ArticlePDF Available

Machine-learned prediction of annual crop planting in the U.S. Corn Belt based on historical crop planting maps

Authors:

Abstract

An accurate crop planting map can provide essential information for decision support in agriculture. The method of post-season and in-season crop mapping has been widely studied in the land use and land cover community. However, it remains a challenge to predict the spatial distribution of crop planting before the growing season. This paper is the first attempt to use machine learning approach on the prediction of field-level annual crop planting from historical crop planting maps. We present an end-to-end machine learning framework for crop planting prediction using Cropland Data Layer (CDL) time series as reference data and multi-layer artificial neural network as prediction model. The proposed framework was first tested at Lancaster County of Nebraska State, then scaled up to the U.S. Corn Belt. According to the experiment results from 53 Agricultural Statistics Districts, we found the machine-learned crop planting map was expected to reach 88% agreement with the future CDL. Meanwhile, the crop acreage estimates derived from the machine-learned prediction were highly correlated (R2 > 0.9) with the crop acreage estimates of CDL and official statistics by the U.S. Department of Agriculture National Agricultural Statistics Service. This study provides a low-cost and efficient way to predict annual crop planting map, which can be used to support many agricultural applications and decision makings before the beginning of a growing season.
UNCORRECTED PROOF
ECFKJ;HI7D:B;9JHED?9I?D=H?9KBJKH; NNN NNNN NNNNNN
EDJ;DJIB?IJI7L7?B78B;7J,9?;D9;?H;9J
ECFKJ;HI7D:B;9JHED?9I?D=H?9KBJKH;
@EKHD7B>EC;F7=;>JJF;;I;BI;L?;H9EC
&79>?D;B;7HD;: FH;:?9J?ED E< 7DDK7B 9HEF FB7DJ?D= ?D J>; ., EHD ;BJ 87I;: ED
>?IJEH?97B 9HEF FB7DJ?D= C7FI
>;D 3>7D= 78 %?F?D= ? 78 %? %?D 78 %?O?D= KE 7
7%.3%1 &/1 0"3)", .&/1-"3)/. #)%.#% ".$ 823%-2 %/1'% "2/. .)5%12)38 ")1&"7   
8%0"13-%.3 /& %/'1"0(8 ".$ %/).&/1-"3)/. #)%.#% %/1'% "2/. .)5%12)38 ")1&"7   
+-"% "'(
%86/1$2
HEF FB7DJ?D= FH;:?9J?ED
&79>?D; B;7HD?D=
HJ?Y9?7B D;KH7B D;JMEHA
HEFB7D: 7J7 %7O;H
HEF C7FF?D=
,-+-
D 799KH7J; 9HEF FB7DJ?D= C7F 97D FHEL?:; ;II;DJ?7B ?D<EHC7J?ED <EH :;9?I?ED IKFFEHJ ?D 7=H?9KBJKH; ->; C;J>E:
E< FEIJI;7IED 7D: ?DI;7IED 9HEF C7FF?D= >7I 8;;D M?:;BO IJK:?;: ?D J>; B7D: KI; 7D: B7D: 9EL;H 9ECCKD?JO
!EM;L;H ?J H;C7?DI 7 9>7BB;D=; JE FH;:?9J J>; IF7J?7B :?IJH?8KJ?ED E< 9HEF FB7DJ?D= 8;<EH; J>; =HEM?D= I;7IED
->?I F7F;H ?I J>; YHIJ 7JJ;CFJ JE KI; C79>?D; B;7HD?D= 7FFHE79> ED J>; FH;:?9J?ED E< Y;B:B;L;B 7DDK7B 9HEF FB7DJ
?D= <HEC >?IJEH?97B 9HEF FB7DJ?D= C7FI 0; FH;I;DJ 7D ;D:JE;D: C79>?D; B;7HD?D= <H7C;MEHA <EH 9HEF FB7DJ?D=
FH;:?9J?ED KI?D= HEFB7D: 7J7 %7O;H % J?C; I;H?;I 7I H;<;H;D9; :7J7 7D: CKBJ?B7O;H 7HJ?Y9?7B D;KH7B D;J
MEHA 7I FH;:?9J?ED CE:;B ->; FHEFEI;: <H7C;MEHA M7I YHIJ J;IJ;: 7J %7D97IJ;H EKDJO E< ';8H7IA7 ,J7J; J>;D
I97B;: KF JE J>; ., EHD ;BJ 99EH:?D= JE J>; ;NF;H?C;DJ H;IKBJI <HEC  =H?9KBJKH7B ,J7J?IJ?9I ?IJH?9JI M;
<EKD: J>; C79>?D;B;7HD;: 9HEF FB7DJ?D= C7F M7I ;NF;9J;: JE H;79>  7=H;;C;DJ M?J> J>; <KJKH; % &;7D
M>?B; J>; 9HEF 79H;7=; ;IJ?C7J;I :;H?L;: <HEC J>; C79>?D;B;7HD;: FH;:?9J?ED M;H; >?=>BO 9EHH;B7J;: + 
M?J> J>; 9HEF 79H;7=; ;IJ?C7J;I E< % 7D: E<Y9?7B IJ7J?IJ?9I 8O J>; ., ;F7HJC;DJ E< =H?9KBJKH; '7J?ED7B =H?
9KBJKH7B ,J7J?IJ?9I ,;HL?9; ->?I IJK:O FHEL?:;I 7 BEM9EIJ 7D: ;<Y9?;DJ M7O JE FH;:?9J 7DDK7B 9HEF FB7DJ?D= C7F
M>?9> 97D 8; KI;: JE IKFFEHJ C7DO 7=H?9KBJKH7B 7FFB?97J?EDI 7D: :;9?I?ED C7A?D=I 8;<EH; J>; 8;=?DD?D= E< 7
=HEM?D= I;7IED
1. Introduction
0?J> J>; H7F?: =HEMJ> E< J>; LEBKC; E< 7HJ> (8I;HL7J?ED (
:7J7 ?D J>; F7IJ :;97:;I :?L;HI; 7=H?9KBJKH7B CED?JEH?D= :7J7 >7L; 8;;D
=7J>;H;: <HEC H;CEJ;BO I;DI;: ?C7=;I 9EBB;9J;: <HEC L7H?EKI I;DIEHI
IK9> 7I :L7D9;: /;HO !?=> +;IEBKJ?ED +7:?EC;J;H /!++ &E:;H
7J; +;IEBKJ?ED ,F;9JHEH7:?EC;J;H &(", 7D: %7D:I7J ->;C7J?9 &7F
F;H -& ,;;B7D ;J 7B  %?7=>7J  &KBB7  $>7D7B
;J 7B  27D= ;J 7B  I 7D ;II;DJ?7B J;9>DEBE=O ?D 7=H?
9KBJKH7B CED?JEH?D= 7D: 7D7BOI?I J>; H;CEJ; I;DI?D=87I;: 9HEF C7F
F?D= 7?CI JE ?:;DJ?<O IF;9?Y9 9HEFI 7D: :;B?D;7J; J>; IF7J?7B :?IJH?8K
J?ED E< 9HEF FB7DJ?D= <HEC ( :7J7 J?C;BO 7D: 799KH7J; 9HEF FB7DJ?D=
C7F 97D DEJ EDBO FHEL?:; J>; <KD:7C;DJ7B ?D<EHC7J?ED <EH J>; 7=H?9KB
JKH7BH;B7J;: :;9?I?ED C7A?D=I 7D: 7FFB?97J?EDI %K ;J 7B  ?
;J 7B  ,>H;IJ>7 ;J 7B  8KJ 7BIE 97D 8; KI;: JE IKFFEHJ
<EE: I;9KH?JO =BE87B <EE: IKFFB?;I C7HA;J FB7DD?D= 7D: C7DO EJ>;H IE
9?E;9EDEC?9 79J?L?J?;I EH7?IM7CO ;J 7B  ->;DA787?B ;J 7B
 HEMD  *K 7D: !7E 
99EH:?D= JE J>; F>7I; E< FB7DJ?D= 9HEF C7FF?D= 97D 8; :?L?:;:
?DJE FEIJI;7IED C7FF?D= ?DI;7IED C7FF?D= 7D: FH;I;7IED C7FF?D=
->; FEIJI;7IED C7FF?D= 7D: ?DI;7IED C7FF?D= >7L; 8;;D M?:;BO
;NFBEH;: 8O J>; B7D: KI; 7D: B7D: 9EL;H %.% 9ECCKD?JO $KIIKB ;J
7B  ;B=?K 7D: I?BB?A  7>7B ;J 7B  )>7BA;
7D: QP:E]7D !7E ;J 7B  &7DO E< J>; C;J>E:I 7D:
7B=EH?J>CI 97D 79>?;L; ;N9;BB;DJ 9B7II?Y97J?ED H;IKBJI 7J ;7HBO =HEM
?D= I;7IED )EJ=?;J;H ;J 7B  &9'7?HD ;J 7B  /7K
:EKH ;J 7B  ,A7AKD ;J 7B !7E ;J 7B  ->;
FH;I;7IED FH;:?9J?ED ED J>; EJ>;H >7D: 7?CI JE <EH;97IJ J>; 9HEF FB7DJ
?D= 8;<EH; J>; 8;=?DD?D= E< 7 =HEM?D= I;7IED ->;H; 7H; C7DO IJK:
?;I 78EKJ GK7DJ?<O?D= J>; <KJKH; 9HEF 7H;7 7D: O?;B: KI?D= J>; H;CEJ;BO
I;DI;: L;=;J7J?ED ?D:?9;I IK9> 7I 'EHC7B?P;: ?<<;H;D9; /;=;J7J?ED "D
:;N '/" /;=;J7J?ED ED:?J?ED "D:;N /" 7D: D>7D9;: /;=;J7
J?ED "D:;N /" 0?;=7D: ;J 7B  *K7HC8O ;J 7B 
78HEMIA73?;B?DIA7 ;J 7B  $7IJ;DI ;J 7B  -;7B ;J
7B  EBJED 7D: H?;:B  27=9? ;J 7B  !EM;L;H
J>; IJK:O 78EKJ J>; FH;I;7IED 9HEF C7FF?D= 7D: FH;:?9J?ED E< IF7J?7B
:?IJH?8KJ?ED E< 9HEF FB7DJ?D= ?I GK?J; <;M 7I?97BBO J>; FH;I;7IED 9HEF
C7FF?D= 97D 8; 9EDI?:;H;: 7I 7 J7IA E< %.% FH;:?9J?ED ->; ;BBKB7H
KJEC7J7&7HAEL M>?9> ?I 7D ;<<;9J?L; CE:;B JE >7D:B; J>; 9EDJ?DK
EKI FHE9;II >7I 8;;D M?:;BO 7:EFJ;: <EH J>; %.% 9>7D=; FH;:?9J?ED
EHD;H ;J 7B  !7BCO ;J 7B  ,?D=> ;J 7B  &ED
:7B ;J 7B  1K ;J 7B  ->; 87I?9 ?:;7 E< J>;I; MEHAI ?I
EHH;IFED:?D= 7KJ>EH 7J ;DJ;H <EH ,F7J?7B "D<EHC7J?ED ,9?;D9; 7D: ,OIJ;CI ;EH=; &7IED .D?L;HI?JO 7?H<7N /  .,
-"), "$$1%22%2 9P>7D==CK;:K  3>7D= B:?=CK;:K % ? BB?D=CK;:K % %?D B=KE=CK;:K % KE
>JJFI:E?EH=@9ECF7=
+;9;?L;:  &7O +;9;?L;:?DH;L?I;:<EHC ,;FJ;C8;H 99;FJ;: ,;FJ;C8;H 
L7?B78B;EDB?D; NNN
X 
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
FH;:?9J?D= J>; <KJKH; %.% 9>7D=; <HEC J>; >?IJEH?97B %7D:I7J -& J?C;
I;H?;I "D (IC7D ;J 7B  7 &7HAEL BE=?9 D;JMEHAI87I;: CE:;B
<EH ;7HBO 9HEF C7FF?D= M7I FHEFEI;: M>?9> 97D FH;:?9J J>; 9HEF JOF;
<HEC J>; >?IJEH?97B 9HEF HEJ7J?ED 7J J>; 799KH79O E<  8;<EH; J>; =HEM
?D= I;7IED &;7DM>?B; I;L;H7B CE:;BI 87I;: ED J>; Y;B:B;L;B 9HEF I;
GK;D9;I 97D 8; FEJ;DJ?7BBO KI;: ?D J>; FH;:?9J?ED E< <KJKH; 9HEF FB7DJ
?D= ?D<EHC7J?ED KH879>;H 7D: 788;HJ  1?7E ;J 7B 
3>7D= ;J 7B 7 7I;: ED J>; FH;L?EKI IJK:?;I 7 GK;IJ?ED 7H?I;I
97D M; FH;:?9J J>; <KJKH; 9HEF FB7DJ?D= <HEC J>; >?IJEH?97B 9HEF FB7DJ
?D= C7FI->?I F7F;H 7JJ;CFJI JE YD: J>; 7DIM;H
7J7 7D: C;J>E:I 7H; JME A;OI JE 7::H;II J>; FHEFEI;: GK;IJ?ED
->; HEFB7D: 7J7 %7O;H % E< ., ;F7HJC;DJ E< =H?9KBJKH;
., '7J?ED7B =H?9KBJKH7B ,J7J?IJ?9I ,;HL?9; ',, FHEL?:;I J>; 7D
DK7B FK8B?9BO 7L7?B78B; 9HEF FB7DJ?D= C7F <HEC  JE FH;I;DJ M>?9> ?I
7D ?:;7B H;<;H;D9; :7J7 E< J>?I IJK:O (D J>; EJ>;H >7D: C79>?D; B;7HD
?D= F7HJ?9KB7HBO J>EI; 87I;: ED 7HJ?Y9?7B D;KH7B D;JMEHA '' >7I
8;;D KI;: ?D %.% C7FF?D= E< ( :7J7 I?D9; J>; I ,KHA7D 7D:
?  +?JJ;H 7D: !;FD;H  H;O;H  2EI>?:7 7D:
(C7JK  EE:O  ->; ?DL;DJ?ED E< :;;F B;7HD?D= 7 8H7D9>
E< ''87I;: C79>?D; B;7HD?D= J;9>DEBE=O ?D J>; B7IJ :;97:; ?I FKI>
