ArticlePDF Available

Three new genera of the Ramalinaceae (lichen-forming Ascomycota) and the phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen associations

Authors:
  • Centre for Ecological Research
Article

Three new genera of the Ramalinaceae (lichen-forming Ascomycota) and the phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen associations

© 2019 Akadémiai Kiadó, Budapest
Acta Botanica Hungarica 61(3–4), pp. 275–323, 2019
DOI: 10.1556/034.61.2019.3-4.5
THREE NEW GENERA OF THE RAMALINACEAE
(LICHEN-FORMING ASCOMYCOTA) AND
THE PHENOMENON OF PRESENCE OF ‘EXTRANEOUS
MYCOBIONT DNA’ IN LICHEN ASSOCIATIONS
1, 2, 3, 4, 4, 5
6, 6, 7, 7 and 4
1M. H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01004 Kiev, Ukraine
E-mail: ksya_net@ukr.net
2Department of Botany, Hungarian Natural History Museum
H-1431 Budapest, Pf. 137, Hungary
3Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Academy of Sciences
H-2163 Vácrátót, Alkotmány u. 2–4, Hungary
4Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
5Department of Biology, Faculty of Science, University of Hradec Králové
Rokitanského 62, 500 03 Hradec Králové, Czech Republic
6Department of Biology, The Biology Building, Lund University
Sölvegatan 35, 22362 Lund, Sweden
7Botanical Collections, Biological Museum, Lund University, Box 117, SE-221 00 Lund, Sweden
(Received: 8 April, 2019; Accepted: 5 August, 2019)
Three new genera Coppinsidea, Vandenboomia and Wolseleyidea are described and the genera
Ivanpisutia, Lecaniella and Myrionora are resurrected on the basis of a phylogenetic analysis
of multi-locus sequence data of the Ramalinaceae including the nuclear protein-coding
marker rpb2, the internal transcribed spacer and a fragment of the small mitochondrial
subunit. The genus Hertelidea was positioned within the Ramalina clade of the phylogenetic
tree of the Ramalinaceae. Bacidia sipmanii, Phyllopsora chlorophaea, P. castaneocincta and Ra-
malina subbreviuscula were recorded from South Korea for the first time here confirming by
molecular data, too.
Forty-eight new combinations are proposed: Bacidia alnetorum (basionym: Biatora
alnetorum S. Ekman et Tønsberg), Biatora amazonica (basionym: Phyllopsora amazonica Kis-
tenich et Timdal), Biatora cuyabensis (basionym: Lecidea cuyabensis Malme), Biatora halei (ba-
sionym: Pannaria halei Tuck.), Biatora kalbii (basionym: Phyllopsora kalbii Brako), Biatora sub-
hispidula (basionym: Psoroma subhispidulum Nyl.), Coppinsidea alba (basionym: Catillaria alba
Coppinsidea aphana (basionym: Lecidea aphana Nyl.), Coppinsidea croatica
(basionym: Catillaria croatica Zahlbr.), Coppinsidea fuscoviridis (basionym: Bilimbia fuscoviri-
dis Coppinsidea pallens (basionym: Bilimbia pallens Kullh.), Coppinsidea ropalosporoides
(basionym: Gyalidea ropalosporoides     Coppinsidea scoti-
nodes (basionym: Lecidea scotinodes Nyl.), Coppinsidea sphaerella (basionym: Lecidea sphaerella
Hedl.), Ivanpisutia hypophaea (basionym: Biatora hypophaea Ivanpisutia
ocelliformis (basionym: Lecidea ocelliformis Nyl.), Lecaniella belgica (basionym: Lecania belgica
van den Boom et Reese Naesb.), Lecaniella cyrtellina (basionym: Lecanora cyrtellina Nyl.),
Lecaniella dubitans (basionym: Lecidea dubitans Nyl.), Lecaniella erysibe (basionym: Lichen
erysibe Ach.), Lecaniella hutchinsiae (basionym: Lecanora hutchinsiae Nyl.), Lecaniella naegelii
Acta Bot. Hung. 61, 2019
276 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
(basionym: Biatora naegelii Hepp), Lecaniella prasinoides (basionym: Lecania prasinoides Elen-
kin), Lecaniella sylvestris (basionym: Biatora sylvestris Arnold), Lecaniella tenera (basionym:
Scoliciosporum tenerumMycobilimbia albohyalina (basionym: Lecidea anomala f. albo-
hyalina Nyl.), Mycobilimbia cinchonarum (basionym: Triclinum cinchonarum Fée), Mycobilim-
bia concinna (basionym: Phyllopsora concinna Kistenich et Timdal), Mycobilimbia ramea (ba-
sionym: Bacidina ramea S. Ekman), Mycobilimbia siamensis (basionym: Phyllopsora siamensis
Kistenich et Timdal), Myrionora australis (basionym: Biatora australis Rodr. Flakus et Print-
Myrionora ementiens (basionym: Lecidea ementiens Nyl.), Myrionora flavopunctata (basi-
onym: Lecanora flavopunctata Tønsberg), Myrionora globulosa (basionym: Lecidea globulosa
Myrionora hemipolia (basionym: Lecidea arceutina f. hemipolia Nyl.), Myrionora ligni-
mollis (basionym: Biatora ligni-mollis  Myrionora malcolmii (basionym:
Phyllopsora malcolmii   Myrionora vacciniicola (basionym: Lecidea vacciniicola
Tønsberg), Phyllopsora agonimioides (basionym: Coenogonium agonimioides J. P. Halda, S.-O.
Oh et J.-S. Hur), Phyllopsora sunchonensis (basionym: Agonimia sunchonensis S. Y. Kondr. et
J.-S. Hur), Vandenboomia chlorotiza (basionym: Lecidea chlorotiza Nyl.), Vandenboomia falcata
(basionym: Lecania falcata van den Boom, M. Brand, Coppins, Magain et Sérus.), Wolseleyi-
dea africana (basionym: Phyllopsora africana Timdal et Krog), Wolseleyidea byssiseda (basio-
nym: Lecidea byssiseda Nyl. ex Hue), Wolseleyidea canoumbrina (basionym: Lecidea canoumb-
rina Vain.), Wolseleyidea furfurella (basionym: Phyllopsora furfurella Kistenich et Timdal),
Wolseleyidea ochroxantha (basionym: Lecidea ochroxantha Nyl.), and Wolseleyidea swinscowii
(basionym: Phyllopsora swinscowii Timdal et Krog). The combination Biatora longispora (De-
   Biatora vezdana for Lecania
furfuraceaCoppinsidea vainioana for Lecidea sphaeroidiza Vain. are proposed. The
phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen association, i.e. DNA,
belonging neither to mycobiont nor photobiont or to endophytic fungi is for the first time
illustrated. So the presence of nrITS and mtSSU sequences of crustose lichen Coppinsidea
ropalosporoides in thalli of crustose Verrucaria margacea and foliose Kashiwadia orientalis, as
well as nrITS of Phyllopsora sp. KoLRI in Agonimia pacifica and Biatora longi spora, or nrITS
and mtSSU of Biatora longispora in thalli of Agonimia pacifica, Oxneriopsis oxneri and Pyxi-
ne limbulata, Ivanpisutia oxneri in thalli of Rinodina xanthophaea, etc. is documented. Scarce
cases of presence of ‘extraneous mycobiont DNA’ in representatives of the Teloschistaceae,
Physciaceae known from literature data are discussed, too.
Key words: Agonimia, Bacidia, Biatora, Coppinsidea, Ivanpisutia, Lecania, Lecaniella, Mycobilim-
bia, Myrionora, Phyllopsora, phylogeny, taxonomy, Vandenboomia, Wolseleyidea
INTRODUCTION
Gyalidea ropalosporoides-
scribed with hesitation concerning its generic position (Kondratyuk et al. 2016b).
It was found within the present study that Gyalidea ropalosporoides belonged to
the Phyllopsora s. l. subclade of the Biatora s. l. clade of the family Ramalinaceae.
Phyllopsora loekoesii S. Y. Kondr., E. Farkas, S.-O. Oh et J.-S. Hur and Coe-
nogonium agonimioides J. P. Halda, S.-O. Oh et J.-S. Hur have been described
(Kondratyuk et al. 2016a) when no molecular data were available for the cited
material. Later when molecular data on P. loekoesii and C. agonimioides were
obtained it was not possible to compare these data with other taxa of the gen-
Acta Bot. Hung. 61, 2019
277
THREE NEW GENERA OF THE RAMALINACEAE
era mentioned because data were available at that time only for a few species
of the genera Phyllopsora and Coenogonium. After molecular data on the Rama-
linaceae provided by Kistenich et al. (2018, 2019a, b) the further clarifying on
the phylogenetic position of the Eastern Asian material became possible. Both
species mentioned within our study was found to be positioned within the
Phyllopsora s. l. subclade of the Ramalinaceae.
Agonimia sunchonensis S. Y. Kondr. et J.-S. Hur was described as a mem-
ber of the genus Agonimia (Kondratyuk et al. 2018c), although the morphologi-
cal characters of this sterile material made some hesitation if it belonged to the
genera Bacidia or Agonimia. However, according to the phylogenetic analysis
within the current study the Korean material previously recorded as Agonimia
sunchonensis was found to be positioned within the Phyllopsora s. l. subclade of
the Ramalinaceae, too.
The monotypic Eastern Asian genus Ivanpisutia 
J.-S. Hur was described without providing molecular data because the type
collection was very small (Kondratyuk et al. 2015). The genus Ivanpisutia was
listed as Lecanorales incertae sedis by Lücking et al. (2017a, b). Kistenich et
al. (2018) made a note that in their phylogeny Ivanpisutia formed a strongly
supported clade with Biatora ocelliformis. Unfortunately, nrITS sequence was
cited only for one specimen of Ivanpisutia oxneri (Kistenich et al. 2018), and this
taxon was not included in the final combined phylogenetic tree. In general the
genus Ivanpisutia was considered as a synonym of the genus Biatora (Kistenich
et al. 2018). Additionally, the morphological similarity of Ivanpisutia oxneri and
Biatora pacificaet al.
(2016), while molecular data are still not available for the latter taxon.
Within this study data on nrITS and mtSSU sequences were obtained
for the Ivanpisutia oxneri
of the genus Ivanpisutia, and within combined phylogenetic analysis it was
found that the genus Ivanpisutia including two more species is positioned as a
separate monophyletic branch within the Ramalinaceae. Thus our data do not
confirm the proposal of the cited authors (Kistenich et al. 2018) that the genus
Ivanpisutia is synonymous with Biatora.
The aim of this paper was to present molecular data on all these mem-
bers of the Ramalinaceae from the Eastern Asian region as well as to discuss
their position. All representatives of the genera belonging to the Biatora group
of the Ramalinaceae (sensu Kistenich et al. 2018) for which molecular data are
hitherto available are included in the combined phylogenetic analysis, while
other groups (representatives of the Bacidia, the Ramalina and the Toninia
groups) are included only with the aim to illustrate the position of some bia-
toroid, lecanioid or ramalinoid Eastern Asian taxa for which molecular data
are provided for the first time.
Acta Bot. Hung. 61, 2019
278 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
MATERIAL AND METHODS
Numerous specimens of the Ramalinaceae from the Eastern Asian col-
lections treated within the latest years (see Kondratyuk et al. 2016a, b, 2017,
2018b, 2019) as well as separate taxa from Europe were included in compara-
tive molecular study. More than 400 Ramalinaceae specimens, collected in
2014–2018 and deposited in the Korean Lichen Research Institute, Sunchon
National University, South Korea (KoLRI), as well as some duplicates in the
Hungarian Natural History Museum (BP) and the Lichen Herbarium in the M.
H. Kholodny Institute of Botany of National Academy of Sciences of Ukraine
(KW-L) have been examined using standard microscopical techniques, and
hand-sectioned under a dissecting microscope (Nikon SMZ 645; Nikon, To-
kyo, Japan). Anatomical characters were observed using a Nikon Eclipse E200
microscope and a Zeiss Scope, complemented with a digital camera AxioCam
ERc 5s. Sections of apothecia were tested with water, K and IKI (10% potassi-
um iodide). Total DNA was extracted directly from the thalli according to Ek-

The nuclear ribosomal RNA gene region including the internal transcribed
spacers 1 and 2 and the 5.8S subunit (ITS) was amplified using the primers
  et al. 1990), the 28S nrLSU
using the primer LR5 (Vilgalys and Hester 1990), and the 12S mtSSU using
the primers mtSSU1-mtSSU3R and mtSSU2R (Fedorenko et al. 2009, 2012).
Methods of extractions of DNA, data on primers and phylogenetic analysis
are provided in our previous paper (Kondratyuk et al. 2017a, 2018a, d).
The amplification was done using a Takara JP/TP600 PCR machine (Ta-
kara Bio Inc., Japan). One initial cycle of 5 min at 94 °C was followed by 30
cycles of the following steps: 30 seconds at 94 °C, 39 seconds at 57 °C and
1 min at 72 °C. Amplifications were ended with a final cycle at 72 °C for 10
-
Tech Corporation, Daejeon, South Korea, for cleaning and sequencing. The
sequencing was carried out using the fluorescent marker BigDye and an ABI
3730xl sequencing machine (Applied Biosystems, Carlsbad, CA, USA). The
consensus sequence was aligned with all related species sequences retrieved

RESULTS
Phylogeny
The 3-locus dataset (concatenated nrITS, mtSSU and rpb2 gene sequenc-
es) consisted of 156 taxa and resulted in a 2,599 bp long alignment (where the
nrITS portion included 595 bp, the 12S mtSSU portion – 907 bp, and the rpb2
Acta Bot. Hung. 61, 2019
279
THREE NEW GENERA OF THE RAMALINACEAE
gene portion – 1,093 bp) with 2,346 parsimony-informative sites and 30.2%
missing data (Appendix).
More than 225 taxa were included into the nrITS phylogeny, while only
176 specimens were left in the final phylogenetic tree (Fig. 1).
From the combined phylogenetic analysis of multi-locus sequence data
of the Ramalinaceae including the nuclear protein-coding marker rpb2, the
internal transcribed spacer and a fragment of the small mitochondrial small
subunit, the following clades were included in our analysis: the Ramalina s. l.,
the Lecania s. l., the Biatora s. l. and the BacidiaToninia s. l. clades.
The Ramalina s. l. clade
After the combined phylogenetic analysis based on nrITS, mtSSU and
rpb2 gene sequences of the Ramalinaceae the Ramalina s. l. clade is represent-
ed in our case by the Ramalina s. l. branch, the Cliostomum branch and the
single species Hertelidea botryosa
The Ramalina s. l. branch illustrates the position of South Korean mate-
rial of Ramalina subbreviuscula Asahina, which is recorded in South Korea for
the first time. At the same time it should be mentioned that the type species
Ramalina fraxinea (L.) Ach. is positioned in a somewhat separate subbranch
within the Ramalina s. l. branch. It may suggest that the genus Ramalina Ach.
is polyphyletic from molecular point of view, too. Within our analysis this
genus has the highest level of support (Fig. 1). However, analysis of molecular
data on various species groups of the genus Ramalina is outside of this paper.
The Cliostomum branch is represented in our analysis by three species C.
griffithii (Sm.) Coppins, C. corrugatum (Ach.) Fr. and C. haematommatis (Keissl.)
D. Hawksw., Earl.-Benn. et Coppins, which do not show the highest level of
support in this case (Fig. 1).
The Northern Hemisphere species Hertelidea botryosa was found to be
positioned in the Ramalina s. l. clade of the Ramalinaceae, while it was consid-
ered to be in ‘out position’ to the Stereocaulaceae in the original publication

The Lecania s. l. clade
According to the combined phylogenetic analysis based on nrITS, mtSSU
and rpb2 gene sequences of the Ramalinaceae, the Lecania s. l. clade includes
two subclades, i.e.: the BilimbiaCoppinsidea–Thamnolecania, and the Lecania s.
l. subclades.
Acta Bot. Hung. 61, 2019
280 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Fig. 1. Position of the genera Coppinsidea, Vandenboomia, Wolseleyidea, as well as Lecaniella,
Ivanpisutia and Myrionora in phylogenetic tree of the Ramalinaceae, based on combined mul-
ti-loci sequence dataset. Branches with the highest level of the bootstrap support are in bold
Acta Bot. Hung. 61, 2019
281
THREE NEW GENERA OF THE RAMALINACEAE
Fig. 1. (continued)
Acta Bot. Hung. 61, 2019
282 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Bilimbia–Coppinsidea–Thamnolecania subclade
From the combined phylogenetic analysis based on nrITS, mtSSU and
rpb2 gene sequences of the Ramalinaceae the BilimbiaCoppinsidea–Thamnole-
cania subclade includes three branches, i.e. the Bilimbia, the Coppinsidea and
the Thamnolecania branches.
The Bilimbia branch is represented only by two species B. sabuletorum
(Schreb.) Arnold and B. lobulata (Sommerf.) Hafellner et Coppins. The Cop-
pinsidea s. l. branch in fact includes the following subbranches, i.e.: the Coppin-
sidea s. str., the Coppinsidea pallens, the Coppinsidea croatica and the Coppinsidea
scotinodes subbranches (Fig. 1).
The Coppinsidea s. str. (= the former Lecidea sphaerella group) subbranch
is represented by four taxa, i.e.: Coppinsidea fuscoviridis
C. ropalosporoides
C. sphaerella (Hedl.) S. Y. Kondr., E. Farkas et L.
Coppinsidea aff. sphaerella in
Fig. 1) forming a robust monophyletic branch. Unfortunately, data on rpb2
gene of C. fuscoviridis are still missing.
Molecular data on Coppinsidea ropalosporoides  -
Bank for the first time. C. ropalosporoides is presented by six specimens in
the ITS phylogeny, four of them (i.e. 161718 (KoLRI 039936), 161520 (KoLRI
039738), 161645 (KoLRI 039863) and 151671 (KoLRI 035364)) were extract-
ed from this lichen species, while two other specimens, i.e. 151524 (KoLRI
035217) and 150813 (KoLRI 034046) were extracted from the crustose lichen
species Verrucaria margacea (Wahlenb.) Wahlenb. and the foliose lichen species
Kashiwadia orientalis respectively
(see phenomenon of ‘extraneous mycobiont DNA’ below, too).
Furthermore, the Coppinsidea pallens subbranch (i.e. the former Biatora
pallens group) is positioned within the Coppinsidea s. l. branch, too. It includes
the following three taxa, i.e.: Coppinsidea alba
C. pallens
well as C. vainioana The inclusion of the
three Biatora species into the Coppinsidea genus is rather preliminary. In our
analysis this branch has rather low level of bootstrap support, while species of
the former Biatora pallens have rather high level of support within this branch.
We are considering these taxa within this new genus to emphasise that they
represent a unique group of biatoroid species and the status of this group is in
urgent need of further clarifying.
The Coppinsidea s. l. branch includes also the separate C. croatica and the
C. scotinodes monophyletic subbranches, which are characterised by strong
bootstrap support within various analyses, while they are positioned within
the Coppinsidea s. l. branch with much weaker support. Their status is still
Acta Bot. Hung. 61, 2019
283
THREE NEW GENERA OF THE RAMALINACEAE
not clear with molecular data so far available (Fig. 1). The Coppinsidea croatica
subbranch includes only one rather rare European-North American taxon C.
croatica (Zahlbr.) S. Y.      Coppinsidea
scotinodes subbranch includes also C. scotinodes (Nyl.) S. Y. Kondr., E. Farkas

  
for clarifying, see Svensson et al. 2017) and an Atlantic European endemic spe-
cies C. aphana 
mtSSU and rpb2 genes of C. aphana are still missing.
Thus Coppinsidea is accepted here as a polyphyletic genus, which includes
the Coppinsidea s. str. (i.e. the C. sphaerella monophyletic branch), the C. pallens,
the C. croatica and the C. scotinodes subbranches. Two latter subbranches form
also monophyletic branches in the phylogenetic tree of the Ramalinaceae.
According to the combined phylogenetic analysis based on nrITS, mtSSU
and rpb2 gene sequences of the Ramalinaceae as well as after simple nrITS
or mtSSU phylogeny, the Thamnolecania branch includes three species of the
genus ThamnolecaniaT. brialmontii (Vain.)
T. gerlacheiT. racovitzae (Vain.) S. Y. Kon-

