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Many researchers have tried to optimize pairs trading as the numbers of opportunities for arbitrage profit have gradually decreased.
Pairs trading is a market-neutral strategy; it profits if the given condition is satisfied within a given trading window, and if not,
there is a risk of loss. In this study, we propose an optimized pairs-trading strategy using deep reinforcement learning—particularly
with the deep Q-network—utilizing various trading and stop-loss boundaries. More specifically, if spreads hit trading thresholds
and reverse to the mean, the agent receives a positive reward. However, if spreads hit stop-loss thresholds or fail to reverse to the
mean after hitting the trading thresholds, the agent receives a negative reward. The agent is trained to select the optimum level
of discretized trading and stop-loss boundaries given a spread to maximize the expected sum of discounted future profits. Pairs
are selected from stocks on the S&P 500 Index using a cointegration test. We compared our proposed method with traditional
pairs-trading strategies which use constant trading and stop-loss boundaries. We find that our proposed model is trained well and
outperforms traditional pairs-trading strategies.

1. Introduction

Pairs trading is a method for obtaining arbitrage profit when
there is a statistical difference between two stockswith similar
characteristics that are cointegrated or highly correlated.This
is possible because of the statistical reason that spreads made
by two stocks have a mean reversion in the long run [1]. In
the early days, pairs-tradingmethodswere popular because of
the opportunity to obtain arbitrage profit [1–4]. However, as
many investors including hedge funds sought these arbitrage
opportunities by executing the pairs-trading strategy, its
profitability began to deteriorate [5, 6]. To overcome these
shortcomings, significant research has been conducted to
improve the pairs-trading strategy [7–10].

The mechanism of pairs trading is as follows. First, a pair
of stocks with similar trends is identified. Second, regression
analysis such as ordinary least squares (OLS), total least
squares (TLS), and error correction models (ECM) is used
to calculate the spread of these stocks. Finally, if the spread

hits preset boundaries, investors will open a portfolio which
takes a long position on the undervalued stock and shorts
the overvalued stock. Subsequently, if the spread reverses
to the mean, investors will close the portfolios which are
opposite position to the open portfolio. In this case, the
investor obtains an arbitrage profit by executing this strategy.
However, there is a risk when the spread does not reverse
to the mean. In such a situation, investors are at high risk
because they cannot close the portfolio. By setting a stop-loss
boundary, investors can hedge the risk [11–13].

Many researchers have applied various statisticalmethods
to improve the efficiency and performance of pairs trading.
In particular, they focused on using the spread as a trading
signal. The study in [1] collected pairs of stocks based on
minimizing the sum of squared deviations between the two
stocks and then executed the trading strategy if the difference
between the pairs is twice the standard deviation of the
spread. They used normalized US stock price data from
1962 to 2002 to test the profitability of pairs trading. The
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study in [14] used the cointegration approach to protect the
pairs-trading strategy from severe losses. They applied an
OLS method to create a spread and set various conditions
that translated into trading actions. From these models, they
achieved a trading strategy with a minimum level of profits
protected from risk of loss. The results showed about an
11% annualized excess return over the entire period. The
research in [15] compared the distance and cointegration
approaches for each high-frequency and daily dataset to
check whether it is profitable for Norwegian seafood com-
panies. The performance is similar between two approaches.
Reference [16] used a Kalman filter to calculate spread, which
was then used as a high-frequency trading signal, on the
shares constituting the KOSPI 100 Index. He found that the
pairs-trading strategy’s performance was significant on the
KOSPI and was better during daily market conditions at
market opening and closing. Moreover, [7] optimized a pairs-
trading system as a stochastic control problem.They used the
Ornstein-Uhlenbeck process to calculate spread as a trading
signal and tested their model with simulated data; the results
showed that their strategy performs well. In addition, [17]
suggested the Ornstein-Uhlenbeck process to make a market
microstructure noise used as a trading signal in pairs trading
strategy. The performance is better under this method than
in traditional estimators such as ARIMA(1,1) and maximum
likelihood. Reference [18] applied a cointegration method
to Chinese commodity futures from 2006 to 2016 to check
whether pairs trading was suitable in that market. They used
OLS regression to create spreads from the pairs. Furthermore,
[10] applied a cointegration test to assorted pairs of stocks and
a vector error-correction model to create a trading signal.

It is important to set a boundary to optimize the pairs-
trading strategy. This boundary is a criterion for deciding
whether to execute a pairs-trading strategy. If a low boundary
is set, many strategies will be executed, but profits will be
lower; if a high boundary is set, investors will get high returns
when the strategy is executed. However, all this assumes
that mean reversion occurs. If the spread does not return
to the average in the specified trading window, losses will
be incurred. If a low boundary is set, the loss will be small.
However, if the strategy is executed with a high boundary, the
loss will increase. Therefore, the performance of pair trading
depends on how the boundary is set. Reference [14] suggested
taking a minimum-profit condition, which could be efficient
to reduce losses in a pairs-trading system. They set a trading
rule with a diverse open condition: for example, if the spread
is above 0.3, 0.5, 0.75, 1.0, and 1.5 standard deviations. They
used the daily closing prices from January 2, 2001, to August
30, 2002, of two stocks, the Australia New Zealand Bank
and the Adelaide Bank. The results showed that, as the open
condition value decreases, the number of trades and profits
increases. Also [19] suggested optimal preset boundaries
calculated from estimated parameters for the average trade
duration, intertrade interval, and number of trades and used
them to maximize the minimum total profit. They used the
daily closing price data from January 2, 2004, to June 30, 2005,
of seven pairs of stocks on the Australian Stock Exchange.
The results showed that their proposed method was efficient
in making profits using the pairs-trading strategy. Reference

[18] examined whether the pairs-trading strategy could be
applied to the daily return of Chinese commodity futures
from 2006 to 2016 using three methods: classical, closed-
loop, and dynamic stop-loss. The closed-loop method takes
only a stop-profit barrier which executes the strategy and
does not consider the risk if spreads revert to the mean. The
classical method adds stop-loss boundaries to the closed-
loop method. The dynamic stop-loss method uses a variety
of stop-profit and stop-loss barriers to fit the spreads if the
spread is larger than the standard deviation, which is set using
criteria based on the historical average of spreads. The results
showed that these methods obtained an annualized return of
over 15%, especially the closed-loop method, which yielded
the highest profit of 26.94%. In addition, [20] experimented
with fixed optimal threshold selection, conditional volatility,
percentile, spectral analysis, and neural network thresholds in
pairs-trading strategy. Of these, the neural network threshold
has outperformed all other strategies.

Following the success of reinforcement learning, demon-
strated by its successful performance at Atari games [21],
many researchers have attempted to apply this algorithm
to the financial trading system. Reference [22] proposed a
deep Q-trading system using reinforcement learning meth-
ods. They applied Q-learning to a trading system to trade
automatically. They set a delta price using data from the past
120 days, had three discrete action spaces (buy, hold, and
sell), and used long-term profit as a reward. They used daily
data from January 01, 2001, to December 31, 2015, of the
Hang Seng Index and the S&P 500 Index. The experimental
results showed that their proposed method outperformed
buy-and-hold strategies and recurrent reinforcement learn-
ing methods. Reference [23] proposed three steps to apply
reinforcement learning to the financial trading system. First,
they reduced relative replay size to fit financial trading.
Second, they proposed an action-augmentation technique
that provides more feedback from the action to the agent.
Third, they used long sequences as reinforcement data to
conduct recurrent neural network training.The experimental
data comprised tick-by-tick data of 12 forex currency pairs
from January 2012 to December 2017.The results showed that
the action-augmentation technique yielded more profit than
an epsilon-greedy policy. Reference [10] used an N-armed
bandit problem to optimize the pairs-trading strategy. They
took the spread using an error-correction model and found
the parameters using a grid-search algorithm.They compared
their proposed model with a constant parameter model,
which was similar to a traditional pairs-trading strategy.They
used intraday one-minute data of some stocks in the FactSet
database from June 2015 to January 2016.The performance of
their proposedmodel was better than the constant-parameter
model.

