ArticlePDF Available

Charged-particle angular correlations in XeXe collisions at s N N = 5.44 TeV

Authors:

Abstract and Figures

Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of sNN=5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42μb−1. The collective motion of the system formed in the collision is parametrized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients v2, v3, and v4 are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to noncollective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.
Content may be subject to copyright.
PHYSICAL REVIEW C 100, 044902 (2019)
Charged-particle angular correlations in XeXe collisions at sNN =5.44 TeV
A. M. Sirunyan et al.
(CMS Collaboration)
(Received 23 January 2019; published 3 October 2019)
Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon
pair of sNN =5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total
integrated luminosity of 3.42 μb1. The collective motion of the system formed in the collision is parametrized
by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients v2,v3,
and v4are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within
a hydrodynamic picture, these methods have different sensitivities to noncollective and fluctuation effects. The
dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-
xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are
also compared to the experimental results. The observed angular correlations provide new constraints on the
hydrodynamic description of heavy ion collisions.
DOI: 10.1103/PhysRevC.100.044902
I. INTRODUCTION
At sufficiently high temperatures or densities, lattice quan-
tum chromodynamics predicts a transition from ordinary
hadronic matter to a state of deconfined quarks and gluons, the
so-called quark gluon plasma (QGP) (see, e.g., Ref. [1]). The
QGP state can be reached through relativistic heavy ion col-
lisions, where the collective behavior of the created medium
manifests itself in azimuthal correlations among the emitted
particles. These correlations have been studied in gold-gold
collisions at the BNL RHIC [25], lead-lead (PbPb) collisions
at the CERN LHC [68], as well as in collisions involving
lighter nuclei, such as the copper-copper system studied at
RHIC [9,10]. More recently, collective behavior similar to that
observed in collisions of heavy nuclei has also been found
in high-multiplicity events produced in the proton-lead (pPb)
system, and in proton-proton (pp) collisions [1114]. The re-
sults from these small systems raise the question as to how the
size of the colliding system affects the onset of QGP forma-
tion. Measurements from xenon-xenon (XeXe) collisions, as
presented here, bridge the gap between the small (pp and pPb)
and large (PbPb) systems previously studied at LHC energies.
Anisotropic flow can be characterized by a Fourier expan-
sion [1517],
2π
N
dN
dφ=1+
n=1
2vncos[n(φn)],(1)
where dN/dφis the azimuthal particle density and φis the
particle azimuthal angle with respect to a reference angle n.
Full author list given at the end of the article.
Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.
Different reference angles can be defined. The “participant
plane” angle is the direction of the semiminor axis of the
region perpendicular to the beam direction spanned by the
nucleons that undergo a primary interaction. The “event-
plane” angle is defined by the direction perpendicular to the
beam direction of the maximum outgoing particle density. In
this paper the measured anisotropies are expressed in terms of
the event-plane reference angle. Averaged over many events,
the anisotropies measured with respect to the event plane are
expected to be similar to those that would be obtained if it
were possible to determine the actual participant plane.
The magnitude of the azimuthal anisotropy is characterized
by the Fourier coefficients vn. The second- and third-order
Fourier coefficients are referred to as “elliptic” (v2) and
“triangular” (v3) flow, respectively. The former reflects the
lenticular shape of the collision overlap region, as well as
initial-state fluctuations in the positions of nucleons at the
moment of impact [18]. The latter is largely a consequence
of fluctuations. While the v2and v3harmonics are believed
to reflect the initial-state geometry [19], for n4 the flow
harmonics are also strongly affected by the dynamics of the
system expansion. Hence, studying both the lower and higher
flow harmonics is important for understanding the medium
created in heavy ion collisions.
This analysis presents measurements of the charged-
particle collective flow in XeXe collisions at a center-of-mass
energy per nucleon pair of sNN =5.44 TeV. The results
are shown as functions of transverse momentum, pT,forthe
pseudorapidity region |η|<2.4 and for different collision
overlap geometries. Spectrum-weighted values with 0.3<
pT<3.0GeV/c, with the efficiency-corrected yield in each
pTinterval used as the weight, are also presented. The Fourier
coefficients v2,v3, and v4are obtained by two-particle cor-
relations (vn{2}), the scalar-product method (vn{SP}), and
multiparticle cumulant analyses (vn{m},m=4, 6, and 8).
