Content uploaded by Abotaleb Sheikhali
Author content
All content in this area was uploaded by Abotaleb Sheikhali on Jan 06, 2021
Content may be subject to copyright.
Content uploaded by Abotaleb Sheikhali
Author content
All content in this area was uploaded by Abotaleb Sheikhali on Jan 11, 2020
Content may be subject to copyright.
Global Analysis and Discrete Mathematics
Volume 5, Issue 1, pp. 51–65
ISSN: 2476-5341
Regularity of Bounded Tri-Linear Maps and the Fourth
Adjoint of a Tri-Derivation
Abotaleb Sheikhali∗
·Ali Ebadian ·
Kazem Haghnejad Azar
Received: 24 February 2020 / Accepted: 3 June 2020
Abstract In this Article, we give a simple criterion for the regularity of a
tri-linear mapping. We provide if f:X×Y×Z−→ Wis a bounded tri-linear
mapping and h:W−→ Sis a bounded linear mapping, then fis regular if
and only if hof is regular. We also shall give some necessary and sufficient
conditions such that the fourth adjoint D∗∗∗∗ of a tri-derivation Dis again
tri-derivation.
Keywords Fourth adjoint ·Regular ·Tri-derivation ·Tri-linear
Mathematics Subject Classification (2010) 46H25 ·46H20 ·47B47 ·
16W25
1 Introduction and preliminaries
Richard Arens showed in [3] that a bounded bilinear map m:X×Y−→ Z
on normed spaces, has two natural different extensions m∗∗∗,mr∗∗∗rfrom
X∗∗×Y∗∗ into Z∗∗ . When these extensions are equal, mis called Arens regular.
A Banach algebra Ais said to be Arens regular, if its product π(a, b) = ab
∗Corresponding author
A. Sheikhali
Department of Mathematics, Payame Noor University (PNU), Tehran, Iran.
E-mail: Abotaleb.sheikhali.20@gmail.com
A. Ebadian
Faculty of Science, Department of Mathematics, Urmia University, Urmia, Iran.
E-mail: Ebadian.ali@gmail.com
K. Haghnejad Azar
Department of Mathematics and Applications, University of Mohaghegh Ardabili, Ardabil,
Iran.
E-mail: Haghnejad@aut.ac.ir
c
2020 Damghan University. All rights reserved. http://gadm.du.ac.ir/
52 A. Sheikhali et al.
considered as a bilinear mapping π:A×A−→ Ais Arens regular. The first
and second Arens products of A∗∗ by symbols and ♢respectively defined
by
a∗∗b∗∗ =π∗∗∗ (a∗∗ , b∗∗ ), a∗∗ ♢b∗∗ =πr∗∗∗r(a∗∗ , b∗∗ ).
Some characterizations for the Arens regularity of bounded bilinear map m
and Banach algebra Aare proved in [1], [2], [3], [4], [5], [9], [11], [14] and [15].
Suppose X, Y , Z, W and Sare normed spaces and f:X×Y×Z−→ Wis a
bounded tri-linear mapping. In this paper we first define regularity of fmap
and showing that fis regular if and only if f∗∗∗r∗(X∗∗, W ∗, Z )⊆Y∗and
f∗∗∗∗∗(W∗, X ∗∗, Y ∗∗ )⊆Z∗. Also we show that for a bounded tri-linear map
f:X×Y×Z−→ Wand a bounded linear operator h:W−→ S,fis regular
if and only if hof is regular.
The natural extensions of fare as follows:
1. f∗:W∗×X×Y−→ Z∗, given by ⟨f∗(w∗, x, y), z⟩=⟨w∗, f (x, y, z)⟩where
x∈X, y ∈Y, z ∈Z, w∗∈W∗(f∗is said the adjoint of fand is a
bounded tri-linear map).
2. f∗∗ = (f∗)∗:Z∗∗ ×W∗×X−→ Y∗, given by ⟨f∗∗(z∗∗, w∗, x), y⟩=
⟨z∗∗, f ∗(w∗, x, y) where x∈X, y ∈Y, z∗∗ ∈Z∗∗, w∗∈W∗.
3. f∗∗∗ = (f∗∗)∗:Y∗∗ ×Z∗∗ ×W∗−→ X∗, given by ⟨f∗∗∗(y∗∗ , z ∗∗, w∗), x⟩=
⟨y∗∗, f ∗∗(z∗∗ , w∗, x)⟩where x∈X, y∗∗ ∈Y∗∗, z ∗∗ ∈Z∗∗, w∗∈W∗.
4. f∗∗∗∗ = (f∗∗∗)∗:X∗∗ ×Y∗∗ ×Z∗∗ −→ W∗∗ , given by ⟨f∗∗∗∗(x∗∗ , y ∗∗, z∗∗ )
, w∗⟩=⟨x∗∗ , f ∗∗∗(y∗∗, z ∗∗, w∗)⟩where x∗∗ ∈X∗∗, y∗∗ ∈Y∗∗, z∗∗ ∈
Z∗∗, w∗∈W∗.
Now let fr:Z×Y×X−→ Wbe the flip of fdefined by fr(z, y, x) = f(x, y , z),
for every x∈X, y ∈Yand z∈Z. Then fris a bounded tri-linear map and it
may extends as above to fr∗∗∗∗ :Z∗∗ ×Y∗∗ ×X∗∗ −→ W∗∗. When f∗∗∗∗ and
fr∗∗∗∗rare equal, then fis said to be regular. For bounded tri-linear maps, we
have naturally six different Aron-Berner extensions to the bidual spaces based
on six different elements in S3 and compeletly regularity should be defined
accordingly to the equality of all these six Aron-Berner extensions. See [12].
Suppose Ais a Banach algebra and π1:A×X−→ Xis a bounded bi-
linear map. The pair (π1, X) is said to be a left Banach A−module when
π1(π1(a, b), x) = π1(a, π1(b, x)), for each a, b ∈Aand x∈X. A right Banach
A−module may is defined similarly. Let π2:X×A−→ Xbe a bounded
bilinear map. The pair (X, π2) is said to be a right Banach A−module if
π2(x, π2(a, b)) = π2(π2(x, a), b). A triple (π1, X, π2) is said to be a Banach
A−module if (X, π1) and (X, π2) are left and right Banach A−modules, re-
spectively, and π1(a, π2(x, b)) = π2(π1(a, x), b). Let (π1, X, π2) be a Banach
A−module. Then (πr∗r
2, X∗, π∗
1) is the dual Banach A−module of (π1, X, π2).