We investigate not only the dynamic boundary based
on a spread in each trading window—which can achieve
higher profit than the fixed boundary used in traditional
pairs trading strategy—but also if it is possible to train deep
reinforcement learning methods to follow this mechanism.
To this end, we propose a new method to optimize the
pairs trading strategy using deep reinforcement learning,
especially deep Q-networks, since pairs trading strategy can
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be thought of as a game. After opening a portfolio position,
the profit can be set whether portfolio is closed, stop-loss
position. Therefore, if we set this strategy as a game by
setting boundaries which are optimized in spreads in trading
window, we can achieve more profit than traditional pairs
trading strategies. In particular, we set the pairs-trading sys-
tem to be a kind of game and obtain the optimal boundaries,
trading thresholds, and stop-loss thresholds according to the
calculated spread. The reason for this construction is that if
the portfolio is opened and closed in the trading window in
the calculated spread, it will be unconditionally profitable if
the portfolio is closed. If the portfolio reaches the stop-loss
boundary or does not converge to themean, lossesmay occur.
We therefore set the DQN to learn by positively rewarding it
if it takes a closed position and negatively rewarding it if it
reaches the stop-loss or exit thresholds. We conducted the
following experiments to verify that our proposed method
is optimized compared to the conventional method. First,
we used different spreads calculated using OLS and TLS to
see how the results differ depending on the spread used
for input. Second, depending on the formation window and
trading window, the spread and hedge ratio will be varied.
We therefore set a total of six window sizes for selecting the
optimalwindow sizewhich had the best performance. Finally,
we compared the proposedmethodwith the traditional pairs-
trading strategy using the test data with the optimal window
size. In this experiment, we use the daily adjusted closing
prices from January 2, 1990, to July 31, 2018, of 50 stocks
in the S&P 500 Index. Experimental results show that our
proposed method outperforms the traditional pairs-trading
strategy across all the pairs. In addition, we can confirm that
the performance measure varies according to the spread.

The main contributions of this study are as follows. First,
we propose a novel method to optimize pairs trading strat-
egy using deep reinforcement learning, especially deep Q-
networks with trading and stop-loss boundaries. The exper-
imental results show that our method can be applied in the
pairs trading system and also to various other fields, including
finance and economics, when there is a need to optimize a
rule-based strategy to be more efficient. Second, we propose
an optimized dynamic boundary based on a spread in
each trading window. Our proposed method outperforms
traditional pairs trading strategy which set a fixed boundary.
Last, we find that our method outperforms traditional pairs
trading strategy in all pairs based on constituent stocks in
S&P 500. Since our method selects optimal boundaries based
on spreads, it can be applied to other stock markets such as
KOSPI, Nikkei, and Hang Seng. It should be noted that the
present work is a part of the Master thesis [24].

The rest of this paper is organized as follows. Section 2
explains the technical background. Section 3 describes the
materials and methods. Section 4 shows the results and
provides a discussion of the experiments. Section 5 provides
our conclusions to this study.

2. Technical Background

2.1. 
e Traditional Pairs-Trading Strategy. Pairs trading
is a representative market-neutral trading strategy which

simultaneously longs an undervalued stock and shorts an
overvalued stock.This strategy is a formof statistical arbitrage
trading that assumes the movements of the prices of the
two assets will be similar to previous trends [1]. It follows
the assumption that asset prices will return to the long-term
equilibrium.This strategy started from the idea that arbitrage
opportunities exist when the price gap between two assets
expands to or past a certain level. It is also based on the belief
that historical price movements will not change significantly
in the future.

In Figure 1, the graph drawn in blue is a spread made of
two stocks that are cointegrated, the red lines are the trading
boundaries, and the green lines are the stop-loss boundaries.
When this spread reaches the trading boundaries, the port-
folio is opened and only closed when the spread returns to
the average. However, losses are incurred when prices reach
the stop-loss boundaries after the portfolio is opened and do
not return to the average. Furthermore, after the portfolio is
opened, if the trading signal is not reversed to mean during
the trading window, the portfolio is closed by force; this is
called the exit position of the portfolio.

2.1.1. 
e Cointegration Test. There are many approaches
for pair selection such as the discrete approach [11, 25–27],
the cointegration approach [10, 16, 27], and the stochastic
approach [7, 8]. In this study, we use the cointegration
approach to choose pairs which have long-term equilibrium.
Generally, a linear combination of nonstationary variables is
also a nonstationary relationship. Assume that 𝑥𝑡 and 𝑦𝑡 have
unit roots; as previously mentioned, the linear combination
of these variables follows nonstationary conditions.

𝑥𝑡 ∼ 𝐼 (1) ,
𝑦𝑡 ∼ 𝐼 (1) (1)

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡 (2)

However, it can be a stationary relationship if the nonsta-
tionary variables are cointegrated. In this case, this regression
must be checked to determine whether it is a spurious
regression or cointegrated. Johansen’s method is widely used
to test for cointegration [28]. In this method, the number
of cointegration relations and the parameters of the model
are estimated and tested using maximum likelihood estima-
tion (MLE). Since all variables are regarded as endogenous
variables, there is no need to select dependent variables
and multiple cointegration relationships are identified. In
addition, we use MLE to estimate the cointegration relation
with the vector autoregression model and to determine
the cointegration coefficient based on the likelihood-ratio
test. There is therefore an advantage in performing various
hypothesis tests related to the estimation of cointegration
parameters and the setting of other models when there is
cointegration, and not merely to test for cointegration.

2.2. Spread Calculation

2.2.1. Ordinary Least Squares. In regression analysis, OLS is
widely used to estimate parameters by minimizing the sum
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Figure 1: The traditional pairs-trading strategy.

of the squared errors [29]. Assume that 𝑥𝑖, 𝑦𝑖, and 𝜀𝑖 are
an independent variable, a dependent variable, and an error
term. We can estimate 𝛽 from the following equation by
taking a partial derivative:

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 ∼ 𝑁(0, 𝜎2𝜀 ) (3)

𝑛∑
𝑖=1

(𝑦𝑖 − 𝛽𝑥𝑖)2 (4)

𝛽 = ( 𝑛∑
𝑖=1

𝑥𝑖󸀠𝑥𝑖)
−1 𝑛∑
𝑖=1

𝑥𝑖󸀠𝑦𝑖 (5)

The value obtained from equation (5) is used for the number
of stock orders. The epsilon value is also used as a trading
signal through Z-scoring, in the state composed of the
formation-window size.

