arabia-Eurasia continental collision
zone and implications for the dynamics of plate interac-
tions. Journal of Geophysical Research, V. 111, No. B5,
2006, DOI: 10.1029/2005JB004051.
Telesca, L. Babayev, G. Kadirov F. Temporal clustering of the
seismicity of the Absheron-Prebalkhan region in the Caspi-
an Sea area. Nat. Hazards Earth Syst. Sci., V. 12, No. 11,
2012, pp. 3279-3285, DOI:10.5194/nhess-12-3279-2012.
Tibaldi A. Contractional tectonics and magma paths in vol-
canoes. Journal of Volcanology and Geothermal Re-
search, V. 176, No. 2, 2008, pp. 291-301.
Tibaldi A., Pasquarè F.A., Tormey D. Volcanism in reverse and
strike-slip fault settings. In: New Frontiers in Integrated
Solid Earth Sciences (ed. S. Cloetingh, J. Negendank),
Springer-Verlag. 2010, pp. 315-348, DOI: 10.1007/978-90-
481-2737-5.
Veber M.V. Recherches preliminaries sur le tremblement de
terre a Chamakha, Comptes Rendue des Seances, Tome I,
Academie Imperiale des Sciences, St.-Petersbourg, 1904,
pp. 238-241.
Walter T.R., Amelung F. Volcanic eruptions following M≥9 meg-
athrust earthquakes: Implications for the Sumatra-Andaman
volcanoes. Geology, V. 35, No. 6, 2007, pp. 539-542.
Walter T.R., Wang R, Acocella V., Neri M., Grosser H., Zschau
J. Simultaneous magma and gas eruptions at three volca-
noes in southern Italy: An earthquake trigger? Geology,
V. 37, No. 3, 2009, pp. 251-254.
Watt S.F.L., Pyle D.M., Mather T.A. The influence of great
earthquakes on volcanic eruption rate along the Chilean
subduction zone. Earth Planetary Science Letters, V. 277,
No. 3-4, 2009, pp. 399-407.
ДИНАМИЧЕСКИЙ ТРИГГЕРНЫЙ ЭФФЕКТ ПРОЯВЛЕНИЯ ГРЯЗЕВЫХ ВУЛКАНОВ АЗЕРБАЙДЖАНА,
ВЫЗВАННЫЙ КАСПИЙСКИМИ ЗЕМЛЕТРЯСЕНИЯМИ
Бабаев Г.1, Кадиров Ф.1, Тибальди А.2, Бонали Ф.2, Алиев Я.1
1Институт геологии и геофизики Национальной Академии наук Азербайджана
AZ1143, Баку, Азербайджан, просп. Г. Джавида, 119: babayev74@gmail.com
2Университет Милан-Бикокка
4, Пиацца делла Сиенза, Милан, 20126, Италия
Резюме. Существует несколько точек зрения о связи извержений грязевых вулканов с землетрясениями или проявлений
землетрясений с извержениями грязевых вулканов. Статья посвящена оценке динамических напряжений, вызванных земле-
трясениями на Каспии, которые произошли 25 ноября 2000 года к югу от города Баку с магнитудами Mw 6.1 и 6.2. Мы ис-
следовали связь между сейсмическим режимом и извержениями грязевых вулканов в Азербайджане, расположенных в зоне
Шамахы-Гобустан-Абшерон. Также провели анализ динамики извержения более 30 грязевых вулканов на расстоянии более
100 км от ближних эпицентров Каспийских землетрясений во временном интервале – в течение пяти лет до и после таковых
2000 года. Расчеты динамической деформации показывают, что извержения всех вулканов в исследуемой зоне произошли в
основном в результате триггерного эффекта Каспийского землетрясения. Большее количество извержений грязевых вулка-
нов произошло на расстоянии более 50-60 км от эпицентров Каспийского землетрясения 2000 года. В течение 2-3 лет грязе-
G.Babayev et al. / ANAS Transactions, Earth Sciences 2 / 2019, 47-53; DOI: 10.33677/ggianas20190200031
53
вые вулканы извергались на расстоянии 40 и 110 км от эпицентров. Через три года после проявления землетрясения на Кас-
пии грязевые вулканы извергались на расстоянии более 70 км. Наибольшее количество извержений произошло в течение
двух лет после землетрясения с наибольшей частотой проявления в шесть месяцев. Особенно надо отметить, что несколько
извержений произошли в течение 8 месяцев от триггерного эффекта; после этого периода количество извержений в течение
ряда месяцев имеет рассеянную и непериодичную частоту. Сравнение позволило сделать вывод, что динамические напря-
жения преимущественно связаны с триггерным эффектом, создающим условия для проявления событий с более высокой
магнитудой, и, следовательно, извержения наблюдаются в течение 1-2 лет после землетрясений.