A bounded linear mapping D1:A−→ X∗is said to be a derivation if for
each a, b ∈A
D1(π(a, b)) = π∗
1(D1(a), b) + πr∗r
2(a, D1(b)).
Regularity and the Fourth Adjoint 53
A bounded bilinear map D2:A×A−→ X(or X∗) is called a bi-derivation, if
for each a, b, c and d∈A
D2(π(a, b), c) = π1(a, D2(b, c)) + π2(D2(a, c), b),
D2(a, π(b, c)) = π1(b, D2(a, c)) + π2(D2(a, b), c).
Let D1:A−→ A∗be a derivation. Dales, Rodriguez and Velasco, in [7] showed
that D∗∗
1: (A∗∗,)−→ A∗∗∗ is a derivation if and only if πr∗∗∗∗(D∗∗
1(A∗∗), A∗∗ )
⊆A∗. In [13], S. Mohamadzadeh and H. Vishki extends this and showed
that second adjont D∗∗
1: (A∗∗,)−→ A∗∗∗ is a derivation if and only if
π∗∗∗∗
2(D∗∗
1(A∗∗), X ∗∗)⊆A∗and which D∗∗
1: (A∗∗,♢)−→ A∗∗∗ is a derivation
if and only if πr∗∗∗∗
1(D∗∗
1(A∗∗), X ∗∗)⊆A∗.
A. Erfanian Attar et al, provide condition such that the third adjoint D∗∗∗
2
of a bi-derivation D2:A×A−→ X(or X∗) is again a bi-derivation, see [8]. For
a Banach A−module (π1, X, π2), the fourth adjoint D∗∗∗∗ of a tri-derivation
D:A×A×A−→ X∗is trivially a tri-linear extension of D. A problem
which is of interest is under what conditions we need that D∗∗∗∗ is again a
tri-derivation. In section 4 we will extend above mentioned result. A bounded
trilinear mapping f:X×Y×Z−→ Wis said to factor if it is surjective, that
is f(X×Y×Z) = W.
Throughout the article, we usually identify a normed space with its canon-
ical image in its second dual.
2 Regularity of bounded tri-linear maps
Theorem 1 Let f:X×Y×Z−→ Wbe a bounded tri-linear map. Then f
is regular if and only if
w∗−lim
αw∗−lim
βw∗−lim
γf(xα, yβ, zγ) = w∗−lim
γw∗−lim
βw∗−lim
αf(xα, yβ, zγ),
where {xα},{yβ}and {zγ}are nets in X, Y and Zwhich converge to x∗∗ ∈
X∗∗, y∗∗ ∈Y∗∗ and z∗∗ ∈Z∗∗ in the w∗−topologies, respectively.
Proof. For every w∗∈W∗we have
⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), w∗⟩=⟨x∗∗ , f ∗∗∗(y∗∗ , z∗∗, w∗)⟩
= lim
α⟨f∗∗∗(y∗∗ , z ∗∗, w∗), xα⟩= lim
α⟨y∗∗, f ∗∗(z∗∗ , w∗, xα)⟩
= lim
αlim
β⟨f∗∗(z∗∗ , w∗, xα), yβ⟩= lim
αlim
β⟨z∗∗, f ∗(w∗, xα, yβ)⟩
= lim
αlim
βlim
γ⟨f∗(w∗, xα, yβ), zγ⟩= lim
αlim
βlim
γ⟨f(xα, yβ, zγ), w∗⟩.
Therefore f∗∗∗∗(x∗∗ , y∗∗, z∗∗ ) = w∗−lim
αw∗−lim
βw∗−lim
γf(xα, yβ, zγ). In the
other hands fr∗∗∗∗r(x∗∗, y∗∗, z∗∗) = w∗−lim
γw∗−lim
βw∗−lim
αf(xα, yβ, zγ),
and proof follows.
54 A. Sheikhali et al.
In the following theorem, we provide a criterion concerning to the regularity
of a bounded tri-linear map.
Theorem 2 For a bounded tri-linear map f:X×Y×Z−→ Wthe following
statements are equivalent:
1. fis regular.
2. f∗∗∗∗∗(W∗∗∗ , X ∗∗, Y ∗∗ ) = fr∗∗∗∗∗∗∗r(W∗∗∗ , X ∗∗, Y ∗∗).
3. f∗∗∗r∗(X∗∗, W ∗, Z)⊆Y∗and f∗∗∗∗∗ (W∗, X ∗∗, Y ∗∗ )⊆Z∗.
Proof. (1) ⇒(2), if fis regular, then f∗∗∗∗ =fr∗∗∗∗r. For every x∗∗ ∈
X∗∗, y∗∗ ∈Y∗∗, z∗∗ ∈Z∗∗ and w∗∗∗ ∈W∗∗∗ we have
⟨f∗∗∗∗∗(w∗∗∗ , x∗∗ , y∗∗), z∗∗⟩=⟨w∗∗∗, f ∗∗∗∗(x∗∗ , y ∗∗, z∗∗ )⟩
=⟨w∗∗∗, f r∗∗∗∗r(x∗∗, y∗∗, z∗∗ )⟩=⟨fr∗∗∗∗∗∗∗r(w∗∗∗ , x∗∗ , y ∗∗), z∗∗ ⟩.
as claimed.
(2) ⇒(1), let f∗∗∗∗∗ =fr∗∗∗∗∗∗∗r, then for every w∗∈W∗,
⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), w∗⟩=⟨fr∗∗∗∗∗∗∗r(w∗, x∗∗ , y∗∗), z∗∗⟩
=⟨f∗∗∗∗∗(w∗, x∗∗ , y∗∗), z∗∗⟩=⟨f∗∗∗∗(x∗∗ , y ∗∗, z∗∗ ), w∗⟩.
It follows that fis regular.
(1) ⇒(3), assume that fis regular and x∗∗ ∈X∗∗, y ∗∗ ∈Y∗∗, z ∈Z, w∗∈
W∗. Then we have
⟨f∗∗∗r∗(x∗∗, w∗, z), y∗∗ ⟩=⟨f∗∗∗∗ (x∗∗ , y∗∗, z), w∗⟩
=⟨fr∗∗∗∗r(x∗∗, y∗∗, z), w∗⟩=⟨fr∗∗(x∗∗ , w∗, z), y∗∗ ⟩.