2.2.2. Total Least Squares. TLS estimates parameters to min-
imize the sum of the measured distance and the vertical
distance between regression lines [30]. Since the vertical
distance does not change when the X and Y coordinates are
changed, the value of 𝛽 is calculated consistently. In the TLS
method, the observed values of 𝑋𝑖 and 𝑌𝑖 have the following
error terms:

𝑌𝑖 = 𝑦𝑖 + 𝑒𝑖 ∼ 𝑁(0, 𝜎2𝑒 ) (6)

𝑋𝑖 = 𝑥𝑖 + 𝑢𝑖 ∼ 𝑁(0, 𝜎2𝑢) (7)

where 𝑥𝑖 and 𝑦𝑖 are true values and 𝑒𝑖 and 𝑢𝑖 are error
terms following independent identical distributions. It is
assumed that there is linear combination of true values. For
convenience, we represent the error variance ratio in equation
(10):

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 (8)

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 ∼ 𝑁(0, 𝜎2𝑒 ) (9)

𝜏 = var (𝑌𝑖 | 𝑥𝑖)
var (𝑋𝑖 | 𝑥𝑖) = 𝜎2𝑒𝜎2𝑢 (10)

The orthogonal regression estimator is calculated by mini-
mizing the sum of the measured distance and the vertical
distance between regression lines in equation (11):

𝑛∑
𝑖=1

{(𝑌𝑖 − 𝛽0 + 𝛽1𝑥𝑖)2𝜏 + (𝑋𝑖 − 𝑥𝑖)2} (11)

𝛽1 = 𝑠2𝑌𝑌 − 𝜏𝑠2𝑋𝑋 + {(𝑠2𝑌𝑌 − 𝜏𝑠2𝑋𝑋)2 + 4𝜏𝑠2𝑋𝑌}1/2
2𝑠𝑋𝑌

(12)

The value obtained from equation (12) is used in the same
way as that obtained from equation (5) and the epsilon value
is also used as a trading signal through the Z-score in the state
composed of the formation-window size.

2.3. Reinforcement Learning and the Deep Q-Network. The
idea of reinforcement learning is to find an optimal policy
which maximizes the expected sum of discounted future
rewards [31]. These rewards come from selecting the optimal
value of each action, called the optimal Q-value. Rein-
forcement learning basically solves the problem defined by
the Markov decision process (MDP). It consists of a tuple(𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where 𝑆 is a finite set of states, 𝐴 is a finite set
of actions, 𝑃 is a state transition probability matrix, 𝑅 is a
reward function, and 𝛾 is a discount factor. In environment𝜀, agent-observed state 𝑠𝑡 at time 𝑡, action 𝑎𝑡 is selected.
From the results of these sequences, environmental feedback
is provided to the agent in the form of reward 𝑟𝑡 and next
state 𝑠𝑡+1. An action is selected by the action-value function𝑄𝜋(𝑠, 𝑎) that represents the expected sum of discounted
future rewards.

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = E𝜋 [ 𝑇∑
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖 | 𝑠𝑡, 𝑎𝑡, 𝜋] (13)

In this action-value function 𝑄𝜋(𝑠𝑡, 𝑎𝑡), we find an optimal
action-value function 𝑄∗(𝑠𝑡, 𝑎𝑡), following an optimal policy
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which maximizes the expected sum of discounted future
rewards.

𝑄∗ (𝑠𝑡, 𝑎𝑡) = max
𝜋

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) (14)

This optimal action-value function can be formulated as the
Bellman equation.

𝑄∗ (𝑠𝑡, 𝑎𝑡) = max
𝑎𝑡+1

[𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1)] (15)

TheDQNuses a nonlinear function approximator to estimate
the action value function. This network is trained by min-
imizing a sequence of loss functions 𝐿 𝑡(𝜃𝑡), which changes
with each sequence of 𝑡. The weight of 𝜃𝑡 is updated as the
sequence progresses:

𝐿 𝑡 (𝜃𝑡) = E(𝑠,𝑎)∼𝜌(∙) [(𝑦𝑡 − 𝑄 (𝑠𝑡, 𝑎𝑡; 𝜃𝑡))2] (16)

𝑦𝑡 = max
𝑎𝑡+1

[𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1; 𝜃𝑡−1) | 𝑠𝑡, 𝑎𝑡] (17)

3. Materials and Methods

3.1. Data. In this study, 50 stocks from the S&P 500 Index
were selected based on their trading volume and market
capitalization. To carry out the experiment, the data must
cover the same period. Therefore, corresponding stocks were
selected, leaving a total of 25 stocks. Table 1 represents the
dataset of stock names, abbreviations of those stocks, and
their respective sectors. We collected the adjusted daily
closing prices using Thomson Reuters’ database. The period
of the training dataset is from January 2, 1990, to December
31, 2008, comprising 4792 data points; the test dataset covers
the period from January 2, 2009, to July 31, 2018, comprising
2411 data points. From these datasets, a pair of stocks will
be selected during the training dataset period using the
cointegration test.

3.2. Selecting PairsUsing theCointegrationTest. It is necessary
to pair stocks which have long-run statistical relationships
or similar price movements. It is possible to determine the
degree to which two stocks have had similar pricemovements
through the correlation value. Furthermore, the long-term
equilibrium of a pair of stocks is an important characteristic
for the execution of pairs trading. In this study, we used
the cointegration approach to select pairs of stocks. Through
Johansen’s method, we selected 11 pairs of stocks that have
long-run equilibria. Table 2 shows the resulting pairs of stocks
that were identified based on t-statistics and Figure 2 shows
price movements of the cointegrated stocks XOM and CVX.
Using this dataset, we will verify whether our proposed
method has better performance than the traditional pairs-
trading method.

3.3. Trading Signal. After selecting the pairs, it is necessary
to extract the signal for trading. To extract signals, we opt
for the OLS or TLS methods. First, because the stock price
follows a random walk [32], we need to ensure that it follows
the 𝐼(1) process through the augmented Dickey-Fuller test.
Subsequently, the 𝐼(0) process should be created using the

logarithmic difference in stock prices which is then applied to
the OLS and TLS methods. In equation (18), 𝛼1 is a constant
value, 𝛽1 is a hedge ratio (which is used as trading size), 𝜀𝑡
is the error term, and log𝑃𝐴,𝑡 and log𝑃𝐵,𝑡 are the logarithmic
differences in the stock prices 𝐴 and 𝐵 at time 𝑡. We convert
values of 𝜀𝑡 into a Z-score used as a trading signal. For
example, if the trading signal reaches the threshold, we short
one share of the overvalued stock (represented as log𝑃𝐴,𝑡)
and long 𝛽1 shares of the undervalued stock (represented
as log𝑃𝐵,𝑡). The hedge ratio is determined based on the
window size. We set a total of six discrete window sizes to
obtain the optimal window size for the experiment. Trading
windows are constituted using half of the formation-window
size.The spread obtained here is used as a state when applying
reinforcement learning (i.e., as an input of the DQN).

log𝑃𝐵,𝑡 = 𝛼1 + 𝛽1 log𝑃𝐴,𝑡 + 𝜀𝑡 (18)

3.4. Proposed Method: Optimized Pairs-Trading Strategy Using
theDQNMethod. In this study, we optimize the pairs-trading
strategy with a type of game using the DQN. We will attempt
to implement an optimal pairs-trading strategy by taking
optimal trading and stop-loss boundaries that correspond to
the given spread, since performance depends on how trading
and stop-loss boundaries are set in pairs trading [14]. Figure 3
shows themechanism of our proposed pairs-trading strategy.
Throughout the cointegration test, we identify pairs and,
using regression analysis, obtain a hedge ratio used as trading
volume and a spread used as a trading signal and state. In the
case of the DQN, two hidden layers are set up and the number
of neurons is optimized by taking half of input size through
trial and error. Action values consist of the six discrete spaces
in Table 3. Each value of 𝑎𝑡 has values for trading and stop-
loss boundaries.