Lecania s. l. subclade
The Lecania s. l. branch (in the Lecania s. l. subclade) is represented by
members of the only the genera Lecania A. Massal. and Lecaniella Jatta from
the combined phylogenetic analysis based on nrITS, mtSSU and rpb2 gene
sequences of the Ramalinaceae (Fig. 1). However, we would like to emphasise
that after our phylogenetic analysis the genus Lecania is not monophyletic in
contrast to the conclusion of Kistenich et al. (2018) data. So the Lecania s. l.
branch includes as Lecania s. str. subbranch, as well as the Lecania erysibe sub-
Lecania dubitans
in Fig. 1). It should be emphasised that these three subbranches have rather
higher level of support than the whole the Lecania s. l. branch.
The Lecania s. str. subbranch includes L. fuscella (Schaer.) A. Massal., the
type species of the genus, L. nylanderiana A. Massal., L. inundata (Hepp ex
L. turicensis (Hepp) Müll. Arg., L. aipospila (Wahlenb. ex
Ach.) Th. Fr., L. rabenhorstii (Hepp) Arnold and L. spadicea (Flot.) Zahlbr. From
the mtSSU phylogeny two more species, i.e.: L. fructigena Zahlbr., and L. lep-
rosa Reese Naesb. et Vondrák are members of this branch, too. Unfortunately,
hitherto there are data only on mtSSU sequences of species mentioned, and
data on rpb2 sequences of Lecania fuscella and L. leprosa are still missing. Some-
times this branch is positioned as separate branch in distant position from the
Acta Bot. Hung. 61, 2019
284 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Lecania branch within the phylogenetic analysis of the Ramalinaceae if limited
number of taxa is included in the analysis.
The Lecaniella branch includes two species groups, i.e. the Lecaniella er-
ysibe group, which is represented by Lecaniella erysibe (Ach.) S. Y. Kondr.,
Lecaniella belgica (van den Boom et Reese Naesb.) S. Y. Kondr., L. sylvestris
(Arnold) S. Y. Kondr., L. hutchinsiae (Nyl.) S. Y. Kondr., and L. cyrtella (Ach.)
S. Y. Kondr., while the Lecaniella dubitans group is represented by Lecaniella
dubitans (Nyl.) S. Y. Kondr., L. naegelii (Hepp) S. Y. Kondr.*, L. cyrtellina (Nyl.)
S. Y. Kondr., L. sambucinaL. proteiformis (A. Massal.) Jatta, and
L. prasinoides (Elenkin) S. Y. Kondr. However, there are two more separate
groups of the Lecaniella species, i.e.: Lecaniella erysibe and the Lecaniella dubi-
tans groups, which sometimes form separate clade with rather low level of
support, while each of these groups have rather high (or the highest) level of
bootstrap support. So conclusion that it is first confirmation the generic name
Lecaniella Jatta should be resurrected for the Lecaniella erysibe group is done
here (Fig. 1). Unfortunately, data on mtSSU sequences of Lecaniella sylvestris
are still missing, as well as data on rpb2 gene of L. belgica are still not available.
In contrast to the combined phylogenetic analysis after the mtSSU phy-
logeny the Lecaniella erysibe and L. dubitans are positioned in the same robust
monophyletic branch. This is why we prefer to include the second branch (i.e.
the Lecaniella dubitans group) to the genus Lecaniella, too, until this hypothesis
will be checked with additional data including new vouchers and new mo-
lecular markers.
It should be emphasised that two additional former Lecania species of the
L. chlorotiza group, i.e.: Lecania falcata and L. chlorotiza are positioned within
the Toninia s. l. clade (see under Vandenboomia, too). Additionally to this after
molecular data hitherto available Lecania glauca Øvstedal et Søchting is posi-
tioned in ‘out position’ to all known members of the Ramalinaceae (not shown
in Fig. 1). However, data on rpb2 gene of Lecania glauca are still missing.
Furthermore after mtSSU phylogeny Lecania baeomma (Nyl.) P. James et J.
R. Laundon (for which hitherto only mtSSU data are available) is positioned
in ‘out position’ to all Lecania and Biatora species and positioned in separate
branch. However, it was not possible to check the position of this taxon after
* Based on the specimen (AM292691) of Reese Naesborg et al. (2007), which is positioned
within the Lecania clade, while another specimen (AF252101) of ‘Lecaniella naegelii (Ek-
man’s data) is positioned within the Toninia clade in sister position to Bacidina arnoldiana
   -
naceae this species (Lecaniella naegelii) similarly to Reese Naesborg et al. (2007) is positioned
together with Biatora vezdana S. Y. Kondr. and Lecaniella tenera in separate branch closely
related to the Coppinsidea clade. However, only data on mtSSU sequence of Lecaniella tenera
and data on nrITS and mtSSU sequences of Biatora vezdana are so far available. So final
decision about status of this species group can be done when complete data set including
all molecular markers for taxa mentioned will be available.
Acta Bot. Hung. 61, 2019
285
THREE NEW GENERA OF THE RAMALINACEAE
combined phylogenetic analysis as far as data on other molecular markers are
still missing for this taxon.
The Biatora s. l. clade
The Biatora s. l. clade is represented by four separate subclades, i.e. the
Mycobilimbia, the IvanpisutiaMyrionoraBiatora, the Phyllopsora s. l. and the
Wolseleyidea subclades.
The Mycobilimbia subclade
The Mycobilimbia subclade is represented only by the species of the ge-
nus Mycobilimbia, if we accept that this genus is paraphyletic. There are two
monophyletic branches within this subclade, the first one includes three spe-
cies of the genus Mycobilimbia Rehm, the type species Mycobilimbia obscurata
(Sommerf.) Rehm (the current name is M. tetramera (De Not.) Vitik., Ahti,
Kuusinen, Lommi et T. Ulvinen ex Hafellner et Türk), M. epixanthoides (Nyl.)
Vitik., Ahti, Kuusinen, Lommi et T. Ulvinen ex Hafellner et Türk and M. pilu-
laris 
previously considered as members of the Phyllopsora genus (Kistenich et al.
2019a, b). However, as far as after combined phylogeny they are positioned
within the Mycobilimbia branch, the following three species, i.e. Mycobilimbia
siamensis (Kistenich et Timdal) S. Y. Kondr., Mycobilimbia concinna (Kistenich
et Timdal) S. Y. Kondr., and M. cinchonarum (Fée) S. Y. Kondr. are combined
to the Mycobilimbia genus here (see below).
The second monophyletic branch within the Mycobilimbia subclade (the
former Lecidea albohyalina group) includes Mycobilimbia albohyalina (Nyl.) S. Y.
Kondr. (the combination is proposed below), Mycobilimbia ramea (S. Ekman) S.
Y. Kondr. (see below, too), and Mycobilimbia carneoalbida (Müll. Arg.) S. Ekman
Mycobilimbia subclade is rather low,
while the two mentioned branches form monophyletic branches within this sub-
clade (Fig. 1). Unfortunately, data on mtSSU gene of M. ramea are still missing.
Thus the genus Mycobilimbia is accepted here as polyphyletic similarly to
the genus Coppinsidea.
The IvanpisutiaMyrionora–Biatora subclade
The IvanpisutiaMyrionoraBiatora subclade includes the Ivanpisutia mo-
no phyletic branch with the Myrionora branch being in sister position to Ivan-
pisutia, as well as a number of monophyletic branches of the Biatora species
including the Biatora s. str. branch of the Biatora s. l. clade.
Acta Bot. Hung. 61, 2019
286 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
The Ivanpisutia monophyletic branch. – In contrast to the phylogenetic
tree of the Ramalinaceae provided by Kistenich et al. (2018) from our com-
bined phylogenetic analysis based on concatenated nrITS, mtSSU and rpb2
sequences found to be separate the Ivanpisutia monophyletic branch in sis-
ter position to the Biatora s. l. branch. The Ivanpisutia branch includes three
species, i.e. the type species I. oxneri
specimens are included in the analysis (25973 after Kistenich et al. 2018) and
two specimens from our data, i.e. 150932 (KoLRI 034165) and 150986 (KoLRI
034219)), as well as the North American species I. hypophaea  
Kondr., and the widely distributed Northern Hemisphere species I. ocelliformis
(Nyl.) S. Y. Kondr. It should be mentioned that both nrITS and mtSSU data on
the 150986 specimen of Ivanpisutia oxneri were obtained during extraction of
DNA from Rinodina xanthophaea (Nyl.) Zahlbr. (see phenomenon of ‘extrane-
ous (= foreign) mycobiont DNA’ below). Ivanpisutia hypophaea and I. ocelliformis
are represented by three voucher specimens each, while all 12 specimens of the

(see also Appendix). According to Kistenich et al. (2018) sequences from two
Biatora ocelliformis voucher specimens have had 100 level of bootstrap support,
while Ivanpisutia oxneri was not included in the phylogenetic tree at all. Only
in the Appendix Ivanpisutia oxneri was cited as voucher specimens for only one
nrITS sequence. However, after the nrITS phylogeny including also our data, I.
oxneri, I. ocelliformis and I. hypophaea form a separate branch at rather low level
(MP = 55), while separate species have the highest level of support.
The Myrionora branch. – The former Biatora globulosa group branch is
positioned in the sister position to the Ivanpisutia monophyletic branch from
the combined phylogenetic analysis based on nrITS, mtSSU and rpb2 gene
sequences of the Ramalinaceae. In this situation after combined analysis, the
Biatora globulosa group includes four species, i.e. B. globulosa, B. ligni-mollis,
B. hemipolia, and B. ementiens. All these species belong to the genus Myrionora
R. C. Harris (see also Fig. 1), while such conclusion can be done with some
hesitation, since only mtSSU sequence data of a single specimen of M. albidula
(Willey) R. C. Harris, the type species of this genus, are still available. Thus,
unfortunately, M. albidula could not be hitherto included in the combined
phylogenetic analysis of the Ramalinaceae. Molecular data on the second,
hitherto known member of this genus, i.e. Myrionora pseudocyphellariae (Etayo)
S. Ekman et Palice are still absent, too (see Palice et al. 2013).
The suggestion of Kistenich et al. (2018) that Myrionora albidula is closely
related (or is positioned together) with Biatora ligni-mollis is confirmed by our
analysis. Furthermore we would like to add that M. albidula is positioned in
the same branch with the South American (hitherto known from Argentina
and Ecuador) species M. australisM.
Acta Bot. Hung. 61, 2019
287
THREE NEW GENERA OF THE RAMALINACEAE
ligni-mollisM. globulosa
Kondr., as well as, with Biatora beckhausii and Coppinsidea alba after the mtSSU
analysis. M. ementiens (Nyl.) S. Y. Kondr., and M. hemipolia (Nyl.) S. Y. Kondr.
are included in this genus with some hesitation as far level of support of these
taxa in the Myrionora branch is rather low. However, molecular data on Biatora
beckhausii are somewhat different from all members of the Ramalinaceae and
they are in need of confirmation on the basis of additional voucher specimens
as well as molecular markers. On the other hand, Coppinsidea alba is a member
of the Coppinsidea branch after the combined phylogenetic tree (Fig. 1).
The opinion of Kistenich et al. (2018) that the genus Myrionora is synony-
mous with Biatora cannot be accepted. The former Biatora globulosa group is
positioned in a separate branch, which is in sister position to Ivanpisutia and in
distant position from the Biatora s. str. subclade / branch. In addition, the level
of support of the Myrionora branch is rather low (between MP = 90–94), while
the highest level of support within this group found to be shown between M.
globulosa and M. ligni-mollis (Fig. 1). Level of support of the IvanpisutiaMyri-
onora subclade is rather low too (lower of MP = 89).
Unexpectedly three more species, i.e. Myrionora flavopunctata (Tønsberg)
S. Y. Kondr., M. vacciniicola (Tønsberg) S. Y. Kondr., and M. malcomii
et Kalb) S. Y. Kondr. are positioned within the Myrionora branch too, when
recently provided data on a number of Phyllopsora species (Kistenich et al.
2019b) are included into the phylogenetic analysis (see also discussion under
the genera Myrionora and Wolseleyidea below). Two first taxa are members of
the former Biatora vacciniicola group (see also below).
The Biatora s. l. branch is represented by the Biatora s. str. branch itself,
which is characterised by not very high level of support, but with very low
species diversity, as well as three more species groups, i.e. the Biatora cuprea,
the B. pausiaca, and the B. vacciniicola groups having the highest or rather high
level of bootstrap support additionally to the Biatora s. str. branch.
The Biatora s. str. branch includes only the type species B. vernalis (L.) Fr.,
B. chrysantha and B. chrysanthoides 
and in some analysis additionally to these two species of the B. rufidula group,
i.e.: B. rufidula B. nobilis
as well as B. aegrefaciensB. vernalis
and B. chrysanthoides, as well as the B. rufidula group have the highest level of
support, while level of support of these two branches is somewhat variable
from analysis to analysis. However, if we will accept that the genus Biatora is
paraphyletic, these two branches may be accepted as the Biatora s. str. genus.
Unexpectedly the Biatora s. str. branch included also five more species
previously considered as members of the Phyllopsora genus (Kistenich et al.
2019a, b). However, as far after combined phylogeny they are positioned with-
Acta Bot. Hung. 61, 2019
288 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
in this branch, the following four species, i.e. Biatora amazonica (Kistenich et
Timdal), Biatora cuyabensis (Malme), B. halei (Turk.) and B. kalbii (Brako) are
combined to the Biatora genus here (see below).
In somewhat ‘out position’ to the Biatora s. str. branch the following
groups are positioned after the combined phylogenetic analysis, i.e.: the B.
cuprea group, the B. printzenii group, the B. hertelii group, as well as the B. vac-
ciniicola and the Biatora pausiaca groups.
The large Biatora cuprea group is positioned in sister branch to the Bi-
atora s. str. branch, and includes the following three subgroups: the Biatora
meiocarpa subgroup (or group 1 in Fig. 1) including only two species, i.e.: B.
meiocarpa (Nyl.) Arnold and B. kodiakensis
high level of support (MP to 97); the Biatora cuprea subgroup (or group 2 in
Fig. 1), including B. cuprea (Sommerf.) Fr., B. alaskanaB.
fallax Hepp, B. longispora  B. subduplex (Nyl.)
B. terrae-novae, as well as the Biatora
toensbergii subgroup (or group 3 in Fig. 1), including B. appalachiensis
et Tønsberg, B. pycnidiata , and B. toensbergii Holien et
. These three groups form sometimes robust monophyletic branches
within the Biatora cuprea group, while the whole group has rather low level
of support. The Biatora cuprea group is positioned in a sister position to the
Biatora s. str. and it is the most diverse group of the biatoroid lichens at the
moment. According to molecular data so far available for biatoroid lichens the
Biatora cuprea group includes about 20 species at the moment.
The Biatora printzenii group is represented by three species (B. printzenii
Tønsberg, B. bacidioides B. pontica -
berg), and the Biatora hertelii group includes two species (B. hertelii 
et Etayo and B. britannica 
species Biatora oligocarpa       -
tween the Biatora cuprea group and the Biatora s. str. branch.
The Biatora pausiaca group, including so far only two species, i.e. B. pau-
siacaB. radicicola 
positioned in the outermost position to the Biatora s. l. branch of the Biatora s.
l. clade (Fig. 1).
It should be mentioned that after the ITS phylogeny Biatora vezdana is a
member of the Lecania clade, while after the mtSSU phylogeny it is positioned
in the Lecaniella naegelii subclade, which includes L. naegelii, L. tenera and B.
vezdana. Unfortunately, so far only mtSSU data are available for the L. tenera, as
well as data on L. naegelii are somewhat contradictory (see above). So proposal
on transferring of this species to the genus Biatora is done with some hesitation.
However, position of this species (B. vezdana) should be checked additionally
when data on rpb2 and other genes will be available for this species.
Acta Bot. Hung. 61, 2019
289
THREE NEW GENERA OF THE RAMALINACEAE
It should be especially emphasised that additionally to species groups
forming the Biatora s. l. branch there are the following species groups of bia-
toroid lichens: the B. beckhausii, the B. globulosa, the former B. ocelliformis group
(see under Ivanpisutia) and the B. pallens, which are positioned outside of the
Biatora s. l. branch (see above, and they were characterised within the other
clades/branches).
The Biatora beckhausii group is probably positioned outside the Ramalinace-
ae after molecular data so far available for this group. It includes B. beckhausii
B. australis Rodr. Flakus et
Lecania glauca branch is hither-
to positioned outside of all clades represented in our phylogenetic tree of the Ra-
malinaceae (not included in Fig. 1). However, it should be emphasised that data
on rpb2 sequence of Lecania glauca Øvstedal et Søchting are still not available.
The former Biatora botryosa Fr. (now as Hertelidea botryosa
Kantvilas) is for the first time illustrated to be positioned in the Ramalina s. l.
clade of the Ramalinaceae (Fig. 1). However, data on rpb2 gene is still not avail-
able for this species. Similarly to taxon mentioned above, the former Biatora
pallens group including so far three species is positioned within the Coppinsidea
branch of the Bilimbia–CoppinsideaThamnolecania subclade of the Lecania s. l.
clade (see above), as well as the former Biatora globulosa group including hith-
erto four species is positioned in sister position to the Ivanpisutia branch (see
under the Myrionora branch above). The former Biatora ocelliformis group is dis-
cussed under the Ivanpisutia branch, and they are not mentioned here.
Thus from totally more than seven species groups of biatoroid lichens
five groups, i.e. the Biatora beckhausii, the former B. globulosa, the former B.
ocelliformis, the former B. pallens, and the B. pausiaca are positioned outside the
Biatora s. l. branch, and consequently generic status of these groups should be
under special revision in future. Three of the groups mentioned above pro-
posed to be placed in the Coppinsidea, Ivanpisutia and Myrionora genera con-
sequently in this paper. At the same time only three groups, i.e. the Biatora
cuprea, the B. pausiaca, and the B. vacciniicola groups are positioned within the
Biatora s. l. subclade. It is why the general conclusion that the genus Biatora
is still polyphyletic, is accepted here in contrast to the conclusion about the
monophyletic nature of this genus suggested by Kistenich et al. (2018). From
our combined analysis of the Ramalinaceae the former Lecania furfuracea, de-
Biatora pausiaca branch,
too, on the basis of data provided by Reese Naesborg et al. (2007), thus the
new name Biatora vezdana S. Y. Kondr. is proposed below for Lecania furfuracea
Biatora furfuraceaB. furfuracea Kremp. (1886)).
It should be mentioned that after separate nrITS and mtSSU or rpb2 anal-
ysis some species are not positioned within the same groups or subgroups,
Acta Bot. Hung. 61, 2019
290 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
which are shown in Figure 1. It depends also on length of sequences of sepa-
rate (mtSSU or rpb2) genes. So position of separate species within this group
as well as status of each group mentioned is still in urgent need of confirma-
tion with multi-locus phylogeny. In case of the Ivanpisutia and Coppinsidea
branches we have more or less clear situation with number of species and
with name after molecular data hitherto available. However, status of Biatora
species, which are positioned outside of the Biatora s. l. subclade is especially
in urgent need of clarifying.
Unfortunately, the status of several biatoroid taxa is still unclear. On
one side there are species, i.e. Biatora efflorescens, etc. for which only nrITS se-
quence data (or Lecaniella tenera, Myrionora albidula, etc. for which only mtSSU