Therefore f∗∗∗r∗(x∗∗, w∗, z) = fr∗∗(x∗∗ , w ∗, z)∈Y∗. So f∗∗∗r∗(X∗∗, W ∗, Z )⊆
Y∗. A similar argument shows that f∗∗∗∗∗(w∗, x∗∗, y∗∗) = fr∗∗∗r(w∗, x∗∗ , y∗∗ )∈
Z∗. Thus f∗∗∗∗∗(W∗, X ∗∗, Y ∗∗ )⊆Z∗, as claimed.
(3) ⇒(1), let {xα},{yβ}and {zγ}are nets in X, Y and Zwhich converge
to x∗∗, y∗∗ and z∗∗ in the w∗−topologies, respectively. For every w∗∈W∗we
have
⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), w∗⟩= lim
γlim
βlim
α⟨f(xα, yβ, zγ), w∗⟩
= lim
γlim
βlim
α⟨f∗∗∗(yβ, zγ, w∗), xα⟩= lim
γlim
β⟨x∗∗, f ∗∗∗(yβ, zγ, w∗)
= lim
γlim
β⟨x∗∗, f ∗∗∗r(w∗, zγ, yβ)⟩= lim
γlim
β⟨f∗∗∗r∗(x∗∗, w∗, zγ), yβ⟩
= lim
γ⟨f∗∗∗r∗(x∗∗, w∗, zγ), y∗∗⟩= lim
γ⟨x∗∗, f ∗∗∗r(w∗, zγ, y∗∗ )⟩
= lim
γ⟨x∗∗, f ∗∗∗(y∗∗ , zγ, w∗)⟩= lim
γ⟨f∗∗∗∗(x∗∗ , y∗∗, zγ), w∗⟩
= lim
γ⟨f∗∗∗∗∗(w∗, x∗∗ , y∗∗), zγ⟩=f∗∗∗∗∗ (w∗, x∗∗ , y∗∗ ), z ∗∗⟩
=⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), w∗⟩.
It follows that fis regular and this completes the proof.
Regularity and the Fourth Adjoint 55
Corollary 1 For a bounded tri-linear map f:X×Y×Z−→ Wthe following
statements are equivalent:
1. fis regular.
2. fr∗∗∗∗∗r=f∗∗∗∗∗∗∗.
3. fr∗∗∗r∗(Z∗∗, W ∗, X)⊆Y∗and f∗∗∗∗∗(W∗, Z ∗∗, Y ∗∗ )⊆X∗.
Proof. The mapping fis regular if and only if fris regular. Therefore by
Theorem 2, the desired result is obtained.
Corollary 2 For a bounded tri-linear map f:X×Y×Z−→ W, if from
X, Y or Zat least two reflexive then fis regular.
Proof. Without having to enter the whole argument, let Yand Zare reflexive.
Since Yis reflexive, Y∗=Y∗∗∗. Therefore
f∗∗∗r∗(X∗∗, W ∗, Z∗∗ )⊆Y∗∗∗ =Y∗(2 −1)
In the other hands, since Zis the reflexive space, thus
f∗∗∗∗∗(W∗∗∗ , X ∗∗, Y ∗∗ )⊆Z∗∗∗ =Z∗(2 −2)
Now Using (2-1), (2-2) and Theorem 2, the result holds.
Corollary 3 Let bounded tri-linear map f:X×Y×Z−→ Wbe regular.
Then
1. If f∗∗∗r∗(X∗∗ , W ∗, Z)factors, then Yis reflexive space.
2. If f∗∗∗∗∗ (W∗, X ∗∗, Y ∗∗ )factors, then Zis reflexive space.
3. If f∗∗∗∗r∗(W∗, Z, Y )factors, then Xis reflexive space.
Proof. (1) Let fbe regular. It follows that f∗∗∗r∗(X∗∗, W ∗, Z )⊆Y∗. In the
other hands, f∗∗∗r∗(X∗∗, W ∗, Z) is factor. So for each y∗∗∗ ∈Y∗∗∗ there exist
x∗∗ ∈X∗∗, w∗∈W∗and z∈Zsuch that f∗∗∗r∗(x∗∗, w∗, z) = y∗∗∗ . Therefore
Y∗∗∗ ⊆Y∗.
(2) The proof similar to (1).
(3) Enough show that f∗∗∗∗r∗(W∗, Z, Y )⊆X∗whenever fis regular. For
every x∗∗ ∈X∗∗, y ∈Y, z ∈Zand w∗∈W∗we have
⟨f∗∗∗∗r∗(w∗, z, y), x∗∗⟩=⟨w∗, f ∗∗∗∗(x∗∗, y , z)⟩
=⟨fr∗∗∗∗r(x∗∗, y, z), w∗⟩=⟨fr∗(w∗, z , y), x∗∗⟩.
Therefore f∗∗∗∗r∗(w∗, z, y) = fr∗(w∗, z, y)∈X∗. The rest of proof has similar
argument such as (1).
Corollary 4 If IX,IYand IZare weakly compact identity mapping, then all
of them and all of their adjoints are regular.
56 A. Sheikhali et al.
Example 1 1. Let Gbe a compact group. Let 1 < p, q < ∞and 1
p+1
q= 1 + 1
r.
Then by [10, Sections 2.4 and 2.5], we conclude that L1(G)⋆Lp(G)⊂Lp(G)
and Lp(G)⋆Lq(G)⊂Lr(G) where (g ⋆h)(x) = Gg(y)h(y−1x)dy for x∈G.
Since the Banach spaces Lp(G) and Lq(G) are reflexive, thus by corollary
2 we conclude that the bounded tri-linear mapping
f:L1(G)×Lp(G)×Lq(G)−→ Lr(G)
defined by f(k, g, h) = (k ⋆ g )⋆ h, is regular for every k∈L1(G), g ∈Lp(G)
and h∈Lq(G).
2. Let Gbe a locally compact group. We know from [16] that L1(G) is regular
if and only if it is reflexive or Gis finite. It follows that for every finite
locally compact group G, by corollary 2, the bounded tri-linear mapping
f:L1(G)×L1(G)×L1(G)−→ L1(G) defined by f(k, g, h) = k ⋆ g ⋆ h, is
regular for every k, g and h∈L1(G).
3. C∗−algebras are standard examples of Banach algebras that are Arens
regular, see[6]. We know that a C∗−algebra is reflexive if and only if it
is of finite dimension. Since if Ais a finite dimension C∗-algebra, then by
corollary 2, we conclude that the bounded tri-linear mapping f:A×A×
A−→ Ais regular.
4. Let Gbe a locally compact group and let M(G) be measure algebra of G,
see [10, Section 2.5]. Let the convolution for µ1, µ2∈M(G) defined by
ψd(µ1∗µ2) = ψ(xy)dµ1(x)dµ2(y),(ψ∈C0(G)).