A pairs-trading system can make a profit if the spread
touches the threshold and returns to the average such that the
portfolio is closed in each tradingwindow.On the other hand,
if the trading boundary is touched and the stop-loss boundary
is reached, the system tries to minimize losses by stopping
trades. If the spread touches the trading boundary but fails to
return to the average, the strategy may end up with a profit
or a loss. In this study, the pairs-trading strategy is therefore
considered as a kind of game; closing a portfolio yields a posi-
tive reward and a portfolio that reaches its stop-loss threshold
yields a negative reward. Although an exited portfolio may
possibly generate a positive profit, there is also a possibility
that losses will occur and it is therefore set to yield a negative
reward.We set the other conditions (such as the maintenance
of the portfolio or not to execute the portfolio) to zero so as
to concentrate on the close, stop-loss, and exit positions.

𝑊𝑡 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V𝐴,𝑡 ×

𝑆𝐴,𝑡󸀠 − 𝑆𝐴,𝑡𝑆𝐴,𝑡 + V𝐵,𝑡 × 𝑆𝐵,𝑡󸀠 − 𝑆𝐵,𝑡𝑆𝐵,𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑡 < 𝑡󸀠 (19)

𝑅𝑡

=
{{{{{{{{{

1000 ×𝑊𝑡 𝑖𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑐𝑙𝑜𝑠𝑒𝑑
−1000 ×𝑊𝑡 𝑖𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑠𝑡𝑜𝑝 − 𝑙𝑜𝑠𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
−500 ×𝑊𝑡 𝑖𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑒𝑥𝑖𝑡𝑒𝑑

(20)
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Table 1: The 25 stocks on the S&P 500 Index used in this study.

No. Ticker Stock Sector
1 AAPL Apple Inc. Technology
2 MSFT Microsoft Corporation Technology
3 BRKa Berkshire Hathaway Inc. Financial Services
4 JPM JPMorgan Chase & Co. Financial Services
5 JNJ Johnson & Johnson Healthcare
6 XOM Exxon Mobil Corporation Energy
7 BAC Bank of America Corporation Financial Services
8 WFC Wells Fargo & Company Financial Services
9 WMT Walmart Inc. Consumer Defensive
10 UNH UnitedHealth Group Incorporated Healthcare
11 CVX Chevron Corporation Energy
12 T AT&T Inc. Communication Services
13 PFE Pfizer Inc. Healthcare
14 ADBE Adobe Systems Incorporated Technology
15 MCD McDonald’s Corporation Consumer Cyclical
16 MDT Medtronic plc Healthcare
17 MMM 3M Company Industrials
18 HON Honeywell International Inc. Industrials
19 GE General Electric Company Industrials
20 ABT Abbott Laboratories Healthcare
21 MO Altria Group, Inc. Consumer Defensive
22 UNP Union Pacific Corporation Industrials
23 TXN Texas Instruments Incorporated Technology
24 UTX United Technologies Corporation Industrials
25 LLY Eli Lilly and Company Healthcare
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Figure 2: Cointegrated stock price movements.

We fix the values of portfolio close, stop-loss, and exit
to +1000, −1000, and −500, respectively. When we update
the Q-values, we must consider the reward as a significant
component of efficiently training the DQN. We therefore set
the reward value to have a range similar to that of the Q-
value. Additionally, we included the corresponding profit or
loss value to reflect that weight after the trading ended. In
equation (19), V𝐴,𝑡 and V𝐵,𝑡 are the stock orders of stocks𝐴 and

𝐵 at time 𝑡, 𝑆𝐴,𝑡 and 𝑆𝐵,𝑡 are the stock prices of𝐴 and 𝐵 at time𝑡, and 𝑆𝐴,𝑡󸀠 and 𝑆𝐵,𝑡󸀠 are the stock prices of𝐴 and 𝐵 at time 𝑡󸀠.
Algorithm 1 shows the process of our proposed method.

Beforewe start our proposedmethod,we set a replaymemory
and batch size and select pairs using the cointegration test.
At each epoch, we initialized total profit to 1.0. In the
training scheme, we set a state which has spreads within
the formation window and select actions which are used as
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50 constituent stocks of the S&P
500 Index

Filter out pairs based on trading volume, liquidity and
the cointegration test

Obtain a reward
EnvironmentConstruct pairs of stocks

Preprocess dataset
using OLS or TLS Select max Q-value

Q_values
Outputs of DQN

Deep Q-Network
Agent

SpreadHedge ratio

Inputs of DQN

Figure 3: Steps for proposed pairs-trading strategy using the DQNmethod.

Initialize replay memory𝐷 and batch size𝑁
Initialize deep Q-network
Select pairs using cointegration test
(1) For each epoch do
(2) Profit = 1.0
(3) For steps t = 1, . . . until end of training data set do
(4) Calculate spreads using OLS or TLS methods
(5) Obtain initial state by converting spread to Z-score based on formation window 𝑠

𝑡

(6) Using epsilon-greedy method, select a random action 𝑎
𝑡

(7) Otherwise select 𝑎
𝑡
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑄(𝑠
𝑡
, 𝑎)

(8) Execute traditional pairs-trading strategy based on the action selected
(9) Obtain reward 𝑟

𝑡
by performing the pairs-trading strategy

(10) Set next state 𝑠
𝑡+1

(11) Store transition (𝑠
𝑡
,𝑎
𝑡
, 𝑟
𝑡
, 𝑠
𝑡+1) in𝐷

(12) Sample minibatch of transition (𝑠
𝑡
,𝑎
𝑡
, 𝑟
𝑡
, 𝑠
𝑡+1) from𝐷.

(13) 𝑦
𝑡
= {{{
𝑟
𝑡

𝑖𝑓 𝑠
𝑡+1 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

𝑟
𝑡
+ 𝛾𝑚𝑎𝑥

𝑎
󸀠𝑄 (𝑠
𝑡+1,𝑎󸀠) 𝑖𝑓 𝑠𝑡+1 = 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

(14) Update Q-network by performing a gradient descent step on {𝑦
𝑡
−𝑄(𝑠

𝑡
,𝑎)}2

(15) End
(16) End

Algorithm 1: Optimized pairs-trading system using DQN.

trading and stop-loss boundaries. Throughout the trading
window, we executed a strategy similar to a traditional pairs-
trading strategy using the action selected. After executing
the strategy, we obtain a reward based on the results of the
portfolio. Finally, for the Q-learning process, we update the
Q-networks by performing a gradient descent step.

3.5. Performance Measure. We check our experiment results
based on profit, maximum drawdown, and the Sharpe ratio.
Profit is commonly used as a performance measure for
trading strategies. It is calculated as the sum of returns
taking into consideration trading cost. Since many trades can
increase total profit, it is necessary to determine the total
profit taking into consideration transaction costs depending
on trading volume. In this study, we set a trading cost of 5 bp;
equation (21) is almost the same as equation (19), but it does
not include absolute value, and 𝐶 is trading cost. Maximum
drawdown represents themaximum cumulative loss from the

highest to the lowest values of the portfolio during a given
investment period where𝑃(𝑡) is the value of the portfolio and𝑇 is the terminal time value. The Sharpe ratio is an indicator
of the degree of excess profits from investing in risky assets
used in evaluating portfolios [33]. In equation (23), 𝑅𝑝 is the
expected sum of portfolio returns and 𝑅𝑓 is the risk-free rate;
we set this value to 0 and 𝜎𝑝 is the standard deviation of
portfolio returns.