Event-by-event fluctuations in the spatial overlap geom-
etry lead to method-dependent differences in the extracted
2469-9985/2019/100(4)/044902(22) 044902-1 ©2019 CERN, for the CMS Collaboration
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
vnvalues [20,21]. The fluctuations cause an increase in the
deduced vnvalues found using two-particle correlations and
the scalar-product method, as compared to the corresponding
participant plane value, while the four-particle cumulant vn
results are decreased. For fluctuations that follow a two-
dimensional Gaussian behavior, the flow harmonics based
on more than four particles are expected to be the same
as the four-particle correlations results. Deviations from this
common behavior can be used to estimate the higher-order
moments of the fluctuation distribution. Comparison of flow
coefficients measured by different methods probes the initial-
state conditions.
The XeXe values are compared to the results from PbPb
collisions at sNN =5.02 TeV. The comparison with mea-
surements from different collision systems, but with similar
collision geometry, can give insight to the system size depen-
dence of the anisotropic flow [22]. Theoretical predictions are
compared to the observed system size dependence of the flow
harmonics. The results presented here provide new informa-
tion on the initial-state geometry and its fluctuations, as well
as the system size dependence of the medium properties.
II. CMS DETECTOR
The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity
coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel
flux-return yoke outside the solenoid. The hadron forward
(HF) calorimeter uses steel as an absorber and quartz fibers
as the sensitive material. The two HF calorimeters are located
11.2 m from the interaction region, one on each end, and
together they provide coverage in the range 3.0<|η|<5.2.
These calorimeters serve as luminosity monitors, are used
to establish the event centrality, and provide the event-plane
information for the scalar-product analysis. The HF calorime-
ters are azimuthally subdivided into 20modular wedges and
further segmented to form 0.175 ×10(η ×φ)towers.
The silicon tracker measures charged particles within the
pseudorapidity range |η|<2.5. For nonisolated particles of
1<pT<10 GeV/c and |η|<1.4, the track resolutions are
typically 1.5% in pTand 25–90 (45–150) μm in the trans-
verse (longitudinal) impact parameter [23]. A more detailed
description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [24]. The detailed Monte Carlo
(MC) simulation of the CMS detector response is based on
GEANT4[25].
III. EVENTS AND TRACK SELECTION
Results based on data recorded by CMS during the LHC
runs with XeXe collisions at sNN =5.44 TeV in 2017,
with an integrated luminosity of 3.42 μb1, are compared
to similar data obtained in 2015 from PbPb collisions at
sNN =5.02 TeV with an integrated luminosity of 26 μb1.
In both systems, only tracks with |η|<2.4 and 0.3<pT<
10.0GeV/c are used.
For the XeXe events, a hardware level (level-1) trigger
required at least one tower of the HF calorimeters to be
above a threshold that was fixed to maximize the number of
events counted, while keeping low the noise contamination
from electromagnetic scattering and from pileup (i.e., multiple
interactions in the same or neighboring bunch crossings). This
trigger also required the presence of both colliding bunches at
the interaction point. The average online pileup fraction was
0.018 per event. In addition, a high-level trigger was applied
that required at least one track in the pixel detector. Events
are further selected offline by requiring at least 3 GeV of
energy being detected in each of three HF calorimeter towers
on either side of the CMS detector and to have a reconstructed
primary vertex, containing at least two tracks, located within
15 cm of the nominal collision point along the beam axis
and within 0.2 cm in the transverse direction. In addition,
contamination from beam-gas interactions are suppressed by
applying a filter where, for each event with more than ten
tracks, at least 25% of the tracks are required to satisfy a high
purity [23] track quality criteria. The event selection efficiency
is 95%. The track reconstruction algorithm is similar to that
used for pp collisions [23].
For PbPb collisions, as compared to XeXe events, there
is an additional level-1 trigger requirement of a coincidence
between signals in the HF calorimeters on either side of the
CMS detector. While offline event selection is similar for
PbPb and XeXe events, for the PbPb events the filter to sup-
press beam-gas interaction is not applied and pileup contam-
ination is controlled by following the procedure outlined in
Ref. [26].