We have
ψd(µ1∗(µ2∗µ3)) = ψ(xyz)dµ1(x)dµ2(y)dµ3(z)
=ψd((µ1∗µ2)∗µ3)
for µ1, µ2and µ3∈M(G). Therefore convolution is associative. Now we
define the bounded tri-linear mapping
f:M(G)×M(G)×M(G)−→ M(G)
by f(µ1, µ2, µ3) = ψd(µ1∗µ2∗µ3). If Gis finite, then fis regular.
3 Some results for regularity
Dales, Rodriguez-Palacios and Velasco in [7, Theorem 4.1], for a bonded bilin-
ear map m:X×Y−→ Zhave shown that, mr∗r∗∗∗ =m∗∗∗r∗rif and only if
both mand mr∗are Arens regular. Now in the following we study it in general
case.
Remark 1 In the next theorem, fnis n−th adjoint of ffor each n∈N.
Regularity and the Fourth Adjoint 57
Theorem 3 If fand fr n are reular, then f4r nr =frnr4.
Proof. Since fis regular, so f4r=fr4. Therefore f4rn =fr(n+4). In the other
hands, regularity of frn follows that fr(n+4) =frnr4r. Thus frnr4r=f4rn
and this completes the proof.
Theorem 4 Let f:X×Y×Z−→ Wbe a bounded tri-linear mapping. Then
1. f∗∗∗∗r∗∗r=fr∗∗r∗∗∗∗ if and only if both fand fr∗∗ are regular.
2. f∗∗∗∗r∗∗∗r=fr∗∗∗r∗∗∗∗ if and only if both fand fr∗∗∗ are regular.
Proof. We prove only (1), the other part has the same argument. If both fand
fr∗∗ are regular, then by applying Theorem 3, for n= 2, f∗∗∗∗r∗∗r=fr∗∗r∗∗∗∗.
Conversely, suppose that f∗∗∗∗r∗∗r=fr∗∗r∗∗∗∗ . First we show that fis
regular. Let {zγ}is net in Zwhich converge to z∗∗ ∈Z∗∗ in the w∗−topologies.
Then for every x∗∗ ∈X∗∗, y∗∗ ∈Y∗∗ and w∗∈W∗we have
⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), w∗⟩=⟨f∗∗∗∗r(z∗∗ , y∗∗, x∗∗ ), w∗⟩
=⟨f∗∗∗∗r∗∗r(z∗∗, w∗, x∗∗), y∗∗ ⟩=⟨fr∗∗r∗∗∗∗ (z∗∗ , w∗, x∗∗), y∗∗ ⟩
= lim
γ⟨y∗∗, f r∗∗r(zγ, w∗, x∗∗)⟩=⟨fr∗∗∗∗r(x∗∗ , y ∗∗, z∗∗ ), w∗⟩.
Therefore fis regular. Now we show that fr∗∗ is regular. Let {x∗∗
α}be net in
X∗∗ which converge to x∗∗∗∗ ∈X∗∗∗∗ in the w∗−topologies. Then for every
y∗∗ ∈Y∗∗, z ∗∗ ∈Z∗∗ and w∗∗∗ ∈W∗∗∗ we have
⟨fr∗∗r∗∗∗∗r(x∗∗∗∗, w∗∗∗, z∗∗ ), y ∗∗⟩=⟨fr∗∗r∗∗∗∗(z∗∗ , w∗∗∗ , x∗∗∗∗ ), y ∗∗⟩
=⟨f∗∗∗∗r∗∗r(z∗∗, w∗∗∗, x∗∗∗∗), y ∗∗⟩= lim
α⟨w∗∗∗, f ∗∗∗∗(x∗∗
α, y∗∗ , z∗∗)⟩
= lim
α⟨w∗∗∗, f r∗∗∗∗r(x∗∗
α, y∗∗ , z∗∗)⟩= lim
α⟨w∗∗∗, f r∗∗∗∗(z∗∗ , y∗∗, x∗∗
α)⟩
=⟨fr∗∗∗∗∗∗(x∗∗∗∗ , w∗∗∗, z∗∗ ), y ∗∗⟩.
It follows that fr∗∗ is regular and this completes the proof.
Arens has shown [3] that a bounded bilinear map mis regular if and only
if for each z∗∈Z∗, the bilinear form z∗om is regular. In the next theorem we
give an important characterization of regularity bounded tri-linear mappings.
Lemma 1 Suppose X, Y, Z, W and Sare normed spaces and f:X×Y×
Z−→ Wand h:W−→ Sare bounded tri-linear mapping and bounded linear
mapping, respectively. Then we have
1. h∗∗of ∗∗∗∗ = (hof )∗∗∗∗ .
2. h∗∗of r∗∗∗∗r= (hof )r∗∗∗∗r.
Proof. Let {xα},{yβ}and {zγ}be nets in X, Y and Zwhich converge to
x∗∗ ∈X∗∗, y∗∗ ∈Y∗∗ and z∗∗ ∈Z∗∗ in the w∗−topologies, respectively. For
58 A. Sheikhali et al.
each s∗∈S∗we have
⟨h∗∗of ∗∗∗∗ (x∗∗ , y∗∗, z∗∗), s∗⟩=⟨h∗∗(f∗∗∗∗ (x∗∗ , y ∗∗, z∗∗ )), s∗⟩
=⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), h∗(s∗)⟩= lim
αlim
βlim
γ⟨h∗(s∗), f (xα, yβ, zγ)⟩
= lim
αlim
βlim
γ⟨s∗, h(f(xα, yβ, zγ))⟩= lim
αlim
βlim
γ⟨s∗, hof (xα, yβ, zγ)⟩
=⟨(hof)∗∗∗∗(x∗∗ , y∗∗, z∗∗), s∗⟩.
Hence h∗∗of ∗∗∗∗ (x∗∗ , y∗∗, z∗∗) = (hof )∗∗∗∗ (x∗∗ , y∗∗ , z ∗∗). A similar argument
applies for (2).
Theorem 5 Let f:X×Y×Z−→ Wand h:W−→ Sbe bounded tri-linear
mapping and bounded linear mapping, respectively. Then fis regular if and
only if hof is regular.