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑇∑
𝑡=1

[(V1,𝑡 ∗ 𝑆1,𝑡󸀠 − 𝑆1,𝑡𝑆1,𝑡 + V2,𝑡 ∗ 𝑆2,𝑡󸀠 − 𝑆2,𝑡𝑆2,𝑡 )

− 𝐶 ∗ (V1,𝑡 + V2,𝑡)]
(21)

𝑀𝐷𝐷(𝑇) = max
𝜏∈(0,𝑇)

(max
𝑡∈(0,𝜏)

𝑃 (𝑡) − 𝑝 (𝜏)) (22)
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Table 2: Summary statistics for pairs verified using cointegration
tests.

No. Pairs t-statistic Correlation
1 MSFT/JPM −3.5423∗∗ 0.9165
2 MSFT/TXN −3.448∗∗ 0.8641
3 BRKa/ABT −3.5148∗∗ 0.9493
4 BRKa/UTX −3.3992∗∗ 0.9609
5 JPM/T −3.5882∗∗ 0.8486
6 JPM/HON −5.8209∗ ∗ ∗ 0.9250
7 JPM/GE −3.4494∗∗ 0.9105
8 JNJ/WFC −3.5696∗∗ 0.9693
9 XOM/CVX −4.05∗ ∗ ∗ 0.9879
10 HON/TXN −4.0625∗ ∗ ∗ 0.7469
11 GE/TXN −3.467∗∗ 0.9148
Note: ∗ ∗ ∗ and ∗∗ denote a rejection of the null hypothesis at the 1% and
5% significance levels, respectively.

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝑅𝑝 − 𝑅𝑓𝜎𝑝 (23)

The Materials and Methods section should contain sufficient
details so that all procedures can be repeated. It may be
divided into headed subsections if several methods are
described.

4. Results and Discussion

We use the stock pair XOM and CVX, which rejects the null
hypothesis at the 1% significance level, to verify whether our
proposed model is trained well. The lengths of the window
sizes such as the formation window and trading window
are selected from the performance results with the training
dataset. From these results, we select an optimized window
size and compare our proposed model with traditional pairs
trading, which takes a constant set of actions with the test
dataset.

4.1. Training Results. To find the optimum window size
for the optimized pairs-trading system, we experimented
with six cases. We performed the experiments based on
six window sizes, and the results for each window size are
calculated by averaging the top-5 results for a total of 11 pairs.
From Tables 4 and 5, we can find that the best performance
is obtained when the formation and training windows are 30
and 15, respectively, based on the profit generated by both the
OLS and TLS methods. When we trained our networks, we
set a positive reward for taking more closed positions and
fewer stop-loss and exit positions.We canfind the lowest ratio
of portfolio closed positions based on the number of open
positions, which in the formation and trading windows are
for 30 and 15 days (0.68). Contrary to this result, the highest
ratios of the number of closed positions in the formation and
trading windows are for 120 and 60 days (0.73). However,
the highest profits reported in the formation and trading
windows are for 30 and 15 days. This can be explained when
we check the ratio of the number of stop-loss portfolios.

The formation and trading window sizes are 30 and 15 days
and the ratio of portfolio stop-loss position is 0.13, but the
formation and trading window sizes are 0.20. This result
indicates that it is important to reduce the stop-loss position
while increasing the closed position. In addition, we can see
that the trading signals made with the TLS method are better
than thosemadewith theOLSmethod in all six of the discrete
window sizes. The reason for this is based on the difference
between the hedge ratios of the two methods. In OLS, when
one side is the reference, the relative change of the other side
is estimated. Since the assumption is that there is no error
component on the reference side and there is an error only
on the other side, the hedge ratio varies depending on the side
used as the reference. However, in TLS, hedging ratios are the
same regardless of which side is used as the reference. For this
reason, the experimental results confirm that the TLSmethod
is better able to determine when to execute the pairs-trading
strategy. From these results, we take the optimum window
size when we verify our proposed method in the test dataset.
However, we first need to ensure that the model we proposed
is well-trained.

It is important to check whether our reinforcement
learning algorithm is trained well. Reference [21] suggested
that a steadily increasing average of Q-values is evidence that
the DQN is learning well. Figure 4(a) shows the average Q-
values of HON and TXN as training progressed. We find
that the average Q-values steadily increased, indicating that
our proposed model is properly trained. In addition, we
provide a positive reward when the portfolio closes and a
negative reward when the portfolio reaches the stop-loss
threshold or exits. Figure 4(b) shows the ratio of the number
of portfolio positions as training progressed. The ratio of
closed to open portfolio positions increased and the ratio
of portfolios reaching their stop-loss thresholds to open
portfolio positions decreased. We also find that the ratio of
portfolio exits to open portfolio positions slightly increased.
It is possible that the rewards given for an open portfolio
position compared to those given for a closed portfolio
position are relatively small. The DQN is therefore trained
to prevent portfolios from reaching their stop-loss thresholds
(the more important objective) over exiting them. This result
can also serve as a basis for judging whether the proposed
model is being trained properly.

Tables 6 and 7 represent the performance results of XOM
and CVX in the training dataset. We call our proposed
model pairs-trading DQN (PTDQN) and traditional pairs
trading with constant action values as pairs trading with
action 0 (PTA0) to pairs trading with action 5 (PTA5). From
this result, we can confirm that our proposed method is
more profitable than the constant pairs-trading strategies.
In addition, we can see that the TLS method has a higher
profitability compared to the OLS method. From PTA0 to
PTA5, the trading boundary and the stop-loss boundary
grew larger; the numbers of open and closed portfolios and
portfolios that reached their stop-loss thresholds are reduced.
In other words, there is less opportunity for profit, but the
probability of loss is also reduced. It is important not only to
take a lot of closed positions, but also to take the best action
to open and close the portfolio. For example, if a portfolio is
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Table 3: Setting a discrete action space.

Action
A0 A1 A2 A3 A4 A5

Trading boundary ± 0.5 ± 1.0 ± 1.5 ± 2.0 ± 2.5 ± 3.0
Stop-loss boundary ± 2.5 ± 3.0 ± 3.5 ± 4.0 ± 4.5 ± 5.0

Table 4: Results of applying the DQN method to each window size using OLS.

Formation
window

Trading
window MDD Sharpe

ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of portfolio
exits

30 15 −0.3682 0.1197 2.7344 328 225 44 58
60 30 −0.3779 0.1327 2.5627 210 147 41 21
90 45 −0.4052 0.1409 2.4112 160 114 34 11
120 60 −0.4383 0.1165 2.0287 134 98 28 8
150 75 −0.4395 0.1244 2.0098 110 80 24 6
180 90 −0.5045 0.1180 1.9390 100 73 21 5

Table 5: Results of applying the DQN method to each window size using TLS.

Formation
window

Trading
window

MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

30 15 −0.4422 0.1061 2.9436 320 229 46 44
60 30 −0.5031 0.1143 2.5806 204 144 42 17
90 45 −0.5824 0.1072 2.4588 155 110 36 9
120 60 −0.5768 0.1181 2.4378 136 98 31 6
150 75 −0.5805 0.1245 2.4127 110 79 26 5
180 90 −0.5467 0.1209 2.3570 100 72 23 4

Table 6: Average top-5 performance results for XOM and CVX using OLS within the training period.

Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

PTDQN −0.0842 0.1835 3.4068 469 336 64 96
PTA0 −0.2014 0.1452 2.5934 565 382 132 50
PTA1 −0.1431 0.1773 2.7603 409 279 45 84
PTA2 −0.1234 0.1955 2.6307 325 191 16 118
PTA3 −0.2586 0.0861 1.3850 208 86 2 120
PTA4 −0.2591 0.0803 1.1933 124 39 2 83
PTA5 −0.2448 −0.0638 0.8588 47 11 0 36

Table 7: Average top-5 performance results for XOM and CVX using TLS within the training period.

Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

PTDQN −0.0944 0.2133 4.8760 541 399 104 63
PTA0 −0.1210 0.1522 4.1948 579 413 125 41
PTA1 −0.1015 0.1650 3.8834 430 310 50 70
PTA2 −0.1483 0.1722 3.3425 320 209 13 98
PTA3 −0.1386 0.1771 2.4385 217 101 3 113
PTA4 −0.1749 0.1602 1.6852 119 38 2 79
PTA5 −0.2862 0.0137 1.0362 55 10 0 45
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Figure 4: Verification that our proposedmodel is well-trainedwithHONandTXNusingTLS. (a) Average ofQ-values. (b) Ratio of portfolios.

opened and closed by a boundary corresponding to action 0
within the same spread and if a portfolio is opened and closed
by a boundary corresponding to action 1, the corresponding
profit is different. Assuming that themean reversion is certain
to occur, if we take the maximum boundary condition to
open a portfolio, we will obtain a larger profit than when
we take a smaller boundary condition. We can see that the
PTDQN returns are higher than the strategy with the highest
return among the traditional pairs trading strategies that take
the constant action. Figures 5–8 show the changes in trading
and stop-loss boundaries and the highest profit for constant
action when applying the DQN method during the training
period using OLS and TLS.

Figures 5 and 6 show comparisons of PTDQN and
PTA1 using the TLS method. Figure 5 consists of the spread,
trading, and stop-loss boundaries. We find that trading
and stop-loss boundaries have different values in PTDQN,
showing that it has learned to find the optimal boundary

according to each spread. In contrast to PTDQN, PTA1
in Figure 6 has constant trading and stop-loss boundaries.
Figures 7 and 8 exhibit the same features we see in Figures
5 and 6. The difference between these methods lies in the
spreads: different results can be obtained depending on the
spreads used. Making better spreads can therefore improve
performance.

Figures 9 and 10 represent the profit corresponding to
DQN and constant actions using TLS and OLS. Reference
[34] suggested that an average value over multiple trials
should be presented to show the reproducibility of deep
reinforcement learning because there may be different results
from high variances across trials and random seeds. We
therefore conducted five trials with different random seeds.
The profit graph of DQN represents the average profit of
these trials and the filled region between the maximum and
minimumprofit values. We can see that PTDQNhad a higher
profit than the traditional pairs-trading strategies during
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trading signal
trading boundary
stop-loss boundary

Z-
sc

or
e

8

6

4

2

0

−2

−4

−6

−8

Year
2008200620042002200019981996199419921990

Figure 6: An example of PTA1 based on a training scheme using TLS.

the training period. This means that, even with the same
spread, we can see how profit will change as the boundaries
are changed. In other words, finding the optimal boundary
for the spread is an important factor in optimizing the
profitability of pairs trading.

4.2. Test Results. Tables 8 and 9 show the average perfor-
mance measures of each pair tested by applying the top-5
trained models. We can see that the constant action with

the highest returns for each pair is different, and the TLS
method is higher in all pairs than the OLS method based
on profit, as shown above. We also find that PTDQN has
better performance than traditional pairs-trading strategies.
The pair with the highest profit using the proposedmethod is
HON and TXN (3.2755); it also shows the biggest difference
between the DQN method and the optimal constant action
(0.9377). We find that the proposed method has a higher
Sharpe ratio in all pairs except for MO and UTX when the
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Figure 10: Average top-5 profits generated by PTDQN and traditional pairs-trading strategies using OLS in training periods.

TLS method is used. If we add the Sharpe ratio in addition to
the total profit as an objective function, we can build a more
optimized pairs-trading system. Based on these results, we
can ensure the robustness of our proposed method for our
dataset. The proposed method can be applied to other pairs
of stocks found in other global markets.

In Figure 11, we can see that our proposed method,
PTDQN, outperforms the traditional pairs trading strategies
that have constant actions in test dataset. The crucial aspect
of this method is the selection of optimal boundary in the
spread that makes the highest profit in constant action, which
is like a constant boundary. Therefore, the trend is the same
as traditional pairs trading strategies; however, when the
optimal boundaries which have the highest profit in the
spread are combined, PTDQN is found to have higher profit
than traditional pairs trading strategies. This method can
therefore be applied in various fields when there is a need
to optimize the efficiency of a rule-based strategy [35, 36].
In this study, we consider spread and boundaries to be the
important factors of pairs trading strategy.Therefore, we tried
to optimize pairs trading strategy with various trading and
stop-loss boundaries using deep reinforcement learning and
ourmethod outperforms rule-based strategies. By optimizing
key parameters in rule-based methods, it can improve the
performances.

Pairs trading uses two types of stock which have the same
trends. However, it can be broken due to various factors such
as economic issues and company risk. In this situation, the
spread between two stocks is extremely large. Although this
situation cannot be avoided, we hedge this risk by taking
a dynamic boundary. In this sense, taking the lowest stop-
loss boundary is the best choice since it can be overcome
with the least loss. By taking the dynamic boundary using
the deep reinforcement learning method, we can see that not
only profits are increased, but losses are also minimized as
compared to taking a fixed boundary.

5. Conclusions

We propose a novel approach to optimize pairs trad-
ing strategy using a deep reinforcement learning method,

especially deep Q-networks. There are two key research
questions posed. First, if we set a dynamic boundary based on
a spread in each trading window, can it achieve higher profit
than traditional pairs trading strategy? Second, is it possible
that deep reinforcement learning method can be trained
to follow this mechanism? To investigate these questions,
we collected pairs selected using the cointegration test. We
experimented with how the results varied according to the
spread and the method used. We therefore set different
spreads using OLS and TLSmethods as the input of the DQN
and the trading signal. To conduct this experiment, we set
up a formation window and a trading window. The hedge
ratio, which is an important factor in determining howmuch
stock to take, depends on this value. We therefore applied
the OLS and TLS methods and experimented to find the
optimal window size by varying the formation window and
the trading window.

Tables 6 and 7 show the average performance values of
the formation windows and trading windows in the training
dataset. The results show that all six window sizes were
higher when TLS spreads were used than in OLS spreads.
In addition, we can see that profitability gradually increases
as the estimation windows and trading windows of methods
using TLS and OLS decreased. The reason is that although
the ratio of closed position portfolio is the lowest in what
we set formation and trading windows, the ratio of stop-
loss position portfolio is also the lowest compared with other
formation and trading windows. It means that reducing stop-
loss position portfolio is important as well as increasing
closed position portfolio to make a profit. Using the optimal
window size, we then check whether our DQN is properly
trained. At each epoch, we find that the average Q-value
steadily increased, the ratio of closed portfolios increased,
and the ratio of portfolios that reached their stop-loss
thresholds decreased, confirming that our DQN is trained
well. Based on these results, we find that our proposed model
using the test dataset with a formation window of 30 and
a trading window of 15 had results that were superior to
those of traditional pairs-trading strategies in the out-of-
sample dataset. In Figure 11, we can see that the profit path of
PTDQN is similar PTA0 to PTA5, but better than that from
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Figure 11: Continued.
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Figure 11: Average top-5 profits of PTDQN and PTA0 to PTA5 using TLS with the test dataset.

other methods. This shows that taking dynamic boundaries
based on our method is efficient in optimizing the pairs
trading strategy. During economic issues uncertainties, it can
be a risk to manage the pairs trading strategies including
our proposed method. However, we set a reward function
if spread is suddenly high, and our network is trained to
prevent this situation by taking less stop-loss boundary since
it is trained to maximize the expected sum of future rewards.
Therefore, our proposed method can minimize the risk when
the economic risks appeared compared with traditional pairs
trading strategy with fixed boundary.