Ключевые слова: землетрясение, триггерный эффект, грязевой вулкан, динамическое напряжение, Азербайджан
XƏZƏR DƏNİZİ ZƏLZƏLƏLƏRDƏN ƏMƏLƏ GƏLƏN AZƏRBAYCANIN
PALÇIQ VULKANLARI TƏZAHÜRÜNÜN DİNAMİK TRİGGER EFFEKTİ
Babayev Q.1, Qədirov F.1, Tibaldi A.2, Bonali F.2, Əliyev Y.1
1Geologiya və geofizika İnstitutu, Azərbaycan Milli Elmlər Akademiyası
AZ1143, Bakı, Azərbaycan, H. Cavid prosp. 119: babayev74@gmail.com
2Milan-Bikokka Uuniversiteti
4, Piazza della Scienza, Milan, 20126, İtaliya
Xülasə. Palçıq vulkanlarının püskürməsinin zəlzələ ilə əlaqəsi və ya zəlzələlərin baş verməsinin palçıq vulkanlarının püskürməsi
ilə bağlılığı barəsində bir neçə nəzər nöqtəsi mövcuddur. Məqalə, Bakı şəhərinin cənubunda 25 noyabr 2000-ci ildə Xəzər dənizində
baş vermiş Mw 6.1 və 6.2 maqnitudalı zəlzələlərin yaratdığı dinamik gərginliyin qiymətləndirilməsinə həsr olunub. Bu baxımdan,
seysmik rejimlə Azərbaycanın Şamaxı-Qobustan-Abşeron ərazisində yerləşən palçıq vulkanlarının püskürməsi arasında olan əlaqənin
tədqiqatını apardıq. 2000-ci ildə baş vermiş Xəzər zəlzələlərindən əvvəl və sonrakı beş il müddət ərzində həmin zəlzələlərin epimər-
kəzlərindən 100 km məsafədə olan 30-dan artıq palçıq vulkanının püskürmə dinamikası təhlil olunmuşdu. Dinamik deformasiyaların
hesablamaları göstərdi ki, tədqiqat ərazisində olan bütün vulkanların püskürməsi, əsasən, Xəzər zəlzələlərinin trigger effekti nəticə-
sində baş vermişdi. Palçıq vulkanlarının daha çox püskürməsi 2000-ci il Xəzər zəlzələsin epimərkəzindən 50-60 km-dən artıq məsa-
fədə müşahidə olunub. Palçıq vulkanlar epimərkəzdən 40 və 110 km məsafədə 2-3 il ərzində püskürürdü. Xəzər dənizində baş vermiş
zəlzələdən üç il sonra isə, 70 km-dən artıq məsafədə palçıq vulkanlarının püskürməsi qeydə alınmışdı. Ən çox püskürmə zəlzələdən
sonra iki il ərzində, ən yüksək tezliklə – altı ay ərzində baş vermişdi. Xüsusilə,geyd etmək lazımdır ki, triger effekti nəticəsində bir
neçə püskürmə 8 ay ərzində baş vermişdir, və bu müddətdən sonra püskürmə sayı bir neçə ay ərzində daha dağınıq və qeyri-periodik
xüsusiyyət daşıyırdı. Müqayisəli təhlil nəticəsində belə gənaətə gəlmək olar ki, dinamik gərginliklər trigger effekti ilə əlaqədardır. Bu
da öz növbəsində seysmik hadisələrin yüksək maqnituda ilə baş verməsi üçün şərait yaradır və püskürmələr zəlzələlərdən sonra 1-2 il
ərzində müşahidə edilir.
Açar sözlər: zəlzələ, trigger effekti, palçıq vulkan, dinamik gərginlik, Azərbaycan