Proof. Assume that fis regular. Then for every x∗∗ ∈X∗∗, y∗∗ ∈Y∗∗ , z ∗∗ ∈
Z∗∗ and s∗∈S∗we have
⟨h∗∗(fr∗∗∗∗r(x∗∗ , y∗∗, z∗∗)), s∗⟩=⟨fr∗∗∗∗r(x∗∗, y ∗∗, z∗∗ ), h∗(s∗)⟩
=⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), h∗(s∗)⟩=⟨h∗∗(f∗∗∗∗ (x∗∗ , y ∗∗, z∗∗ )), s∗⟩.
Therefore h∗∗of r∗∗∗∗r(x∗∗ , y∗∗, z∗∗) = h∗∗of ∗∗∗∗(x∗∗, y ∗∗, z∗∗ ) and by apply-
ing Lemma 1, we implies that
(hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗) = (hof )∗∗∗∗ (x∗∗ , y∗∗ , z ∗∗).
It follows that hof is regular.
For the converse, suppose that hof is regular. By contradiction, let fbe
not regular. Thus there exist x∗∗ ∈X∗∗, y∗∗ ∈Y∗∗ and z∗∗ ∈Z∗∗ such that
f∗∗∗∗(x∗∗ , y∗∗, z∗∗)=fr∗∗∗∗r(x∗∗, y ∗∗, z∗∗ ). Therefore we have
(hof)∗∗∗∗(x∗∗ , y∗∗, z∗∗) = w∗−lim
αw∗−lim
βw∗−lim
γ(hof)(xα, yβ, zγ)
= lim
αlim
βlim
γ⟨f(xα, yβ, zγ), h⟩=⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗), h⟩
=⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), h⟩= lim
γlim
βlim
α⟨f(xα, yβ, zγ), h⟩
=w∗−lim
γw∗−lim
βw∗−lim
α(hof)(xα, yβ, zγ)
= (hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗).
It follows that (hof)∗∗∗∗(x∗∗ , y∗∗ , z ∗∗)= (hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗ ).
Another interesting case of regularity is in the following.
Theorem 6 Let X, Y, Z, W and Sbe Banach spaces, f:X×Y×Z−→ W
be a bounded tri-linear mapping and x∈X, y ∈Y, z ∈Z. Then
1. Let g1:S×Y×Z−→ Wbe a bounded tri-linear mapping and let h1:
X−→ Sbe a bounded linear mapping such that f(x, y, z) = g1(h1(x), y, z).
If h1is weakly compact, then f∗∗∗∗r∗(W∗∗∗, Z∗∗ , Y ∗∗ )⊆X∗.
Regularity and the Fourth Adjoint 59
2. Let g2:X×S×Z−→ Wbe a bounded tri-linear mapping and let h2:
Y−→ Sbe a bounded linear mapping such that f(x, y, z) = g2(x, h2(y), z).
If h2is weakly compact, then f∗∗∗r∗(X∗∗, W ∗, Z ∗∗)⊆Y∗.
3. Let g3:X×Y×S−→ Wbe a bounded tri-linear mapping and let h3:
Z−→ Sbe a bounded linear mapping such that f(x, y, z) = g3(x, y, h3(z)).
If h3is weakly compact, then f∗∗∗∗∗(W∗∗∗, X ∗∗, Y ∗∗ )⊆Z∗.
Proof. We prove only (1), the other parts have the same argument. For every
x∈X, y ∈Y, z ∈Zand w∗∈W∗we have
⟨f∗(w∗, x, y), z⟩=⟨w∗, f(x, y, z)⟩=⟨w∗, g1(h1(x), y , z)⟩=⟨g∗
1(w∗, h1(x), y), z⟩.
Therefore f∗(w∗, x, y) = g∗
1(w∗, h1(x), y), and implies that for every z∗∗ ∈Z∗∗,
⟨f∗∗(z∗∗ , w∗, x), y⟩=⟨z∗∗, f ∗(w∗, x, y)⟩
=⟨z∗∗, g∗
1(w∗, h1(x), y)⟩=⟨g∗∗
1(z∗∗, w∗, h1(x)), y⟩.
So f∗∗(z∗∗ , w∗, x) = g∗∗
1(z∗∗, w∗, h1(x)) and implies that for every y∗∗ ∈Y∗∗,
⟨f∗∗∗(y∗∗ , z ∗∗, w∗), x⟩=⟨y∗∗, f ∗∗(z∗∗ , w∗, x)⟩=⟨y∗∗ , g ∗∗
1(z∗∗, w∗, h1(x))⟩
=⟨g∗∗∗
1(y∗∗, z ∗∗, w∗), h1(x)⟩=⟨h∗
1(g∗∗∗
1(y∗∗, z ∗∗, w∗)), x⟩.
Thus f∗∗∗(y∗∗, z ∗∗, w∗) = h∗
1(g∗∗∗
1(y∗∗, z ∗∗, w∗)) and implies that for every
x∗∗ ∈X∗∗,
⟨f∗∗∗∗(x∗∗ , y∗∗, z∗∗ ), w ∗⟩=⟨x∗∗, f ∗∗∗(y∗∗, z∗∗ , w ∗)⟩
=⟨x∗∗, h∗
1(g∗∗∗
1(y∗∗, z ∗∗, w∗))⟩=⟨h∗∗
1(x∗∗),(g∗∗∗
1(y∗∗, z ∗∗, w∗)⟩
=⟨g∗∗∗∗
1(h∗∗
1(x∗∗), y∗∗, z∗∗), w∗⟩.
Therefore for every w∗∗∗ ∈W∗∗∗ we have
⟨f∗∗∗∗r∗(w∗∗∗, z ∗∗, y∗∗), x∗∗ ⟩=⟨w∗∗∗ , f ∗∗∗∗r(z∗∗, y ∗∗, x∗∗)⟩
=⟨w∗∗∗, f ∗∗∗∗(x∗∗ , y∗∗, z∗∗ )⟩=⟨w∗∗∗ , g ∗∗∗∗
1(h∗∗
1(x∗∗), y∗∗, z∗∗)⟩
=⟨w∗∗∗, g∗∗∗∗r
1(z∗∗, y∗∗, h∗∗
1(x∗∗))⟩=⟨g∗∗∗∗r∗
1(w∗∗∗, z ∗∗, y∗∗), h∗∗
1(x∗∗)⟩
=⟨h∗∗∗
1(g∗∗∗∗r∗
1(w∗∗∗, z ∗∗, y∗∗)), x∗∗ ⟩.
Therefore f∗∗∗∗r∗(w∗∗∗, z ∗∗, y∗∗) = h∗∗∗
1(g∗∗∗∗r∗
1(w∗∗∗, z ∗∗, y∗∗)). The weak com-
pactness of h1implies that of h∗
1, from which we have h∗∗∗
1(S∗∗∗)⊆X∗. Thus
h∗∗∗
1(g∗∗∗∗r∗
1(w∗∗∗, z ∗∗, y∗∗)) ∈X∗and this completes the proof.