From the experimental results, we show that our method
can be applied in the pairs trading system. It can be applied
in various fields, including finance and economics, when
there is a need to optimize the efficiency of a rule-based
strategy. Furthermore, we find that our method outperforms
the traditional pairs trading strategy in all pairs based on
constituent stocks in S&P 500. If we select appropriate pairs
which are cointegrated, we can apply our methods to other
markets such as KOSPI, Nikkei, and Hang Seng. The study
focused on only spreads made by two stocks, which have
long-term equilibrium patterns. Since our method selects
optimal boundaries based on spreads, it can be applied
to other stock markets such as KOSPI, Nikkei, and Hang
Seng.

In future works, we can develop our proposed model as
follows. First, as profit was set as the objective function in this
study, the performance of the model is lower than traditional
pairs trading when based on other performance measures. It
can therefore be possible to create a better-optimized pairs-
trading strategy by including all these other performance
indicators as part of the objective function. Second, we can
use other statistical methods such as the Kalman filter and
error-correction models to use diversified spreads. Finally, it
is possible to create a more-optimized pairs-trading strategy
by continuously changing the discrete set of window sizes
and boundaries. We will solve these difficulties in future
studies.

Data Availability

The data used to support the findings of this study have
been deposited in the figshare repository (DOI: 10.6084/
m9.figshare.7667645).
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Table 8: Average top-5 performance results of the proposed method and the traditional pairs-trading strategy in the out-of-sample dataset
using TLS.

Pairs Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

MSFT/JPM

PTDQN −0.1122 0.2294 3.0446 186 126 38 62
PTA0 −0.3411 0.0742 1.6236 211 136 57 18
PTA1 −0.2907 0.0979 1.8001 162 104 26 32
PTA2 −0.1507 0.1936 2.6303 131 64 7 60
PTA3 −0.4032 0.1542 1.8282 97 39 1 57
PTA4 −0.4340 0.0400 1.0480 55 13 0 42
PTA5 −0.1836 0.3098 1.5524 30 7 0 23

MSFT/TXN

PTDQN −0.3420 0.1001 1.5423 204 132 47 65
PTA0 −1.2094 −0.0571 0.0013 244 152 76 16
PTA1 −0.9225 −0.0177 0.6131 178 110 25 43
PTA2 −0.5574 0.0351 1.0887 134 68 8 58
PTA3 −0.5375 −0.0128 0.8326 97 34 1 62
PTA4 −0.4485 0.0260 1.0118 66 15 1 50
PTA5 −0.1048 0.1233 1.1502 32 5 0 27

BRKa/ABT

PTDQN −0.0740 0.3159 2.3655 162 111 30 43
PTA0 −0.1392 0.1554 1.7157 182 128 35 18
PTA1 −0.1048 0.2464 2.1508 138 96 15 27
PTA2 −0.1133 0.2538 1.9578 108 64 3 40
PTA3 −0.1040 0.2480 1.7576 76 35 1 40
PTA4 −0.0829 0.2087 1.3171 44 13 0 31
PTA5 −0.0704 0.4366 1.4013 19 7 0 12

BRKa/UTX

PTDQN −0.5401 0.1174 1.5744 167 105 35 58
PTA0 −1.2143 −0.0199 0.5918 192 117 55 19
PTA1 −0.9340 0.0346 1.0701 147 89 12 45
PTA2 −0.9099 −0.0009 0.8435 122 60 5 57
PTA3 −0.5673 0.0473 1.1520 89 32 1 56
PTA4 −0.3641 0.0694 1.1628 53 9 0 44
PTA5 −0.2309 0.0408 1.0405 18 3 0 15

JPM/T

PTDQN −0.1384 0.1283 1.4653 175 113 42 53
PTA0 −0.3630 0.0071 0.8968 205 129 60 15
PTA1 −0.2801 0.0460 1.1595 144 94 17 32
PTA2 −0.3750 0.0192 0.9987 119 62 5 51
PTA3 −0.5241 −0.0717 0.6609 92 35 0 56
PTA4 −0.3607 −0.0550 0.8411 56 18 0 38
PTA5 −0.2235 0.0061 0.9851 22 6 0 16

JPM/HON

PTDQN −0.1872 0.1523 2.2510 223 155 39 62
PTA0 −0.6769 0.0190 1.0077 274 180 70 23
PTA1 −0.4644 0.0622 1.6331 201 139 24 38
PTA2 −0.4537 0.0840 1.7165 149 87 2 60
PTA3 −0.2410 0.1414 1.7648 107 43 0 64
PTA4 −0.3313 0.0879 1.3150 62 16 0 46
PTA5 −0.1693 0.1803 1.2777 28 7 0 21
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Table 8: Continued.

Pairs Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

JPM/GE

PTDQN −0.1098 0.2123 2.8250 193 124 46 65
PTA0 −0.3897 0.0507 1.5137 224 142 65 17
PTA1 −0.3404 0.0640 1.6912 163 109 18 36
PTA2 −0.1628 0.1284 1.9032 132 73 6 53
PTA3 −0.2980 0.1142 1.7555 106 38 1 67
PTA4 −0.2817 0.0790 1.2884 55 13 0 42
PTA5 −0.0612 0.4776 1.7489 21 6 0 15

JNJ/WFC

PTDQN −0.1576 0.2437 2.3741 143 100 28 38
PTA0 −0.2872 0.0892 1.4932 164 115 37 12
PTA1 −0.2219 0.1948 2.1147 127 90 15 21
PTA2 −0.3188 0.1322 1.6362 99 55 5 38
PTA3 −0.2324 0.1084 1.3141 68 27 0 41
PTA4 −0.1532 0.1043 1.1228 40 14 0 26
PTA5 −0.0970 0.1203 1.0734 16 6 0 10

XOM/CVX

PTDQN −0.4265 0.0605 1.1924 218 135 45 77
PTA0 −0.6189 0.0236 0.8812 256 161 67 28
PTA1 −0.5999 0.0154 0.8809 197 118 25 54
PTA2 −0.6034 −0.0073 0.7792 153 70 8 75
PTA3 −0.5628 −0.0224 0.7734 114 38 2 74
PTA4 −0.5311 −0.0200 0.8643 70 18 1 51
PTA5 −0.2583 0.0060 0.9692 31 4 0 27

HON/TXN

PTDQN −0.0874 0.2679 3.2755 233 164 49 63
PTA0 −0.5108 0.1080 1.9219 276 186 66 23
PTA1 −0.5841 0.1625 2.3378 207 140 28 38
PTA2 −0.1926 0.2086 2.3096 158 92 4 62
PTA3 −0.1611 0.1557 1.7100 114 49 2 63
PTA4 −0.1254 0.2289 1.6374 69 23 0 46
PTA5 −0.1578 0.1924 1.1925 28 9 0 19

GE/TXN

PTDQN −0.1133 0.1871 2.1398 172 117 30 48
PTA0 −0.3348 0.0967 1.6398 201 136 44 21
PTA1 −0.1656 0.1070 1.6355 153 101 19 33
PTA2 −0.2043 0.1388 1.7568 117 68 8 41
PTA3 −0.2335 0.1591 1.5555 89 39 2 48
PTA4 −0.3847 −0.1355 0.6570 45 7 0 38
PTA5 −0.3489 −0.2730 0.7218 21 2 0 19

MO/UTX

PTDQN −0.5264 0.0840 1.2940 150 88 35 58
PTA0 −1.0950 −0.0272 0.6231 178 102 56 19
PTA1 −0.7205 0.0286 1.0362 125 73 12 39
PTA2 −0.8361 −0.0040 0.8658 105 51 3 50
PTA3 −0.4311 0.0052 0.9323 79 24 0 54
PTA4 −0.3916 0.1141 1.2129 48 12 0 36
PTA5 −0.1311 0.2948 1.1276 14 3 0 11
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Table 9: Average top-5 performance results of the proposed method and the traditional pairs-trading strategy in the out-of-sample dataset
using OLS.

