Approche multicritère pour la caractérisation des adventices par imagerie

To read the file of this research, you can request a copy directly from the authors.


No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
In agriculture, reducing herbicide use is a challenge to reduce health and environmental risks while maintaining production yield and quality. Site-specific weed management is a promising way to reach this objective but requires efficient weed detection methods. In this paper, an automatic image processing has been developed to discriminate between crop and weed pixels combining spatial and spectral information extracted from four-band multispectral images. Image data was captured at 3 m above ground, with a camera (multiSPEC 4C, AIRINOV, Paris) mounted on a pole kept manually. For each image, the field of view was approximately 4 m × 3 m and the resolution was 6 mm/pix. The row crop arrangement was first used to discriminate between some crop and weed pixels depending on their location inside or outside of crop rows. Then, these pixels were used to automatically build the training dataset concerning the multispectral features of crop and weed pixel classes. For each image, a specific training dataset was used by a supervised classifier (Support Vector Machine) to classify pixels that cannot be correctly discriminated using only the initial spatial approach. Finally, inter-row pixels were classified as weed and in-row pixels were classified as crop or weed depending on their spectral characteristics. The method was assessed on 14 images captured on maize and sugar beet fields. The contribution of the spatial, spectral and combined information was studied with respect to the classification quality. Our results show the better ability of the spatial and spectral combination algorithm to detect weeds between and within crop rows. They demonstrate the improvement of the weed detection rate and the improvement of its robustness. On all images, the mean value of the weed detection rate was 89% for spatial and spectral combination method, 79% for spatial method, and 75% for spectral method. Moreover, our work shows that the plant in-line sowing can be used to design an automatic image processing and classification algorithm to detect weed without requiring any manual data selection and labelling. Since the method required crop row identification, the method is suitable for wide-row crops and high spatial resolution images (at least 6 mm/pix).
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. This paper deals with the development of near-ground image capture and processing techniques in order to detect broad-leaved weeds in cereal crops actual field conditions. The proposed methods use colour information to discriminate between vegetation and background, whilst shape analysis techniques are applied to distinguish between crop and weeds. The determination of crop row position helps to reduce the number of objects to which shape analysis techniques are applied. The performance of algorithms was assessed by comparing the results with a human classification, providing an acceptable success rate. The study has shown that despite the difficulties in accurately determining the number of seedlings (as in visual surveys), it is feasible to use image processing techniques to estimate the relative leaf area of weeds (weed leaf area / total leaf area of crop and weeds) while moving across the field and use this data in a stratified manual weed survey of the field.
Quantifying efficacy and limits of unmanned aerial vehicle (uav) technology for weed seedling detection as affected by sensor resolution
Quantifying efficacy and limits of unmanned aerial vehicle (uav) technology for weed seedling detection as affected by sensor resolution. Sensors, 15(3):5609-5626, 2015.