?D= J>; KI; E< C79>?D; B;7HD?D= ?D 7=H?9KBJKH; ?DJE D;M >?=> L7H?;JO
E< :;;F B;7HD?D= 7H9>?J;9JKH;I IK9> 7I :;;F D;KH7B D;JMEHA '' 9ED
LEBKJ?ED7B D;KH7B D;JMEHA '' 7D: H;9KHH;DJ D;KH7B D;JMEHA +''
>7I 8;;D 7FFB?;: ?D 9HEF C7FF?D= $KIIKB ;J 7B  F  3>ED=
;J 7B  9HEF O?;B: FH;:?9J?ED $7KB ;J 7B  $KM7J7 7D:
,>?87I7A?  )7DJ7P? ;J 7B  ';L7LKEH? ;J 7B 
FB7DJ ?:;DJ?Y97J?ED %;; ;J 7B  H?D8B7J ;J 7B  &E
>7DJO ;J 7B  $7O7 ;J 7B  7D: C7DO EJ>;H 7=H?9KBJKH7B
7FFB?97J?EDI >;D ;J 7B  $7C?B7H?I 7D: )H;D7<;J7EB:V
 "D J>?I IJK:O M; 9>EEI; J>; '' 7I J>; C79>?D; B;7HD?D= 7B=E
H?J>C <EH J>; 9HEF JOF; FH;:?9J?ED
->; EL;H7BB E8@;9J?L; E< J>?I IJK:O ?I JE FH;:?9J J>; IF7J?7B :?IJH?8K
J?ED E< Y;B:B;L;B 9HEF FB7DJ?D= EL;H B7H=; =;E=H7F>?9 7H;7 ,F;9?<?97BBO
7D ;D:JE;D: C79>?D; B;7HD?D= <H7C;MEHA <EH J>; FH;:?9J?ED E< 7DDK7B
9HEF FB7DJ?D= C7F ?I :;L;BEF;: 7D: :;CEDIJH7J;: "D ,;9J?ED M; ?D
JHE:K9; J>; IJK:O 7H;7 FHEL?:; J>; ?D<EHC7J?ED 78EKJ % :7J7 7D:
:;I9H?8; J>; IJHK9JKH; E< J>; FHEFEI;: C79>?D; B;7HD?D= <H7C;MEHA "D
,;9J?ED M; 9ED:K9J ;NF;H?C;DJI 7J 8EJ> 9EKDJO 7D: H;=?ED7B I97B;
7D: J>EHEK=>BO 7D7BOP; J>; FH;:?9J?ED F;H<EHC7D9; ;I?:;I J>; 9HEF
79H;7=; 97B9KB7J;: <HEC J>; FH;:?9J;: 9HEF FB7DJ?D= C7F 7H; L7B?:7J;:
KI?D= J>; % :7J7 7D: E<Y9?7B IJ7J?IJ?9I <HEC ., ',, ,;9J?ED
:?I9KII;I J>; KI;<KBD;II 7D: J>; 9EDJH?8KJ?ED E< J>; IJK:O J>; 7:L7D
J7=;I E< J>; FHEFEI;: C;J>E: 7D: J>; B?C?J7J?ED E< J>; 9KHH;DJ ?CFB;
C;DJ7J?ED ->; 9ED9BKI?ED 7D: <KJKH; MEHAI 7H; =?L;D ?D ,;9J?ED
2. Data and methods
 34$8 "1%"
->?I IJK:O <E9KI;: ED J>; EHD ;BJ H;=?ED E< J>; &?:M;IJ;HD .D?J;:
,J7J;I ., ',, :?L?:;: ;79> ., IJ7J; ?DJE 7I C7DO 7I D?D; 8;
I?:;I -;N7I M>?9> ?I :?L?:;: ?DJE Y<J;;D =H?9KBJKH7B ,J7J?IJ?9I ?I
JH?9JI ,I 79> , 9EDI?IJI E< I;L;H7B 9EDJ?=KEKI 9EKDJ?;I M?J>
H;B7J?L;BO I?C?B7H 7=H?9KBJKH7B 9>7H79J;H?IJ?9I 7D: ;DL?HEDC;DJ ?=
I>EMI J>; =;E=H7F>O E< J>; IJK:O 7H;7 M>?9> 9EDJ7?DI  9EDJ?=KEKI
,I 9EL;H?D= J>; ;DJ?H; IJ7J;I E< "EM7 "BB?DE?I 7D: "D:?7D7 7D: F7H
J?7B IJ7J;I E< &?DD;IEJ7 'EHJ> 7AEJ7 ';8H7IA7 ,EKJ> 7AEJ7 7D:
0?I9EDI?D ,EC; ,I J>7J C7?DBO 9EL;H;: 8O =H7II <EH;IJ EH DEDC7
@EH 9HEFI IK9> 7I ,  0;IJ;HD ';8H7IA7 7D:
,  7IJ;HD (>?E M;H; ;N9BK:;: 9
9EH:?D= JE J>; IJ7J?IJ?9I E<  % J>; IJK:O 7H;7 >7I 7 JEJ7B E<
 79H;I E< 9HEFB7D:I  E< J>; JEJ7B B7D: 7H;7 EHD
7D: IEO8;7DI 7H; JME :EC?D7DJ 9HEF JOF;I ?D J>; IJK:O 7H;7 M>?9>
J7A;I  7D:  E< J>; JEJ7B 9HEFB7D:I (J>;H 9HEF JOF;I IK9> 7I
Fig. 1. ;E=H7F>O E< J>; IJK:O 7H;7 :7J7 <HEC  % 8O ., ',,
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
7B<7B<7 M?DJ;H M>;7J IEH=>KC HO; 7D: E7JI 799EKDJ <EH 7 IC7BB FHE
FEHJ?ED E< 7BB 9HEFB7D:I
 1/0,".$ "3" "8%1
HEFB7D: 7J7 %7O;H ?I 7D 7DDK7B 9HEFIF;9?Y9 B7D: 9EL;H :7J7 B7O;H
FHE:K9;: 8O ., ',, "J 9EL;HI J>; ;DJ?H; EDJ?=KEKI .D?J;: ,J7J;I
('., <HEC  JE FH;I;DJ 7D: IEC; IJ7J;I <HEC  JE  7J
C;J;H IF7J?7B H;IEBKJ?ED M?J> J>; 799KH79O E< >?=>;H J>7D  <EH
C7@EH 9HEF JOF;I ?; 9EHD IEO8;7DI 7D: M>;7J ->; FHE:K9J?ED E<
% ?I 87I;: ED C7II?L; ?DJ;HD7B =HEKD: JHKJ> :7J7 E< ',, 7D: H;CEJ;
I;DI?D= ?C7=;I ?D9BK:?D= J>; %7D:I7J (%"-"+, J>; ?I7IJ;H &ED?JEH
?D= EDIJ;BB7J?ED & "&(, 7D: .$ J>; ",+( +;IEKH9;,7J
%",, 7D: J>; , ,;DJ?D;B ?C7=;I EHO7D ;J 7B  .,
',,  I J>; EDBO 7L7?B78B; 7DDK7B Y;B:B;L;B 7=H?9KBJKH7B B7D:
KI; C7F <EH J>; ;DJ?H; ('., % >7I 8;;D M?:;BO KI;: 7I J>; 7KJ>;D
J?9 H;<;H;D9; :7J7 JE IKFFEHJ C7DO IJK:?;I IK9> 7I %.% 9>7D=; C;7
IKH;C;DJ %7HA ;J 7B  ZEE: ?CF79J ;IJ?C7J?ED ,>H;IJ>7 ;J
7B  ZEE: C7FF?D= ,>7D ;J 7B  %?D ;J 7B  D7
J?ED7BI97B; 9KBJ?L7J;: 7H;7 ;IJ?C7J?ED $?D= ;J 7B  9HEF CE:;B
?D= +;IEF ;J 7B  ,7>7@F7B ;J 7B  +EO 7D: 27D 
7D: B7D: IKH<79; CE:;B?D= %?K ;J 7B  '=KO;D ;J 7B 
I 7D ;D:E<I;7IED FHE:K9J J>; 9KHH;DJO;7H % ?I DEHC7BBO H;
B;7I;: <EH FK8B?9 KI; ?D J>; ;7HBO D;NJ O;7H KIK7BBO 7HEKD: ;8HK7HO EH
&7H9> ->; B7J;IJ % FHE:K9J M>;D J>?I F7F;H ?I MH?JJ;D J>;  %
M7I H;B;7I;: 7J J>; ;D: E< ;8HK7HO  BB % FHE:K9JI 7D: ?JI :;
H?L7J?L; FHE:K9JI ;= 9HEF C7IA B7O;H 9HEF <H;GK;D9O B7O;H 9KBJ?L7J;:
B7O;H 97D 8; 799;II;: J>HEK=> HEF,97F; !7D ;J 7B  3>7D= ;J
7B 8 ?= IKCC7H?P;I J>; 7L7?B78?B?JO E< % FHE:K9JI <EH J>;
IJ7J;I E< ., EHD ;BJ
 "#().% ,%"1.).' &1"-%6/1+ &/1 #1/0 0,".3).' 01%$)#3)/.
->?I I;9J?ED FH;I;DJI 7D ;D:JE;D: C79>?D; B;7HD?D= <H7C;MEHA <EH
J>; FH;:?9J?ED E< 7DDK7B 9HEF FB7DJ?D= ->; FH;:?9J?ED CE:;B ?I 87I;: ED
CKBJ?B7O;H '' 7H9>?J;9JKH; ->; ?DFKJ ?I J>; >?IJEH?97B % J?C; I;
H?;I ->; EKJFKJ ?I J>; FH;:?9J;: 7DDK7B 9HEF FB7DJ?D= C7F M?J> J>; I7C;
IF7J?7B H;IEBKJ?ED 7I J>; % J?C; I;H?;I !;H; M; :?I9KII J>; FHEFEI;:
<H7C;MEHA ?D J>H;; F7HJI :7J7 FH;FHE9;II?D= IJHK9JKH; :;I?=D E< ''
7D: ;L7BK7J?ED
 "3" 01%01/#%22).'
"DJK?J?L;BO J>; 9HEF FH;:?9J?ED CE:;B FH;:?9JI J>; 9EC?D=O;7H 9HEF
JOF; 87I;: ED J>; >?IJEH?97B 9HEF I;GK;D9; EH ;N7CFB; ?< 7 9HEF Y;B:
?I 9EDI?IJ;DJBO FB7DJ;: M?J> 9EHD :KH?D= J>; F7IJ <;M O;7HI M; 97D H;7
IED78BO FH;:?9J J>?I Y;B: M?BB 8; FB7DJ;: M?J> 9EHD ?D J>; D;NJ O;7H "<
7 9HEF Y;B: <EBBEMI 9HEF HEJ7J?ED F7JJ;HDI ;= 9EHDIEO8;7D HEJ7J?ED
M; 97D FH;:?9J ?JI 9HEF JOF; M?BB 8; 9>7D=;: ?D J>; D;NJ O;7H ->;H;<EH;
J>; JH7?D?D=J;IJ?D= I;J I>EKB: 9EDJ7?D 78KD:7DJ JH7?D?D= I7CFB;I M?J>
H;B?78B; J;CFEH7B ?D<EHC7J?ED ->?I IJ;F 7?CI JE FHE9;II J>; >?IJEH?97B
% :7J7 ?DJE J>; JH7?D?D=J;IJ?D= I;J M?J> IJHK9JKH;: F?N;B87I;: 9HEF
I;GK;D9; ?D<EHC7J?ED
?= I>EMI J>; FH;F7H7J?ED E< J>; JH7?D?D=J;IJ?D= I;J <EH J>; FH;
:?9J?ED E<  9HEF FB7DJ?D= C7F ->; JH7?D?D= I;J ?= 7 9EDJ7?DI
7 IJ79A E< % J?C; I;H?;I 7D: 7 B78;B I;J <EH J>; 9EHH;IFED:?D= H;=?ED
E< ?DJ;H;IJ +(" -E ;NJ;D: J>; JH7?D?D= I;J 7 H;9KHI?L; JH7?D?D= IJH7J
;=O ?I 7:EFJ;: EH ;N7CFB; M>?B; JH7?D?D= 7 FH;:?9J?ED CE:;B <EH 
M; KI; DEJ EDBO J>; IK8JH7?D?D= I;J E<  % B78;B;: M?J>
 % 8KJ 7BIE J>; IK8JH7?D?D= I;J E<  % B78;B;: M?J>
 % 7D: J>; IK8JH7?D?D= I;J E<  % B78;B;: M?J> 
% "D J>?I M7O J>; JEJ7B 7CEKDJ E< JH7?D?D= I7CFB;I 97D 8; JH?FB;:
99EH:?D= JE J>; J;IJ J>; H;9KHI?L; JH7?D?D= IJH7J;=O 97D ?CFHEL; J>;
F;H<EHC7D9; E< FH;:?9J?ED CE:;B <EH  ->; B78;B I;J C7FI J>; 9EC
?D=O;7H 9HEF JOF; E< 7BB JH7?D?D= I7CFB;I ->; J;IJ?D= I;J ?= 8 9ED
J7?DI 7 IJ79A E< % J?C; I;H?;I <HEC  JE  M>?9> M?B 8; KI;:
JE FH;:?9J J>; 7DDK7B 9HEF FB7DJ?D= C7F E< 
-E 9EDL;HJ J>; :7J7 I;J ?DJE J>; 799;FJ;: <EHC7J <EH J>; D;KH7B D;J
MEHA M; Z7JJ;D JH7?D?D=J;IJ?D= I;J JE 7 IJHK9JKH;:  J78B; ->; ;N
7CFB; E< J>; IJHK9JKH;: JH7?D?D=J;IJ?D= I;J ?I :;CEDIJH7J;: ?D ?= "D
J>?I ;N7CFB; M; B78;B ;79> JH7?D?D= I7CFB; 7I ?JI 9HEF L7BK; ;= 7I
9EHD 7I IEO8;7D 7I 7B<7B<7 EH EJ>;HI;= M7J;H :;L;BEF;:
7H;7 <EH;IJ 7D: =H7II 79> HEM E< J>; J78B; H;FH;I;DJI 7 I7CFB; 9EC
FEI;: 8O J>; F?N;BB;L;B 9HEF I;GK;D9; <;7JKH;I EH ;N7CFB; 7 JH7?D?D=
I7CFB; E< F?N;B J>7J <EBBEMI J>; 9EHDIEO8;7D HEJ7J?ED F7JJ;HD M?BB 8;
H;FH;I;DJ;: 7I        7D: B78;B;: M?J> : M?J>
 314#341% $%2)'. /& "13):#)", .%41", .%36/1+
?= ?BBKIJH7J;I J>; 7H9>?J;9JKH; E< J>; 9HEF JOF; FH;:?9J?ED CE:;B
->; FHEFEI;: CE:;B >7I 7 JOF?97B CKBJ?B7O;H F;H9;FJHED &%) IJHK9
JKH; ?D9BK:?D= ED; ?DFKJ B7O;H J>H;; >?::;D B7O;HI 7D: ED; EKJFKJ
B7O;H ->; ?DFKJ B7O;H >7I ;?=>J ?DFKJ DE:;I 9EHH;IFED:?D= JE J>; 9HEF
JOF; E< ;?=>J O;7HI ?D J>; >?IJEH?97B % J?C; I;H?;I <EH ?D:?L?:K7B
Fig. 2. L7?B78?B?JO E< >?IJEH?97B % :7J7 <EH J>; IJ7J;I E< ., EHD ;BJ J>; 9EL;H7=; E< % <EH "EM7 ?D  7D: % <EH ';8H7IA7 ?D  7H; ?D9ECFB;J;
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 3. )H;F7H7J?ED E< JH7?D?D=J;IJ?D= I;J <EH FH;:?9J?ED E<  9HEF FB7DJ?D= C7F ->; JH7?D?D= I;J 9EDJ7?DI J>H;; IK8I;JI 7D: ;79> IK8I;J ?I 9ECFEI;: 8O 7 IJ79A E< % J?C; I;H?;I M?J>
7 B78;B I;J ->; J;IJ?D= I;J ?I 9ECFEI;: 8O 7 IJ79A E< % J?C; I;H?;I
Fig. 4. N7CFB; E< J>; IJHK9JKH;: JH7?D?D=J;IJ?D= I;J 79> I7CFB; E< JH7?D?D= I;J ?I 9ECFEI;: 8O 7 I;GK;D9; E< >?IJEH?97B 9HEF JOF; <;7JKH;I 7D: B78;B;: M?J> J>; 9EC?D=O;7H 9HEF JOF;