This theorem, combined with Theorem 2, yields the next result.
Corollary 5 With the assumptions Theorem 6, if h2and h3are weakly com-
pact, then fis regular.
60 A. Sheikhali et al.
Proof. Both h2and h3are weakly compact, so by Theorem 6 we have
f∗∗∗r∗(X∗∗, W ∗, Z∗∗ )⊆Y∗, f ∗∗∗∗∗ (W∗∗∗ , X ∗∗, Y ∗∗ )⊆Z∗.
In particular
f∗∗∗r∗(X∗∗, W ∗, Z)⊆Y∗, f ∗∗∗∗∗ (W∗, X ∗∗, Y ∗∗ )⊆Z∗.
Now by Theorem 2, fis regular.
The converse of previous result is not true in general sense as following
corollary.
Corollary 6 With the assumptions Theorem 6, if fis regular and both g∗∗∗r∗
2
and g∗∗∗∗∗
3are factors, then h2and h3are weakly compact.
Proof. Since f∗∗∗r∗(X∗∗, W ∗, Z ∗∗) = h∗∗∗
2(g∗∗∗r∗
2(X∗∗, W ∗, Z∗∗ )), so h∗∗∗
2(g∗∗∗r∗
2
(X∗∗, W ∗, Z∗∗ )) ⊆Y∗. In the other hands g∗∗∗r∗
2is factors, so implies that
h∗∗∗
2(S∗∗∗)⊆Y∗. Therefore h∗
2is weakly compact and implies that h2is weakly
compact. The other part has the same argument for h3.
4 The fourth adjoint of a tri-derivation
Definition 1 Let (π1, X , π2) be a Banach A−module. A bounded tri-linear
mapping D:A×A×A−→ Xis said to be a tri-derivation when
1. D(π(a, d), b, c) = π2(D(a, b, c), d) + π1(a, D(d, b, c)),
2. D(a, π(b, d), c) = π2(D(a, b, c), d) + π1(b, D(a, d, c)),
3. D(a, b, π(c, d)) = π2(D(a, b, c), d) + π1(c, D(a, b, d)),
for each a, b, c, d ∈A. If (π1, X, π2) is a Banach A−module, then (πr∗r
2, X∗, π∗
1)
is the dual Banach A−module of (π1, X, π2). Therefore a bounded tri-linear
mapping D:A×A×A−→ X∗is a tri-derivation when
1. D(π(a, d), b, c) = π∗
1(D(a, b, c), d) + πr∗r
2(a, D(d, b, c)),
2. D(a, π(b, d), c) = π∗
1(D(a, b, c), d) + πr∗r
2(b, D(a, d, c)),
3. D(a, b, π(c, d)) = π∗
1(D(a, b, c), d) + πr∗r
2(c, D(a, b, d)).
It can also be written, a bounded tri-linear mapping D:A×A×A−→ Ais
said to be a tri-derivation when
1. D(π(a, d), b, c) = π(D(a, b, c), d) + π(a, D(d, b, c)),
2. D(a, π(b, d), c) = π(D(a, b, c), d) + π(b, D(a, d, c)),
3. D(a, b, π(c, d)) = π(D(a, b, c), d) + π(c, D(a, b, d)).
Example 2 Let Abe a Banach algebra, for any a, b ∈Athe symbol [a, b] =
ab −ba stands for multiplicative commutator of aand b. Let Mn×n(C) be the
Banach algebra of all n×nmatrix and A={x y
0 0∈Mn×n(C)|x, y ∈C}.
Then Ais Banach algebra with the norm
∥a∥= (Σi,j |αij |2)1
2,(a= (αij )∈A).
Regularity and the Fourth Adjoint 61
We define D:A×A×A−→ Ato be the bounded tri-linear map given by
D(a, b, c) = [0 1
0 0, abc],(a, b, c ∈A).
Then for a=x1y1
0 0 , b =x2y2
0 0 , c =x3y3
0 0 and d=x4y4
0 0 ∈Awe
have
D(π(a, d), b, c) = D(x1x4x1y4
0 0 ,x2y2
0 0 ,x3y3
0 0 )
= [0 1
0 0,x1x2x3x4x1x2x4y3
0 0 ] = 0−x1x2x3x4
0 0
=0−x1x2x3
0 0 x4y4
0 0 +x1y1
0 0 0−x2x3x4
0 0
= (0 0
0 0−0x1x2x3
0 0 )x4y4
0 0 +x1y1
0 0 (0 0
0 0−0x2x3x4
0 0 )
= (0 1
0 0x1x2x3x1x2y3
0 0 −x1x2x3x1x2y3
0 0 0 1
0 0)x4y4
0 0
+x1y1
0 0 (0 1
0 0x2x3x4x2x4y3
0 0 −x2x3x4x2x4y3
0 0 0 1
0 0)
= [0 1
0 0,x1x2x3x1x2y3
0 0 ]x4y4
0 0
+x1y1
0 0 [0 1
0 0,x2x3x4x2x4y3
0 0 ]
= [0 1
0 0,x1y1
0 0 x2y2
0 0 x3y3
0 0 ]x4y4
0 0
+x1y1
0 0 [0 1
0 0,x4y4
0 0 x2y2
0 0 x3y3
0 0 ]
=D(x1y1
0 0 ,x2y2
0 0 ,x3y3
0 0 )x4y4
0 0
+x1y1
0 0 D(x4y4
0 0 ,x2y2
0 0 ,x3y3
0 0 )
=π(D(a, b, c), d) + π(a, D(d, b, c)).
Similarly, we have D(a, π(b, d), c) = π(D(a, b, c), d)+π(b, D(a, d, c)) and D(a, b,
π(c, d)) = π(D(a, b, c), d) + π(c, D(a, b, d)). Thus Dis tri-derivation.
Now, we provide a necessary and sufficient condition such that the fourth
adjoint D∗∗∗∗ of a tri-derivation D:A×A×A−→ Xis again a tri-derivation.