species Biatora pseudohelvola, but we were not able to allocate if this species is
legally described. Status of them will wait for the further molecular data.
Within our study nrITS and mtSSU data were obtained for 5–6 speci-
mens of Biatora longispora, for the first time from Korean specimens. How-
ever, it should be mentioned that they were obtained from Biatora longispora
specimens as well as from ‘sterile isidiate crust’ (KoLRI 034168) and Agonimia
pacifica (KoLRI 034290) specimens.
The Phyllopsora s. l. subclade
After our phylogenetic analysis it is seen that the genus Phyllopsora is still
polyphyletic in contrast to the conclusion of Kistenich et al. (2018). Thus, from
the combined phylogenetic analysis based on nrITS, mtSSU and rpb2 gene
sequences of the Ramalinaceae the Phyllopsora s. l. subclade includes four sep-
arate branches, i.e. the P. isidiosa, the P. loekoesii, the P. breviuscula and the P.
castaneocincta groups.
The Phyllopsora isidiosa branch/group including four taxa, i.e. P. isidiosa
Kistenich et Timdal, P. isidiotyla Kistenich et Timdal, P. furfuracea (Pers.) Zahlbr.
and P. dolichospora Timdal et Krog is positioned as robust monophyletic
branch within the Phyllopsora s. l. subclade.
The Phyllopsora s. str. branch, including only the type species of the genus
Phyllopsora P. breviuscula (Nyl.) Müll. Arg., is consisting of three robust sub-
branches with two species each. So the P. breviuscula subbranch includes type
species itself, as well as P. mauritianaP. gos-
sypina subbranch consists of P. gossypina (Sw.) Kistenich, Timdal, Bendiksby
et S. Ekman, and P. imshaugii Timdal (Fig. 1). Unfortunately, data on rpb2
gene sequences of P. mauritiana are still missing.
The Phyllopsora longiuscula group with two species, i.e. P. longiuscula
(Nyl.) Zahlbr. and P. thaleriza 
Acta Bot. Hung. 61, 2019
291
THREE NEW GENERA OF THE RAMALINACEAE
sister position to the Phyllopsora s. str. branch. Each of these three subbranches
has rather high level of support, while the Phyllopsora s. l. clade does not have
high level of bootstrap support.
The Phyllopsora longiuscula group includes also two more still unde-
scribed Phyllopsoraet al. 2018, as
Phyllopsora sp. 1 (26003) and Phyllopsora sp. 2 (26004)), if they are included in
the analysis (Fig. 1, not shown).
The Phyllopsora loekoesii branch/group, including hitherto about nine spe-
cies (see below, as well as Fig. 1), includes P. loekoesii S. Y. Kondr., E. Farkas,
S.-O. Oh et J.-S. Hur, P. agonimioides (J. P. Halda, S.-O. Oh et J.-S. Hur) S. Y.
Kondr., D. Liu et J.-S. Hur and P. sunchonensis (S. Y. Kondr. et J.-S. Hur) S. Y.

(see below), as well as and six more or less widely distributed taxa P. buettneri
(Müll. Arg.) Zahlbr., P. chlorophaea (Müll. Arg.) Zahlbr., P. porphyromelaena
(Vain.) Zahlbr., P. parvifoliella (Nyl.) Müll. Arg., recently described P. neotinica
Kistenich et Timdal and P. sabahana Kistenich et Timdal. Molecular data for P.
loekoesii, P. agonimioides and P. sunchonensis were obtained and submitted to
-
eny Phyllopsora loekoesii and P. agonimioides are extremely similar, while mor-
phologically they are rather different, and they were described as representa-
tives of different genera in the original paper (i.e. Phyllopsora Müll. Arg. and
Coenogonium Ehrenb., Kondratyuk et al. 2016a), because these lichen species
were collected in fertile stage. On the other hand, material of Phyllopsora sun-
chonensis was described as a member of the genus Agonimia Zahlbr., because
it is still known only from sterile (sorediate) stage.
The Phyllopsora loekoesii branch includes also a South Korean Phyllopsora sp.
(KoLRI), which was extracted in three cases from Agonimia pacifica (H. Harada)
Diederich thalli (specimens KoLRI, see Appendix) and in one case from Biatora
longispora
also phenomenon of ‘extraneous (= foreign) mycobiont DNA’ below).
Kistenich et al. (2019a, b) have mentioned that Phyllopsora loekoesii is close
to P. confusa. However, as it is seen from Figure 1 from our combined phy-
logenetic analysis that material named as Phyllopsora loekoesii by Kistenich et
al. (2019a, b) is very different from the Korean material and it is positioned
within the Phyllopsora castaneocincta branch. Thus we made the conclusion
that specimens from Nepal and Japan named by Kistenich et al. (2019a) as
Phyllopsora loekoesii probably represent another species and for this material
we used name as Phyllopsora aff. loekoesii. Status of this material is still waiting
for further clarification.
The Phyllopsora castaneocincta branch includes seven species, i.e. P cas-
taneocincta (Hue) Kistenich et Timdal itself, P. pseudocorallina Kistenich et Tim-
Acta Bot. Hung. 61, 2019
292 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
dal, P. neofoliata Elix, P. confusa Swinscow et Krog, P. foliata (Stirt.) Zahlbr., P.
mediocris Swinscow et Krog, P. parvifolia (Pers.) Müll. Arg. as well as one more
still undescribed species, which we mentioned as P. aff. loekoesii above.
The Phyllopsora loekoesii and the P. isidiosa branches may belong to anoth-
er, still not described genus/genera, which is/are very close to the genus Phyl-
lopsora Müll. Arg. However, this hypothesis should be checked in future with
larger number of vouchers selected, as well as data on more gene sequences.
In contrast to Kistenich et al. (2018) data Phyllopsora chlorophaea is po-
sitioned in somewhat ‘out position’ to the Phyllopsora s. str. branch, being a
member of the Phyllopsora loekoesii branch (Fig. 1). This species is positioned
with one Korean specimen 151104 (KoLRI 034337), which was selected as
voucher for Biatora longispora, but appeared to be close to P. chlorophaea (see
Fig. 1 and Appendix under Phyllopsora cf. chlorophaea). Phyllopsora chlorophaea
and P. castaneocincta are reported from South Korea for the first time here,
confirmed by molecular data.
The Wolseleyidea subclade
From the combined phylogenetic analysis based on nrITS, mtSSU and
rpb2 gene sequences of the Ramalinaceae the Wolseleyidea subclade is posi-
tioning in ‘out position’ to the IvanpisutiaMyrionoraBiatora and the Phyllo-
psora s. l. subclades and is represented by the species of the genus Wolseleyi-
dea, proposed below. It hitherto includes six species of the former Phyllopsora
swins cowii group, i.e. Wolseleyidea africana (Timdal et Krog) S. Y. Kondr., E.
 , W. byssiseda (Nyl. ex Hue) S. Y. Kondr., E. Farkas et L.
W. canoumbrinaW. furfurella
W. ochroxantha (Nyl.)
, and W. swinscowii (Timdal et Krog) S. Y.
 (see also description of the genus below).
Originally some species of the Phyllopsora rosei and the Phyllopsora coral-
lina groups were planned to be included in the genus Wolseleyidea. However,
they found to be positioned in separate monophyletic branches in intermediate
position between the Phyllopsora and the Biatora clades of the phylogenetic tree
of the Ramalinaceae if larger set of taxa of the genus Phyllopsora are included
in the phylogeny. So the Phyllopsora rosei branch includes four taxa, i.e. Phyl-
lopsora rosei Coppins et P. James itself, as well as P. chodatinica Elix, P. hispa-
niolae Timdal, and P. nemoralis Timdal et Krog. The Phyllopsora corallina group
includes so far the following six species: P. corallina (Eschw.) Müll. Arg., P.
glaucella (Vain.) Timdal, P. melanoglauca Zahlbr., P. phaeobyssina (Vain.) Timdal,
P. rappiana (Brako) Elix, and P. teretiuscula Timdal (not shown in the Fig. 1). Sta-
tus of these two groups (i.e.: Phyllopsora rosei and P. corallina groups) is pending
accumulation data on additional vouchers and additional molecular markers.
Acta Bot. Hung. 61, 2019
293
THREE NEW GENERA OF THE RAMALINACEAE
The BacidiaToninia s. l. clade
From the combined phylogenetic analysis based on nrITS, mtSSU and
rpb2 gene sequences of the Ramalinaceae the BacidiaToninia s. l. clade con-
sists of two separate subclades, i.e. the Bacidia and the Toninia s. l. subclades.
The Bacidia subclade
The Bacidia subclade is represented by the type species Bacidia rosella
(Pers.) De Not., as well as Bacidia sorediata Lendemer et R. C. Harris, B. sch-
weinitzii (Fr. ex Tuck.) A. Schneid. and Bacidia sipmanii M. Brand, Coppins, van
den Boom et Sérus. Bacidia sipmanii hitherto known only from North Africa
(Canary Islands) and the Asian Near East (Turkey) is recorded and confirmed
by molecular data from South Korean material (151136 (KoLRI 034369)) for
the first time here (Fig. 1, Appendix). It is shown that this species is positioned
within the Bacidia branch of the BacidiaToninia s. l. clade of the Ramalinaceae.
Similarly to data of previous authors (Kistenich et al. 2018) Lueckingia
polyspora is positioned in ‘out position’ to the Bacidia branch.
The Toninia s. l . subclade
The Toninia s. l. subclade includes members of the genera Aciculopsora
Aptroot et Trest, BacidinaBellicidia Kistenich, Timdal, Bendiksby et
S. Ekman, Bibbya J. H. Willis, Kiliasia Hafellner, Krogia Timdal, Parallopsora
Kistenich, Timdal et Bendiksby, Thalloidima A. Massal., Toninia A. Massal.,
Toniniopsis Frey, Waynea Moberg, as well as the former ‘Lecania’ chlorotiza
group. Authors of the recently described Lecania falcata (Sérusiaux et al. 2012)
pointed out that the former Lecania chlorotiza group is positioned in sister po-
sition to the species of the genus Toninia. However, they hesitated to make a
final conclusion about status of this group as far data on other genera of the
Toninia s. l. clade were very incomplete at that time. After providing numer-
ous molecular data on the genera of the Toninia clade (they all were included
in the combined phylogenetic analysis, see Fig. 1 and Appendix) it was found
that the former Lecania chlorotiza group had the highest level of bootstrap sup-
port to form a separate branch within the Toninia s. l. subclade. It should be
especially emphasised that after combined phylogenetic analysis as well as af-
ter separate mtSSU analysis two species of the former Lecania chlorotiza group,
i.e.: L. chlorotiza (Nyl.) P. James and Lecania falcata van den Boom, M. Brand,
Coppins, Magain et Sérus. are positioned within the Toninia s. l. clade. They
are positioned in a robust monophyletic branch and therefore transferred to
the new genus Vandenboomia described below.
Acta Bot. Hung. 61, 2019
294 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
THE PHENOMENON OF PRESENCE OF
‘EXTRANEOUS MYCOBIONT DNA’ IN LICHEN ASSOCIATION
The presence of ‘extraneous (= foreign) mycobiont DNA’ in lichen asso-
ciation, which not belonging either to own (= expected) mycobiont or photo-
biont, or to endophytic fungi, is especially mentioned here. Previously similar
situations were treated usually as contamination or as mistakes with voucher
numbers. However, in case of Phyllopsora taxa mentioned above, as well as
Biatora longispora specimens these cases are especially illustrative.
So here we can clearly confirm the presence of nrITS and mtSSU se-
quences of Biatora longispora in thalli of Agonimia pacifica, Oxneriopsis oxneri
and Pyxine limbulata; Coppinsidea ropalosporoides sequences in Verrucaria mar-
gacea and Kashiwadia orientalis thalli; Coppinsidea aff. sphaerella sequences in
thalli of Agonimia pacifica; Ivanpisutia oxneri sequences in thalli of Rinodina xan-
thophaea; Phyllopsora cf. chlorophaea sequences in the thalli of Biatora longispora,
as well as nrITS of Phyllopsora sp. KoLRI in thalli of Agonimia pacifica, and
Biatora longispora (Appendix).
It is why we propose special term for this case as presence of ‘extraneous (=
foreign) mycobiont DNA’ in lichen association and we think it plays an impor-
tant role in formation of lichen association especially at early stage of formation
of lichen thalli / at overgrowing one species by others. We believe that if we will
especially analyse situation with ‘extraneous mycobiont DNA’ in lichen asso-
ciation in future, on one side we will have more illustrations (more cases) when
‘extraneous mycobiont DNA’ present in lichen association, as well as that a
phenomenon of ‘extraneous mycobiont DNA’ in lichen association will help to
understand better taxonomy of some lichen groups as Phyllopsora, Biatora, etc.
The presence of DNA of ‘an extraneous lichen species’ in herbarium (=
voucher) specimens was checked several times additionally after getting se-
quencing results, however in all cases listed below (see Appendix) presence of
thalli or apothecia of ‘an extraneous lichen species’ was not confirmed. After
morphological data the presence of this lichen cannot be confirmed. It is why
we have to differentiate situation when DNA results were obtained directly
from thallus of the same lichen from the situation when we cannot confirm
morphological thallus of this lichen, while molecular data on such taxon were
obtained. In general hypothesis about the existence of such phenomenon of
‘extraneous (= foreign) mycobiont DNA’ in lichen association show high level
of risk to make wrong conclusion about DNA of newly described taxa when
data on one voucher specimen is available. Maybe it is also an explanation of
the curious situation of nrITS and mtSSU data of Oxnerella safavidiorum S. Y.
et al. 2014a, Resl et
al. 2016) and Sedelnikovaea baicalensis (Zahlbr.) S. Y. Kondr., M. H. Jeong et J.-S.
Hur (see Kondratyuk et al. 2014b, 2019).
Acta Bot. Hung. 61, 2019
295
THREE NEW GENERA OF THE RAMALINACEAE
On the other hand, this phenomenon is also stimulating for the further
revision of material cited in this paper as Phyllopsora sp. (KoLRI) or as Biatora
longispora from both morphological and molecular point of view, with the aim
to clarify the status of lichen specimens mentioned.

Coppinsideagen. nov.
MycoBank no.: MB 832141.
Similar to Thamnolecania, but differs in having crustose thallus, in having
lecideine or biatorine and mostly rather convex to almost spherical apothecia, as well
as in having Northern Hemisphere distribution.
Type species: Coppinsidea sphaerella (Hedl.) S. Y. Kondr., E. Farkas et L.