L7BK; 79> I7CFB; E< J;IJ?D= I;J ?I 9ECFEI;: 8O 7 I;GK;D9; E< >?IJEH?97B 9HEF JOF; <;7JKH;I
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 5. ,JHK9JKH; E< J>; &%)87I;: 9HEF JOF; FH;:?9J?ED CE:;B
F?N;BI 0; KI;: J>; 8?D7HO ;D9E:?D= JE H;FH;I;DJ ;79> ?DFKJ 8O 7BBE97J
?D= J>; 7FFHEFH?7J; DKC8;H E< 8?JI 9EHH;IFED:?D= JE J>; DKC8;H E< ?DFKJ
97J;=EH?;I "D J>?I ;N7CFB; ;79> ?DFKJ F?N;B M?BB 8; ;D9E:;: 7I 
  EH  9EHH;IFED:?D= J>; 9EHD IEO8;7DI 7B
<7B<7 7D: EJ>;HI H;IF;9J?L;BO ->;H; 7H; J>H;; >?::;D B7O;HI 8;JM;;D J>;
?DFKJ B7O;H 7D: J>; EKJFKJ B7O;H O 9ECF7H?D= M?J> EJ>;H CE:;B 9ED
Y=KH7J?ED M; <EKD: J>; F;H<EHC7D9; :?<<;H;D9; 8;JM;;D J>H;; >?::;D
B7O;HI 7D: CEH; >?::;D B7O;HI ?I ?=DEH78B; -E I?CFB?<O J>; CE:;B IJHK9
JKH; 7D: ?CFHEL; 9ECFKJ?D= ;<Y9?;D9O M; 7:EFJ;: J>H;;>?::;DB7O;H
7H9>?J;9JKH; <EH J>; '' CE:;B
->; 79J?L7J?ED <KD9J?ED <EH 8EJ> J>; ?DFKJ B7O;H 7D: >?::;D B7O;HI ?I
J>; +;9J?Y;: %?D;7H .D?J +;%. M>?9> 97D 8; MH?JJ;D 7I
M>;H; P ?I J>; ?DFKJ JE 7 D;KHED ->; EKJFKJ B7O;H KI;I ,E<J&7N <KD9J?ED
JE DEHC7B?P; J>; H;IKBJ ?DJE 7 FHE878?B?JO :?IJH?8KJ?ED ->; ,E<J&7N 97D
8; :;YD;: 7I
M>;H; 9H;FH;I;DJI 7 L;9JEH E< J>; ?DFKJI JE J>; EKJFKJ B7O;H *H;FH;
I;DJI J>; ?D:;N E< J>; EKJFKJ KD?JI 7D: H;FH;I;DJI J>; JEJ7B 9B7II;I
"D J>; FHEFEI;: CE:;B J>; 9HEF JOF; E< ?DFKJ F?N;B M?BB 8; FH;:?9J;: 7I
J>; JOF; M?J> J>; >?=>;IJ FHE878?B?JO ?= I>EMI 7D ;N7CFB; E< J>;
C79>?D;B;7HD;: 7DDK7B 9HEF FB7DJ?D= FH;:?9J?ED 87I;: ED J>; FHE878?B
?JO :?IJH?8KJ?ED E< ,E<J&7N ;I?:;I M; KI; J>; 9HEII ;DJHEFO 7I J>; BEII
<KD9J?ED M>?9> ?I <H;GK;DJBO KI;: ?D 9B7II?Y97J?ED FHE8B;CI 7D: :7C
EFJ?C?P7J?ED 7B=EH?J>C $?D=C7 7D: 7  7I J>; EFJ?C?P;H
->?I IJK:O :;7BI M?J> J>; H;=?ED7BI97B; C7FF?D= J>; :?<<;H;DJ =;
E=H7F>O 9B?C7J; 7D: EJ>;H <79JEHI C7O ?DZK;D9; J>; 9HEF :?IJH?8K
J?ED 7D: 9HEF I;GK;D9; 7CED= J>; IJK:O 7H;7 ,?D9; J>; 9HEFB7D:I
?D ED; , >7L; H;B7J?L;BO I?C?B7H 7=H?9KBJKH7B 9>7H79J;H?IJ?9I 7D:
;DL?HEDC;DJ M; JH7?D 7D: 7FFBO J>; CE:;B <EH FH;:?9J?ED 7J J>; ,
B;L;B O <;;:?D= J>; J;IJ?D= I;J E< J>; 9EHH;IFED:?D= , JE J>; JH7?D;:
CE:;B 7 F?N;B8OF?N;B FH;:?9J?ED C7F E< J>; 9EC?D=O;7H 9HEF FB7DJ?D=
JOF; 97D 8; 9H;7J;: O H;F;7J?D= J>?I FHE9;:KH; , 8O , M; M?BB
=;J 7 9HEF FB7DJ?D= C7F <EH J>; ;DJ?H; IJK:O 7H;7
 5",4"3)/.
->; FH;:?9J?ED H;IKBJ M?BB 8; ;L7BK7J;: KI?D= EL;H7BB 799KH79O (
$7FF7 FH;9?I?ED H;97BB 7D:  I9EH; ->; ( C;7IKH;I J>; FHEFEHJ?ED
E< 9EHH;9JBO FH;:?9J;: F?N;BI M>;H; J>; I;J E< B78;BI ?D FH;:?9J?ED H;
IKBJ ;N79JBO C7J9>;I J>; 9EHH;IFED:?D= I;J E< B78;BI ?D J>; H;<;H;D9; ?C
7=; ?D 7BB F?N;BI $7FF7 E>;D  C;7IKH;I ?DJ;H7DDEJ7JEH 7=H;;
C;DJ M>?9> ?I :;YD;: 7I
M>;H; H;FH;I;DJI J>; 79JK7B E8I;HL;: 7=H;;C;DJ H;FH;I;DJI J>;
>OFEJ>;J?97B FHE878?B?JO E< 9>7D9; 7=H;;C;DJ
&;7DM>?B; M; KI; FH;9?I?ED 7D: H;97BB JE C;7IKH; J>; FH;:?9J?ED H;
IKBJ E< ;79> 9B7II ->; FH;9?I?ED 7D: H;97BB 97D 8; :;YD;: 7I <EBBEM
M>;H;  H;FH;I;DJI J>; DKC8;H E< JHK; FEI?J?L;I  H;FH;I;DJI J>;
DKC8;H E< <7BI; FEI?J?L;I 7D:  H;FH;I;DJI J>; DKC8;H E< <7BI; D;=7
J?L;I ->; FH;9?I?ED C;7IKH;I J>; 78?B?JO E< J>; FH;:?9JEH DEJ JE B78;B 7I
FEI?J?L; 7 I7CFB; J>7J ?I D;=7J?L; ->; H;97BB C;7IKH;I J>; 78?B?JO E< J>;
FH;:?9JEH JE YD: 7BB J>; FEI?J?L; I7CFB;I
BIE M; KI;  I9EH; JE 9EC8?D; FH;9?I?ED 7D: H;97BB M>?9> 97D 8;
:;YD;: 7I
->; L7BK; E< J>; 78EL; C;JH?9I B?;I 8;JM;;D 7D:  ->; >?=>;H J>;
L7BK; J>; 8;JJ;H J>; FH;:?9J?ED F;H<EHC7D9;
3. Experiments and results
->?I I;9J?ED FH;I;DJI 7 =HEKF E< ;NF;H?C;DJI JE L7B?:7J; J>; FHEFEI;:
C;J>E: ?HIJ M; J;IJ;: J>; FH;:?9J?ED CE:;B 7J J>; 9EKDJO B;L;B ,;9
J?ED  ->;D M; FH;:?9J;: 7D: L7B?:7J;: J>; 7DDK7B 9HEF FB7DJ?D=
C7FI <EH J>; ., EHD ;BJ ,;9J?ED  &EH;EL;H M; 9ECF7H;: J>;
9HEF 79H;7=; 97B9KB7J;: <HEC J>; FH;:?9J;: 9HEF FB7DJ?D= C7F M?J> J>;
% 7D: E<Y9?7B IJ7J?IJ?9I 8O ., ',, ,;9J?ED 
 /4.38,%5%, #1/0 0,".3).' 01%$)#3)/.
 %')/. /& ).3%1%23
0; I;B;9J;: %7D97IJ;H EKDJO E< ';8H7IA7 ,J7J; 7I J>; +(" JE J;IJ
J>; <;7I?8?B?JO E< J>; FH;:?9J?ED CE:;B ->; =;E=H7F>O E< J>; IJK:O
7H;7 ?I I>EMD ?D ?= "J ?I BE97J;: 7J 7IJ ';8H7IA7 , 
Fig. 6. N7CFB; E< C7FF?D= C79>?D;B;7HD;: FH;:?9J?ED H;IKBJ 87I;: ED J>; FHE878?B?JO :?IJH?8KJ?ED E< ,E<J&7N
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 7. ;E=H7F>O E< %7D97IJ;H EKDJO ';8H7IA7
M>?9> <7BBI ?D J>; M;IJ;HD F7HJ E< J>; ., EHD ;BJ ?= 7 I ED; E<
J>; JEF 7=H?9KBJKH7B FHE:K9J?ED 9EKDJ?;I ?D ';8H7IA7 %7D97IJ;H 9EKDJO
>7I  79H;I E< 7=H?9KBJKH7B B7D: M>?9> J7A;I  E< J>; JEJ7B B7D:
7H;7 99EH:?D= JE J>;  % IJ7J?IJ?9I ?= 8 9EHD 7D: IEO8;7DI
7H; JME :EC?D7DJ 9HEFI ?D J>?I 7H;7 7I M;BB 7I J>; ;DJ?H; ., EHD ;BJ
;I?:;I 7B<7B<7 799EKDJI <EH  E< 9HEFB7D:I "D J>?I ;NF;H?C;DJ M; FH;
:?9J;: 7D: ;L7BK7J;:  B7D: KI; 9B7II;I ;79> E< M>?9> J7A;I 7J B;7IJ
 E< J>; JEJ7B B7D: 7H;7 E< J>; 9EKDJO
 5",4"3)/. /& #/4.38,%5%, #1/0 0,".3).' 01%$)#3)/.
0; KI;: J>;  % :7J7 7I H;<;H;D9; :7J7 JE ;L7BK7J; J>; FH;
:?9J?ED H;IKBJ ->; FH;:?9J;: 9HEF FB7DJ?D= C7F E<  B7D: KI; 9B7II;I
79>?;L;: J>; ( E<  7D: $7FF7 L7BK; E<  -78B; IKCC7H?;I
J>; F;H<EHC7D9; E< J>; CE:;B ?D J>; 9EKDJOB;L;B J;IJ ->; J78B; ?I
IEHJ;: 8O J>; IKFFEHJ L7BK; M>?9> H;FH;I;DJI J>; DKC8;H E< % F?N
;BI E< ;79> 9B7II ?D J>;  % :7J7 EH 9B7II;I EJ>;H J>7D J>; 
Table 1
);H<EHC7D9; E< J>;  FH;:?9J?ED H;IKBJ <EH %7D97IJ;H EKDJO E< ';8H7IA7
B7II ,KFFEHJ )H;9?I?ED +;97BB I9EH;
,EO8;7D    
EHD    
H7IIB7D:)7IJKH;    
;9?:KEKIEH;IJ    
;L;BEF;:%EM"DJ;DI?JO    
;L;BEF;:(F;D,F79;    
;L;BEF;:&;:"DJ;DI?JO    
(J>;H!7O'EDB<7B<7    
(F;D07J;H    
;L;BEF;:!?=>"DJ;DI?JO    
(J>;HI    
B<7B<7    
J7H=;J B7D: KI; 9B7II;I J>;O M;H; B78;B;: 7I EJ>;HI:KH?D= J>; IJ;F E<
:7J7 FH;FHE9;II?D= "J ?I <EKD: J>7J J>; FH;9?I?ED H7J; E< 7BB 9B7II;I M7I
I7J?I<79JEHO ->;  I9EH; <EH CEIJ 9B7II;I ?D9BK:?D= J>; JME :EC?D7J;
9HEFI 9EHD 7D: IEO8;7D ;N9;;:I  !EM;L;H J>; H;97BB H7J; E< EJ>;H
>7ODED7B<7B<77D: EJ>;HIM7I BEM ->;H; 7H; JME C7?D H;7IEDI <EH
J>; BEM H;97BB H7J; (D J>; ED; >7D: J>; EJ>;H97J;=EHO C?N;: :?<<;H
;DJ 9B7II;I ?DJE J>; I?D=B; ED; ->KI CEIJ EJ>;H97J;=EHO F?N;BI :E DEJ
>7L; 9B;7H 9HEF I;GK;D9; F7JJ;HDI (D J>; EJ>;H >7D: J>; 9HEF 97J;=EHO
E< % :7J7 C7O L7HO O;7H 8O O;7H EH ;N7CFB; J>;  % <EH %7D
97IJ;H EKDJO :E;I DEJ ?D9BK:; EJ>;H >7ODED7B<7B<79B7II
->; FHE:K9J?ED E< 9HEF FB7DJ?D= C7F ?I 87I;: ED J>; FHE878?B?JO :?I
JH?8KJ?ED E< ,E<J&7N <KD9J?ED O YBJ;H?D= J>; F?N;BI E< BEM;H FHE87
8?B?JO 7 9HEF FH;:?9J?ED C7F E< >?=>FHE878?B?JO F?N;BI 97D 8; 9H;7J;:
->; JH7:;E\ >;H; ?I J>; DKC8;H E< FH;:?9J;: F?N;BI MEKB: 8; H;:K9;:
7=7?DIJ 7D ?D9H;7I?D= FHE878?B?JO J>H;I>EB: ?= I>EMI J>; 9KHL;I E<
FH;:?9J?ED F;H<EHC7D9; L;HI;I J>; FHE878?B?JO J>H;I>EB: <EH 9EHD IEO
8;7DI 7D: 7B<7B<7 <HEC J>; FH;:?9J?ED H;IKBJ
 "00).' /& #/4.38,%5%, #1/0 0,".3).' 01%$)#3)/.
->; YD7B EKJFKJ E< J>; FH;:?9J?ED <H7C;MEHA ?I 7D 7DDK7B 9HEF FB7DJ
?D= C7F M>?9> ?I I?C?B7H JE J>; % FHE:K9J 7D: ?JI FHE878?B?JO C7F
87I;: ED J>; ,E<J&7N <KD9J?ED ?= 9ECF7H;I J>; FHE878?B?JO C7F
?= 7 7D: 9HEF FB7DJ?D= C7F ?= 8 E< C79>?D;B;7HD;: FH;:?9
J?ED M?J> J>; % :7J7 ?= 9 E< %7D97IJ;H EKDJO "D =;D;H7B J>;
IF7J?7B :?IJH?8KJ?ED E< CEIJ 9HEFB7D:I ?D J>; FH;:?9J;: 9HEF FB7DJ?D= C7F
?I 9EDI?IJ;DJ M?J> J>; % (DBO 7 IC7BB DKC8;H E< C?IFH;:?9J;: F?N;BI
97D 8; L?IK7BBO :?I9;HD;:
7I;: ED J>; FH;:?9J?ED H;IKBJ E< J>; <EBBEM?D= O;7H J>; CKBJ?O;7H
9HEF FB7DJ?D= C7FI 97D 8; H;9KHI?L;BO FH;:?9J;: EH ;N7CFB; 8O KI
?D= J>; FH;:?9J?ED H;IKBJ E<  7I D;M H;<;H;D9; :7J7 M; 97D FH;
:?9J J>; 9HEF FB7DJ?D= C7F E<  ?=  9ECF7H;I J>; 9HEF FB7DJ?D=
C7FI <HEC  JE  O 9ECF7H?D= J>;  %  % 7D:
Fig. 8. KHL;I E< FH;:?9J?ED F;H<EHC7D9; LI FHE878?B?JO J>H;I>EB:
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 9. ECF7H?IED E< C79>?D;B;7HD;: FH;:?9J?ED 7D: % <EH %7D97IJ;H EKDJO E< ';8H7IA7 ,J7J; ->; FHE878?B?JO C7F H;FH;I;DJI J>; IF7J?7B :?IJH?8KJ?ED E< J>; >?=>;IJ FHE878?B?JO <HEC