For the fourth adjoint D∗∗∗∗ of a tri-derivation D:A×A×A−→ X, we are
62 A. Sheikhali et al.
faced with the case eight:
(case1) D∗∗∗∗ : (A∗∗,)×(A∗∗ ,)×(A∗∗ ,)−→ X∗∗ ,
(case2) D∗∗∗∗ : (A∗∗,♢)×(A∗∗ ,)×(A∗∗ ,)−→ X∗∗ ,
(case3) D∗∗∗∗ : (A∗∗,)×(A∗∗ ,♢)×(A∗∗ ,)−→ X∗∗ ,
(case4) D∗∗∗∗ : (A∗∗,)×(A∗∗ ,)×(A∗∗ ,♢)−→ X∗∗ ,
(case5) D∗∗∗∗ : (A∗∗,♢)×(A∗∗ ,♢)×(A∗∗ ,)−→ X∗∗ ,
(case6) D∗∗∗∗ : (A∗∗,♢)×(A∗∗ ,)×(A∗∗ ,♢)−→ X∗∗ ,
(case7) D∗∗∗∗ : (A∗∗,)×(A∗∗ ,♢)×(A∗∗ ,♢)−→ X∗∗ ,
(case8) D∗∗∗∗ : (A∗∗,♢)×(A∗∗ ,♢)×(A∗∗ ,♢)−→ X∗∗ .
In the following, we prove the state of case 1. The remaining state are proved
in the same way.
Theorem 7 Let (π1, X, π2)be a Banach A−module and D:A×A×A−→ X
be a tri-derivation. Then D∗∗∗∗ : (A∗∗,)×(A∗∗,)×(A∗∗ ,)−→ X∗∗ is a
tri-derivation if and only if
1. π∗∗r∗
2(D∗∗∗∗(A, A, A∗∗ ), X ∗)⊆A∗,
2. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
3. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
4. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
5. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
Proof. Let D:A×A×A−→ Xbe a tri-derivation and (1),(2),(3),(4),(5)
holds. If {aα},{bβ},{cγ}and {dτ}are bounded nets in A, converging in
w∗−topology to a∗∗ , b∗∗ , c∗∗ and d∗∗ ∈A∗∗ respectively, in this case using (2),
we conclude that w∗−lim
αw∗−lim
τw∗−lim
βw∗−lim
γπ2(D(aα, bβ, cγ), dτ) =
π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ). Thus for every x∗∈X∗we have
⟨D∗∗∗∗(π∗∗∗ (a∗∗ , d∗∗ ), b∗∗ , c∗∗ ), x∗⟩
= lim
αlim
τlim
βlim
γ⟨x∗, D(π(aα, dτ), bβ, cγ)⟩
= lim
αlim
τlim
βlim
γ⟨x∗, π2(D(aα, bβ, cγ), dτ) + π1(aα, D(dτ, bβ, cγ))⟩
= lim
αlim
τlim
βlim
γ⟨x∗, π2(D(aα, bβ, cγ), dτ)⟩
+ lim
αlim
τlim
βlim
γ⟨x∗, π1(aα, D(dτ, bβ, cγ))⟩
=⟨x∗, π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ )⟩+⟨x∗, π∗∗∗
1(a∗∗, D∗∗∗∗(d∗∗, b∗∗, c∗∗))⟩
=⟨π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ) + π∗∗∗
1(a∗∗, D∗∗∗∗(d∗∗, b∗∗ , c∗∗ )), x∗⟩.
Therefore
D∗∗∗∗(π∗∗∗ (a∗∗ , d∗∗ ), b∗∗ , c∗∗ )
=π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ) + π∗∗∗
1(a∗∗, D∗∗∗∗(d∗∗, b∗∗, c∗∗)).
Regularity and the Fourth Adjoint 63
Applying (1) and (3) respectively, we can deduce that w∗−lim
αw∗−lim
βw∗−
lim
τw∗−lim
γπ2(D(aα, bβ, cγ), dτ) = π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ) and w∗−
lim
αw∗−lim
βw∗−lim
τw∗−lim
γπ1(bβ, D(aα, dτ, cγ)) = π∗∗∗
1(b∗∗, D∗∗∗∗(a∗∗, d∗∗ ,
c∗∗)).So in similar way, we can deduce that
D∗∗∗∗(a∗∗ , π∗∗∗(b∗∗ , d∗∗ ), c∗∗ )
=π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ) + π∗∗∗
1(b∗∗, D∗∗∗∗(a∗∗, d∗∗ , c∗∗ )).
Applying (4) and (5), we can write w∗−lim
αw∗−lim
βw∗−lim
γw∗−lim
τπ1(cγ, D(aα
, bβ, dτ)) = π∗∗∗
1(c∗∗, D∗∗∗∗(a∗∗, b∗∗ , d∗∗ )).Thus
D∗∗∗∗(a∗∗ , b∗∗ , π∗∗∗(c∗∗ , d∗∗ ))
=π∗∗∗
2(D∗∗∗∗(a∗∗ , b∗∗ , c∗∗ ), d∗∗ ) + π∗∗∗
1(c∗∗, D∗∗∗∗(a∗∗, b∗∗ , d∗∗ )).
By comparing equations (4.1), (4.2) and (4.3) follows that D∗∗∗∗ : (A∗∗,)×
(A∗∗,)×(A∗∗ ,)−→ X∗∗ is a tri-derivation.
For the converse, let Dand D∗∗∗∗ : (A∗∗,)×(A∗∗,)×(A∗∗ ,)−→ X∗∗
be tri-derivation. We have to show that (1), (2), (3), (4) and (5) hold. We shall
only prove (2) the others parts have similar argument. Fourth adjoint D∗∗∗∗
is tri-derivation, thus we have
D∗∗∗∗(π∗∗∗ (a, d∗∗ ), b∗∗ , c∗∗ ) = π∗∗∗
2(D∗∗∗∗(a, b∗∗ , c∗∗ ), d∗∗ )
+π∗∗∗
1(a, D∗∗∗∗ (d∗∗ , b∗∗ , c∗∗ )).
In the other hands, the mapping Dis tri-derivation, which follows that
D∗∗∗∗(π∗∗∗ (a, d∗∗ ), b∗∗ , c∗∗ ) = w∗−lim
τw∗−lim
βw∗−lim
γπ2(D(a, bβ, cγ), dτ)
+π∗∗∗
1(a, D∗∗∗∗ (d∗∗ , b∗∗ , c∗∗ )).
Therefore follows that
π∗∗∗
2(D∗∗∗∗(a, b∗∗ , c∗∗ ), d∗∗ )
=w∗−lim
τw∗−lim
βw∗−lim
γπ2(D(a, bβ, cγ), dτ).