Thallus crustose, usually very thin to effuse, surface more or less smooth
to irregularly cracked, rarely immersed, from whitish to pale grey or greyish-
greenish.
Apothecia 0.3–1 mm in diam., at first flat, but soon becoming strongly
convex, light red-brown, to dark brown, dark brownish black or black, K+
purplish or violaceous; true exciple thick at first, colourless or upper and out-
er parts pale orange or pinkish or upper parts dark grey-brown, K+ greenish
grey, or dark green, a brownish, K+ purplish pigment sometimes additionally
present, inner portions of exciple colourless to pale straw-yellow, as well as
bluish black or black in inner portions, while outer layer (especially in lateral
portion) hyaline or transparent to lightly brownish or violetish black, pali-
sade with well-developed matrix and separate hyphae to 5–6 µm wide, and
hyphae lumina of 2(–3) µm seen. Hymenium colourless or pale yellow-brown
in upper part in places or colourless below and pale reddish brown above
with dark reddish brown epithecium, K+ purplish or violaceous, with some
grey K+ greenish grey pigment, as well as hyaline, but sometimes with blu-
ish portions vertically orientated; epihymenium indistinct, the same hyaline
or bluish as hymenium. Hypothecium colourless or pale straw-yellow, K+
yellowish or somewhat brownish to reddish or violetish brown. Paraphyses
1.5–2 µm wide, simple or occasionally branched, the apices only slightly wid-
ening to 2.5(–3) µm or to 4.5(–5) µm most surrounded by dense dark brown
or grey pigment. Asci Bacidia type. Ascospores from 0- to 1(–3)- to (1–)3-sep-
tate to (0–)1–3(–4)-septate, ellipsoid to oblong-ellipsoid, fusiform-ellipsoid to
fusiform, slightly widened in the middle with more or less attenuated, but
Acta Bot. Hung. 61, 2019
296 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
rounded ends, sometimes one of the middle cell is the widest and one end
thinner (tail-like), slightly constricted at septum. Pycnidia not found.
        
partly calcareous mica-schist of old walls, or calcareous sandstone), often on
vertical, dry, more or less well-lit coastal and inland overhung cliff faces, as
well as on siliceous rock in shaded woodlands.
Etymology: It is named after the well-known British lichenologist Brian
J. Coppins (E, the UK) in acknowledgement of his numerous contributions to
lichenology, as well as on occasion of his 70th years anniversary.
Species diversity and distribution: It includes several widely distributed
species, i.e.: Coppinsidea fuscoviridis, C. sphaerella, and C. croatica, etc. as well as
rather rare or scarcely distributed species, i.e.: C. aphana, C. scotinodes. There is
one more taxon from South Korea (mentioned in the text and in Fig. 1 as Cop-
pinsidea aff. sphaerella) is still waiting for legal description.
Taxonomic notes: The genus Coppinsidea     
ThamnolecaniaLecania s. l. clade of the com-
bined phylogenetic tree of the Ramalinaceae, but differs in having crustose
thallus (vs. fruticose thallus), in having lecideine or biatorine and mostly
rather convex to almost spherical apothecia, as well as in having Northern
Hemisphere distribution (vs. Antarctica).
The genus Coppinsidea is similar to the genera Lecania s. str. and Lecaniella
of the Lecania s. l. clade of the Ramalinaceae, but differs in having lecideine or
biatorine, mostly very convex to almost spherical and emarginated at over-
mature apothecia.
The species Coppinsidea croatica as well as C. scotinodes and C. aphana
differing from the other species in having darker K+ purplish or violaceous
epihymenium are included in this genus with some hesitation. The species
Coppinsidea scotinodes and C. aphana differing from the other species in having
darker K+ purplish or violaceous epihymenium still differs in the absence if
the abruptly swollen paraphyses apices with a dark brown cap, i.e. the typi-
cal Catillaria type paraphyses. However, they are included in the Coppinsidea
clade to emphasise that they do not belong either to the Lecania or the Catillaria
clades of the Ramalinaceae or Catillariaceae, while may be in future they will
be placed in the separate genus.
Vandenboomia S. Y. Kondr., gen. nov.
MycoBank no.: MB 832142.
Similar to the genera Aciculopsora and Waynea in position in the combined
phylogenetic tree of the Ramalinaceae, but differs in having bright pink or pale brown-
Acta Bot. Hung. 61, 2019
297
THREE NEW GENERA OF THE RAMALINACEAE
ish apothecia, in having micro- and macroconidia, as well as in having so far restricted
Atlantic distribution.
Type species: Vandenboomia chlorotiza (Nyl.) S. Y. Kondr.
Thallus scurfy to scurfy-leprose, bright to glaucous-green, more or less
continuous, often wide-spreading.
Apothecia 0.1–0.3 mm in diam., occasional, semi-immersed to more or
less sessile, more or less convex, rounded to more or less tuberculate, bright
pink or more or less piebald-brownish, thalline exciple more or less excluded;
hymenium 25–40 µm tall; ascospores (9–)10–12(–18) × 2–3 µm, 0- to 1-septate.
Pycnidia: (a) minute to 50 µm in diam., microconidia 7–10 × 0.5 µm curved or
hooked; (b) 70–160 µm in diam., pale gaping ostioles, macroconidia 3–6 × 1–2
µm, cylindrical.
      
hollow trees, especially Ulmus, Fraxinus and Salix in sheltered, wayside and
woodland sites and by water; rare.
Etymology: It is named after the well-known Dutch lichenologist Pieter

contributions to lichenology and especially in our recent knowledge on lecan-
ioid lichens.
Species diversity and distribution: It includes two rather scarcely distribut-
ed taxa, i.e.: V. chlorotiza (Nyl.) S. Y. Kondr. in Atlantic Europe (England, France
Denmark, Norway), and V. falcata (van den Boom, M. Brand, Coppins, Magain
et Sérus.) S. Y. Kondr. from Atlantic North Africa (Spanish Canary Islands.).
Taxonomic notes: Vandenboomia is similar to the genera Aciculopsora Ap-
troot et Trest and Waynea Moberg of the ‘in position’ in the combined phy-
logenetic tree of the Ramalinaceae, but differs in having bright pink or pale
brownish lecanorine apothecia, where thalline exciple can be excluded, in
having micro- and macroconidia, as well as in having so far mainly Atlantic
distribution (vs. tropical regions or Western North America, respectively).
Wolseleyideagen. nov.
MycoBank no.: MB 832143.
Similar to Phyllopsora, but differs in having well developed reddish brown pro-
thallus, medium sized green granules often being isidiate, in having narrowly ellipsoid
simple ascospores, and in having methyl 2,7-dichloropsoromate and methyl 2,7-dichlo-
ronorpsoromate, phyllopsorin, chlorophyllopsorin, vicanicin and norvicanicin.
Acta Bot. Hung. 61, 2019
298 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Type species: Wolseleyidea swinscowii (Timdal et Krog) S. Y. Kondr., E.


being isidiate. Prothallus reddish brown, usually well developed. Apothe-
cia common, to 1(–1.5) mm in diam., medium brown to dark brown with an
indistinct, concolorous, often pubescent margin, excipulum pale brown to
colourless. Hypothecium colourless. Epithecium colourless. Ascospores nar-
rowly ellipsoid, simple.
Chemistry: Medulla K–, C–, P+ orange; containing methyl 2,7-dichloro-
psoromate and methyl 2,7-dichloronorpsoromate, phyllopsorin, chlorophyl-
lopsorin, vicanicin and norvicanicin.
Ecology: It grows on bark mostly in montane rainforest and coastal forest.
Etymology: It is named after the known British lichenologist Patricia A.
Wolseley (BM, the UK), who has contributed to recent revision of the genus
Phyllopsora and other tropical lichen groups, as well as to her jubilee birthday
anniversary.
Species diversity and distribution: Six species are confirmed to as mem-
bers of the Wolseleyidea clade so far. Species are known from both Americas as
well as from tropical regions of other continents.
Taxonomic notes: The genus Wolseleyidea is similar to Phyllopsora, but dif-
fers in having well developed reddish brown prothallus, in having simple
ascospores and in its chemistry.
Similarities and phylogenetic position: Six species are member of this
genus at the moment, i.e.: Wolseleyidea africana (Timdal et Krog) S. Y. Kondr.,
W. byssiseda (Nyl. ex Hue) S. Y. Kondr., E. Farkas et L.
W. canoumbrinaW. furfurella
W. ochroxantha (Nyl.)
W. swinscowii (Timdal et Krog) S. Y.

Seven species shown in Figure 1 (three species of the genus Wolseleyi-
dea, i.e.: W. africana, W. ochroxantha, and W. swinscowii, three species of the
Phyllopsora corallina group, i.e.: P. corallina, P. glaucella, and P. melanoglauca, as
well as P. rosei of the Phyllopsora rosei group) form a separate clade, which is
positioned in ‘out position’ to both the IvanpisutiaMyrionoraBiatora and the
Phyllopsora s. l. subclades in combined phylogenetic tree of the Ramalinaceae.
As it was stressed above originally some species of the Phyllopsora ro-
sei and the Phyllopsora corallina groups planned for including into the genus
Wolseleyidea on the basis of results of combined phylogeny (see Fig. 1). How-
ever, they found to be positioned in separate monophyletic branches in inter-
mediate position between the Phyllopsora and the Biatora clades of the phylo-
Acta Bot. Hung. 61, 2019
299
THREE NEW GENERA OF THE RAMALINACEAE
genetic tree of the Ramalinaceae if larger set of taxa of the genus Phyllopsora
(i.e. data provided by Kistenich et al. 2019b) are included in the phylogeny,
while six species of the genus Wolseleyidea listed above are forming monophy-
letic clade. It is why the members of the Phyllopsora rosei and the Phyllopsora
corallina groups are hitherto excluded from the genus Wolseleyidea.

Ivanpisutia
bot. hung. 57(1–2): 97 (2015). – Type: Ivanpisutia oxneri
J.-S. Hur, in Kondratyuk et al., Acta bot. hung. 57(1–2): 100 (2015). Syn.: Biatora
oxneri
Taxon 67(5): 891 (2018). – From combined phylogenetic analysis the Ivanpisu-
tia robust monophyletic branch together with the Myrionora branch are posi-
tioned separately from the Biatora s. str. subclade. The genus hitherto includes
three species, two of which are combined in this paper below. After molecular
data one more, still undescribed taxon from East Asia probably belongs to this
genus, too. From morphological point of view Biatora pacifica may belong to
the genus Ivanpisutia as well.
Lecaniella Jatta, Monogr. Lich. Ital. Merid., p. 142 (1889). – Type (desig-
nated by Hafellner in Beih. Nova Hedwigia 79: 289 (1984)): Lecaniella cyrtella
(Ach.) Jatta. Syns: Lecidea cyrtella Ach., Lecania cyrtella (Ach.) Th. Fr. – Of 16
species included by Jatta to the genus Lecaniella three species names, i.e.: Le-
caniella cyrtella (Ach.) Jatta, Lecaniella proteiformis (A. Massal.) Jatta, and Leca-
niella sambucinaLecaniella by
the combined phylogenetic analysis of the Ramalinaceae. For the other nine
species, i.e. Lecaniella belgica, L. cyrtellina, L. dubitans, L. erysibe, L. hutchin siae,
L. naegelii, L. prasinoides, L. sylvestris, and L. tenera, new combinations are pro-
posed in this paper below. Interestingly, the three species mentioned above,
i.e.: L. naegelii, L. tenera (and Biatora vezdana) are positioned within a separate
strong monophyletic branch after mtSSU phylogeny. So may be these taxa
in future will be segregated in a separate genus. Unfortunately, so far only
mtSSU sequences are available for L. tenera.
Myrionora R. C. Harris, in Harris et al., Evansia 5(2): 27 (1988). – Type:
Myrionora albidula (Willey) R. C. Harris, in Harris et al., Evansia 5(2): 27 (1988).
Syns: Biatora albidula Willey, in Tuckerman, Syn. N. Amer. Lich. (Boston) 2:
130 (1888); Biatorella albidula (Willey) Zahlbr., Catal. Lich. Univers. 5: 34 (1927)
[1928]; Scoliciosporum albidulum (Willey) Etayo, in Etayo and Sancho, Bibl. Li-
chenol. 98: 223 (2008). – After recent morphological data the genus Myrionora
included two species only, i.e. M. albidula and M. pseudocyphellariae (Etayo) S.
Ekman et Palice. Only mtSSU sequences were hitherto available for the type
Acta Bot. Hung. 61, 2019
300 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
species of this genus, i.e. for M. albidula. According to the mtSSU phylogeny
M. albidula is positioned in the robust branch together with M. australis (Rodr.
M. ligni-mollis 
Y. Kondr. Thus M. albidula cannot be included in the combined phylogenet-
ic analysis. After our combined phylogenetic analysis the Myrionora branch
is positioned together with the Ivanpisutia monophyletic branch separately
from the Biatora s. str. subclade. This branch (as Myrionora = the Biatora globu-
losa branch) includes M. ligni-mollis and M. globulosa  
which has the highest level of bootstrap support, as well as two more taxa,
i.e.: M. ementiens (Nyl.) S. Y. Kondr. and M. hemipolia (Nyl.) S. Y. Kondr. in
one branch, and three species, i.e.: M. flavopunctata (Tønsberg) S. Y. Kondr.,
M. malcolmii M. vacciniicola (Tønsberg) S. Y.
Kondr., which both show very low level of support. So these latter five spe-
cies are included in the genus Myrionora with some hesitation. After morpho-
logical data it should be added that the genus Myrionora may include also the
recently described Eastern Asian species Biatora pseudosambuci (S. Y. Kondr.,
Biatora loe-
koesiana S. Y. Kondr. et J.-S. Hur (Kondratyuk et al. 2016a, b, 2018b). However,
our first attempts to extract DNA from the mentioned species were so far un-
successful. We have to wait for confirmation of this hypothesis by molecular
data on both species. Thus status and species diversity of the genus Myrionora
still are waiting for clarifying with data on more voucher specimens and for
more molecular markers, too.
NEW COMBINATIONS
Bacidia alnetorum (S. Ekman et Tønsberg) S. Y. Kondr., comb. nova – My-
coBank no.: MB 832144. – Basionym: Biatora alnetorum S. Ekman et Tønsberg,
Mycokeys 48: 58 (2019).
Biatora amazonica (Kistenich et Timdal) S. Y. Kondr., comb. nova – My-
coBank no.: MB 832691. – Basionym: Phyllopsora amazonica Kistenich et Timdal
ad int., in Kistenich et al., Lichenologist 51(4): 357 (2019).
Biatora cuyabensis (Malme) S. Y. Kondr., comb. nova – MycoBank no.:
MB 832146. – Basionym: Lecidea cuyabensis Malme, Ark. Bot. 28A(no. 7): 11, 48
Phyllopsora cuyabensis (Malme) Zahlbr., Catal. Lich. Univers. 10: 377
(1939).
Biatora halei (Tuck.) S. Y. Kondr., comb. nova – MycoBank no.: MB 832147.
– Basionym: Pannaria halei    
Phyllopsora halei (Tuck.) Zahlbr., Catal. Lich. Univers. 4: 398 (1926) [1927].
Biatora kalbii (Brako) S. Y. Kondr., comb. nova – MycoBank no.: MB
832148. – Basionym: Phyllopsora kalbii Brako, Fl. Neotrop., Monogr.: 51 (1991).
Acta Bot. Hung. 61, 2019
301
THREE NEW GENERA OF THE RAMALINACEAE
Biatora longispora  comb. nova – Myco-
Bank no.: MB 832145. – Basionym: Lecidea helvola var. longispora Degel., Ark.
f. Bot. Biatora longispora
in Lendemer, Opusc. Phylolich. 1: 38 (2004) nom. inval., Arts 41.4, 41.5 (Mel-
bourne).
Biatora subhispidula (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832397. – Basionym: Psoroma subhispidulum Nyl., Annls Sci. Nat., Bot., sér. 4,
11Phyllopsora subhispidula (Nyl.) Kalb et Elix, Bibl. Lichenol. 57:
293 (1995).
Biatora vezdana S. Y. Kondr., nom. nov. – MycoBank no.: MB 832149. –
Basionym: Lecania furfuracea
390): 3, no. 386 (1999).
Coppinsidea alba
comb. nova – MycoBank no.: MB 832150. – Basionym: Catillaria alba Coppins

(1993). – Syn.: Biatora veteranorum Coppins et Sérus., in Sérusiaux et al., Bry-
ologist 113(2): 337 (2010)) (non Biatora alba (Schleich.) Hepp 1857).
Coppinsidea aphanacomb. nova
MycoBank no.: MB 832151. – Basionym: Lecidea aphana Nyl., Flora, Regensburg
Catillaria aphana (Nyl.) Coppins, Lichenologist 21(3): 219 (1989).
Coppinsidea croaticacomb.
nova – MycoBank no.: MB 832152. – Basionym: Catillaria croatica Zahlbr., Ann-
  Lecania croatica  
Rast. 37: 251 (2004).
Coppinsidea fuscoviridis comb.
nova – MycoBank no.: MB 832153. – Basionym: Bilimbia fuscoviridis 
Lecidea fuscoviridis 
Bacidia fuscoviridis 
52: 132 (1912).
Coppinsidea pallens    comb.
nova – MycoBank no.: MB 832154. – Basionym: Bilimbia pallens Kullh., Not.
Biatora pallens

Coppinsidea ropalosporoides  
comb. nova – MycoBank no.: MB 832155. – Basio-
nym: Gyalidea ropalosporoides 
et al., Acta Bot. Hung. 58(3–4): 341 (2016).
Coppinsidea scotinodescomb.
nova – MycoBank no.: MB 832156. – Basionym: Lecidea scotinodes Nyl., Flora,
Catillaria scotinodes (Nyl.) Coppins, Lichenol-
ogist 21(3): 223 (1989).
Acta Bot. Hung. 61, 2019
302 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Coppinsidea sphaerellacomb.
nova – MycoBank no.: MB 832157. – Basionym: Lecidea sphaerella Hedl., Bih. K.
Biatorina sphaere-
lla (Hedl.) Dombr., Konspekt Flor. Lishainikov Murmanskoioblasti i Seve-
ro-Vostochnol Finlyandii. (Classification of lichens found in the Murmansk

Catillaria sphaerella (Hedl.) Zahlbr., Catal. Lich. Univers. 4: 71 (1926).
Coppinsidea vainioana  nom. nov.
MycoBank no.: MB 832158. – Basionym: Lecidea sphaeroidiza Vain., Acta Soc.
Biatora sphaeroidiza

Ivanpisutia hypophaea comb. nova
– MycoBank no.: MB 832159. – Basionym: Biatora hypophaea -
berg, Bryologist 102(4): 700 (2000) [1999].
Ivanpisutia ocelliformis (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.:
MB 832160. – Basionym: Lecidea ocelliformis Nyl., Flora, Regensburg 48: 145
Biatora ocelliformis (Nyl.) Arnold, Flora, Regensburg 53: 476 (1870).
Lecaniella belgica (van den Boom et Reese Naesb.) S. Y. Kondr., comb.
nova – MycoBank no.: MB 832161. – Basionym: Lecania belgica van den Boom
et Reese Naesb., in Reese Naesborg and van den Boom, Lichenologist 39(6):
499 (2007).
Lecaniella cyrtellina (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832162. – Basionym: Lecanora cyrtellina Nyl., Flora, Regensburg 56: 18 (1873).
Lecania cyrtellina (Nyl.) Sandst., Abh. naturw. Ver. Bremen 21(1): 184 (1912).
Lecaniella dubitans (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832163. – Basionym: Lecidea dubitans
Lecania dubitans (Nyl.) A. L. Sm., Monogr. Brit. Lich. 1:
351 (1918).
Lecaniella erysibe (Ach.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832164. – Basionym: Lichen erysibe
Lecania erysibe (Ach.) Mudd, Man. Brit. Lich., p. 141 (1861).
Lecaniella hutchinsiae (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.:
MB 832165. – Basionym: Lecanora hutchinsiae Nyl. (as ‘hutchinsia’), Flora, Re-
Lecania hutchinsiae (Nyl.) A. L. Sm., Monogr. Brit.
Lich. 1: 348 (1918).
Lecaniella naegelii (Hepp) S. Y. Kondr., comb. nova – MycoBank no.: MB
832166. – Basionym: Biatora naegelii Le-
cania naegelii (Hepp) Diederich et van den Boom, in van den Boom et al., Bull.
Soc. Nat. luxemb. 95: 154 (1994).
Acta Bot. Hung. 61, 2019
303
THREE NEW GENERA OF THE RAMALINACEAE
Lecaniella prasinoides (Elenkin) S. Y. Kondr., comb. nova – MycoBank
no.: MB 832167. – Basionym: Lecania prasinoides Elenkin, Journal Bot., Sect.
Bot. Soc. Imp. Natur. 10: 4 (1907).
Lecaniella sylvestris (Arnold) S. Y. Kondr., comb. nova – MycoBank no.:
MB 832168. – Basionym: Biatora sylvestris Arnold, in Hepp, Flora, Regensburg
Lecania sylvestris (Arnold) Arnold, Flora, Regensburg 67: 405
(1884).
Lecaniella teneracomb. nova – MycoBank no.: MB
832169. – Basionym: Scoliciosporum tenerum
Bacidia tenera
Mycobilimbia albohyalina (Nyl.) S. Y. Kondr., comb. nova – MycoBank
no.: MB 832170. – Basionym: Lecidea anomala f. albohyalina Nyl., Lich. Scand.
Lecidea albohyalina (Nyl.) Th. Fr., Lich. Scand. (Up-
saliae) (2): 431 (1874).
Mycobilimbia cinchonarum (Fée) S. Y. Kondr., comb. nova – MycoBank
no.: MB 832171. – Basionym: Triclinum cinchonarum Fée, Essai Crypt. Exot.
Phyllopsora cinchonarum (Fée) Timdal, Lichenolo-
gist 40(4): 346 (2008).
Mycobilimbia concinna (Kistenich et Timdal) S. Y. Kondr., comb. nova
– MycoBank no.: MB 832692. – Basionym: Phyllopsora concinna Kistenich et
Timdal ad int., in Kistenich et al., Lichenologist 51(4): 362 (2019).
Mycobilimbia ramea (S. Ekman) S. Y. Kondr., comb. nova – MycoBank no.:
MB 832172. – Basionym: Bacidina ramea S. Ekman, Opera bot. 127: 122 (1996).
Mycobilimbia siamensis (Kistenich et Timdal) S. Y. Kondr., comb. nova
– MycoBank no.: MB 832173. – Basionym: Phyllopsora siamensis Kistenich et
Timdal, in Kistenich et al., MycoKeys 53: 62 (2019).
Myrionora australis
J.-S. Hur, comb. nova – MycoBank no.: MB 832175. – Basionym: Biatora australis