J>; ,E<J&7N <KD9J?ED J>; 8H?=>J;H J>; F?N;B J>; >?=>;H J>; FHE878?B?JO BB F?N;BI E< J>; 9HEF FB7DJ?D= C7F 7H; 97J;=EH?P;: 7I ED; E< B7D: KI; 9B7II;I
Fig. 10. HEF FB7DJ?D= C7FI <HEC  JE 
J>; FH;:?9J?ED C7FI <HEC  JE  M; 97D E8I;HL; C7DO 9EHDIEO
8;7D HEJ7J?EDI >7FF;D?D= EL;H J?C;
 1/0 0,".3).' 01%$)#3)/. &/1 3(%  /1. %,3
0?J> J>; IK99;II E< J>; 9EKDJOB;L;B 9HEF FH;:?9J?ED M; I97B;: KF
J>; FHEFEI;: C79>?D; B;7HD?D= C;J>E: JE , B;L;B 7D: FH;:?9J;: J>;
7DDK7B 9HEF FB7DJ?D= C7FI <EH J>; ., EHD ;BJ ->;H; 7H; JME C7?D
:?<<;H;D9;I ?D J>; 9EDY=KH7J?ED 8;JM;;D J>; 9EKDJOB;L;B ;NF;H?C;DJ
7D: J>; ,B;L;B ;NF;H?C;DJ ->; YHIJ :?<<;H;D9; ?I J>; DKC8;H E< FH;
:?9J?ED 97J;=EH?;I ->; 9EKDJOB;L;B ;NF;H?C;DJ FH;:?9J;:  B7D: KI;
9B7II;I !EM;L;H CEIJ E< J>;C 7H; DEJ 9HEFI -E >?=>B?=>J J>; 97F78?B?JO
E< 9HEF FB7DJ?D= FH;:?9J?ED <EH J>; FHEFEI;: 7FFHE79> J>?I ;NF;H?C;DJ
EDBO <E9KI;: ED J>; C7@EH 9HEF JOF;I ?; 9EHD 7D: IEO8;7D EL;H J>;
., EHD ;BJ 79> F?N;B MEKB: 8; FH;:?9J;: 7I ED; E< J>H;; 97J;=EH?;I
9EHD IEO8;7D EH EJ>;HI ->; I;9ED: :?<<;H;D9; ?I J>; I;B;9J?ED E< JH7?D
?D= I7CFB;I ->; ,B;L;B FH;:?9J?ED MEKB: >7D:B; CK9> CEH; F?N
;BI J>7D J>; 9EKDJOB;L;B FH;:?9J?ED -E ?CFHEL; J>; JH7?D?D= ;<Y9?;D9O
;79> ,B;L;B % :7J7 I;J M7I H;I?P;: 7D: EDBO ED; E< J;D F?N;BI M;H;
KI;: 7I J>; JH7?D?D= I7CFB;I
-E <KHJ>;H L;H?<O J>; FHEFEI;: CE:;B M; 7FFB?;: J>; I7C; ''
<H7C;MEHA JE =;D;H7J; J>; 9HEF FB7DJ?D= C7F E< J>H;; 9EDI;9KJ?L;
O;7HI  7D: ;L7BK7J;: J>; H;IKBJ M?J>  %  %
7D:  % H;IF;9J?L;BO &EH;EL;H 7D 7DDK7B 9HEF FB7DJ?D= C7F
E<  M7I 9H;7J;: -78B; B?IJI J>; <KBB :7J7 I;J KI;: <EH
Table 2
7J7 I;J KI;: <EH FH;:?9J?D= 9HEF FB7DJ?D= C7F E< 
2;7H -H7?D?D=,;J%78;B,;J -;IJ?D=,;J +;<;H;D9;,;J
 %%
%%
%% 7
% %
 %%
%%
%%
% %
 %%
%%
%%
% %
 %%
%%
%%
% '
7.D7L7?B78B; <EH &?DD;IEJ7 (>?E 7D: ,EKJ> 7AEJ7
FH;:?9J?D= 9HEF FB7DJ?D= C7FI <HEC  JE  K; JE J>; KD7L7?B
78?B?JO E< J>; >?IJEH?97B % :7J7 <EH &?DD;IEJ7 (>?E 7D: ,EKJ> 7AEJ7
8;<EH;  EDBO JME IK8I;JI %  7D: % 
M;H; KI;: JE 8K?B: J>; H;9KHI?L; JH7?D?D= I;J E< J>;  FH;:?9J?ED
CE:;B <EH IEC; ,I
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
 5",4"3)/. /& ,%5%, #1/0 0,".3).' 01%$)#3)/.
?=  ?BBKIJH7J;I J>; ( 7D: $7FF7 L7BK; <EH 9HEF FB7DJ?D= C7FI
E< 7BB ,I <HEC  JE  0; 97D I;; J>; FH;:?9J?ED H;IKBJ E<
CEIJ ,I 97D 79>?;L; J>; >?=> (  7D: J>; <7?H $7FF7 L7BK;
 !EM;L;H J>; EL;H7BB F;H<EHC7D9; <EH IEC; ,I BE97J;: ?D
,EKJ> 7AEJ7 'EHJ> 7AEJ7 7D: (>?E M7I DEJ I7J?I<79JEHO
-E C;7IKH; J>; EL;H7BB FH;:?9J?ED F;H<EHC7D9; EL;H J>; ;DJ?H; IJK:O
7H;7 M; 97B9KB7J;: J>; >?=>;IJBEM;IJ L7BK; C;7D 7D: C;:?7D <EH J>;
( $7FF7 I9EH; FH;9?I?ED H;97BB 7D:  I9EH; E< 7BB ,B;L;B 9HEF
FB7DJ?D= C7FI <EH ;79> J7H=;J O;7H ?=  FH;I;DJI J>; EL;H7BB F;H<EH
C7D9; 7I 8EN FBEJ DEJ?9;78B; <;7JKH; E< J>; H;IKBJ M7I J>; H;B7J?EDI>?F
8;JM;;D O;7H 7D: F;H<EHC7D9; BJ>EK=> ?J ?I DEJ :H7C7J?9 M; 97D IJ?BB
E8I;HL; J>; F;H<EHC7D9; E< ( 7D: $7FF7 ?= 7 J>; FH;9?I?ED H7J;
E< IEO8;7DI ?= 8 J>; H;97BB H7J; E< 9EHD 7D: IEO8;7DI ?= 9
7D:  I9EH; E< 9EHD 7D: IEO8;7DI ?= : >7: =H7:K7BBO ?D9H;7I;:
7D: H;79>;: J>; >?=>;IJ ?D  ->; KD:;HBO?D= H;7IED <EH J>?I 9>7D=;
?I J>; ?CFHEL;C;DJ E< J>; % :7J7 GK7B?JO O;7H 7<J;H O;7H ,?D9; J>;
JH7?D?D= I;J 7D: J;IJ?D= I;J M;H; 8K?BJ M?J> J>; CEIJ H;9;DJ O;7H %
J?C; I;H?;I J>; FH;:?9J?ED CE:;B 7I M;BB 7I J>; C79>?D;B;7HD;: 9HEF
FB7DJ?D= C7FI MEKB: 8; CEH; H;B?78B; EL;H J?C;
 "00).' /& ,%5%, #1/0 0,".3).' 01%$)#3)/.
I?:;8OI?:; 9ECF7H?IED E< J>; ,B;L;B 9HEF FB7DJ?D= FH;:?9J?ED
C7FI 7D: % M7I FH;I;DJ;: ?D ?=  ->; FH;:?9J;: IF7J?7B :?IJH?8
KJ?ED C7FI E< 9EHD 7D: IEO8;7DI EL;H J>; ., EHD ;BJ <HEC  JE
 7H; :?IFB7O;: ?D ?= 7 9 7D: ; H;IF;9J?L;BO ->; :;J7?BI
E< JME +("I ED; ?I BE97J;: 7J J>; , E< C;:?7D ( 7D: J>; EJ>;H ?I
BE97J;: 7J J>; , E< C;:?7D $7FF7 L7BK; 7H; :;CEDIJH7J;: ?D ;79> Y=
KH; I 7 9EDJHEB J>; % C7FI E< J>; 9EHH;IFED:?D= O;7H 7H; =?L;D ?D
?= 8 : 7D: < H;IF;9J?L;BO
"D 7::?J?ED M; C7:; J>; FH;:?9J;: 7DDK7B 9HEF FB7DJ?D= C7F <EH
 87I;: ED J>; B7J;IJ % :7J7 ,?C?B7H JE J>; 78EL; ?CFB;C;D
J7J?ED J>; FH;:?9J?ED CE:;B E<  M7I JH7?D;: KI?D= J>; H;9KHI?L;
JH7?D?D= I;JI E< % J?C; I;H?;I E<  B78;B;: M?J>  %
% J?C; I;H?;I E<  B78;B;: M?J>  % 7D: % J?C;
I;H?;I E<  B78;B;: M?J>  % ->;D J>; 9HEF FB7DJ?D=
FH;:?9J?ED C7F E<  M7I 9H;7J;: 8O 7FFBO?D= % J?C; I;H?;I E<
 JE J>; JH7?D;: CE:;B ?=  :;F?9JI J>; FH;:?9J;: 9HEF
FB7DJ?D= C7F E<  K; JE J>; B79A E< ?DI;7IED H;CEJ; I;DI?D=
:7J7 7D: ?DY;B: IKHL;O :7J7 ?D J>; H;7B 7=H?9KBJKH7B FH79J?9; ?J ?I :?<
Y9KBJ JE ;L7BK7J; J>; 799KH79O E< C79>?D;B;7HD;: FH;:?9J?ED 8;<EH;
J>; 8;=?DD?D= E< 7 =HEM?D= I;7IED 7I;: ED J>; F;H<EHC7D9; E< J>;
Fig. 11. L7BK7J?ED E< J>; C79>?D;B;7HD;: 9HEF FB7DJ?D= C7FI 7J , B;L;B
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 12. EN FBEJ E< J>; EL;H7BB FH;:?9J?ED F;H<EHC7D9; <HEC  JE  ->; KFF;H 7D: BEM;H 8EKD:I E< J>; 8EN H;FH;I;DJ J>; YHIJ 7D: J>?H: GK7HJ?B;I ->; 9HEII C7HA 87H ?D J>; 8EN
7D: L;HJ?97B B?D; ?D:?97J; J>; C;7D C;:?7D 7D: C?D?CKCC7N?CKC 8EKD: H;IF;9J?L;BO ->; EKJB?;HI E< ;79> 9BKIJ;H 7H; I>EMD 7I J>; IEB?: :EJ
>?IJEH?97B L7B?:7J?ED H;IKBJI J>; C79>?D;B;7HD;: FH;:?9J?ED E< 9HEF
FB7DJ?D= C7F E< 9EHD 7D: IEO8;7DI ?I ;NF;9J;: JE H;79>  (
 1/0 "#1%"'% %23)-"3)/. &1/- #1/0 0,".3).' -"0
 ",)$"3)/. /& #1/0 "#1%"'% 42).' 
HEF 79H;7=; ?I ED; E< J>; CEIJ 9H?J?97B ?D<EHC7J?ED ?D 7=H?9KBJKH7B
:;9?I?ED C7A?D=I ->; C79>?D;B;7HD;: 9HEF FB7DJ?D= FH;:?9J?ED C7F
97D 8; FEJ;DJ?7BBO KI;: <EH FH;:?9J?D= <KJKH; 9HEF 79H;7=; ->?I ;NF;H
?C;DJ 7?CI JE ;L7BK7J; J>; 799KH79O E< 9HEF 79H;7=; 97B9KB7J;: <HEC
J>; C79>?D;B;7HD;: 9HEF FB7DJ?D= C7F ?=  ?BBKIJH7J;I J>; 9EH
H;B7J?ED 8;JM;;D ,B;L;B 9HEF 79H;7=;I :;H?L;: <HEC J>; C79>?D;
B;7HD;: 9HEF FB7DJ?D= FH;:?9J?ED C7F 7D: % <EH J>; ;DJ?H; IJK:O 7H;7
"J 97D 8; <EKD: <HEC J>; Y=KH; J>7J J>;H; ?I 7 >?=> 9EHH;B7J?ED 
J>HEK=>EKJ 7BB E8I;HL;: O;7HI  JE  ,F;9?<?97BBO J>; 9E
;<Y9?;DJ E< 9EHD 7D: IEO8;7D A;FJ =E?D= KF EL;H J?C; 7D: H;79>;: J>;
>?=>;IJ L7BK; ?D 
 ",)$"3)/. /& #1/0 "#1%"'% 42).' /;#)", 23"3)23)#2
-E L7B?:7J; J>; FH;:?9J;: 9HEF 79H;7=; M?J> J>; E<Y9?7B IJ7J?IJ?9I
M; E8J7?D;: J>; :7J7 E< ,B;L;B 79H;I FB7DJ;: <HEC J>; ., ',,
"EM7 ?;B: (<Y9; M>?9> 97D 8; 799;II;: 7J >JJFIMMMD7IIKI:7
=EL,J7J?IJ?9I68O6,J7J;"EM7?D:;NF>F 99EH:?D= JE J>; IJ7J?IJ?9I <HEC
., ',, "EM7 H7DAI IJ ?D J>; ., ?D 9EHD 7D: D: ?D IEO8;7DI
UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 13. ECF7H?IED E< ,B;L;B FH;:?9J?ED H;IKBJ 7D: % 2;BBEM F?N;BI H;FH;I;DJ 9EHD =H;;D F?N;BI H;FH;I;DJ IEO8;7D +("I ?D ;79> Y=KH; 7H; BE97J;: 7J J>; , E< C;:?7D ( 7D:
J>; , E< C;:?7D $7FF7 L7BK; H;IF;9J?L;BO EH ?DJ;HFH;J7J?ED E< J>; H;<;H;D9;I JE 9EBEKH ?D J>?I Y=KH; B;=;D: J>; H;7:;H ?I H;<;HH;: JE J>; M;8 L;HI?ED E< J>?I 7HJ?9B;
FHE:K9J?ED (L;H  C?BB?ED 79H;I E< 9EHD 7D:  C?BB?ED 79H;I E<
IEO8;7DI M;H; >7HL;IJ;: ?D  ->; ',, HEFI,JE9AI IKHL;O 9EB
B;9JI J>; :;J7?B;: ;IJ?C7J;I E< 9HEF 79H;7=; <HEC <7HC 7D: H7D9> EF;H7
JEHI <EKH J?C;I F;H O;7H "D J>?I ;NF;H?C;DJ J>; :7J7 E< 79H;I FB7DJ;: 7H;
9EBB;9J;: ?D #KD; ?=  ?BBKIJH7J;I J>; 9EHH;B7J?ED 8;JM;;D J>; FH;
:?9J;: 9HEF 79H;7=; 7D: J>; E<Y9?7B IJ7J?IJ?9I E< 79H;I FB7DJ;: ?D "EM7
->; H;IKBJ I>EMI J>7J J>; +9E;<Y9?;DJ ?I >?=>;H J>7D  <EH 8EJ> 9EHD
7D: IEO8;7DI ?D 7BB E8I;HL;: O;7HI
-78B; IKCC7H?P;I J>; JEJ7B 79H;7=; E< ;79> 9HEF JOF; <EH "EM7
->?I H;IKBJ IK==;IJI J>; C79>?D;B;7HD;: 9HEF 79H;7=; FH;:?9J?EDI E<
9EHD ?I L;HO 9BEI; JE J>; % :7J7 ->; C79>?D;B;7HD;: 9HEF 79H;7=; ;I
J?C7J;I E< IEO8;7DI ED J>; EJ>;H >7D: ?I 7 B?JJB; 8?J BEM;H 8KJ IJ?BB 9BEI;
JE J>; % :7J7 ->; 9HEF 79H;7=; E< 8EJ> C79>?D;B;7HD;: H;IKBJ 7D:
% 7H; B;II J>7D J>; E<Y9?7B IJ7J?IJ?9I

