In this paper, sufficient conditions for the global asymptotic stability of a broad family of periodic impulsive scalar delay differential equations are obtained. These conditions are applied to a periodic hematopoiesis model with multiple time-dependent delays and linear impulses, in order to establish criteria for the global asymptotic stability of a positive periodic solution. The present results are discussed within the context of recent literature. In conclusion, when compared with previous works, not only sharper stability criteria are obtained here, even for models without impulses, but also the usual constraints imposed on the linear impulses are relaxed.