Myrionora ementiens (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832177. – Basionym: Lecidea ementiens
Biatora ementiens
Myrionora flavopunctata (Tønsberg) S. Y. Kondr., comb. nova – Myco-
Bank no.: MB 832398. – Basionym: Lecanora flavopunctata Tønsberg, Sommer-
feltia Biatora flavopunctata 
Lichenol. 55: 86 (1994).
Myrionora globulosacomb. nova – MycoBank no.:
MB 832176. – Basionym: Lecidea globulosa 
Biatora globulosa 
Lecania globulosa
et al., Lejeunia, n.s. 162: 34 (1999).
Acta Bot. Hung. 61, 2019
304 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Myrionora hemipolia (Nyl.) S. Y. Kondr., comb. nova – MycoBank no.: MB
832178. – Basionym: Lecidea arceutina f. hemipolia Nyl., Flora, Regensburg 52:
Lecidea arceutina * hemipolia Nyl., Flora, Regensburg 56: 294 (1873).
Bacidia hemipoliaBiatora hemipolia

Myrionora ligni-mollis   comb. nova
– MycoBank no.: MB 832179. – Basionym: Biatora ligni-mollis T. Sprib. et Print-

Myrionora malcolmii       comb. nova – My-
coBank no.: MB 832399. – Basionym: Phyllopsora malcolmii 

Myrionora vacciniicola (Tønsberg) S. Y. Kondr., comb. nova – MycoBank
no.: MB 832400. – Basionym: Lecidea vacciniicola Tønsberg, Sommerfeltia 14: 184
Biatora vacciniicola
Phyllopsora agonimioides (J. P. Halda, S.-O. Oh et J.-S. Hur) S. Y. Kondr.,
D. Liu et J.-S. Hur, comb. nova – MycoBank no.: MB 832180. – Basionym: Coe-
nogonium agonimioides J. P. Halda, S.-O. Oh et J.-S. Hur, in Kondratyuk et al.,
Acta Bot. Hung. 58(3–4): 336 (2016).
Phyllopsora sunchonensis (S. Y. Kondr. et J.-S. Hur) S. Y. Kondr. et J.-S.
Hur, comb. nova – MycoBank no.: MB 832401. – Basionym: Agonimia suncho-
nensis S. Y. Kondr. et J.-S. Hur, in Kondratyuk et al., Acta Bot. Hung. 60(1–2):
119 (2018).
Vandenboomia chlorotiza (Nyl.) S. Y. Kondr., comb. nova – MycoBank
no.: MB 832181. – Basionym: Lecidea chlorotiza Nyl., Flora, Regensburg 49: 85
 Lecania chlorotiza (Nyl.) P. James, Lichenologist 24(4): 367 (1992).
Vandenboomia falcata (van den Boom, M. Brand, Coppins, Magain et
Sérus.) S. Y. Kondr., comb. nova – MycoBank no.: MB 832183. – Basionym: Leca-
nia falcata van den Boom, M. Brand, Coppins, Magain et Sérus., Lichenologist
44(5): 587 (2012).
Wolseleyidea africana (Timdal et Krog) S. Y. Kondr., E. Farkas et L.
comb. nova – MycoBank no.: MB 832184. – Basionym: Phyllopsora afri-
cana Timdal et Krog, Mycotaxon 77: 64 (2001).
Wolseleyidea byssiseda
comb. nova – MycoBank no.: MB 832402. – Basionym: Lecidea byssiseda Nyl. ex
Phyllopsora bys-
siseda (Nyl. ex Hue) Zahlbr., Catal. Lich. Univers. 4: 396 (1926) [1927].
Wolseleyidea canoumbrina   
comb. nova – MycoBank no.: MB 832403. – Basionym: Lecidea canoumbrina
Phyllopsora canoumb-
rina (Vain.) Brako, Mycotaxon 35(1): 12 (1989).
Acta Bot. Hung. 61, 2019
305
THREE NEW GENERA OF THE RAMALINACEAE
Wolseleyidea furfurella (Kistenich et Timdal) S. Y. Kondr., E. Farkas et
comb. nova – MycoBank no.: MB 832693. – Basionym: Phyllopsora fur-
furella Kistenich et Timdal, in Kistenich et al., Lichenologist 51(4): 367 (2019).
Wolseleyidea ochroxantha         
comb. nova – MycoBank no.: MB 832188. – Basionym: Lecidea ochroxantha Nyl.,
          Phyllopsora ochroxantha (Nyl.)
Zahlbr., Catal. Lich. Univers. 10: 377 (1939).
Wolseleyidea swinscowii (Timdal et Krog) S. Y. Kondr., E. Farkas et L.
comb. nova – MycoBank no.: MB 832190. – Basionym: Phyllopsora swins-
cowii Timdal et Krog, Mycotaxon 77: 88 (2001).
CONCLUSIONS
Among numerous branches of the combined phylogenetic tree of the Ra-
malinaceae the Coppinsidea, the Ivanpisutia, the Biatora s. str., the Vandenboomia
and the Wolseleyidea and some others show the highest level of bootstrap sup-
port, while the Myrionora branch, the Phyllopsora s. l. branch are characterised
by low level of support. Status of many members of the genera Biatora, Myri-
onora, Phyllopsora as well as the Phyllopsora rosei and the Phyllopsora corallina
groups is pending for accumulation of further data on both additional vouch-
ers and molecular markers.
*
Acknowledgements 

Sunchon, South Korea) for kind help during field trip to Jeju-do in March 2017, as well as to

was supported by the Korea National Research Resource Centre Program, the Korean For-
est Service Program (KNA 2012) through the Korea National Arboretum, (for LL) partly by
the Hungarian National Research Development and Innovation Fund (NKFI K 124341), and
(for SK) in parts by The Ministry of Education and Science of Ukraine (M/90-2015, M/34–
2016, M/172-2017 and M/53-2019) and by the Korean Brain Pool Program (161S-4-3-1659).
REFERENCES
-
mycota): a molecular phylogeny based on mitochondrial rDNA sequences. – Mycol.
Res. 109(1): 21–30. https://doi.org/10.1017/s0953756204001625
-
tion of Parmeliaceae (Lecanorales, Ascomycota). – Mycologia 99(1): 42–49. https://doi.
org/10.3852/mycologia.99.1.42
Acta Bot. Hung. 61, 2019
306 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Bendiksby, M. and Timdal, E. (2013): Molecular phylogenetics and taxonomy of Hypocen-
omyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morpho-
logical/ecological convergence. – Taxon 62(5): 940–956. https://doi.org/10.12705/625.18

L. M. (2016): Coordinated ultrastructural and phylogenomic analyses shed light on
the hidden phycobiont diversity of Trebouxia microalgae in Ramalina fraxinea. –
Mol. Phyl. Evol. 94(B): 765–777. https://doi.org/10.1016/j.ympev.2015.10.021

Mey-
lania 63: 22–29.
           
   Lichenologist 31(5): 517–531.
https://doi.org/10.1017/s0024282999000675
-
mycota). – Mycol. Res. 105(7): 783–797. https://doi.org/10.1017/s0953756201004269
Ekman, S. and Tønsberg, T. (2002): Most species of Lepraria and Leproloma form a mono-
phyletic group closely related to Stereocaulon. – Mycol. Res. 106(11): 1262–1276.
https://doi.org/10.1017/s0953756202006718
Ekman, S. and Tønsberg, T. (2019): Biatora alnetorum (Ramalinaceae, Lecanorales), a
new lichen species from western North America. – MycoKeys 48: 55–65. https://doi.
org/10.3897/mycokeys.48.33001
Ekman, S., Andersen, H. L. and Wedin, M. (2008): The limitations of ancestral state recon-

Syst. Biol. 57(1): 141–156. https://doi.org/10.1080/10635150801910451
Fedorenko, N. M., Stenroos, S., Thell, A., Kärnefelt, I. and Kondratyuk, S. Y. (2009): A phy-
logenetic analysis of xanthorioid lichens (Teloschistaceae, Ascomycota) based on ITS
and mtSSU sequences. – Bibl. Lichenol. 100: 49–84.
Fedorenko, N. M., Stenroos, S., Thell, A., Kärnefelt, I., Elix, J. A., Hur, J. S. and Kondratyuk,
S. Y. (2012): Molecular phylogeny of xanthorioid lichens (Teloschistaceae, Ascomy-
cota), with notes on their morphology. – Bibl. Lichenol. 108: 45–64.
-
Mol. Ecol. 2: 113–
118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
     -
son of protein-coding versus ribosomal RNA-coding sequence data: a case study
of the Lecanoromycetes (Ascomycota). – Mol. Phyl. Evol. 44: 412–426. https://doi.
org/10.1016/j.ympev.2006.10.016
Kistenich, S., Timdal, E., Bendiksby, M. and Ekman, S. (2018): Molecular systematics and
character evolution in the lichen family Ramalinaceae (Ascomycota: Lecanorales). –
Taxon 67(5): 871–904. https://doi.org/10.12705/675.1

P. A. and Timdal, E. (2019a): A regional study of the genus Phyllopsora (Ramali-
naceae) in Asia and Melanesia. – MycoKeys 53: 23–72. https://doi.org/10.3897/mycok-
eys.53.33425

E. (2019b): Towards an integrative taxonomy of Phyllopsora (Ramalinaceae). – Li-
chenologist 51(4): 323–392. https://doi.org/10.1017/S0024282919000252
Acta Bot. Hung. 61, 2019
307
THREE NEW GENERA OF THE RAMALINACEAE

Hur, J.-S. (2014a): Oxnerella safavidiorum gen. et spec. nov. (Lecanoromycetidae,
Ascomycota) from Iran (Asia) proved by phylogenetic analysis. – Acta Bot. Hung.
56(3–4): 377–398. https://doi.org/10.1556/abot.56.2014.3-4.13

J.-S. (2014b): Molecular phylogeny of placodioid lichen-forming fungi reveal a new
genus, Sedelnikovaea. – Mycotaxon 129(2): 269–282. https://doi.org/10.5248/129.269
        -
worthy lichen-forming and lichenicolous fungi 2. – Acta Bot. Hung. 57(1–2): 77–141.
https://doi.org/10.1556/abot.57.2015.1-2.10

Oh, S.-O. and Hur, J.-S. (2016a): New and noteworthy lichen-forming and lichenicol-
ous fungi 4. – Acta Bot. Hung. 58(1–2): 75–136. https://doi.org/10.1556/034.58.2016.1-2.4
-

J.-S. (2016b): New and noteworthy lichen-forming and lichenicolous fungi 5. – Acta
Bot. Hung. 58(3–4): 319–396. https://doi.org/10.1556/ABot.58.2016.3-4.7
    
M.-H., Jang, S.-H., Park, J. S. and Hur, J.-S. (2017a): New monophyletic branches of
the Teloschistaceae (lichen-forming Ascomycota) proved by three gene phylogeny. –
Acta Bot. Hung. 59(1–2): 71–136. https://doi.org/10.1556/034.59.2017.1-2.6

b):
New and noteworthy lichen-forming and lichenicolous fungi 6. – Acta Bot. Hung.
59(1–2): 137–260. https://doi.org/10.1556/034.59.2017.1-2.7

and Thell A. (2018a): Upretia, a new caloplacoid lichen genus (Teloschistaceae, li-
chen-forming Ascomycota) from India. – Cryptogam Biodiversity and Assessment, Spec.
Vol. 1: 22–31. https://doi.org/10.21756/cab.esp5
 
and Thell, A. (2018b): Hosseusiella and Rehmanniella, two new genera in the Telo-
schistaceae. – Acta Bot. Hung. 60(1–2): 89–113. https://doi.org/10.1556/034.60.2018.1-2.7

S.-O. and Hur, J.-S. (2018c): New and noteworthy lichen-forming and lichenicolous
fungi 7. – Acta Bot. Hung. 60(1–2): 115–184. https://doi.org/10.1556/034.60.2018.1-2.8
      d): Coppinsiella and
Seawardiella – two new genera of the Xanthorioideae (Teloschistaceae, lichen-forming
Ascomycota). – Acta Bot. Hung. 60(3–4): 369–386. https://doi.org/10.1556/034.60.2018.3-4.8

New and noteworthy lichen-forming and lichenicolous fungi 8. – Acta Bot. Hung.
61(1–2): 101–135. https://doi.org/10.1556/034.61.2019.1-2.8
-
ular and morphological data reveal three new species including a widespread soredi-
ate morph. – Bryologist 119(2): 143–171. https://doi.org/10.1639/0007-2745-119.2.143
Lücking, R., Hodkinson, B. P. and Leavitt, S. D. (2017a
fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. –
Bryologist 119: 361–416. https://doi.org/10.1639/0007-2745-119.4.361
Acta Bot. Hung. 61, 2019
308 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Lücking, R., Hodkinson, B. P. and Leavitt, S. D. (2017b): Corrections and amendments to
   
Bryologist 120: 58–69. https://doi.org/10.1639/0007-2745-120.1.058
Lumbsch, H. T., Schmitt, I., Palice, Z., Wiklund, E., Ekman, S. and Wedin, M. (2004): Su-
praordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian
analysis of combined nuclear and mitochondrial sequences. – Mol. Phyl. Evol. 31(3):
822–832. https://doi.org/10.1016/j.ympev.2003.11.001
  
 
Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett,


Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H.,
Stone, J., Sugiyama, J., Yahr, R. and Vilgalys, R. (2004): Assembling the fungal tree of
life: progress, classification, and evolution of subcellular traits. – Amer. J. Bot. 91(10):
1446–1480.
Mark, K., Cornejo, C., Keller, C., Fluck, D. and Scheidegger, C. (2016): Barcoding lichen-
forming fungi using 454 pyrosequencing is challenged by artifactual and biological
sequence variation. – Genome 59(9): 685–704. https://doi.org/10.1139/gen-2015-0189
         



  -
    
phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. – My-
cologia 98(6): 1088–1103. https://doi.org/10.3852/mycologia.98.6.1088
     
  

     

and Stenroos, S. (2014): A multigene phylogenetic synthesis for the class Lecanoromy-
cetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and
66 families. – Mol. Phyl. Evol. 79: 132–168. https://doi.org/10.1016/j.ympev.2014.04.003
Moon, K. H., Ahn, C., Han, J. E. and Kashiwadani, H. (2016): Two new species of Ramalina
(Ramalinaceae, Ascomycota) from Korea. – J. Jap. Bot. 91: 376–387.
Ohmura, Y., Moon, K. H. and Kashiwadani, H. (2008): Morphology and molecular phy-
  
Ascomycotina). – J. Jap. Bot. 83: 156–164.

chenko, L. S. and Ekman, S. (2013): Taxonomy of the genus Myrionora, with a second
species from South America. – Lichenologist 45(2): 159–167. https://doi.org/10.1017/
s0024282912000692
-
mycetes lichenisati). – Bibl. Lichenol. 88: 539–553.

lichens in the Late Cretaceous and Tertiary. – Mol. Phyl. Evol. 17(3): 379–387. https://
doi.org/10.1006/mpev.2000.0856
Acta Bot. Hung. 61, 2019
309
THREE NEW GENERA OF THE RAMALINACEAE
-
berg, T. and Vondrák, J. (2016): Five new species of Biatora from four continents. –
Herzogia 29(2): 566–585. https://doi.org/10.13158/heia.29.2.2016.566
Reese Naesborg, R. (2008): Taxonomic revision of the Lecania cyrtella group based on
molecular and morphological evidence. – Mycologia 100(3): 397– 416. https://doi.
org/10.3852/07-080r
Reese Naesborg, R., Ekman, S. and Tibell, L. (2007): Molecular phylogeny of the genus Le-
Mycol. Res. 111(5): 581–591. https://
doi.org/10.1016/j.mycres.2007.03.001

(2016): Morphological, chemical and species delimitation analyses provide new taxo-
nomic insights into two groups of Rinodina. – Lichenologist 48(5): 469–488. https://doi.
org/10.1017/s0024282916000359
     
   
F. (2011): Phylogenetic affiliations of members of the heterogeneous lichen-forming
fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). –
Mycologia 103(5): 983–1003. https://doi.org/10.3852/10-234
Sérusiaux, E., Brand, A. M., Motiejunaite, J., Orange, A. and Coppins, B. J. (2010a): Lecidea
doliiformis belongs to Micarea, Catillaria alba to Biatora, and Biatora ligni-mollis
occurs in Western Europe. – Bryologist 113(2): 333–344. https://doi.org/10.1639/0007-
2745-113.2.333
   b): A two-gene phylogeny shows the
lichen genus Niebla (Lecanorales) is endemic to the New World and does not occur
in Macaronesia nor in the Mediterranean basin. – Fungal Biol. 114(7): 528–537. https://
doi.org/10.1016/j.funbio.2010.04.002

            
     Lichenologist 44(5): 577–590. https://doi.org/10.1017/
S0024282912000308

-
cetes), a new sorediate crustose lichen from the southeastern United States. – Bryolo-
gist 91(4): 498–512. https://doi.org/10.1639/0007-2745-121.4.498
-
son, F., Knutsson, T., Lif, M., Spribille, T. and Westberg, M. (2017): Taxonomic nov-
elties and new records of Fennoscandian crustose lichens. – MycoKeys 25: 51–86.
https://doi.org/10.3897/mycokeys.25.13375
-
-
ovic, A., Borisenko, A. V., Cadel, A., Brown, A., Pages, A., Castillo, A. H., Nicolai,
         

      
Morningstar, D., Neumann, D., Steinke, D., Debruin, D., Debruin, M., Dobias, D.,
 -



Acta Bot. Hung. 61, 2019
310 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
      
Mutanen, M., Fatahi, M., Pentinsaari, M., Bauman, M., Nikolova, N., Ivanova, N. V.,
Jones, N., Weerasuriya, N., Monkhouse, N., Lavinia, P. D., Jannetta, P., Hanisch, P. E.,
Mcmullin, R. T., Ojeda Flores, R., Mouttet, R., Vender, R., Labbee, R. N., Forsyth, R.,
Lauder, R., Dickson, R., Kroft, R., Miller, S. E., Macdonald, S., Panthi, S., Pedersen, S.,
Sobek-Swant, S., Naik, S., Lipinskaya, T., Eagalle, T., Decaens, T., Kosuth, T., Brauk-
mann, T., Woodcock, T., Roslin, T., Zammit, T., Campbell, V., Dinca, V., Peneva, V.,
Hebert, P. D. and Dewaard, J. R. (2015): Biodiversity inventories in high gear: DNA
barcoding facilitates a rapid biotic survey of a temperate nature reserve. – Biodivers.
Data J. 3: E6313. https://doi.org/10.3897/bdj.3.e6313

J. K., Reed, W. J. and Kane, N. C. (2019): Biatora appalachensis 18S ribosomal RNA
gene, internal transcribed spacer 1, 5.8S ribosomal RNA gene, internal transcribed
spacer 2, and 26S ribosomal RNA gene complete sequence Unpublished [Jan 2019]
Lichenes Rariores Exsiccati. Fasc. 39 (numeris 381–390). – Brno, 5 pp.
-
cally amplified ribosomal DNA from several Cryptococcus species. – J. Bacteriol.
172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

V. and Kish, R. (2018): Exploiting hot-spots; effective determination of lichen diversi-
ty in a Carpathian virgin forest. – PLoS ONE 13(9): e0203540. https://doi.org/10.1371/
journal.pone.0203540
White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990): Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. – PCR Protocols 38: 315–322. https://
doi.org/10.1016/b978-0-12-372180-8.50042-1
Appendix

proposed combinations and names are given in bold)
Species name Vouchers / reference ITS mtSSU rpb2
Aciculopsora salmonea Kistenich et al. 2018  
Bacidia alnetorum Ekman and Tønsberg 2019
as Biatora alnetorum
MH818375
Bacidia rosella Ekman 2001 AF282086
Bacidia rosella Lumbsch et al. 2004 AY300877
Bacidia rosella Reese Naesborg et al. 2007 AM292755
Bacidia sipmanii Sérusiaux et al. 2012 JQ796853 JQ796832
Bacidia sipmanii 
10.07.2015, Kondratyuk, S.