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 14. &79>?D;B;7HD;: FH;:?9J?ED E< 7DDK7B 9HEF FB7DJ?D= C7F ?D 
4. Discussion
 00,)#"3)/.2 /& -"#().%,%"1.%$ #1/0 0,".3).' -"0
->?I IJK:O FHEL?:;I 7 D;M F;HIF;9J?L; <EH 9HEF FB7DJ?D= FH;:?9J?ED
?<<;H;DJ <HEC J>; ?DI;7IED 7D: FEIJI;7IED 9HEF C7FF?D= J>; FHE
FEI;: 7FFHE79> 97D FH;:?9J J>; IF7J?7B :?IJH?8KJ?ED E< Y;B:B;L;B 9HEF
FB7DJ?D= 8;<EH; J>; 8;=?DD?D= E< =HEM?D= I;7IED ->; C79>?D;B;7HD;:
9HEF FB7DJ?D= C7F 97D 8; KI;: JE IKFFEHJ C7DO 7=H?9KBJKH7B 7FFB?97J?EDI
7D: :;9?I?ED C7A?D=I IK9> 7I 9HEF 79H;7=; ;IJ?C7J?ED 9HEF O?;B: FH;
:?9J?ED 9HEF CE:;B?D= 7D: 7=H?9KBJKH7B 9ECCE:?JO JH7:?D= &EH; ?C
FEHJ7DJBO J>; FH;:?9J;: F?N;BI M?J> >?=> FHE878?B?JO 97D 8; KI;: 7I J>;
Y;B:B;L;B H;<;H;D9; :7J7 JE <79?B?J7J; C7DO ;7HBOI;7IED?DI;7IED %.%
IJK:?;I ;IF;9?7BBO J>; C79>?D; B;7HD?D= 7FFB?97J?EDI M>?9> H;GK?H; 7
B7H=; 7CEKDJ E< H;<;H;D9; :7J7 7I JH7?D?D= B78;BI BIE J>; FH;:?9J?ED
E< IF7J?7B :?IJH?8KJ?ED E< 9HEF FB7DJ?D= M?BB FHEL?:; L7BK78B; ?D<EHC7J?ED
<EH 7=H?9KBJKH; FEB?9OC7A;HI 7I M;BB 7I J>; 7=H?9KBJKH; 9ECF7D?;I
 (8 42).' 1%#412)5% 31").).' 2%32
->;H; 7H; :?<<;H;DJ 9EC8?D7J?EDI E< J>; DKC8;H E< H;9KHI?L; IK8
I;JI 7D: J>; CEL?D= M?D:EM E< J>; >?IJEH?97B % J?C; I;H?;I 0; 97D
9>EEI; ;?J>;H J>H;; H;9KHI?L; IK8I;JI M?J> O;7H CEL?D= M?D:EM EH @KIJ
ED; IK8I;J M?J> 7 O;7H CEL?D= M?D:EM 0>?B; :;I?=D?D= J>; IJHK9
JKH; E< J>; JH7?D?D= I;J CKBJ?FB; 9EC8?D7J?EDI M;H; 9EDI?:;H;: 99EH:
?D= JE EKH J;IJ M; <EKD: J>; 9EC8?D7J?ED E< J>H;; H;9KHI?L; IK8I;JI
M?J> O;7H CEL?D= M?D:EM 97D H;79> J>; 8;IJ F;H<EHC7D9; ->?I H;
IKBJ 9EKB: 8; 97KI;: 8O J>; <EBBEM?D= H;7IEDI ?HIJ J>; GK7B?JO E< J>;
;7HBOO;7H % :7J7 ?I DEJ 7I =EE: 7I J>; B7J;IJ % :7J7 ->;H; 7H;
C7DO F?N;BI C?I9B7II?Y;: EH 9EL;H;: M?J> 9BEK: 8;<EH;  "< M; 8K?B:
J>; JH7?D?D= I;J 87I;: ED 7 L;HO BED= J?C; I;H?;I J>;I; F?N;BI M?J> ?D9EH
H;9J ?D<EHC7J?ED M?BB 7<<;9J J>; FH;:?9J?ED F;H<EHC7D9; ,;9ED: :?<<;H
;DJ 9HEFB7D: KD?JI C?=>J >7L; :?<<;H;DJ 9HEF I;GK;D9;I "< J>; E8I;HL;:
J?C; I;H?;I ?I DEJ BED= ;DEK=> J>; F7JJ;HD E< 9HEF I;GK;D9; 97DDEJ 8;
M;BB B;7HD;: 8O J>; FH;:?9J?ED CE:;B ->?H: J>; H;9KHI?L; JH7?D?D= I;J
9EDJ7?DI 9HEF FB7DJ?D= ?D<EHC7J?ED <EH J>; B7IJ J>H;; 9EDI;9KJ?L; O;7HI
->; FH;:?9J?ED CE:;B JH7?D;: M?J> J>; I?D=B;O;7H B78;B;: JH7?D?D= I;J
J>EK=> EDBO H;<;HI JE J>; B7IJ O;7HI 9HEF FB7DJ?D= H;IKBJI -E 8; 8H?;<
J>; CEL?D= M?D:EM E< J>; JH7?D?D= I;J 97DDEJ 8; JEE BED= EH JEE I>EHJ
8KJ I>EKB: 9EL;H J>; F;H?E: E< CEIJ 9HEF HEJ7J?ED F7JJ;HDI
 $5".3"'%2 /& #1/0 01%$)#3)/. 42).' -"#().% ,%"1.).'
!;H; M; IKCC7H?P; IEC; 7:L7DJ7=;I E< J>; FHEFEI;: C79>?D; B;7HD
?D= <H7C;MEHA ?HIJ J>; FHEFEI;: <H7C;MEHA ?I ;7IO JE ?CFB;C;DJ
J>; EDBO H;GK?H;: ?DFKJ ?I J>; >?IJEH?97B % J?C; I;H?;I :7J7 (D9; J>;
FHE9;II ?I :ED; 7 H7IJ;H =;EH;<;H;D9;: C79>?D;B;7HD;: 9HEF FB7DJ?D=
FH;:?9J?ED C7F M?BB 8; =;D;H7J;: 'E H;CEJ; I;DI?D= :7J7 EH ?DI;7IED
9HEF FB7DJ?D= ?D<EHC7J?ED 7H; D;;:;:
->; FH;:?9J?ED CE:;B 97D B;7HD C7DO ?DJH?97J; 9HEF I;GK;D9; F7J
J;HDI "J ?I M;BB ADEMD J>7J 7 BEJ E< 9HEFB7D:I ?D J>; ., EHD ;BJ >7I
IF;9?Y9 9HEF HEJ7J?ED F7JJ;HDI IK9> 7I CEDE9HEFF?D= EH 7BJ;HD7J; 9HEF
F?D= KJ C7DO E< J>;C :E DEJ IJH?9JBO <EBBEM ED; F7JJ;HD EL;H 7 BED=
F;H?E: ->; D;KH7B D;JMEHA 97D B;7HD DEJ EDBO H;=KB7H 9HEF HEJ7J?ED F7J
J;HDI 8KJ 7BIE IEC; ?HH;=KB7H F7JJ;HDI
->; C79>?D;B;7HD;: 9HEF FB7DJ?D= FH;:?9J?ED C7F ?I FHE:K9;:
87I;: ED J>; FHE878?B?JO :?IJH?8KJ?ED <HEC ,E<J&7N B7O;H O I;JJ?D= J>;
J>H;I>EB: ED J>; FHE878?B?JO :?IJH?8KJ?ED 7 9HEF FB7DJ?D= FH;:?9J?ED C7F
M?J> 7 >?=>;H FHE878?B?JO E< 7=H;;C;DJ 97D 8; 9H;7J;: EH ;N7CFB; ?<
M; I;J J>; FHE878?B?JO J>H;I>EB: JE  J>; FH;:?9J;: F?N;BI 7H; ;N
F;9J;: JE >7L; 7 >?=>;H 7=H;;C;DJ M?J> J>; % KJ J>; 9EIJ ?I M?J>
J>; ?D9H;7I; E< J>H;I>EB: CEH; F?N;BI M?BB 8; YBJ;H;: EKJ
::?J?ED7BBO J>; FHEFEI;: C79>?D; B;7HD?D= <H7C;MEHA ?I Z;N?8B;
7D: ;NJ;D:78B; M>?9> 97D 8; KI;: ?D J>; FH;:?9J?ED E< 9HEF C7FF?D=
FHE:K9JI EJ>;H J>7D % EH ;N7CFB; 8O 7FFBO?D= J>; J?C; I;H?;I E<
DDK7B HEF "DL;DJEHO M>?9> ?I J>; 7DDK7B 9HEF C7FF?D= FHE:K9J E<
7D7:7 H;B;7I;: 8O =H?9KBJKH; 7D: =H?EE: 7D7:7  JE J>;
<H7C;MEHA 7 9HEF FB7DJ?D= C7F E< 7D7:7 97D 8; FEJ;DJ?7BBO FH;:?9J;:
 )-)3"3)/.2 ".$ 0/3%.3)", 2/,43)/.2
->;H; 7H; IJ?BB IEC; B?C?J7J?EDI ED J>; 9KHH;DJ ?CFB;C;DJ7J?ED E<
J>; FHEFEI;: CE:;B ->?I IJK:O KI;I J>; >?IJEH?97B % JE 8K?B: JH7?D
?D=J;IJ?D= I;J 7D: ;L7BK7J; J>; FH;:?9J;: 9HEF FB7DJ?D= C7F !EM;L;H
% ?I DEJ J>; =HEKD: JHKJ> :7J7 ;L;D J>EK=> ?J H;79>;I >?=> 799KH79O
 <EH 9B7II?<O?D= C7@EH 9HEF JOF;I EL;H ('., ->;H;<EH; ;HHEHI
97DDEJ 8; 7LE?:;: ?D J>; FH;:?9J?ED H;IKBJ 87I;: ED J>; >?IJEH?97B %
:7J7 ->; ;NF;H?C;DJ ,;9J?EDI  7D:  KI;: % 7I H;<;H;D9;
:7J7 JE ;L7BK7J; J>; FH;:?9J?ED H;IKBJ :K; JE J>; KD7L7?B78?B?JO E< J>;
=HEKD: JHKJ> :7J7 ,JH?9JBO IF;7A?D= J>; ;L7BK7J?ED H;IKBJ ?I 9BEI; JE J>;
JHKJ> 8KJ DEJ 78IEBKJ;BO 799KH7J; -E <KHJ>;H ;L7BK7J; J>; FH;:?9J?ED H;
IKBJ J>; =HEKD: JHKJ> :7J7 7H; H;GK?H;:

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 15. ECF7H?IED E< % 7D: C79>?D;B;7HD;: FH;:?9J;: 9HEF 7H;7 7J , B;L;B

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Fig. 16. ECF7H?IED E< E<Y9?7B IJ7J?IJ?9I 7D: C79>?D;B;7HD;: 9HEF 79H;7=; FH;:?9J?ED 7J , B;L;B

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
Table 3
,KCC7HO E< 9HEF 79H;7=; ;IJ?C7J;I <EH "EM7 <HEC  JE 
2;7H EHD ,EO8;7D
&79>?D;B;7HD;: % ([9?7BIJ7J?IJ?9I &79>?D;B;7HD;: % ([9?7BIJ7J?IJ?9I
      
      
      
BJ>EK=> J>; FH;:?9J?ED H;IKBJI <EH CEIJ ,I M;H; =EE: J>; EL;H7BB
F;H<EHC7D9; <EH IEC; IF;9?Y9 H;=?EDI IK9> 'EHJ> 7AEJ7 , 
,  7D: ,  M;H; DEJ I7J?I<79JEHO ;97KI; 'EHJ>
7AEJ7 >7I 7 CEH; :?L;HI; B7D:I97F; J>; C7?D 9HEFI EL;H J>;I; ,I
7H; DEJ EDBO 9EHD 7D: IEO8;7D 8KJ 7BIE C7DO EJ>;H 9HEFI ->; 9HEF I;
GK;D9; E< IK9> 9HEFB7D:I 9EKB: 8; CEH; ?DJH?97J; 7D: :?L;HI; -E B;J J>;
C79>?D; <KBBO B;7HD J>; FEJ;DJ?7B 9HEF I;GK;D9; F7JJ;HDI 7 BED= >?IJEH?
97B E8I;HL7J?ED ?I H;GK?H;: FEJ;DJ?7B IEBKJ?ED ?I ?D9H;7I?D= J>; CEL?D=
M?D:EM I?P; E< JH7?D?D= I7CFB;I J>KI CEH; >?IJEH?97B 9HEF FB7DJ?D= ?D
<EHC7J?ED MEKB: 8; ?D9BK:;: ?D J>; JH7?D?D= I;J
&?N;: F?N;BI M>?9> 7H; BE97J;: ED J>; C7H=?D E< ;79> B7D: KD?J C7O
FHEL?:; MHED= H;<;H;D9; :7J7 ?D 8EJ> JH7?D?D=J;IJ?D= I;J L;D J>EK=>
J>;I; F?N;BI 799EKDJ <EH 7 IC7BB FHEFEHJ?ED ?D 7BB % F?N;BI J>;O C?=>J
IJ?BB 7<<;9J J>; F;H<EHC7D9; E< J>; FH;:?9J?ED H;IKBJ ->;H;<EH; J>; F;H
<EHC7D9; E< J>; FH;:?9J?ED CE:;B 97D 8; ?CFHEL;: 8O H;CEL?D= J>;I;
C?N;: F?N;BI <HEC J>; JH7?D?D= I;J
,?D9; J>?I IJK:O :?: DEJ <E9KI ED J>; :;I?=D 7D: :;L;BEFC;DJ E< D;M
:;;F B;7HD?D= 7B=EH?J>CI J>; 9KHH;DJ '' ?CFB;C;DJ7J?ED 97D 8; <KH
J>;H ?CFHEL;: -E 79>?;L; J>; EFJ?C7B F;H<EHC7D9; J>; >OF;HF7H7C;
J;HI IK9> 7I B;7HD?D= H7J;I M;?=>JI EFJ?C?P;H BEII <KD9J?ED 79J?L7J?ED
<KD9J?ED 7D: 87J9> I?P; E< J>; FH;:?9J?ED CE:;B D;;: JE 8; IF;9?<?97BBO
JKD;: <EH ;79> , EH 9EKDJO
->; FHEFEI;: C;J>E: EDBO B;7HDI J>; F7JJ;HD <HEC J>; >?IJEH?97B 9HEF
FB7DJ?D= C7FI ->;H;<EH; ?J ?I IJ?BB 7 9>7BB;D=; JE 9EHH;9JBO FH;:?9J J>;
9HEF JOF; <EH B7D: KD?JI J>7J 8H;7A J>; F7JJ;HD ?D J>; 9EC?D= O;7H +;7
IEDI <EH 8H;7A?D= J>; F7JJ;HDI 7H; 9ECFB;N M>?9> 9EKB: 8; H;B7J;: JE
C7DO :OD7C?9 7D: KD9;HJ7?D <79JEHI IK9> 7I C7HA;J I?JK7J?ED =EL;HD
C;DJ FEB?9O IE9?E;9EDEC?9 <79JEHI M;7J>;H H7?D<7BB 7D: J;CF;H7JKH;
J>; ;<Y9?;D9O E< ?HH?=7J?ED IOIJ;CI GK7B?JO E< 9HEF I;;:I IE?B GK7B?JO
7D: D7JKH7B >7P7H:I -E <KHJ>;H EFJ?C?P; J>; '' <H7C;MEHA EJ>;H ?D
<EHC7J?ED IK9> 7I >?IJEH?97B 7D: <KJKH; 7=H?9KBJKH7B 9ECCE:?JO FH?9;I
D;;: JE 8; 9EDI?:;H;:
5. Conclusion and future works
->?I IJK:O ;NFBEH;: J>; <;7I?8?B?JO E< KI?D= C79>?D; B;7HD?D= JE FH;
:?9J J>; Y;B:B;L;B 7DDK7B 9HEF FB7DJ?D= C7F 87I;: ED J>; >?IJEH?97B %
:7J7 D ;D:JE;D: C79>?D; B;7HD?D= <H7C;MEHA 87I;: ED CKBJ?B7O;H
'' 7D: H;9KHI?L; JH7?D?D= I;J M7I :;L;BEF;: 7D: :;CEDIJH7J;: ->;
;NF;H?C;DJ H;IKBJ E< %7D97IJ;H EKDJO E< ';8H7IA7 ,J7J; I>EMI J>; C7
9>?D;B;7HD;: 9HEF FB7DJ?D= C7F 97D H;79>  7=H;;C;DJ M?J> J>; %
:7J7 O I97B?D= KF J>; FHEFEI;: 7FFHE79> JE J>; ., EHD ;BJ M; 97D
9ED9BK:; J>; ,B;L;B C79>?D;B;7HD;: 9HEF FB7DJ?D= C7F ?I ;NF;9J;:
JE H;79>  7=H;;C;DJ M?J> J>; <KJKH; % &;7DM>?B; J>; ,B;L;B
9HEF 79H;7=; 97B9KB7J;: <HEC J>; C79>?D;B;7HD;: H;IKBJ ?I >?=>BO 9EHH;
B7J;: +  M?J> J>; % IJ7J?IJ?9I 99EH:?D= JE J>; 97I; IJK:O E<
"EM7 IJ7J; J>; ,B;L;B 9HEF 79H;7=; E< J>; C79>?D;B;7HD;: H;IKBJ ?I
>?=>BO 9EHH;B7J;: +  M?J> J>; E<Y9?7B IJ7J?IJ?9I EDI?:;H?D= J>;
9HEF FB7DJ?D= C7F ?I =;D;H7J;: M?J>EKJ 7DO ?DI;7IED I7J;BB?J; ?C7=;I
EH ?DY;B: IKHL;OI J>; F;H<EHC7D9; E< J>; FHEFEI;: FH;:?9J?ED CE:;B ?I
I7J?I<79JEHO
"D J>; <KJKH; M; M?BB ?CFHEL; J>; FHEFEI;: <H7C;MEHA 7D: J;IJ
CEH; IJ7J;E<J>;7HJ D;KH7B D;JMEHAI M?J> CEH; 9HEF JOF;I EJ>;H J>7D
9EHD 7D: IEO8;7DI "D 7::?J?ED M; M?BB KI; J>; C79>?D;B;7HD;:
9HEF FB7DJ?D= C7F 7I J>; H;<;H;D9; :7J7 JE 9ED:K9J ?DI;7IED 9HEF JOF;
9B7II?Y97J?ED ED9; J>; ?DI;7IED I7J;BB?J; ?C7=;I 8;9EC; 7L7?B78B;
Acknowledgment
->?I H;I;7H9> ?I IKFFEHJ;: 8O 7 =H7DJ <HEC '7J?ED7B ,9?;D9; EKD:7
J?ED "'0, FHE=H7C  H7DJ  ', )" H %?F?D= ? ->;
7KJ>EHI MEKB: B?A; JE J>7DA JME 7DEDOCEKI H;L?;M;HI <EH J>;?H L7BK78B;
7D: 9EDIJHK9J?L; 9ECC;DJI
References
KH879>;H # 788;HJ ,  ;D;H7J?D= 9HEF I;GK;D9;I ?D B7D:KI; CE:;BI KI
?D= C7N?CKC ;DJHEFO 7D: &7HAEL 9>7?DI =H?9 ,OIJ   :E?
@7=IO
;B=?K & I?BB?A (  ,;DJ?D;B 9HEFB7D: C7FF?D= KI?D= F?N;B87I;: 7D: E8
@;9J87I;: J?C;M;?=>J;: :OD7C?9 J?C; M7HF?D= 7D7BOI?I +;CEJ; ,;DI DL?HED 
 :E?@HI;
EBJED $ H?;:B &  EH;97IJ?D= 9HEF O?;B: KI?D= H;CEJ;BO I;DI;: L;=;J7J?ED
?D:?9;I 7D: 9HEF F>;DEBE=O C;JH?9I =H?9 EH &;J;EHEB   :E?
@7=H<EHC;J
EHO7D  27D= 3 &K;BB;H + H7?= &  &ED?JEH?D= ., 7=H?9KBJKH; J>; ., :;
F7HJC;DJ E< 7=H?9KBJKH; D7J?ED7B 7=H?9KBJKH7B IJ7J?IJ?9I I;HL?9; 9HEFB7D: :7J7 B7O;H
FHE=H7C ;E97HJE "DJ   :E?
HEMD &  +;CEJ; I;DI?D= J;9>DEBE=O 7D: B7D: KI; 7D7BOI?I ?D <EE: I;9KH?JO 7I
I;IIC;DJ # %7D: .I; ,9?   :E?1
>;D 2+ >7E $ $?C &,  &79>?D; L?I?ED J;9>DEBE=O <EH 7=H?9KBJKH7B 7FFB?97
J?EDI ECFKJ B;9JHED =H?9   :E?,1
E>;D #  9E;<Y9?;DJ E< 7=H;;C;DJ <EH DEC?D7B I97B;I :K9 )IO9>EB &;7IKH 
 :E?
EHD;H +# ;M7D & >7AC7 ,  &ED?JEH?D= 7D: )H;:?9J?ED E< %7D:.I;
7D: %7D:EL;H %.% >7D=; "D ;M7D  EHD;H + :I >7A7 &;=79
?JO ;EIF7J?7B );HIF;9J?L;I ED .H87D?I7J?ED DL?HEDC;DJ 7D: !;7BJ> ,FH?D=;H ;
E=H7F>O ,FH?D=;H ';J>;HB7D:I EH:H;9>J FF  >JJFI:E?EH=
6
78HEMIA73?;B?DIA7 $ $E=7D  ?EBAEIP  HKIP9PODIA7 & $EM7B?A 0 
&E:;BB?D= E< 9HEF =HEMJ> 9ED:?J?EDI 7D: 9HEF O?;B: ?D )EB7D: KI?D= /!++87I;: ?D
:?9;I "DJ # +;CEJ; ,;DI   :E?
7>7B  0OB?;  !EM7H:   +7F?: 9HEF 9EL;H C7FF?D= <EH J>; 9EDJ;HC?DEKI
.D?J;: ,J7J;I ,9? +;F   :E?IM
? % 2K   $7D= % ,>H;IJ>7 + 7? 2  +%,, H;CEJ;I;DI?D=87I;:
ZEE: 9HEF BEII 7II;IIC;DJ 9O8;HI;HL?9; IOIJ;C <EH IKFFEHJ?D= 9HEF IJ7J?IJ?9I 7D:
?DIKH7D9; :;9?I?EDC7A?D= # "DJ;=H7J?L; =H?9   :E?
,
EH7?IM7CO ) &EKB?D , EEA )0 ,J;HD   HEF O?;B: 7II;IIC;DJ <HEC
H;CEJ; I;DI?D= )>EJE=H7CC D= +;CEJ; ,;DI   :E?
)+,
H;O;H )  B7II?Y97J?ED E< B7D: 9EL;H KI?D= EFJ?C?P;: D;KH7B D;JI ED ,)(-
:7J7 )>EJE=H7CC D= +;CEJ; ,;DI .D?J;: ,J7J;I  
EE:O &  %7D: 9EL;H 9B7II?Y97J?ED 8O 7D 7HJ?Y9?7B D;KH7B D;JMEHA M?J> 7D9?BB7HO
?D<EHC7J?ED "DJ # ;E=H "D< ,OIJ   :E?
H?D8B7J % .P7B % %7H;I; &  H7D?JJE )&  ;;F B;7HD?D= <EH FB7DJ ?:;D
J?Y97J?ED KI?D= L;?D CEHF>EBE=?97B F7JJ;HDI ECFKJ B;9JHED =H?9  
:E?@9ECF7=
!7BCO &0 ;IIB;H ) !?9A; # ,7B;C   %7D: KI;B7D: 9EL;H 9>7D=;
:;J;9J?ED 7D: FH;:?9J?ED ?D J>; DEHJ>M;IJ;HD 9E7IJ7B :;I;HJ E< =OFJ KI?D=
&7HAEL FFB ;E=H   :E?@7F=;E=
!7D 0 27D= 3 ? % &K;BB;H +  HEF,97F; 0;8 I;HL?9; 87I;: 7FFB?
97J?ED <EH ;NFBEH?D= 7D: :?II;C?D7J?D= ., 9EDJ;HC?DEKI =;EIF7J?7B 9HEFB7D: :7J7
FHE:K9JI <EH :;9?I?ED IKFFEHJ ECFKJ B;9JHED =H?9   :E?
@9ECF7=
!7E ) -7D= ! >;D 3 %?K 3  7HBOI;7IED 9HEF C7FF?D= KI?D= ?CFHEL;:
7HJ?Y9?7B ?CCKD; D;JMEHA ""' 7D: ,;DJ?D;B :7J7 );;H#  ; :E?
F;;H@
!7E ) 07D= % '?K 3  ECF7H?IED E< >O8H?: 9B7II?Y;HI <EH 9HEF 9B7II?Y
97J?ED KI?D= DEHC7B?P;: :?<<;H;D9; L;=;J7J?ED ?D:;N J?C; I;H?;I 97I; IJK:O <EH
C7@EH 9HEFI ?D 'EHJ> 1?D@?7D= >?D7 )%(, ('   ; :E?
@EKHD7BFED;
$7C?B7H?I  )H;D7<;J7EB:V 1  ;;F B;7HD?D= ?D 7=H?9KBJKH; 7 IKHL;O ECFKJ
B;9JHED =H?9   :E?@9ECF7=

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
$7IJ;DI #! $7IJ;DI -% $7IJ;DI % )H?9; $) &7HJ?DAE  %;; +2 
"C7=; C7IA?D= <EH 9HEF O?;B: <EH;97IJ?D= KI?D= /!++ '/" J?C; I;H?;I ?C7=;HO +;
CEJ; ,;DI DL?HED   :E?@HI;
$7KB & !?BB +% 07BJ>7BB   HJ?Y9?7B D;KH7B D;JMEHAI <EH 9EHD 7D: IEO8;7D
O?;B: FH;:?9J?ED =H?9 ,OIJ   :E?@7=IO
$7O7  $;9;B? , 7J7B  27B?9 !2 -;CK9?D ! -;A?D;H:E=7D   D7BOI?I
E< JH7DI<;H B;7HD?D= <EH :;;F D;KH7B D;JMEHA 87I;: FB7DJ 9B7II?Y97J?ED CE:;BI EC
FKJ B;9JHED =H?9   :E?@9ECF7=
$>7D7B , KBJED # ,>;7H;H ,  D EL;HL?;M E< 9KHH;DJ 7D: FEJ;DJ?7B 7FFB?97
J?EDI E< J>;HC7B H;CEJ; I;DI?D= ?D FH;9?I?ED 7=H?9KBJKH; ECFKJ B;9JHED =H?9 
 :E?@9ECF7=
$?D= % :KI;?  ,J;>C7D ,/ )EJ7FEL )/ ,ED= 1) $HOBEL  ? ;BB7  %EL;
B7D: -+ #E>DIED & !7DI;D &  CKBJ?H;IEBKJ?ED 7FFHE79> JE D7
J?ED7BI97B; 9KBJ?L7J;: 7H;7 ;IJ?C7J?ED E< IEO8;7D +;CEJ; ,;DI DL?HED  
:E?@HI;
$?D=C7 ) 7 #  :7C &;J>E: <EH ,JE9>7IJ?9 (FJ?C?P7J?ED
7H1?L 49I5
$KIIKB ' %7LH;D?KA & ,A7AKD , ,>;B;IJEL   ;;F B;7HD?D= 9B7II?Y97J?ED E<
B7D: 9EL;H 7D: 9HEF JOF;I KI?D= H;CEJ; I;DI?D= :7J7 " ;EI9? +;CEJ; ,;DI %;JJ
  :E?% +,
$KIIKB ' ,A7AKD , ,>;B;IJEL  %7LH;D?KA & 27?BOCEL  $KIIKB ( 
+;=?ED7B I97B; 9HEF C7FF?D= KI?D= CKBJ?J;CFEH7B I7J;BB?J; ?C7=;HO "D ",)+, "D
J;HD7J?ED7B H9>?L;I E< J>; )>EJE=H7CC;JHO +;CEJ; ,;DI?D= 7D: ,F7J?7B "D<EHC7J?ED
,9?;D9;I )H;I;DJ;: 7J J>; J> "DJ;HD7J?ED7B ,OCFEI?KC ED +;CEJ; ,;DI?D= E< DL?
HEDC;DJ /EBKC; 1%0 D:7I> &7O  ;HB?D ;HC7DO EF;HD?9KI
C8! FF  >JJFI:E?EH=?IFHI7H9>?L;I1%0
$KM7J7 $ ,>?87I7A? +  IJ?C7J?D= 9HEF O?;B:I M?J> :;;F B;7HD?D= 7D:
H;CEJ;BO I;DI;: :7J7 "D  " "DJ;HD7J?ED7B ;EI9?;D9; 7D: +;CEJ; ,;DI
?D= ,OCFEI?KC " +,, )H;I;DJ;: 7J J>;  " "DJ;HD7J?ED7B ;EI9?;D9; 7D:
+;CEJ; ,;DI?D= ,OCFEI?KC " +,, FF  >JJFI:E?EH=
" +,,
%7HA -# &K;BB;H +& #E>DIED & ?88I !$  &;7IKH?D= B7D:KI; 7D:
B7D:9EL;H 9>7D=; KI?D= J>; ., :;F7HJC;DJ E< 7=H?9KBJKH;I 9HEFB7D: :7J7 B7O;H
7KJ?EDI 7D: H;9ECC;D:7J?EDI "DJ # FFB 7HJ> (8I ;E?D<  
:E?@@7=
%;; ,! >7D , 0?BA?D ) +;C7=D?DE )  ;;FFB7DJ )B7DJ ?:;DJ?Y97J?ED
M?J> 9EDLEBKJ?ED7B D;KH7B D;JMEHAI "D  " "DJ;HD7J?ED7B ED<;H;D9; ED "C7=;
)HE9;II?D= "") )H;I;DJ;: 7J J>;  " "DJ;HD7J?ED7B ED<;H;D9; ED "C7=; )HE
9;II?D= "") FF  :E?"")
%?7=>7J  H;L?;M J>; HEB; E< H;CEJ; I;DI?D= ?D FH;9?I?ED 7=H?9KBJKH; C # =H?9
?EB ,9?   :E?7@78IIF
%?D % ? % -7D= # 2K  3>7D=  +7>C7D &, ,>H;IJ>7 + $7D= %  "C
FHEL;C;DJ 7D: L7B?:7J?ED E< ',&(", '+- =BE87B ZEE: C7FF?D= +;CEJ; ,;DI
  :E?HI
%?K 1 >;D  7HB7=; & 3>EK  '?OE=?   'E7>&)HEF ?DJHE:K9?D= :O
D7C?9 9HEF =HEMJ> ?D J>; 'E7>&) B7D: IKH<79; CE:;B # ;EF>OI +;I JCEI 
 :E?#
%K % ? % 2; 2  :;9?I?EDJH;; 9B7II?Y;H <EH ;NJH79J?D= JH7DIF7H;DJ FB7I
J?9CKB9>;: B7D:9EL;H <HEC %7D:I7J -& ?C7=;I " # ,;B -EF FFB 7HJ> (8I
+;CEJ; ,;DI   :E?#,-+,
&9'7?HD ! $HEII  %7F;D  7L;I + ,>7D= #  7HBO I;7IED CED?JEH?D= E<
9EHD 7D: IEO8;7DI M?J> -;HH7,+1 7D: ++,- "DJ # FFB 7HJ> (8I ;E?D<
  :E?@@7=
&E>7DJO ,) !K=>;I ) ,7B7J>S &  .I?D= :;;F B;7HD?D= <EH ?C7=;87I;: FB7DJ
:?I;7I; :;J;9J?ED HEDJ )B7DJ ,9?  :E?<FBI
&ED:7B & ,>7HC7 ' 7H= )$ $7FF7I &  ,J7J?IJ?97B ?D:;F;D:;D9; J;IJ 7D:
L7B?:7J?ED E<  &7HAEL B7D: KI; B7D: 9EL;H %.% FH;:?9J?ED H;IKBJI =OFJ # +;
CEJ; ,;DI ,F79; ,9?   :E?@;@HI
&KBB7 #  -M;DJO YL; O;7HI E< H;CEJ; I;DI?D= ?D FH;9?I?ED 7=H?9KBJKH; A;O 7:
L7D9;I 7D: H;C7?D?D= ADEMB;:=; =7FI ?EIOIJ D= ,F;9?7B "IIK; ,;DI -;9>DEB ,KI
J7?D =H?9   :E?@8?EIOIJ;CI;D=
';L7LKEH? ) '7HH7 ' %?FF?D= -  HEF O?;B: FH;:?9J?ED M?J> :;;F 9EDLE
BKJ?ED7B D;KH7B D;JMEHAI ECFKJ B;9JHED =H?9   :E?
@9ECF7=
'=KO;D %! #EI>? + B7O  !;D;8HO &  >7H79J;H?P?D= B7D: 9EL;HB7D:
KI; <HEC CKBJ?FB; O;7HI E< %7D:I7J 7D: &(", J?C; I;H?;I 7 DEL;B 7FFHE79> KI?D=
B7D: IKH<79; F>;DEBE=O CE:;B?D= 7D: H7D:EC <EH;IJ 9B7II?Y;H +;CEJ; ,;DI DL?HED
:E?@HI;
(IC7D # "D=B7:7 # ;@EKN #  II;IIC;DJ E< 7 &7HAEL BE=?9 CE:;B E< 9HEF HE
J7J?EDI <EH ;7HBO 9HEF C7FF?D= ECFKJ B;9JHED =H?9   :E?
@9ECF7=
)7DJ7P? 1 &EI>EK  B;N7D:H?:?I - 0>;JJED +% &EK7P;D &  0>;7J
O?;B: FH;:?9J?ED KI?D= C79>?D; B;7HD?D= 7D: 7:L7D9;: I;DI?D= J;9>D?GK;I ECFKJ
B;9JHED =H?9   :E?@9ECF7=
)>7BA; + QP:E]7D &  %7H=; 7H;7 9HEFB7D: ;NJ;DJ C7FF?D= M?J> %7D:I7J
:7J7 7D: 7 =;D;H7B?P;: 9B7II?Y;H +;CEJ; ,;DI DL?HED   :E?
@HI;
)EJ=?;J;H  F7D  !7CC;H  KDD )  7HBOI;7IED 9HEF 7H;7 ;IJ?C7J;I
<EH M?DJ;H 9HEFI ?D ' KIJH7B?7 KI?D= &(", I7J;BB?J; ?C7=;HO ",)+, # )>EJE=H7CC
+;CEJ; ,;DI   :E?@?IFHI@FHI
*K  !7E 1  =H?9KBJKH; HEK=>J 7D: EE: ,;9KH?JO &ED?JEH?D= (L;H J>; !EHD
E< <H?97 !( <HEC ,F79; "D  J> "DJ;HD7J?ED7B ED<;H;D9; ED =HE ;E?D
<EHC7J?9I =HE ;E?D<EHC7J?9I )H;I;DJ;: 7J J>;  J> "DJ;HD7J?ED7B ED<;H
;D9; ED =HE=;E?D<EHC7J?9I =HE=;E?D<EHC7J?9I FF  :E?
=HE ;E?D<EHC7J?9I 
*K7HC8O ' &?BD;I & !?D:B; -% ,?BB;EI '  ->; KI; E< CKBJ?J;CFEH7B '/"
C;7IKH;C;DJI <HEC /!++ :7J7 <EH 9HEF O?;B: ;IJ?C7J?ED 7D: FH;:?9J?ED "DJ # +;
CEJ; ,;DI   :E?
+;IEF #) B;?I>;H ! 07D= * -?CB?D # +;::O /+  EC8?D?D= ;N
FB7D7JEHO 9HEF CE:;BI M?J> =;EIF7J?7B :7J7 <EH H;=?ED7B 7D7BOI;I E< 9HEF O?;B:
KI?D= Y;B:I97B; CE:;B?D= KD?JI ECFKJ B;9JHED =H?9   :E?
@9ECF7=
+?JJ;H ' !;FD;H   FFB?97J?ED E< 7D 7HJ?Y9?7B D;KH7B D;JMEHA JE B7D:9EL;H
9B7II?Y97J?ED E< J>;C7J?9 C7FF;H ?C7=;HO ECFKJ ;EI9? HJ?< "DJ;BB FFB ;EI9?
  :E?"
+EO ) 27D %  +E8KIJ %7D:I7J87I;: 9HEF J?C; I;H?;I CE:;BB?D= +;CEJ; ,;DI
DL?HED :E?@HI;
,7>7@F7B + 3>7D= 1 "P7KHH7B:; + ;B<7D: " !KHJJ   ":;DJ?<O?D= H;FH;
I;DJ7J?L; 9HEF HEJ7J?ED F7JJ;HDI 7D: =H7IIB7D: BEII ?D J>; ., 0;IJ;HD EHD ;BJ EC
FKJ B;9JHED =H?9   :E?@9ECF7=
,;;B7D ,$ %7=K;JJ; , 7I7:O & ,;?;BIJ7:   +;CEJ; I;DI?D= 7FFB?
97J?EDI <EH FH;9?I?ED 7=H?9KBJKH; B;7HD?D= 9ECCKD?JO 7FFHE79> +;CEJ; ,;DI
DL?HED "$('(, ?D; ,F7J?7B +;IEBKJ %7D: (8I;HL   :E?
@HI;
,>7D # !KII7?D  $?C $ ?;>B %  BEE: C7FF?D= M?J> I7J;BB?J; ?C7=;I 7D:
?JI M;8 I;HL?9; )>EJE=H7CC D= +;CEJ; ,;DI 
,>H;IJ>7 + ? % 2K   $7D= % ,>7E 2 7? 2  +;=H;II?ED CE:;B JE ;IJ?
C7J; ZEE: ?CF79J ED 9EHD O?;B: KI?D= &(", '/" 7D: ., 9HEFB7D: :7J7 B7O;H #
"DJ;=H =H?9   :E?,
,?D=> ,$ &KIJ7A , ,H?L7IJ7L7 )$ ,P78U , "IB7C -  )H;:?9J?D= IF7J?7B 7D:
:;97:7B %.% 9>7D=;I J>HEK=> 9;BBKB7H 7KJEC7J7 &7HAEL 9>7?D CE:;BI KI?D= ;7HJ>
E8I;HL7J?ED :7J7I;JI 7D: =;E?D<EHC7J?ED DL?HED )HE9;II   :E?
IN
,A7AKD , H7D9>  /;HCEJ;  +E=;H # ;9A;H+;I>;< " #KIJ?9;  $KIIKB '
 7HBO I;7IED B7H=;7H;7 M?DJ;H 9HEF C7FF?D= KI?D= &(", '/" :7J7 =HEM?D=
:;=H;; :7OI ?D<EHC7J?ED 7D: 7 7KII?7D C?NJKH; CE:;B +;CEJ; ,;DI DL?HED 
 :E?@HI;
,KHA7D # ? %  7IJ JH7?D78B; F7JJ;HD 9B7II?Y97J?ED 8O 7 CE:?Y97J?ED E<
$7D;HL7I ,& CE:;B "D "DJ;HD7J?ED7B  #E?DJ ED<;H;D9; ED ';KH7B ';JMEHAI
)H;I;DJ;: 7J J>; "DJ;HD7J?ED7B  #E?DJ ED<;H;D9; ED ';KH7B ';JMEHAI LEB FF
 >JJFI:E?EH="#''
-;7B +$ -K87D7  ?HC7 $ H;;C7D $0 HD7BB  07BI> ( +7KD 0+
 "DI;7IED FH;:?9J?ED E< 9EHD =H7?D O?;B: FEJ;DJ?7B KI?D= DEHC7B?P;: :?<<;H;D9;
L;=;J7J?ED ?D:;N =HED #   :E?7=HED@
->;DA787?B ) %OED #  -KHH7B ! ?H7:7H  %OED #  -KHH7B ! ?H7:7H  
+;CEJ; ,;DI?D= E< BE87B HEFB7D:I <EH EE: ,;9KH?JO + )H;II >JJFI:E?EH=