So, for every d∗∗ ∈A∗∗ we have
⟨π∗∗∗∗
2(x∗, D∗∗∗∗ (a, b∗∗ , c∗∗ )), d∗∗ ⟩=⟨x∗, π∗∗∗
2(D∗∗∗∗(a, b∗∗ , c∗∗ ), d∗∗ )⟩
= lim
τlim
βlim
γ⟨x∗, π2(D(a, bβ, cγ), dτ)⟩= lim
τlim
βlim
γ⟨x∗, πr
2(dτ, D(a, bβ, cγ))⟩
= lim
τlim
βlim
γ⟨πr∗
2(x∗, dτ), D(a, bβ, cγ)⟩= lim
τlim
βlim
γ⟨D∗(πr∗
2(x∗, dτ), a, bβ), cγ⟩
= lim
τlim
β⟨c∗∗, D∗(πr∗
2(x∗, dτ), a, bβ)⟩= lim
τlim
β⟨D∗∗(c∗∗ , πr∗
2(x∗, dτ), a), bβ⟩
= lim
τ⟨b∗∗, D∗∗(c∗∗, π r∗
2(x∗, dτ), a)⟩= lim
τ⟨D∗∗∗(b∗∗ , c∗∗ , πr∗
2(x∗, dτ)), a⟩
= lim
τ⟨D∗∗∗∗(a, b∗∗ , c∗∗ ), πr∗
2(x∗, dτ)⟩= lim
τ⟨D∗∗∗∗(a, b∗∗ , c∗∗ ), πr∗r
2(dτ, x∗)⟩
= lim
τ⟨πr∗r∗
2(D∗∗∗∗(a, b∗∗ , c∗∗ ), dτ), x∗⟩= lim
τ⟨πr∗r∗∗
2(x∗, D∗∗∗∗ (a, b∗∗ , c∗∗ )), dτ⟩
=⟨πr∗r∗∗
2(x∗, D∗∗∗∗ (a, b∗∗ , c∗∗ )), d∗∗ ⟩.
64 A. Sheikhali et al.
As πr∗r∗∗
2(x∗, D∗∗∗∗ (a, b∗∗ , c∗∗ )) always lies in A∗, we have reached (2).
For case 2, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis
a tri-derivation if and only if
1. π∗∗r∗
2(D∗∗∗∗(A∗∗ , A∗∗ , A∗∗ ), X ∗)⊆A∗,
2. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
3. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
4. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 3, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
2. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
3. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 4, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗r∗
2(D∗∗∗∗(A, A, A∗∗ ), X ∗)⊆A∗,
2. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
3. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
4. D∗∗∗∗∗(π∗∗∗∗
1(X∗, A∗∗), A, A)⊆A∗,
5. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
6. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 5, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗r∗
2(D∗∗∗∗(A∗∗ , A∗∗ , A∗∗ ), X ∗)⊆A∗,
2. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
3. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
4. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
5. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 6, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗r∗
2(D∗∗∗∗(A∗∗ , A∗∗ , A∗∗ ), X ∗)⊆A∗,
2. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
3. D∗∗∗∗∗(π∗∗∗∗
1(X∗, A∗∗), A, A)⊆A∗,
4. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
5. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 7, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
2. π∗∗r∗
2(D∗∗∗∗(A, A, A∗∗ ), X ∗)⊆A∗,
3. D∗∗∗∗∗(π∗∗∗∗
1(X∗, A∗∗), A, A)⊆A∗,
4. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
Regularity and the Fourth Adjoint 65
5. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
For case 8, fourth adjoint D∗∗∗∗ of tri-derivation D:A×A×A−→ Xis a
tri-derivation if and only if
1. π∗∗∗∗
2(X∗, D∗∗∗∗ (A, A∗∗ , A∗∗ )) ⊆A∗,
2. π∗∗r∗
2(D∗∗∗∗(A∗∗ , A∗∗ , A∗∗ ), X ∗)⊆A∗,
3. D∗∗∗∗r∗(π∗∗∗∗
1(X∗, A∗∗), A∗∗ , A∗∗ )⊆A∗,
4. D∗∗∗∗∗(π∗∗∗∗
1(X∗, A∗∗), A, A)⊆A∗,
5. D∗∗∗∗∗∗(A∗∗ , π∗∗∗∗
1(X∗, A∗∗), A)⊆A∗,
6. D∗∗∗∗∗∗∗(A∗∗ , A∗∗ , π∗∗∗∗
1(X∗, A∗∗)) ⊆A∗.
Remark 2 For adjoint Dr∗∗∗∗rof tri-derivation D:A×A×A−→ Xwe have
the same argument.
References
1. C.A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126:
286–302, (1967).
2. C.A. Akemann, P.G. Dodds and J.L.B. Gamlen, Weak compactness in the dual space of
aC∗−algebra, J. Funct. Anal., 10(4): 446–450, (1972).
3. R . Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2: 839–848,
(1951).
4. N. Arikan, Arens regularity and reflexivity, Quart. J. Math. Oxford, 32(4): 383–388,
(1981).
5. N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc.
Amer. Math. Soc., 84: 525–532, (1982).
6. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra,
Pacific. J. Math., 11(3): 847–870, (1961).
7. H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of a deriva-
tion, J. London Math. Soc., 64(2): 707–721, (2001).
8. A. Erfanian Attar, S. Barootkoob and H. R. Ebrahimi Vishki, On extension of bi-
derivations to the bidual of Banach algebras, Filomat, 30(8): 2261–2267, (2016).
9. M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia. Math.,
181(3): 237–254, (2007).
10. G.B. Folland, A Course in Abstract Harmonic Analysis, Crc Press, (1995).
11. K. Haghnejad Azar, Arens regularity of bilinear forms and unital Banach module space,
Bull. Iranian Math. Soc., 40(2): 505–520, (2014).
12. A.A. Khosravi, H.R. Ebrahimi Vishki and A.M. Peralta, AronBerner extensions of triple
maps with application to the bidual of Jordan Banach triple systems, Linear Algebra Appl.,
580: 436–463, (2019).
13. S. Mohamadzadeh and H. R.E Vishki, Arens regularity of module actions and the second
adjoint of a drivation, Bull Austral. Mat. Soc., 77(3): 465–476, (2008).
14. A. Ulger, Weakly compact bilinear forms and Arens regularity, Proc. Amer, Math. Soc.,
101(4): 697–704, (1987).
15. A. Sheikhali, A. Sheikhali and N. Akhlaghi, Arens regularity of Banach module actions
and the strongly irregular property, J. Math. Computer Sci., 13(1): 41–46, (2014).
16. N.J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford,
24(1): 59–62, (1973).