(KoLRI 034369)
34369
Bacidia sorediata Lendemer et al. 2016 KX151772
Bacidia sorediata Lendemer et al. 2016 KX151774
Bacidia sorediata Lendemer et al. 2016 KX151775
Acta Bot. Hung. 61, 2019
311
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Bacidia schweinitzii Kistenich et al. 2018 
Bacidina arnoldiana Mark et al. 2016 KX098343,
KX098347
Bacidina arnoldiana Ekman 2001 AF282093
Bacidina arnoldiana Kistenich et al. 2018  
Bacidina neosquamulosa Sérusiaux et al. 2012 JQ796856,
JQ796855
JQ796838,
JQ796837
Bacidina phacodes Ekman 2001 AF282100
Bacidina phacodes Andersen and Ekman 2005 AY567725
Bacidina phacodes Miadlikowska et al. 2014 KJ766358 KJ766691
Bacidina phacodes Kistenich et al. 2018 
Bellicidia incompta Ekman 2001 AF282092
Bellicidia incompta Kistenich et al. 2018  
Biatora aegrefaciens  KF650956 KF662444
Biatora alaskana  KF650958 KF662405,
KF662404
KF662445
Biatora amazonica Kistenich et al. 2019a, b MK352365 MK352194
Biatora amazonica Kistenich et al. 2019a, b MK352379 MK352208
Biatora appalachensis  KF650959
Biatora appalachensis Theodosopoulos et al. 2019 MK092095
Biatora bacidioides Vondrák et al. 2018 
 
Biatora bacidioides  KF662406
Biatora beckhausii Ekman 2001 (sub Bacidia) AF282071
Biatora beckhausii  KF662407
Biatora beckhausii Kistenich et al. 2018   
Biatora britannica et al. 2001 AY032897,
NR_119480
Biatora chrysantha 
(unpubl.)
AJ247569
Biatora chrysantha  KF662408
Biatora chrysanthoides  KF650960 KF662409 KF662446
Biatora cuprea  KF650961 KF662410 KF662447
Biatora cuyabensis Kistenich et al. 2019a, bMK352287 MK352108
Biatora cuyabensis Kistenich et al. 2019a, bMK352286 MK352107
Biatora efflorescens Vondrák et al. 2018  
Biatora efflorescens 
(unpubl.)
AJ247555,
AJ247554
Biatora fallax et al. 2016 KX389593,
KX389592
Acta Bot. Hung. 61, 2019
312 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Biatora fallax  KF662412
Biatora hafellneri et al. 2016 KX389595
Biatora halei Kistenich et al. 2019a, bMK352423 MK352257
Biatora halei Kistenich et al. 2019a, bMK352336 MK352161
Biatora helvola 
(unpubl.)
AJ247557
Biatora hertelii 
(unpubl.)
AJ247539,
AJ247537,
AJ247536,
AJ247535
Biatora hertelii  KF662416 KF662452
Biatora hertelii Kistenich et al. 2018 
Biatora kalbii Kistenich et al. 2019a, bMK352291 MK352112
Biatora kalbii Kistenich et al. 2019a, bMK352293 MK352114
Biatora kodiakensis  KF650967 KF662417 KF662453
Biatora longispora  KF650969 KF662419,
KX389602
KF662454
Biatora longispora 
10.07.2015, Kondratyuk, S.

(KoLRI 034278) (from fertile
thallus of Pyxine limbulata)
34278
Biatora longispora 
10.07.2015 Kondratyuk S.

(KoLRI 034433)
34433 34433
Biatora longispora 
10.07.2015 Kondratyuk S.

(KoLRI 034153)
34153 34153
Biatora longispora 
10.07.2015 Kondratyuk S.

(KoLRI 034290) (from fertile
thallus of Agonimia pacifica)
34290 34290
Biatora longispora 
10.07.2015 Kondratyuk S.

(KoLRI 034168) (from isidi-
ate crust growing together
with B. longispora)
34168 34168
Biatora longispora South Korea, 151109 (KoLRI
034342) (from Oxneriopsis
oxneri)
34342
Acta Bot. Hung. 61, 2019
313
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Biatora longispora South Korea, 151110 (KoLRI
034343) (from Oxneriopsis
oxneri)
34343 34343
Biatora meiocarpa Reese Naesborg et al. 2007 AM292667 AM292710 AM292757
Biatora meiocarpa var.
tacomensis
 KF662420
Biatora nobilis  KF650970 KF662421 KF662455
Biatora oligocarpa  KF650973 KF662423 KF662458
Biatora pausiaca  KF650976 KF662426 KF662459
Biatora pontica  KF650977 KF662427 KF662460
Biatora printzenii  KF650978 KF662428 KF662461
Biatora pseudohelvola  AJ247558,
AJ247572,
AJ247571,
AJ247570
Biatora pycnidiata  KF650979 KF662429 KF662462
Biatora radiciicola et al. 2016 KX389588 KX389606,
KX389607
Biatora radiciicola  KF662463
Biatora rufidula  KF650981 KF662430 KF662464
Biatora rufidula Kistenich et al. 2018 
Biatora subduplex -
publ.)
KF650983 KJ766360,
KF662431
KF662465
Biatora subduplex Miadlikowska et al. 2014 KJ766360
Biatora subhispidula Kistenich et al. 2019a, b MK352313 MK352134
Biatora subhispidula Kistenich et al. 2019a, b MK352408 MK352241
Biatora terrae-novae et al. 2016 KX389589 KX389600
Biatora terrae-novae  KF650971 KF662422 KF662456
Biatora toensbergii  AJ247519
Biatora toensbergii  KF650984 KF662432 KF662466
Biatora vernalis Ekman 2001 AF282070
Biatora vernalis Reese Naesborg et al. 2007 AM292711 AM292758
Biatora vernalis Arup et al. 2007 DQ838753
Biatora vernalis Bendiksby and Timdal 2013 KF360369 KF360418
Biatora vezdana Reese Naesborg et al. 2007
(sub Lecania furfuracea)
AM292683 AM292734
Bibbya bullata Kistenich et al. 2018   
Bibbya vermifera Ekman 2001 (sub Toninia) AF282128
Bibbya vermifera Kistenich et al. 2018  
Acta Bot. Hung. 61, 2019
314 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Bilimbia lobulata Reese Naesborg et al. 2007 AM292668 AM292712,
AM292713
AM292759
Bilimbia sabuletorum Reese Naesborg et al. 2007 AM292670 AM292717,
AM292721
AM292761
Bilimbia sabuletorum Tefler et al. 2015 KT695402
Bilimbia sabuletorum Miadlikowska et al. 2014 KJ766361
Catillaria modesta Reese Naesborg et al. 2007 AM292719 AM292762
Cliostomum corrugatum  KF662436
Cliostomum corrugatum Andersen and Ekman 2005 AY567722
Cliostomum corrugatum Kistenich et al. 2018 
Cliostomum griffithii Ekman 2001 AF282076
Cliostomum griffithii Sérusiaux et al. 2010a
Cliostomum
haematommatis
 MK446224 MK446223
Coppinsidea alba 
Biatora veteranorum)
KF650986,
KF650975
KF662434
Coppinsidea alba Sérusiaux et al. 2010a, (as
Biatora veteranorum)

Coppinsidea alba Kistenich et al. 2018 (as
Biatora veteranorum)
 
Coppinsidea aphana Reese Naesborg et al. 2007 AM292671
Coppinsidea croatica  KF650949 KF662397 KF662437
Coppinsidea croatica Reese Naesborg et al. 2007 AM292672 AM292718
Coppinsidea fuscoviridis Reese Naesborg et al. 2007 as
Bacidia
AM292665 AM292754
Coppinsidea pallens Reese Naesborg et al. 2007 AM292664 AM292709
Coppinsidea pallens  KF662425
Coppinsidea
ropalosporoides
South Korea, Ulleung-do,
09.07.2016, Kondratyuk, S.,

039738)
161520
Coppinsidea
ropalosporoides
South Korea, Ulleung-do,
09.07.2016, Kondratyuk, S.,

039936)
161718
Coppinsidea
ropalosporoides
South Korea, Ulleung-do,
09.07.2016, Kondratyuk, S.,

039863)
161645
Coppinsidea
ropalosporoides
South Korea, Halla Mts,
21.07.2015, Halda, J., 151671
(KoLRI 035364) (sub Gyalidea)
35364
Acta Bot. Hung. 61, 2019
315
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Coppinsidea
ropalosporoides
South Korea, Halla Mts,
20.07.2015, Halda, J., 151524
(KoLRI 035217) (from thalli
of Verrucaria margacea)
35217
Coppinsidea
ropalosporoides
South Korea, Chungcheong-
buk-do, 09.07.2015, Kon-

L., 150813 (KoLRI 034046)?
(from Physcia orientalis)
34046
Coppinsidea scotinodes Reese Naesborg et al. 2007 AM292673 AM292721,
AM292720
AM292763
Coppinsidea scotinodes Kistenich et al. 2018  
Coppinsidea sphaerella -
publ.)
KF650952 KF662400 KF662440
Coppinsidea sphaerella Reese Naesborg et al. 2007 AM292702,
AM292701
AM292749
Coppinsidea aff.
sphaerella
South Korea, Halla Mts,
20.07.2015, Halda, J., 151546
(KoLRI 35329) (from thallus
of Agonimia tristicula (SK as
A. pacifica))
35329 35329
Coppinsidea aff.
sphaerella
South Korea, Ulleung-do,
08.07.2016, Kondratyuk, S.,

039697) (from thallus of
Bacidia (black))
161479
Coppinsidea vainioana  AJ247551,
AJ247552,
AJ247553
Coppinsidea vainioana  KF650982
Eschatogonia prolifera Kistenich et al. 2018   
Hertelidea botryosa  AY341910
Hertelidea botryosa Miadlikowska et al. 2014 KJ766403
Ivanpisutia hypophaea 
Biatora)
KF650966
Ivanpisutia hypophaea 
(as Biatora)
AJ247533
AJ247529
Ivanpisutia ocelliformis  KF650972 KF662457
Ivanpisutia ocelliformis Kistenich et al. 2018  
Ivanpisutia oxneri Kistenich et al. 2018 (as
Biatora)

Ivanpisutia oxneri 
10.07.2015, Kondratyuk, S.

(KoLRI 034165)
34165 34165
Acta Bot. Hung. 61, 2019
316 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Ivanpisutia oxneri 
10.07.2015, Kondratyuk, S.

(KoLRI 034219) (sub
Rinodina xanthophaea, green
isidious for DNA)
34219 34219
Kiliasia athallina Kistenich et al. 2018  
Krogia coralloides Kistenich et al. 2018   
Lecania aipospila Reese Naesborg et al. 2007 AM292674 AM292723 AM292753
Lecania aipospila Kistenich et al. 2018  

Lecania atrynoides Reese Naesborg et al. 2007 AM292675 AM292724 AM292764
Lecania fructigena Miadlikowska et al. 2014 KJ766413
Lecania furfuracea Reese Naesborg et al. 2007 AM292683 AM292734
Lecania fuscella Reese Naesborg et al. 2007 AM292685,
AM292684
AM292735
Lecania fuscella Kistenich et al. 2018 
Lecania glauca Reese Naesborg et al. 2007 AM292688 AM292738
Lecania inundata Reese Naesborg et al. 2007 AM292690 AM292740 AM292772
Lecania leprosa Reese Naesborg et al. 2007 AM292698 AM292747
Lecania nylanderiana Reese Naesborg et al. 2007 AM292692 AM292742 AM292774
Lecania nylanderiana Kistenich et al. 2018 

Lecania rabenhorstii Reese Naesborg et al. 2007 AM292693 AM292743 AM292775
Lecania spadicea Kistenich et al. 2018  
Lecania turicensis Reese Naesborg et al. 2007 AM292700 AM292748 AM292777
Lecaniella belgica Reese Naesborg et al. 2007 AM292697 AM292746
Lecaniella cyrtella Ekman 2001 AF282067
Lecaniella cyrtella Reese Naesborg 2008 AM504055,
AM504054
Lecaniella cyrtella Reese Naesborg et al. 2007 AM292680 AM292728 AM292767
Lecaniella cyrtella Shaheen (2017 unpubl.) 
Lecaniella cyrtella Lumbsch et al. 2004 AY300891
Lecaniella cyrtella Andersen and Ekman 2005 AY567720
Lecaniella cyrtella Miadlikowska et al. 2014 KJ766412 KJ766933
Lecaniella cyrtellina Reese Naesborg 2008 AM504057
Lecaniella cyrtellina Reese Naesborg et al. 2007 AM292681 AM292729,
AM292730
AM292768
Lecaniella dubitans Reese Naesborg 2008 AM504058,
AM504059
Acta Bot. Hung. 61, 2019
317
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Lecaniella dubitans Reese Naesborg et al. 2007 AM292732 AM292731
Lecaniella erysibe Reese Naesborg 2008 AM600966,
AM504061,
AM504060
Lecaniella erysibe Reese Naesborg et al. 2007 AM292682 AM292733
Lecaniella hutchinsiae Reese Naesborg 2008 AM504081
Lecaniella hutchinsiae Reese Naesborg et al. 2007 AM292689 AM292739 AM292771
Lecaniella naegelii Ekman 2001 AF282101
Lecaniella naegelii Reese Naesborg et al. 2007 AM292691 AM292741 AM292773
Lecaniella naegelii Miadlikowska et al. 2014 KJ766414
Lecaniella prasinoides Reese Naesborg 2008 AM504070,
AM504069,
AM504068
Lecaniella proteiformis Reese Naesborg 2008 AM600968,
AM504071
Lecaniella sambucina Reese Naesborg et al. 2007 AM292695,
AM292696
AM292744,
AM292745
Lecaniella sylvestris Reese Naesborg et al. 2007 AM292699 AM292776
Lecaniella tenera Reese Naesborg et al. 2007
(as Cliostomum tenerum)
AM292733
Lueckingia polyspora Kistenich et al. 2018  
Micarea doliiformis Sérusiaux et al. 2010a
Micarea doliiformis Schmull et al. 2011 HQ650654
Mycobilimbia
albohyalina
 KF650950 KF662398 KF662438
Mycobilimbia carneoalbida 
(as Biatora carneoalbida)
AJ247565,
AJ247573
Mycobilimbia carneoalbida et al. 2016 KX389596
Mycobilimbia concinna Kistenich et al. 2019a, bMK352373 MK352202
Mycobilimbia concinna Kistenich et al. 2019a, bMK352395 MK352224
Mycobilimbia
cinchonarum
Kistenich et al. 2019a, bMK352285 MK352106
Mycobilimbia
cinchonarum
Kistenich et al. 2019a, bMK352381 MK352210
Mycobilimbia epixanthoides  KF650953 KF662401 KF662441
Mycobilimbia epixanthoides Vondrák et al. 2018  
Mycobilimbia microcarpa Reese Naesborg et al. 2007 AM292669 AM292715,
AM292714
AM292760
Mycobilimbia pilularis Ekman 2001 (as Biatora
sphaeroides)
AF282068
Mycobilimbia pilularis  KF662402 KF662442
Acta Bot. Hung. 61, 2019
318 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Mycobilimbia pilularis Reese Naesborg et al. 2007 AM292704,
AM292703
Mycobilimbia ramea Reese Naesborg et al. 2007 AM292666 AM292756
Mycobilimbia siamensis Kistenich et al. 2019aMK412477 MK412410
Mycobilimbia siamensis Kistenich et al. 2019aMK412484 MK412418
Mycobilimbia tetramera  AJ247561
Mycobilimbia tetramera  KF662403 KF662443
Mycobilimbia tetramera Miadlikowska et al. 2014 KJ766439 KJ766957
Myrionora albidula Kistenich et al. 2018 (sub
Biatora)

Myrionora australis et al. 2016 (as
Biatora)
KX389594 KX389597
Myrionora ementiens 
Biatora)
KF650962 KF662411 KF662448
Myrionora flavopunctata  KF650963 KF662413 KF662449
Myrionora flavopunctata Kistenich et al. 2018 
 
Myrionora globulosa Ekman 2001 (as Biatora) AF282073
Myrionora globulosa 
Biatora)
KF662414 KF662450
Myrionora hemipolia Ekman 2001 (as Bacidia
hemipolia)
AF282072
Myrionora hemipolia 
Biatora)
KF662451
Myrionora ligni-mollis 
Biatora)
KF650968 KF662418
Myrionora ligni-mollis Sérusiaux et al. 2010 (as
Biatora)

Myrionora malcolmii Kistenich et al. 2019a, b MK352344 MK352170
Myrionora vacciniicola  KF650985 KF662433 KF662467
Myrionora vacciniicola Kistenich et al. 2018   
Parallopsora leucophyllina Kistenich et al. 2018   
Phyllopsora
agonimioides
South Korea, Jeju-do, Jeju-si,
Seogwipo, Yeongcheon-
dong, 33° 18’ 00.79” N, 126°
34’ 34.54” E, Alt.: 307 m a.s.l.,
on rock. 18.08.2015, J. Halda
152600 (KoLRI 036822)
36822
Phyllopsora atrocarpa Kistenich et al. 2018 
Phyllopsora breviuscula Kistenich et al. 2018  
Phyllopsora breviuscula Kistenich et al. 2018  

Acta Bot. Hung. 61, 2019
319
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Phyllopsora borbonica
(–> Sporacesta)
Kistenich et al. 2018   
Phyllopsora buettneri  AJ247576
Phyllopsora chlorophaea Kistenich et al. 2018  
Phyllopsora cf.
chlorophaea

10.07.2015, Kondratyuk, S.