., ',,  HEF,97F; 7D: HEFB7D: 7J7 %7O;HI *I 4000 E9KC;DJ5
>JJFIMMMD7IIKI:7=EL+;I;7H9>67D:6,9?;D9;HEFB7D:I7HI<7GIF>F 799;II;:

/7K:EKH  'E?HEJEIIED ) &;C8H?L; (  7HBOI;7IED C7FF?D= E< 9HEFI 7D:
9KBJKH7B EF;H7J?EDI KI?D= L;HO >?=> IF7J?7B H;IEBKJ?ED )BS?7:;I ?C7=;I "DJ # FFB
7HJ> (8I ;E?D<   :E?@@7=
0?;=7D: % +?9>7H:IED # I9E87H  ;H8;HC7DD !  /;=;J7J?ED ?D
:?9;I ?D 9HEF 7II;IIC;DJI +;CEJ; ,;DI DL?HED   :E?
)

UNCORRECTED PROOF
!(".'%3", /-043%12".$,%#31/.)#2).'1)#4,341% 777 7777 777777
1?7E 2 &?=DEB;J  &7H? # ;DETJ &  &E:;B?D= J>; IF7J?7B :?IJH?8KJ?ED E<
9HEF I;GK;D9;I 7J 7 B7H=; H;=?ED7B I97B; KI?D= B7D:9EL;H IKHL;O :7J7 7 97I; <HEC
H7D9; ECFKJ B;9JHED =H?9   :E?@9ECF7=
1K 1 K 3 3>7D= !  "DJ;=H7J?D= J>; IOIJ;C :OD7C?9 7D: 9;BBKB7H 7KJEC7J7
CE:;BI JE FH;:?9J B7D: KI; 7D: B7D: 9EL;H 9>7D=; "DJ # FFB 7HJ> (8I ;E?D< 
 :E?@@7=
27=9? % ? % ;D= &  ->; ;<<;9J E< 9EHDIEO8;7D HEJ7J?ED ED J>; '/"87I;:
:HEK=>J ?D:?97JEHI 7 97I; IJK:O ?D "EM7 ., KI?D= /;=;J7J?ED ED:?J?ED "D:;N "
,9?;D9; +;CEJ; ,;DI   :E?
27D= 3 0K 0 ? % RIJWD:7]   +;CEJ; I;DI?D= <EH 7=H?9KBJKH7B 7FFB?97J?EDI
# "DJ;=H =H?9   :E?,
2EI>?:7 - (C7JK ,  ';KH7B D;JMEHA 7FFHE79> JE B7D: 9EL;H C7FF?D= "
-H7DI ;EI9? +;CEJ; ,;DI   :E?
3>7D=  ? % %?D % KE % 7 NJH79J?D= JHKIJ;: F?N;BI <HEC >?IJEH
?97B 9HEFB7D: :7J7 B7O;H KI?D= 9HEF HEJ7J?ED F7JJ;HDI 7 97I; IJK:O ?D ';8H7IA7
., "D  J> "DJ;HD7J?ED7B ED<;H;D9; ED =HE ;E?D<EHC7J?9I =HE ;E?D
<EHC7J?9I )H;I;DJ;: 7J J>;  J> "DJ;HD7J?ED7B ED<;H;D9; ED =HE ;E?D<EH
C7J?9I =HE ;E?D<EHC7J?9I FF  >JJFI:E?EH==HE ;E?D<EHC7J
?9I
3>7D=  ? % 27D= 3 %?D % 2K   2K 3 +7>C7D &, 3>7E !  BEK:
;DL?HEDC;DJ <EH :?II;C?D7J?D= ',, 9HEFB7D: :7J7 B7O;H "D  J> "DJ;HD7J?ED7B
ED<;H;D9; ED =HE ;E?D<EHC7J?9I =HE ;E?D<EHC7J?9I )H;I;DJ;: 7J J>; 
J> "DJ;HD7J?ED7B ED<;H;D9; ED =HE ;E?D<EHC7J?9I =HE ;E?D<EHC7J?9I FF 
:E?=HE ;E?D<EHC7J?9I 
3>ED= % !K % 3>EK !  ;;F B;7HD?D= 87I;: CKBJ?J;CFEH7B 9HEF 9B7II?Y97J?ED
+;CEJ; ,;DI DL?HED   :E?@HI;