Pairs Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

MSFT/JPM

PTDQN −0.2096 0.1228 1.9255 215 137 54 62
PTA0 −0.3618 0.0492 1.3365 225 141 61 23
PTA1 −0.5036 0.0188 1.0185 168 102 28 38
PTA2 −0.4045 0.0611 1.3591 124 59 8 57
PTA3 −0.5055 −0.0094 0.8636 97 33 3 61
PTA4 −0.4195 −0.0009 0.9459 58 12 1 45
PTA5 −0.2018 0.1236 1.1593 29 6 0 23

MSFT/TXN

PTDQN −0.2878 0.0698 1.3466 244 153 65 68
PTA0 −0.5271 0.0070 0.8489 252 156 72 24
PTA1 −0.4721 0.0255 1.0286 187 117 26 44
PTA2 −0.3816 0.0215 0.9912 145 71 10 64
PTA3 −0.6553 −0.1015 0.5053 104 30 2 72
PTA4 −0.2719 0.0422 1.0532 63 16 1 46
PTA5 −0.1850 0.0068 0.9785 34 7 0 27

BRKa/ABT

PTDQN −0.1282 0.1644 1.5076 180 109 48 57
PTA0 −0.5073 −0.0265 0.7070 183 112 48 22
PTA1 −0.2649 0.0453 1.0786 139 80 13 46
PTA2 −0.2246 0.1056 1.2942 121 60 4 56
PTA3 −0.1686 0.1241 1.2718 91 38 1 52
PTA4 −0.1483 0.0176 0.9778 49 12 0 37
PTA5 −0.1602 0.0004 0.9830 16 2 0 14

BRKa/UTX

PTDQN −0.5231 0.0816 1.2976 215 132 57 69
PTA0 −1.1928 −0.0647 0.3332 216 133 57 25
PTA1 −0.8697 −0.0157 0.7445 167 100 15 51
PTA2 −0.7815 −0.0071 0.8391 135 70 5 60
PTA3 −0.3573 0.0315 1.0292 94 36 0 58
PTA4 −0.2096 0.0684 1.0857 52 11 0 41
PTA5 −0.1317 −0.1174 0.9312 16 2 0 14

JPM/T

PTDQN −0.1338 0.1391 1.4547 205 127 60 50
PTA0 −0.3588 0.0069 0.9054 208 130 61 16
PTA1 −0.2535 0.0405 1.0902 151 96 19 35
PTA2 −0.1872 0.0542 1.1198 119 66 5 48
PTA3 −0.2574 0.0336 1.0502 94 39 0 55
PTA4 −0.2212 0.0345 1.0312 57 20 0 37
PTA5 −0.2348 −0.1922 0.8299 20 5 0 15

JPM/HON

PTDQN −0.3869 0.1071 1.5175 250 162 57 68
PTA0 −0.7141 0.0181 0.9444 256 166 59 30
PTA1 −0.5065 0.0702 1.3071 198 127 22 49
PTA2 −0.4649 0.1071 1.4260 152 84 3 65
PTA3 −0.4871 0.0763 1.2098 102 44 0 58
PTA4 −0.3503 −0.0694 0.8178 50 13 0 37
PTA5 −0.2980 −0.1721 0.8040 23 6 0 17
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Table 9: Continued.

Pairs Model MDD Sharpe ratio Profit # of open
portfolios

# of closed
portfolios

# of stop-loss
portfolios

# of exited
portfolios

JPM/GE

PTDQN −0.1195 0.1443 1.7682 226 133 64 69
PTA0 −0.4379 0.0036 0.8549 232 137 66 29
PTA1 −0.1523 0.0987 1.4814 165 98 16 51
PTA2 −0.1738 0.1264 1.5661 134 62 5 67
PTA3 −0.2680 0.0729 1.2026 93 29 0 64
PTA4 −0.2104 0.1298 1.3242 51 12 0 39
PTA5 −0.1461 −0.0423 0.9586 18 3 0 15

JNJ/WFC

PTDQN −0.1890 0.1266 1.7194 202 130 47 56
PTA0 −0.8705 −0.0326 0.4635 207 131 53 22
PTA1 −0.6189 −0.0134 0.7318 150 91 19 39
PTA2 −0.4763 0.0309 1.0563 124 57 4 62
PTA3 −0.2318 0.1447 1.6072 97 33 2 62
PTA4 −0.2415 0.0549 1.0632 50 13 0 37
PTA5 −0.0880 0.2468 1.1886 20 4 0 16

XOM/CVX

PTDQN −0.3316 0.0265 1.1517 141 81 23 43
PTA0 −0.7629 −0.0547 0.4186 240 149 61 30
PTA1 −0.5648 0.0132 0.8754 193 114 23 56
PTA2 −0.6977 −0.0387 0.6655 154 70 7 77
PTA3 −0.5235 0.0277 0.9865 117 38 1 78
PTA4 −0.4781 −0.0577 0.8117 63 12 1 50
PTA5 −0.3787 −0.1492 0.8090 29 3 0 26

HON/TXN

PTDQN −0.1339 0.1534 1.8852 270 175 64 69
PTA0 −0.4135 0.0212 0.9455 276 177 70 28
PTA1 −0.2758 0.0666 1.3216 207 124 27 55
PTA2 −0.2614 0.1054 1.5031 159 84 5 69
PTA3 −0.1759 0.1413 1.5617 117 45 2 70
PTA4 −0.0834 0.2650 1.7044 66 23 0 43
PTA5 −0.0664 0.4606 1.6830 30 13 0 17

GE/TXN

PTDQN −0.1676 0.1263 1.6411 206 140 43 62
PTA0 −0.6133 0.0178 0.9742 211 144 44 23
PTA1 −0.3085 0.0586 1.2743 166 109 19 38
PTA2 −0.2402 0.0585 1.2216 128 68 5 55
PTA3 −0.3190 −0.0013 0.9193 91 31 2 58
PTA4 −0.2493 −0.0285 0.9117 49 8 0 41
PTA5 −0.0862 0.1417 1.0936 23 4 0 19

MO/UTX

PTDQN −0.3181 0.0524 1.1402 188 117 49 59
PTA0 −0.4688 0.0041 0.8667 195 121 52 21
PTA1 −0.6166 −0.0230 0.7470 144 84 13 46
PTA2 −0.5034 −0.0076 0.8666 115 51 4 59
PTA3 −0.2833 0.0457 1.0873 88 32 0 56
PTA4 −0.2901 0.0356 1.0280 44 12 0 32
PTA5 −0.1500 0.0992 1.0297 13 2 0 11
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