(KoLRI 034337) (sub Scoli-
ciosporum chlorococcum, but
Biatora longispora for DNA)
34337
Phyllopsora confusa Kistenich et al. 2019aMK412489 MK412426
Phyllopsora confusa Kistenich et al. 2019aMK412503 MK412460
Phyllopsora corallina Stewart et al. 2018 MH887524
Phyllopsora corallina Kistenich et al. 2019a, bMK352346 MK352173
Phyllopsora corallina Kistenich et al. 2019a, bMK352380 MK352209
Phyllopsora glaucella Kistenich et al. 2019a, bMK352323 MK352147
Phyllopsora glaucella Kistenich et al. 2019a, bMK352356 MK352184
Phyllopsora gossypina Kistenich et al. 2018 
 
 

Phyllopsora lividocarpa Kistenich et al. 2018  
Phyllopsora loekoesii -
sangbuk-do, Ulleung-gun,
Ulleung-eup, Ulleung-do, at
a rockwall between Naesu-
jeon and Soekpo waterfall,
37° 31’ 19.51” N, 130° 54’
16.03” E, Alt. 415 m a.s.l., on
siliceous rock. 09.07.2016,

161769_3 (KoLRI 039989),
isotype
1617693
Phyllopsora aff. loekoesii Kistenich et al. 2019a, bMK352331 MK352156
Phyllopsora aff. loekoesii Kistenich et al. 2019a, bMK352439 MK352279
Phyllopsora longiuscula Kistenich et al. 2018   
Phyllopsora mauritiana Kistenich et al. 2018  
Phyllopsora melanoglauca Kistenich et al. 2019a, bMK352333 MK352158
Phyllopsora melanoglauca Kistenich et al. 2019a, bMK352374 MK352203
Phyllopsora parvifoliella Kistenich et al. 2018   
Phyllopsora
porphyromelaena
Kistenich et al. 2018  
Phyllopsora pyxinoides Ekman and Tønsberg 2002 AF517920
Phyllopsora pyxinoides et al. 2004 AY584615
Acta Bot. Hung. 61, 2019
320 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Phyllopsora pyxinoides Hofstetter et al. 2007 DQ883748
Phyllopsora rosei Kistenich et al. 2019a, bMK352398 MK352228
Phyllopsora rosei Kistenich et al. 2019a, bMK352436 MK352272
Phyllopsora sorediata Kistenich et al. 2018   
Phyllopsora sp. South Korea, Jeju-do, Jeju-
si, Arail-dong, Mt Halla,
-
ple) 3, 33° 24’ 02.80” N, 126°
32’ 25.28” E, Alt.: 868 m a.s.l.,
20.07.2015, J. Halda 151558
(KoLRI 035251) [from fertile
thallus of Agonimia pacifica]
35251
Phyllopsora sp. South Korea, same locality,
20.07.2015, J. Halda 151560
(KoLRI 035253) [from fertile
thallus of Agonimia pacifica]
35253
Phyllopsora sp. South Korea, Jeju-do, Seog-
wipo-si, Mt Halla, (Yeongsil
Trail) 7, 33° 21’ 12.19” N,
126° 29’ 51.54” E, Alt. 1,308
m a.s.l., 21.07.2015, J. Halda
151674 (KoLRI 035367) [from
fertile thallus of Agonimia
pacifica]
35367
Phyllopsora sp. South Korea, Jeju-do, Seog-
wipo-si, Mt Halla, (Yeongsil
Trail 4), 33° 21’ 20.93” N,
126° 30’ 01.14” E, Alt. 1,388
m a.s.l., 21.07.2015, J. Halda
151647 (KoLRI 035340) [from
fertile thallus of Biatora
longispora]
35340
Phyllopsora
sunchonensis
-
sangbuk-do, Ulleung-gun,
Ulleung-eup, Dodong-ri, Do-
dong Port, 37° 28’ 59.9” N,
130° 54’ 40.7” E, 20 m a.s.l.,
11.07.2016, S. Y. Kondratiuk,

040247)
162009
Phyllopsora
sunchonensis
South Korea, same locality,
11.07.2016, S. Y. Kondratiuk,

040250)
162012
Phyllopsora
sunchonensis
South Korea, same locality,
11.07.2016, S. Y. Kondratiuk,

040280)
162042
Acta Bot. Hung. 61, 2019
321
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Phyllopsora aff.
sunchonensis
South Korea, 162345 (KoLRI
040583)
Bia162345
L
Phyllopsora thaleriza Kistenich et al. 2018 
 
 

Ramalina farinacea Lim et al. (2005 unpubl.)
(Hur 040059)
DQ001298
Ramalina farinacea Hur (2007 unpubl.) (Hur
HB070122a)


Ramalina fraxinea Catalá et al. 2016 KP282349,
KP282325,
KP282315
Ramalina fraxinea Kistenich et al. 2018  
Ramalina huei Sérusiaux et al. 2010b
Ramalina intermedia Meese et al. 2019 (unpubl.) MK092093
Ramalina litoralis Moon et al. 2016 KT698282,
KT698283,
KT698281
Ramalina subbreviuscula -
sangbuk-do, Ulleung-gun,
Dokdo-ri, Western Island,
over stairs, 37° 14’ 26.66” N,
131° 51’ 51.50” E, 20 m a.s.l.,

170918 (KoLRI 045199), SK
U04 KoLRI
SK U04
Ramalina subbreviuscula -
sangbuk-do, Ulleung-gun,
Dokdo-ri, Western Island,
37° 14’ 27” N, 131° 51’ 54”
E, Alt. 100 m a.s.l., on rock,
07.09.2017, J.-J. Woo 171031
(KoLRI 045312), SK U05
KoLRI
SK U05
Ramalina subbreviuscula -
sangbuk-do, Ulleung-gun,
Dokdo-ri, Western Island,
over stairs, 37° 14’ 26.66” N,
131° 51’ 51.50” E, 20 m a.s.l.,

170919 (KoLRI 045200), SK
U12 KoLRI
SK U12
Ramalina subbreviuscula -
sangbuk-do, Ulleung-gun,
Dokdo-ri, Western Island, 37°
14’ 27” N, 131° 51’ 54” E, 100
m a.s.l., on rock, 07.09.2017,
S.-O. Oh 171067 (KoLRI
045348), SK U16 KoLRI
SK U16
Acta Bot. Hung. 61, 2019
322 KONDRATYUK, S. Y., LŐKÖS, L., FARKAS, E., JANG, S.-H., LIU, D. et al.
Species name Vouchers / reference ITS mtSSU rpb2
Ramalina subbreviuscula Ohmura et al. 2008 AB362798
Thalloidima candidum Kistenich et al. 2018 
Thalloidima candidum Kistenich et al. 2018   

Thamnolecania brialmontii Reese Naesborg et al. 2007 AM292676,
AM292677
AM292726 AM292765
Thamnolecania brialmontii Ekman 2001 AF282066,
DQ534467
Thamnolecania brialmontii Kistenich et al. 2018  
Toninia cinereovirens Ekman 2001 AF282104
Toninia cinereovirens Ekman et al. 2008 AY756365 AY567724
Toninia cinereovirens Reese Naesborg et al. 2007 AM292781
Toninia populorum Mark et al. 2016 (sub Arthro-
sporum)
KX132986
Toninia populorum Ekman 2001 (sub Arthro-
sporum)
AF282106
Toninia populorum Kistenich et al. 2018   
Toninia sedifolia Schmull et al. 2011 HQ650689
Toninia sedifolia Miadlikowska et al. 2006 DQ973073
Toninia sedifolia Miadlikowska et al. 2014 KJ766503 KJ766946
Toninia taurica Ekman 2001 AF282118
Toninia taurica Kistenich et al. 2018 