... Recent advancements have demonstrated the feasibility to conduct more detailed spatial analyses. For example, Zhang et al. [13] presented a machine learning framework that successfully predicted the spatial distribution of crop planting at a detailed (30 m) resolution using historical cropland data layer (CDL) maps. However, their study only focused on the spatial distribution of crops and did not involve yield prediction. ...
... This limitation hinders the application of this method for in-season crop yield prediction. However, thanks to the work of Zhang et al. [13], who used historical CDL as training samples and employed multilayer artificial neural networks to predict the new year's crop planting distribution, predicting the spatial distribution before the growing season has become possible. This study combined historical yield statistics with remote sensing information to construct a Cubist model that downscales the crop yield statistics for the new year. ...
... This study combined historical yield statistics with remote sensing information to construct a Cubist model that downscales the crop yield statistics for the new year. By integrating this method with the approach proposed by Zhang et al. [13], it may become possible to obtain high spatial resolution crop yield distribution maps during the mid-growing season. This would be of significant importance for agricultural production decision-making. ...
Article
Full-text available
The United States (U.S.) is a global leader in the production and exportation of soybeans and corn. Accurate monitoring and estimation of soybean and corn yields in the U.S. is essential for improving global food security. However, there is currently a lack of publicly available spatial distribution datasets with high temporal and spatial resolution for U.S. corn and soybean yields, which hampers related research and policy-making. Therefore, in this study, we proposed a statistical downscaling framework to produce spatially explicit crop yield estimates by utilizing multi-source environmental covariates and ensemble machine learning methods. We produced distribution maps of soybean and corn yields in the U.S. from 2006 to 2021 at a 1-kilometer resolution through the optimal Cubist model, resulting in the USASoy&CornYield1km dataset. The results demonstrated stable accuracy, with R² values for corn ranging from 0.70 to 0.89 (average of 0.80) and for soybeans ranging from 0.74 to 0.90 (average of 0.81) during the period 2006-2021. Comparison with the SPAM dataset further confirmed the reliability of this dataset, with correlations of 0.84 for soybeans and 0.78 for corn when compared to SPAM2010. Spatial uncertainty analysis showed that the yield estimation uncertainty was 14.04% for soybeans and 20.49% for corn, indicating a generally low level of uncertainty. Overall, the USASoy&CornYield1km dataset offers higher spatial and temporal resolution, captures yield variations within counties, and covers a long time span. This study provides significant insights for analyzing U.S. soybean and corn yields and improving agricultural production.
... Zhang et al. (2019) [18] proposed an ML system predicting agricultural planting maps, achieving 88% congruence with the Cropland Data Layer (CDL) for future seasons. Their study emphasized the importance of accuracy and timeliness in QF4FA, aligning with previous findings.Finally, Batista e Silva et al.(2020) ...
... Zhang et al. (2019) [18] proposed an ML system predicting agricultural planting maps, achieving 88% congruence with the Cropland Data Layer (CDL) for future seasons. Their study emphasized the importance of accuracy and timeliness in QF4FA, aligning with previous findings.Finally, Batista e Silva et al.(2020) ...
Conference Paper
Full-text available
Integrating machine learning (ML) into the official statisticians' toolset is gaining popularity as National Statistical Offices (NSOs) strive to improve their methodologies. This trend poses new challenges and implications for incorporating innovative techniques that ensure the reliability of the official statistical production process. A comprehensive literature review was conducted using Scopus and Web of Science databases to explore the contemporary applications of data science in official statistics. A total of 178 research articles were identified, focusing on areas such as big data, machine learning, and data quality. While the literature review revealed extensive proposals on utilizing alternative data and applying machine learning techniques to support official statistics production, it also identified research gaps in the post-training steps of the machine learning process. Areas requiring further investigation include machine learning operations in a production environment, data quality assurance, and governance. (PRESENTATION VIDEO: https://youtu.be/3brq4oDerMY )
... The traditional approach to crop planting has often been based on empirical methods and historical data, which may not fully account for the complexities and uncertainties inherent in agricultural production [1,2]. To address these limitations, we propose a novel approach that combines advanced mathematical programming techniques with stochastic simulation. ...
Article
Full-text available
This paper explores the optimization of crop planting strategies by combining dynamic programming with Monte Carlo simulation. In the multi-stage decision-making for planting optimization, we decomposed the optimal planting plans for crops from 2024 to 2030 into annual best planting plans. We established an objective function aimed at maximizing total profit, taking into account factors such as planting area, crop yield, sales price, and planting cost. A series of constraints were also introduced, including that the planting area should not exceed the cultivated land area and that the total crop production should not surpass the expected sales volume. By employing dynamic programming and greedy algorithm models, we utilized the PuLP linear programming library to define problems, add constraints, and invoke solvers to find the optimal solution. The model considered not only the planting costs and sales prices but also treated excess sales volume as waste. In the result analysis phase, we analyzed the cyclical changes in data across different years and observed that the total profit exhibited a certain fluctuation trend. We also conducted error analysis on the potential errors introduced by the greedy algorithm, running the model multiple times to verify the stability of the results and ensure the reliability of the model. Finally, we discussed the complementarity and substitutability between crops, which significantly impact the total income in the actual planting process.
... Two primary strategies have been proposed to address the spectral distribution variability problem between test and training images. The first strategy focuses on modifying network architectures or loss functions to enhance the transferability of a model in a specific area (Diakogiannis et al. 2020;Kemker, Salvaggio, and Kanan 2018;Zhang et al. 2019). However, this strategy requires a substantial amount of computing resources to perform additional optimization steps to retrain the entire network. ...
Article
Full-text available
Accurate crop mapping provides important information for government decision-making and agricultural management. Recent advancements in deep learning have significantly enhanced the capabilities of remote sensing-based crop mapping. In this study, we developed a new deep learning approach, DSH, which comprises three modules, DeepLabV3+ (D), channel self-attention (S), and histogram matching (H). The DeepLabV3+ module learns the spatial distribution of crops in the spatial and spectral dimensions. The channel self-attention module was used to enhance the weights of the important features. The histogram-matching module addresses the domain gap between the training and testing images and enhances the transferability of the DSH. In addition, the input data of the DSH are monthly synthesized Sentinel-2 data, thus relaxing the data collection requirements. The performance of the DSH was evaluated and benchmarked against HRNetV2, DeepLabV3+, and random forest (RF) at eight sites in the U.S. China, and France with different farming structures, climate conditions, and landscape complexities. Temporal transfer revealed that the classification performance of DSH improved as the growth season progressed, peaked in the peak growth season (August), and then declined at each study site. The DSH model trained during the peak growth season demonstrated superior temporal transferability. Spatial transfer experiments demonstrated that transferring DSH to sites with similar planting structures achieved higher precision than full spatial transfers. Spatiotemporal transfer experiments conducted at eight sites over three years (2020–2022) demonstrated an average overall accuracy (OA) of 88.1% for DSH, highlighting the importance of similar planting structures for effective spatiotemporal transfer. DSH outperformed HRNetV2, DeepLabV3+, and RF in OA, producer’s accuracy, and user’s accuracy at all eight study sites. Notably, DSH exhibited comparable performance during both the peak and full growth seasons, with an average OA of 93.9%. The classification accuracy of test images after histogram matching remained stable from 2020 to 2022, whereas the accuracy of raw test images fluctuated annually. This indicates that histogram matching is effective in improving the transferability of DSH. Embedding the channel self-attention module into the position of the high-level features had a more significant impact on improving DSH’s performance than other configurations. Visualizing features from the channel self-attention and high-level layers revealed that integrating the channel self-attention module with DeepLabV3+‘s high-level features significantly improved crop mapping by enhancing relevant semantic information. Overall, DSH exhibits robust spatiotemporal generalizability and requires minimal input data, making it suitable for large-scale crop mapping.
... The application of deep learning (DL) algorithms [13][14][15], especially semantic segmentation networks [16,17], has significantly improved the efficiency of image recognition and has been widely used in crop area estimation in agriculture and forestry. This includes the prediction of maize planting areas [18], the estimation of crop cultivation areas in Brazil [19], and the estimation of rice planting areas and yields [20]. Moreover, DL algorithms have also played roles in pest and disease monitoring [21], water resource management [22], land use planning [23], and climate change research [24]. ...
Article
Full-text available
In recent years, the estimation of tobacco field areas has become a critical component of precision tobacco cultivation. However, traditional satellite remote sensing methods face challenges such as high costs, low accuracy, and susceptibility to noise, making it difficult to meet the demand for high precision. Additionally, optical remote sensing methods perform poorly in regions with complex terrain. Therefore, Unmanned Aerial Vehicle multispectral remote sensing technology has emerged as a viable solution due to its high resolution and rich spectral information. This study employed a DJI Mavic 3M equipped with high-resolution RGB and multispectral cameras to collect tobacco field data covering five bands: RGB, RED, RED EDGE, NIR, and GREEN in Agang Town, Luoping County, Yunnan Province, China. To ensure the accuracy of the experiment, we used 337, 242, and 215 segmented tobacco field images for model training, targeting both RGB channels and seven-channel data. We developed a tobacco field semantic segmentation method based on PP-LiteSeg and deeply customized the model to adapt to the characteristics of multispectral images. The input layer’s channel number was adjusted to multiple channels to fully utilize the information from the multispectral images. The model structure included an encoder, decoder, and SPPM module, which used a multi-layer convolution structure to achieve feature extraction and segmentation of multispectral images. The results indicated that compared to traditional RGB images, multispectral images offered significant advantages in handling edges and complex terrain for semantic segmentation. Specifically, the predicted area using the seven-channel data was 11.43 m² larger than that obtained with RGB channels. Additionally, the seven-channel model achieved a prediction accuracy of 98.84%. This study provides an efficient and feasible solution for estimating tobacco field areas based on multispectral images, offering robust support for modern agricultural management.
... There is support for many things in this category, as well as testing of many machine learning algorithms such as logistic regression, naive Bayes, KNearest Neighbors (KNN), decision trees, random forests, and hybrid models like XGBoost. Label classification Vector machines are used under this framework [10,12]. ...
Article
The Indian economy contributes to agriculture. Most farmers in India rely on their instincts when deciding to plant crops during the specific period of the year. They don’t know that crop yield is environmentally sensitive and depends on soil and weather. A farmer's ignorant decisions can have consequences for the health of the soil, as well as psychological and financial harm to the actual farmer. Using a machine learning model will be beneficial solve this problem. The data employed in the article was produced by combining records for fertilizer, climate and rainfall for India. Models for machine learning will be applied to the data to obtain the most accurate models that will recommend the right crops for the agricultural field. Indian farmers would be able to choose their crops with more knowledge thanks to these recommendations. Factors such as where the farm is located, planting season, soil characteristics, and climate will all be considered in the suggestions.
Article
Jute crop holds significant economic importance contributing to environment and ecological balance. In the present study, optical and microwave satellite data was utilized to estimate jute acreage employing three distinct approaches, viz., logical criteria, machine learning and hybrid approach. Harmonized Sentinel-2 optical data products were utilized to generate monthly composite Enhanced Vegetation Index (EVI), whereas Ground Range Detected Sentinel-1 VH polarization Synthetic Aperture Radar data were used for generating monthly VH composite using median filter. Support Vector Machine (SVM), a machine learning algorithm, was adopted for this study. The EVI and VH multi-temporal profiles over the ground truth points were analysed and the criteria for identifying jute crop pixels were developed for different sowing period, i.e., March and April, during 2020 to 2023. The pre-processing of datasets and SVM was executed on the Google Earth Engine platform. The assessment of the three approaches highlighted variations in their predictive capabilities. Instead of its high classification accuracy (* 0.80), the logical approach has its limitations in terms of complex sets of criteria and adoptability over larger extent. On the contrary, SVM classifier could develop self-learning criteria, but overestimated the jute area with lower classification accuracy (Kappa * 0.45). The present study proposed a novel approach by coupling machine learning with simple logical criteria to address the limitations, while reserving its advantages. The analysis revealed that the capability of hybrid approaches in estimating the jute acreage was comparable with logical approach, with reduced operational complexities and wider adoptability over larger extent.
Article
Full-text available
Agriculture in Maharashtra has immense importance in India, acting as the back-bone of the economy and a primary livelihood source for a significant population. Being the third largest state in India, Maharashtra has a high scale crop production in the country which also has an important impact on the economy. Initially the study focus on developing predictive models that guide farmers in selecting suitable crops for the divisions in the state of Maharashtra. This study presents a Crop Recommendation System (CRS) designed to support Maharashtra’s agricultural sector by utilizing a comprehensive dataset from 2001 to 2022 provided by the India Meteorological Department. This study helps in improvising technical efficiency and productivity of the farmers. Harvesting crops in optimal condition can help to produce efficient harvest hence the research concentrates on providing best crop recommendation system (CRS) with the help of Machine Learning and Deep Learning techniques. The data, enhanced for accuracy using expectation-maximization optimization, underpins predictive models that guide crop selection. EM contributes to a more robust and reliable dataset for subsequent analyses and modeling by iterative estimating and updating missing values based on probabilistic expectations. Key findings show that the Random Forest algorithm excels in predicting suitable crops with 92% accuracy. Further precision is achieved through a Long Short-Term Memory network forecasting weather patterns three months ahead, accommodating temporal data variations. Subsequently, the proposed system leverages these forecasts to recommend five ideal crops per division within Maharashtra, aiding farmers’ decision-making and adapting to regional climatic conditions. A supplementary crop calendar offers monthly district-specific planting guidance. An intuitive Graphical User Interface delivers this information effectively, ensuring practical and informed agricultural choices across the state. In essence, the study provides an innovative tool for enhancing economic stability and sustenance in Maharashtra through technology-driven agriculture recommendations aligned with future weather expectations.
Conference Paper
Full-text available
It is still a challenge to generate the timely crop cover map at large geographic area due to the lack of reliable ground truths at early growing season. This paper introduces an efficient method to extract “trusted pixels” from the historical Cropland Data Layer (CDL) data using crop rotation patterns, which can be used to replace the actual ground truth in the crop mapping and other agricultural applications. A case study in the Nebraska state of USA is demonstrated. The common crop rotation patterns of four major crop types, corn, soybeans, winter wheat, and alfalfa, are compared and analyzed. The experiment results show a considerable number of pixels in CDL following the certain crop sequence during the past decade. Each observed crop type has at least one reliable crop rotation pattern. Based on the reliable crop rotation patterns, a great proportion of pixels can be correctly mapped a year ahead of the release of current-year CDL product. These trusted pixels can be potentially used to label training samples for crop type classification at early growing season.
Conference Paper
Full-text available
Cropland Data Layer (CDL) is an annual crop-specific land use map produced by the U.S. Department of Agricultural (USDA) National Agricultural Statistics Service (NASS). The CDL products are officially hosted on CropScape website which provides capabilities of geospatial data visualization, retrieval, processing, and statistics based on the open geospatial Web services. This study utilizes cloud computing technology to improve the performance of CropScape application and Web services. A cloud-based prototype of CropScape is implemented and tested. The experiment results show the performance of CropScape is significantly improved in the cloud environment. Comparing with the original system architecture of CropScape, the cloud-based architecture provides a more flexible and effective environment for the dissemination of CDL data.
Article
Full-text available
Plant species classification is crucial for biodiversity protection and conservation. Manual classification is time-consuming, expensive, and requires experienced experts who are often limited available. To cope with these issues, various machine learning algorithms have been proposed to support the automated classification of plant species. Among these machine learning algorithms, Deep Neural Networks (DNNs) have been applied to different data sets. DNNs have been however often applied in isolation and no effort has been made to reuse and transfer the knowledge of different applications of DNNs. Transfer learning in the context of machine learning implies the usage of the results of multiple applications of DNNs. In this article, the results of the effect of four different transfer learning models for deep neural network-based plant classification is investigated on four public datasets. Our experimental study demonstrates that transfer learning can provide important benefits for automated plant identification and can improve low-performance plant classification models.
Article
Full-text available
The remote-sensing based Flood Crop Loss Assessment Service System (RF-CLASS) is a web service based system developed and managed by the Center for Spatial Information Science and Systems (CSISS). The system uses Moderate Resolution Imaging Spectroradiometer (MODIS)-based flood data, which was implemented by the Dartmouth Flood Observatory (DFO), to provide an estimation of crop loss from floods. However, due to the spectral similarity between water and shadow, a noticeable amount of false classification of shadow can be found in the DFO flood products. Traditional methods can be utilized to remove cloud shadow and part of mountain shadow. This paper aims to develop an algorithm to filter out noise from permanent mountain shadow in the flood layer. The result indicates that mountain shadow was significantly removed by using the proposed approach. In addition, the gold standard test indicated a small number of actual water surfaces were misidentified by the proposed algorithm. Furthermore, experiments also suggest that increasing the spatial resolution of the slope helped reduce more noise in mountains. The proposed algorithm achieved acceptable overall accuracy (>80%) in all different filters and higher overall accuracies were observed when using lower slope filters. This research is one of the very first discussions on identifying false flood classification from terrain shadow by using the highly efficient method.
Article
Full-text available
Mapping the spatial and temporal dynamics of cropland is an important prerequisite for regular crop condition monitoring, management of land and water resources, or tracing and understanding the environmental impacts of agriculture. Analyzing archives of satellite earth observations is a proven means to accurately identify and map croplands. However, existing maps of the annual cropland extent either have a low spatial resolution (e.g., 250–1000 m from Advanced Very High Resolution Radiometer (AVHRR) to Moderate-resolution Imaging Spectroradiometer (MODIS); and existing high-resolution maps (such as 30 m from Landsat) are not provided frequently (for example, on a regular, annual basis) because of the lack of in situ reference data, irregular timing of the Landsat and Sentinel-2 image time series, the huge amount of data for processing, and the need to have a regionally or globally consistent methodology. Against this backdrop, we propose a reference time-series-based mapping method (RBM), and create binary cropland vs. non-cropland maps using irregular Landsat time series and RBM. As a test case, we created and evaluated annual cropland maps at 30 m in seven distinct agricultural landscapes in Xinjiang, China, and the Aral Sea Basin. The results revealed that RBM could accurately identify cropland annually, with producer’s accuracies (PA) and user’s accuracies (UA) higher than 85% between 2006 and 2016. In addition, cropland maps by RBM were significantly more accurate than the two existing products, namely GlobaLand30 and Finer Resolution Observation and Monitoring of Global Land Cover (FROM–GLC).
Article
Full-text available
Over the last 20 years, substantial amounts of grassland have been converted to other land uses in the Northern Great Plains. Most of land cover/land use (LCLU) assessments in this region have been based on the U.S. Department of Agriculture - Cropland Data Layer (USDA - CDL), which may be inconsistent. Here, we demonstrate an approach to map land cover utilizing multi-temporal Earth Observation data from Landsat and MODIS. We first built an annual time series of accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperatures. Using the Enhanced Vegetation Index (EVI) derived from Landsat Collection 1's surface reflectance, we then fit at each pixel a downward convex quadratic model to each year's progression of AGDD (i.e., EVI = α + β × AGDD − γ × AGDD²). Phenological metrics derived from fitted model and the goodness of fit then are submitted to a random forest classifier (RFC) to characterize LCLU for four sample counties in South Dakota in three years (2006, 2012, 2014) when reference point datasets are available for training and validation. To examine the sensitivity of the RFC to sample size and design, we performed classifications under different sample selection scenarios. The results indicate that our proposed method accurately mapped major crops in the study area but showed limited accuracy for non-vegetated land covers. Although all RFC models exhibit high accuracy, estimated land cover areas from alternative models could vary widely, suggesting the need for a careful examination of model stability in any future land cover supervised classification study. Among all sampling designs, the “same distribution” models (proportional distribution of the sample is like proportional distribution of the population) tend to yield best land cover prediction. RFC used only the most eight important variables (e.g., three fitted parameter coefficients [α β and γ]; maximum modeled EVI; AGDD at maximum modeled EVI; the number of observations used to fit CxQ model; and the number of valid observations) have slightly higher accuracy compared to those using all variables. By summarizing annual image time series through land surface phenology modeling, LCLU classification can embrace both seasonality and interannual variability, thereby increasing the accuracy of LCLU change detection.
Article
Using remote sensing and UAVs in smart farming is gaining momentum worldwide. The main objectives are crop and weed detection, biomass evaluation and yield prediction. Evaluating machine learning methods for remote sensing based yield prediction requires availability of yield mapping devices, which are still not very common among farmers. In this study Convolutional Neural Networks (CNNs) – a deep learning methodology showing outstanding performance in image classification tasks – are applied to build a model for crop yield prediction based on NDVI and RGB data acquired from UAVs. The effect of various aspects of the CNN such as selection of the training algorithm, depth of the network, regularization strategy, and tuning of the hyperparameters on the prediction efficiency are tested. Using the Adadelta training algorithm, L2 regularization with early stopping and a CNN with 6 convolutional layers, mean absolute error (MAE) in yield prediction of 484.3 kg/ha and mean absolute percentage error (MAPE) of 8.8% was achieved for data acquired during the early period of the growth season (i.e., in June of 2017, growth phase <25%) with RGB data. When using data acquired later in July and August of 2017 (growth phase >25%), MAE of 624.3 kg/ha (MAPE: 12.6%) was obtained. Significantly, the CNN architecture performed better with RGB data than the NDVI data.
Article
This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.