Toniniopsis aromatica Ekman 2001 AF282126
Toniniopsis bagliettoana Ekman 2001 AF282123
Toniniopsis bagliettoana Kistenich et al. 2018  
Toniniopsis coelestina Ekman 2001 AF282127
Toniniopsis coelestina Kistenich et al. 2018  
Toniniopsis obscura Kistenich et al. 2018   
Vandenboomia
chlorotiza
Reese Naesborg et al. 2007 AM292679 AM292727 AM292766
Vandenboomia falcata Sérusiaux et al. 2012 JQ796857
Waynea californica Ekman 2001 AF282099
Waynea californica Kistenich et al. 2018  
Wolseleyidea africana Kistenich et al. 2019aMK412480 MK412413
Wolseleyidea africana Kistenich et al. 2019aMK412481 MK412414
Wolseleyidea byssiseda Kistenich et al. 2019a, bMK352382 MK352211
Wolseleyidea byssiseda Kistenich et al. 2019a, bMK352383 MK352212
Acta Bot. Hung. 61, 2019
323
THREE NEW GENERA OF THE RAMALINACEAE
Species name Vouchers / reference ITS mtSSU rpb2
Wolseleyidea canoum-
brina
Kistenich et al. 2019a, bMK352366 MK352195
Wolseleyidea furfurella Kistenich et al. 2019a, bMK352361 MK352189
Wolseleyidea furfurella Kistenich et al. 2019a, bMK352369 MK352198
Wolseleyidea
ochroxantha
Kistenich et al. 2019a, bMK352297 MK352118
Wolseleyidea
ochroxantha
Kistenich et al. 2019a, bMK352298 MK352119
Wolseleyidea swinscowii Kistenich et al. 2019a, bMK352300 MK352121
Wolseleyidea swinscowii Kistenich et al. 2019a, bMK352326 MK352151
... After molecular data (see Kondratyuk et al. 2019c) species is a member of the Phyllopsora loekoesii group including two more epilithic East Asian species, i.e. P. loekoesii S. Y. Kondr., E. cidia sp. ...
... Hur (Kondratyuk et al. 2018). Later a new combination Phyllopsora sunchonensis was proposed based on molecular data for the epilithic sorediate green crust (Kondratyuk et al. 2019c). Thus, conclusion about position of sorediate Phyllopsora species in the Phyllopsora loekoesii group (Kondratyuk et al. 2019c) in fact belongs to still undescribed taxon, which is proposed here to describe as Phyllopsora dodongensis. ...
... The following twelve new combinations for species of the Bryostigma clade of the phylogenetic tree of the Arthoniaceae based on combined analysis based on mtSSU and RPB2 protein coding gene (see Kondratyuk et al. 2019e), as well as 31 new combinations for species of the Polyozosia genus of the Lecanoraceae (see Kondratyuk et al. 2019c) ...
Article
Full-text available
Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans ( Lecanora expectans Darb.), Polyozosia flowersiana ( Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca ? zosterae Ach.)) are proposed.
... Kistenich et al. (2018). Die von Kondratyuk et al. (2019b) Hypogymnia physodes (L.) Nyl. Lecanora swartzii (Ach.) ...
Article
Printzen, C., Brackel, W. v., Bltmann, H., Cezanne, R., Dolnik, C., Dornes, P., Eckstein, J., Eichler, M., John, V., Killmann, D., Nimis, P. L., Otte, V., Schiefelbein, U., Schultz, M., Stordeur, R., Teuber, D. & Ths, H. 2022. Die Flechten, flechtenbewohnenden und flechtenhnlichen Pilze Deutschlands eine berarbeitete Checkliste. Herzogia 35: 193-393. In der vorliegenden Arbeit werden 2051 Flechten, 520 flechtenbewohnende und 55 flechtenhnliche Pilze, insgesamt 2626 Taxa nebst Synonymen aufgelistet, deren Vorkommen bis 31.12.2021 aus dem Gebiet der Bundesrepublik Deutschland gemeldet wurde. Die Liste basiert auf dem letzten im Jahre 2011 verffentlichten Artenverzeichnis und bercksichtigt 326 Neunachweise von Arten sowie 428 nomenklatorische nderungen, die zwischen 2012 und 2021 in 253 Publikationen verffentlicht wurden. Die Liste umfasst auerdem 114 Taxa, zumeist aus den Verrucariaceae, deren Status weiterhin als problematisch angesehen wird. Printzen, C., Brackel, W. v., Bltmann, H., Cezanne, R., Dolnik, C., Dornes, P., Eckstein, J., Eichler, M., John, V., Killmann, D., Nimis, P. L., Otte, V., Schiefelbein, U., Schultz, M., Stordeur, R., Teuber, D. & Ths, H. 2022. Lichens, lichenicolous and allied fungi of Germany a revised checklist. Herzogia 35: 193-393. The present work lists 2051 lichens, 520 lichenicolous and 55 allied fungi, altogether 2626 taxa and their synonyms, whose occurrence has been reported from the territory of the Federal Republic of Germany by the end of 2021. The list is based on the last species list published in 2011 and comprises 326 new records as well as 428 nomenclatural changes published in 253 publications between 2012 and 2021. The list also includes 114 taxa, mostly from the Verrucariaceae, whose status is still considered problematic.
... Several species of Catillaria are obligate parasites of other lichens and do not form their own thalli; some others, including C. atomarioides and C. nigroclavata can be facultatively parasitic on a wide range of other lichens (Van den Boom 2002). Andersen & Ekman (2005), Cannon et al. (2021), Coppins (1989), Fletcher & Coppins (2009), Fryday & Coppins (1996), Kilias (1981), Kistenich et al. (2018), Kondratyuk et al. (2019), Reese Naesborg et al. (2007), Roux (2020), Van den Boom (2009), Van den Boom & Alvarado (2021), Van den Boom & Etayo (2001). ...
... If there is evidence for a mixup, the safest way to obtain reliable data is repeating the PCR and sequencing steps, rather than trying to make sense of the existing data. Kondratyuk et al. (2019) recently reported "extraneous mycobiont DNA", i.e., unexpected sequences corresponding to a particular lichen mycobiont presumably detected in the thallus of other lichens, e.g., of Biatora longispora (Ramalinaceae) in the thallus of Agonimia pacifica (Verrucariaceae). It is unclear whether these are the result of a laboratory mixup or of natural contamination of the underlying lichen thalli. ...
Article
Full-text available
Lichens are symbiotic associations resulting from interactions among fungi (primary and secondary mycobionts), algae and/or cyanobacteria (primary and secondary photobionts), and specific elements of the bacterial microbiome associated with the lichen thallus. The question of what is a species, both concerning the lichen as a whole and its main fungal component, the primary mycobiont, has faced many challenges throughout history and has reached new dimensions with the advent of molecular phylogenetics and phylogenomics. In this paper, we briefly revise the definition of lichens and the scientific and vernacular naming conventions, concluding that the scientific, Latinized name usually associated with lichens invariably refers to the primary mycobiont, whereas the vernacular name encompasses the entire lichen. Although the same lichen mycobiont may produce different phenotypes when associating with different photobionts or growing in axenic culture, this discrete variation does not warrant the application of different scientific names, but must follow the principle "one fungus = one name". Instead, broadly agreed informal designations should be used for such discrete morphologies, such as chloromorph and cyanomorph for lichens formed by the same mycobiont but with either green algae or cyanobacteria. The taxonomic recognition of species in lichen-forming fungi is not different from other fungi and conceptual and nomenclatural approaches follow the same principles. We identify a number of current challenges and provide recommendations to address these. Species delimitation in lichen-forming fungi should not be tailored to particular species concepts but instead be derived from empirical evidence, applying one or several of the following principles in what we call the LPR approach: lineage (L) coherence vs. divergence (phylogenetic component), phenotype (P) coherence vs. divergence (morphological component), and/or reproductive (R) compatibility vs. isolation (biological component). Species hypotheses can be established based on either L or P, then using either P or L (plus R) to corroborate them. The reliability of species hypotheses depends not only on the nature and number of characters but also on the context: the closer the relationship and/or similarity between species, the higher the number of characters and/or specimens that should be analyzed to provide reliable delimitations. Alpha taxonomy should follow scientific evidence and an evolutionary framework but should also offer alternative practical solutions, as long as these are scientifically defendable. Taxa that are delimited phylogenetically but not readily identifiable in the field, or are genuinely cryptic, should not be rejected due to the inaccessibility of proper tools. Instead, they can be provisionally treated as undifferentiated complexes for purposes that do not require precise determinations. The application of infraspecific (gamma) taxonomy should be restricted to cases where there is a biological rationale, i.e., lineages of a species complex that show limited phylogenetic divergence but no evidence of reproductive isolation. Gamma taxonomy should not be used to denote discrete phenotypical variation or ecotypes not warranting the distinction at species level. We revise the species pair concept in lichen-forming fungi, which recognizes sexually and asexually reproducing morphs with the same underlying phenotype as different species. We conclude that in most cases this concept does not hold, but the actual situation is complex and not necessarily correlated with reproductive strategy. In cases where no molecular data are available or where single or multi-marker approaches do not provide resolution, we recommend maintaining species pairs until molecular or phylogenomic data are available. This recommendation is based on the example of the species pair Usnea aurantiacoatra vs. U. antarctica, which can only be resolved with phylogenomic approaches, such as microsatellites or RADseq. Overall, we consider that species delimitation in lichen-forming fungi has advanced dramatically over the past three decades, resulting in a solid framework, but that empirical evidence is still missing for many taxa. Therefore, while phylogenomic approaches focusing on particular examples will be increasingly employed to resolve difficult species complexes, broad screening using single barcoding markers will aid in placing as many taxa as possible into a molecular matrix. We provide a practical protocol how to assess and formally treat taxonomic novelties. While this paper focuses on lichen fungi, many of the aspects discussed herein apply generally to fungal taxonomy. The new combination Arthonia minor (Lücking) Lücking comb. et stat. nov. (Bas.: Arthonia cyanea f. minor Lücking) is proposed.
Article
Full-text available
Edit Farkas and László Lőkös are internationally well known and respected Hungarian lichenologists. They did their best to maintain and to develop several aspects of the Hungarian lichenology, including biodiversity research on lichen-forming and lichenicolous fungi, taxonomic revisions based on morphological, chemical and molecular methods, ecological, ecophysiological and conservation biological research, as well as investigations on history of science and bibliographical compilations. Hungarian lichen herbaria were enriched considerably by their various Hungarian collections as well as collections from tropical, temperate Asian and Balkan areas. We shortly overview their scientific career and results publishing in more than 100 scientific papers, and similar amount of scientific and popular presentations. As key persons in traditional Hungarian lichenology, their keen and precise way of research might serve as a good example to their students and colleagues.
Article
Full-text available
Fourteen species new for science are described, illustrated and compared with closely related taxa. Six species of them are from South Korea, i.e. Bryostigma huriellae S. Y. Kondr. et J.-S. Hur, Caloplaca ulleungensis S. Y. Kondr., L. Lőkös et J.-S. Hur, Enterographa dokdoensis S. Y. Kondr. et J.-S. Hur, Neobrownliella salyangensis S. Y. Kondr. et J.-S. Hur, Rufoplaca aesan- ensis S. Y. Kondr. et J.-S. Hur, Squamulea coreana S. Y. Kondr. et J.-S. Hur, and seven species are from Chile: Caloplaca nothocitrina S. Y. Kondr. et J.-S. Hur, Caloplaca nothoholocarpa S. Y. Kondr. et J.-S. Hur, Caloplaca patagoniensis S. Y. Kondr., S.-O. Oh et J.-S. Hur, Follmannia suborthoclada S. Y. Kondr. et J.-S. Hur, ‘Lecidea’buellielloides S. Y. Kondr. et J.-S. Hur, Mass- jukiella rusavskioides S. Y. Kondr. et J.-S. Hur, Rehmanniella poeltiana S. Y. Kondr. et J.-S. Hur, as well as one species, i.e. Pyrenodesmia vernadskiensis S. Y. Kondr., T. O. Kondratiuk et I. Yu. Parnikoza, similar to Antarctic endemic species Huea coralligera , is from Argentine Islands, Western Antarctic Peninsula. The member of the genus Pyrenodesmia A. Massal. is for the first time confirmed by molecular data from the Antarctic. Eighteen new combinations, i.e. Massjukiella impolita (for Caloplaca impolita Arup), Massjukiella pollinarioides (for Xanthoria pollinarioides L. Lindblom et D. M. Wright), Massjukiella stellata (for Caloplaca stellata Wetmore et Karnefelt), Massjukiella tenax (for Xanthoria tenax L. Lindblom), and Massjukiella tenuiloba (for Xanthoria tenuiloba L. Lindblom), Pyrenodesmia albopruinosa (for Biatorina albopruinosa Arnold), Pyrenodesmia ceracea (for Caloplaca ceracea J. R. Laundon), Pyrenodesmia cretensis (for Blastenia cretensis Zahlbr.), Pyrenodesmia erythrocarpa (for Patellaria erythrocarpa Pers.), Pyrenodesmia haematites (for Lecanora haematites Chaub. ex St.-Amans), Pyrenodesmia percrocata (for Blastenia percrocata Arnold), Pyrenodesmia soralifera (for Caloplaca soralifera Vondrak et Hrouzek), Pyrenodesmia transcaspica (for Lecanora transcaspica Nyl.), Pyrenodesmia viridirufa (for Lecidea viridirufa Ach.), Pyrenodesmia xerica (for Caloplaca xerica Poelt et Vezda), as well as Rehmanniella leucoxantha (for Amphilo-ma leucoxanthum Mull. Arg.), Rehmanniella syvashica (for Caloplaca syvashica Khodos., Vond- rak et Soun), and Rehmanniella subgyalectoides (for Caloplaca subgyalectoides S. Y. Kondr. et Karnefelt) are proposed. Buelliella inops and Zwackhiomyces aff. berengerianus are for the first time recorded from South America as well as from Follmannia orthoclada (as lichenicolous fungi). Caloplaca poliotera, Rinodina convexula and Rinodina kozukensis are new to the Republic of Korea, and new localities as well as illustrations for the further 13 new and rare lichen species recently described from Eastern Asia are provided too.
Article
The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota ( Mucor circinelloides ), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces ), representatives of the Anamorphic fungi group ( Geomyces pannorum , species of the genera Alternaria, Acremonium, Aspergillus, Penicillium , and Cladosporium ) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans , capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum , lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.
Article
Full-text available
Phyllopsora is a crustose to squamulose lichen genus inhabiting the bark of trees in moist tropical forests and rainforests. Species identification is generally challenging and is mainly based on ascospore morphology, thallus morphology and anatomy, vegetative dispersal units, and on secondary chemistry. While regional treatments of the genus have been conducted for Africa, South America and Australia, there exists no study focusing on the Asian and Melanesian species. Previously, 24 species of Phyllopsora s. str. have been reported from major national studies and checklists representing 13 countries. We have studied herbarium material of 625 Phyllopsora specimens from 18 countries using morphology, anatomy, secondary chemistry, and molecular data to investigate the diversity of Phyllopsora species in Asia and Melanesia. We report the occurrence of 28 species of Phyllopsora including the following three species described as new to science: P. sabahana from Malaysia, P. siamensis from Thailand and P. pseudocorallina from Asia and Africa. Eight species are reported as new to Asia. A key to the Asian and Melanesian species of Phyllopsora is provided.
Article
Full-text available
Six new for science species of lichen-forming fungi from Republic of Korea, Eastern Asia, i. e.: Bacidina jasonhuri J. P. Halda, S. Y. Kondr. et L. Lőkös, Gyalidea koreana J. P. Halda, S. Y. Kondr., L. Lőkös et Hur, G. pisutii J. P. Halda, S. Y. Kondr., L. Lőkös et Hur, G. poeltii S. Y. Kondr., L. Lőkös, J. P. Halda et Hur, G. vezdae S. Y. Kondr., L. Lőkös, J. P. Halda et Hur, and Porpidia ulleungdoensis S. Y. Kond., L. Lőkös et J. P. Halda, as well as two new species from Japan (Fauriea yonaguniensis S. Y. Kondr., M. Moriguchi et Yoshik. Yamam. and Laundonia ryukyuensis S. Y. Kondr., M. Moriguchi et Yoshik. Yamam.), and one new species Lecanora orlovii S. Y. Kondr. et L. Lőkös from Ukraine are described, illustrated and compared with closely related taxa.
Article
Full-text available
Biatoraalnetorum S. Ekman & Tønsberg, a lichenised ascomycete in the family Ramalinaceae (Lecanorales, Lecanoromycetes), is described as new to science. It is distinct from other species of Biatora in the combination of mainly three-septate ascospores, a crustose thallus forming distinctly delimited soralia that develop by disintegration of convex pustules and the production of atranorin in the thallus and apothecia. The species is known from the Pacific Northwest of North America, where it inhabits the smooth bark of Alnusalnobetulasubsp.sinuata and A.rubra . Biatoraalnetorum is also a new host for the lichenicolous ascomycete Sclerococcumtoensbergii Diederich.
Article
Full-text available
Although lichenized fungi are among the most reliable indicators of forest quality and represent a considerable part of forest biodiversity, methods maximizing completeness of their species lists per area are lacking. Employing a novel methodological approach including a multi-expert competition and a search for local hot-spot plots, we have obtained outstanding data about epiphytic lichen biota in a part of the largest Central European virgin forest reserve Uholka–Shyrokyi Luh situated in Ukrainian Carpathians. Our field research consisted of two four-day periods: (1) an overall floristic survey and a search for spots with raised lichen diversity, and (2) survey in four one-hectare plots established in lichen diversity hot-spots along an altitudinal gradient. Recorded alpha-diversities in plots ranged from 181–228 species, but estimated species richness is in the range 207–322 species. Detected gamma-diversity was 387 species; estimates are 409–484 species. 93% of the species found in the forest were recorded in plots, but only 65% outside the plots. This underlines the high-efficiency of the multi-expert competitive survey in diversity hot-spot plots. Species richness in each one-hectare plot was equal to the numbers of species obtained by floristic surveys of much larger old-growth forest areas in Central Europe. Gamma-diversity detected in the Uholka primeval forest far exceeded all numbers achieved in Central European old-growth forests. Our method appears to be both effective (it obtains a more nearly complete inventory of species) and practical (the resources required are not unreasonably large).
Article
Full-text available
Nineteen new to science species of lichen forming fungi, i.e.: Agonimia ascendens S. Y. Kondr., L. Lokös et J.-S. Hur, A. sunchonensis S. Y. Kondr. et J.-S. Hur, A. yongsangensis S. Y. Kondr. et J.-S. Hur, Biatora loekoesiana S. Y. Kondr. et J.-S. Hur, Caloplaca ivanpisutii S. Y. Kond., L. Lokös et J.-S. Hur, Candelariella makarevichiae S. Y. Kondr., L. Lokös et J.-S. Hur, Huriella pohangensis S. Y. Kondr., L. Lokös et J.-S. Hur, H. salyangiana S. Y. Kondr. et J.-S. Hur, Hyperphyscia oxneri S. Y. Kondr. et J.-S. Hur, Nectriopsis gangwondoensis S. Y. Kondr., L. Lokös et J.-S. Hur, Porina ulleungdoensis S. Y. Kondr., L. Lokös, J. Halda et J.-S. Hur, Psoroglaena gangwondoensis S. Y. Kondr., L. Lokös, J.-J. Woo et J.-S. Hur, Pyrenopsis cavernicola S. Y. Kondr., L. Lokös et J.-S. Hur, Rhizocarpon sunchonense S. Y. Kondr. et J.-S. Hur, Rufoplaca ulleungensis S. Y. Kondr., L. Lokös et J.-S. Hur, Sarcogyne ulleungdoensis S. Y. Kondr., L. Lokös et J.-S. Hur, Skyttea bumyoungsungii S. Y. Kondr. et J.-S. Hur, Thelopsis gangwondoensis S. Y. Kondr., L. Lokös, J.-J. Woo et J.-S. Hur, Topelia loekoesiana S. Y. Kondr., J.-J. Woo et J.-S. Hur, all from South Korea, as well as Gallowayella awasthiana S. Y. Kondr. et D. K. Upreti from India and Franwilsia skottsbergii S. Y. Kondr., A. Thell, S.-O. Oh et J.-S. Hur from Chile are described, illustrated and compared with closely related taxa. A key to Agonimia species known from Eastern Asia is also included. Lecanora helicopis is recorded for Korea for the first time, as well as a number of new to Jeju-do Island species (i.e.: Agonimia loekoesii, Biatora pseudosambuci, Buellia extremoorientalis, and Ivanpisutia oxneri) are recorded. Additional data on conidiomata and morphological characters of thallus and apothecia and illustrations as well as data on newly located isotype specimens recently described from Canary Islands, Spain Fominiella tenerifensis are provided. Two new combinations, i.e.: Phaeophyscia saxatilis (for Physcia saxatilis Kashiw.), and Xanthoparmelia umezuana (for Karoowia umezuana Moon K. H. et Kashiw.) are also proposed.
Article
The Lecanoromycetes includes most of the lichen-forming fungal species (>13 500) and is therefore one of the most diverse class of all Fungi in terms of phenotypic complexity. We report phylogenetic relationships within the Lecanoromycetes resulting from Bayesian and maximum likelihood analyses with complementary posterior probabilities and bootstrap support values based on three combined multilocus datasets using a supermatrix approach. Nine of 10 orders and 43 of 64 families currently recognized in Eriksson’s classification of the Lecanoromycetes (Outline of Ascomycota—2006 Myconet 12:1–82) were represented in this sampling. Our analyses strongly support the Acarosporomycetidae and Ostropomycetidae as monophyletic, whereas the delimitation of the largest subclass, the Lecanoromycetidae, remains uncertain. Independent of future delimitation of the Lecanoromycetidae, the Rhizocarpaceae and Umbilicariaceae should be elevated to the ordinal level. This study shows that recent classifications include several nonmonophyletic taxa at different ranks that need to be recircumscribed. Our phylogenies confirm that ascus morphology cannot be applied consistently to shape the classification of lichen-forming fungi. The increasing amount of missing data associated with the progressive addition of taxa resulted in some cases in the expected loss of support, but we also observed an improvement in statistical support for many internodes. We conclude that a phylogenetic synthesis for a chosen taxonomic group should include a comprehensive assessment of phylogenetic confidence based on multiple estimates using different methods and on a progressive taxon sampling with an increasing number of taxa, even if it involves an increasing amount of missing data.
Article
The genera Coppinsiella and Seawardiella are described based on the combined phylogenetic analysis from ITS nrDNA, 28S nrLSU and 12S mtSSU sequences. The affinities of the new genera Orientophila, Athallia, Flavoplaca and Calogaya are discussed. The former Caloplaca lobulata group (or ‘Xanthoria lobulata-Gruppe’ sensu Steiner et Poelt 1982) found to be positioned in the Calogaya clade based on ITS phylogeny while after a three gene phylogeny (based on ITS nrDNA, nrLSU and mtSSU sequences) two species (i.e.: Seawardiella lobulata and described as new S. tasmaniensis) were located in the Seawardiella clade of the Xanthorioideae. Three other species (i.e. Lazarenkoella zoroasteriorum, L. persica and L. polycarpoides) were positioned in the Lazarenkoella-clade of the Brownlielloideae. The position of all species of the Calogaya clade (after ITS phylogeny) should be re-evaluated based on three gene phylogeny from ITS nrDNA, nrLSU and mtSSU sequences. The new species Seawardiella tasmaniensis is described, illustrated and compared with closely related taxa. New combinations are suggested for eight taxa (i.e. Athallia inconnexa (for Lecanora inconnexa Nyl.), Calogaya safavidiorum (for Caloplaca safavidiorum S. Y. Kondr., in Kondratyuk et al.), Coppinsiella orbicularis stat. et comb. nov. (for Caloplaca substerilis subsp. orbicularis M. Haji Moniri, Vondrák et Malíček), Coppinsiella substerilis (for Caloplaca substerilis Vondrák, Palice et van den Boom, in Vondrák et al.), Coppinsiella ulcerosa (for Caloplaca ulcerosa Coppins et P. James), Lazarenkoella persica (for Xanthoria polycarpoides var. persica J. Steiner); Lazarenkoella polycarpoides (for Xanthoria polycarpoides J. Steiner), and Seawardiella lobulata (for Lecanora lobulata Flörke)). Key words: combined phylogenetic analysis, Lazarenkoella, new genera, Xanthorioideae
Article
Species identification in the tropical lichen genus Phyllopsora is generally challenging and is based on ascospore morphology, vegetative dispersal units, thallus structure and secondary chemistry. As several type specimens are in poor condition and difficult to interpret, it is often unclear how these old names fit with the currently used taxonomy. In the present study, we aim to identify species boundaries in Phyllopsora s. str. supported by an integrative approach using multiple sources of evidence. We investigated a substantial amount of herbarium as well as freshly collected material and generated mtSSU and ITS sequence data from most of the described species, including several types. Species delimitation analyses are applied on the gene trees using mPTP and we construct a species tree of both markers with *BEAST, facilitating discussion of species delimitation and sister-relationships. Comparing morphology, chemistry and molecular data, we found that the mPTP analyses split established species repeatedly. Based on our integrative results, we exclude nine species from the genus, resurrect one ( P. melanoglauca Zahlbr.), reduce two into synonymy with other Phyllopsora species and describe five as new to science: Phyllopsora amazonica Kistenich & Timdal (which shares the secondary chemistry (atranorin and terpenoid pattern) with P. halei chemotype 1, but differs, e.g., in having smaller areolae that are attached to a thinner, white prothallus, and in having more persistently marginate and less convex apothecia), Phyllopsora concinna Kistenich & Timdal (which shares the secondary chemistry (atranorin and parvifoliellin) with P. parvifoliella and P. rappiana , but differs from both in forming larger isidia, having a white prothallus, apothecial margin paler than the disc, and longer and broader ascospores), Phyllopsora furfurella Kistenich & Timdal (which is here segregated from P. furfuracea based on having a white prothallus and in containing skyrin in the hypothecium (K+ red)), Phyllopsora isidosa Kistenich & Timdal (which differs from P. byssiseda in forming a more crustose thallus with more delicate isidia, and from P. isidiotyla in forming somewhat coarser, less branched isidia) and Phyllopsora neotinica Kistenich & Timdal (a neotropical species here segregated from the now exclusively paleotropical P. chodatinica , differing in containing an unknown xanthone (not chodatin)). Lectotypes are designated for Biatora pyrrhomelaena Tuck., Lecidea leucophyllina Nyl., L. pertexta Nyl., and P. brachyspora Müll. Arg. In total, we accept 54 species in the genus Phyllopsora .
Article
Lecanora markjohnstonii is described as new to science from the southeastern United States, with a primary center of distribution in the southern Appalachian Mountain region. This sterile, sorediate crust is saxicolous on both sandstone and granite and occurs commonly in mixed hardwood-conifer forests with rock outcrops. It is characterized by a gray-green, rimose-areolate thallus, erumpent, raised soralia, and the production of atranorin together with 2-0-methylperlatolic acid. Molecular phylogenetic analyses of newly generated rDNA assemblies from a broad sampling of lineages within the Lecanoromycetes and Arthoniomycetes inferred placement of the unknown crust in the Lecanoraceae, specifically within Lecanora. Analysis of the mtSSU gene region then inferred placement in the Lecanora subfusca group. Finally, a fully assembled and annotated mitochondrial genome was compared to other lichenized fungal mitogenomes, including the publicly available Lecanora strobilina mitogenome, and showed that the gene region atp9 was missing as in other members of the Lecanorales. © 2018 by The American Bryological and Lichenological Society, Inc.
Article
The Ramalinaceae is the fourth-largest family of lichenized ascomycetes with 42 genera and 913 species exhibiting considerable morphological variation. Historically, generic boundaries in the Ramalinaceae were primarily based on morphological characters. However, molecular systematic investigations of subgroups revealed that current taxonomy is at odds with evolutionary relationships. Tropical members of the family remain particularly understudied, including the large genus Phyllopsora. We have generated and collected multilocus sequence data (mtSSU, nrITS, nrLSU, RPB1, RPB2) for 149 species associated with the Ramalinaceae and present the first comprehensive molecular phylogeny of the family. We used ancestral state reconstructions on our molecular family phylogeny to trace the evolution of character states. Our results indicate that the Ramalinaceae have arisen from an ancestor with long, multiseptate ascospores living in humid temperate forests, and that the phyllopsoroid growth form has evolved multiple times within the family. Based on our results using integrative taxonomy, we discuss sister-relations and taxon-delimitation within five well-supported clades: The Bacidia-, Biatora-, Ramalina-, Rolfidium-, and Toninia-groups. We reduce six genera into synonymy and make 49 new nomenclatural combinations. The genera Bacidia, Phyllopsora, Physcidia and Toninia are polyphyletic and herein split into segregates. We describe the two genera Bellicidia and Parallopsora and resurrect the genera Bibbya, Kiliasia, Sporacestra, and Thalloidima. According to our new circumscription, which also includes some additional changes, the family Ramalinaceae now comprises 39 genera.