To ease the computational load for high-multiplicity cen-
tral PbPb collisions, track reconstruction for PbPb events
is done in two iterations. The first iteration reconstructs
tracks from signals (“hits”) in the silicon pixel and strip
detectors compatible with a trajectory of pT>0.9GeV/c.
The second iteration reconstructs tracks compatible with a
trajectory of pT>0.2GeV/c using solely the pixel detector.
In the final analysis, the first iteration tracks with pT>
1.0GeV/c are combined with pixel-detector-only tracks with
pT<2.4GeV/c, after removing duplicates.
In this paper only tracks from primary charged particles
are considered. For the XeXe tracks and the PbPb tracks
with both silicon pixel and strip hits, the impact parameter
significance of the tracks with respect to the primary vertex
in both the beam direction (dZ) and the transverse plane (d0)
must be less than three standard deviations, while the relative
pTuncertainty (σpT/pT) must be below 10%. In addition,
each track is required to have at least 11 hits in the tracker,
and the chi-square per degree of freedom, associated with
fitting the track trajectory, normalized to the total number
of layers with hits along the trajectory, χ2/dof/layers, must
be less than 0.15. For the PbPb pixel-only tracks, it was
required that dZbe less than eight standard deviations and that
χ2/dof/layers <12.
044902-2
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
IV. ANALYSIS TECHNIQUES
The analysis techniques used in this study are fully de-
scribed in previous CMS publications. A two-particle corre-
lation analysis, as discussed in Refs. [27,28], is performed for
both the XeXe and PbPb data sets. In addition, scalar-product
and multiparticle cumulant analyses, as described in Ref. [29],
are done for the XeXe data.
In the two-particle correlation analyses, a charged par-
ticle from one transverse momentum interval is used as
a “trigger” particle, to be paired with all of the remain-
ing charged particles from either the same or a different
pTinterval, the “associated” particles. For a given trigger
particle, the pairing is done in bins of pseudorapidity and
azimuthal angle (η, φ ). A similar pairing between the
particles randomly chosen from two different events is done
to establish a background distribution. A Fourier analysis of
the azimuthal correlation between the trigger and associated
particles leads to VnFourier coefficients, where nis the
Fourier order. If factorization is assumed, the two-particle
coefficients can be expressed in terms of single-particle coeffi-
cients, with Vn(pTtrig,pTassoc )=vn{2}(pTtrig )vn{2}(pTassoc).
The vn(pTassoc) term is given by Vn(pTassoc,pTassoc ),
thereby allowing vn(pTtrig) to be determined.
In order to minimize statistical uncertainties, the associated
particles are taken from a wide pTrange with large average
anisotropic flow. In this analysis, 1.0<pTassoc <3.0GeV/c.
To avoid short-range, nonflow correlations, a pseudorapidity
gap of |η|>2 is required for the particle pairs.
The scalar-product event-plane measurements are based on
recentered flow Qvectors, defined as
Qn=M
i
wicos(nφi)M
i
wicos(nφi),
M
i
wisin(nφi)M
i
wisin(nφi).
Here, wiis a weight for the ith particle emitted at azimuthal
angle φi. The summations are over the number of particles M
within a given (centrality, ηrange, pTrange) analysis bin for
a given event. The averages indicated by the angular brackets
are taken over all particles in all events within each analysis
bin. These averages correspond to the recentering operation
and are needed to minimize detector acceptance effects. If the
Qvectors are presented as the corresponding complex scalars,
the flow coefficients are given by
vn{SP}≡ QnQ
nA
QnAQ
nBQnA Q
nC
QnBQ
nC
.(2)
The particles of interest are used to obtain the Qnvector, with
unit weighting (wi=1) in the sum. The subscripts A,B, and C
refer to three separate reference vectors established in differ-
ent ηregions. The product of Qnwith the QnA reference vector
correlates the particles of interest with particles detected in
the HF calorimeter (region A). For the current measurement
particles of interest with 0.8<η<0.0(0.0<η<0.8) and
within different pTranges are correlated with HF particles
in the range 3 <η<5(5<η<3). The products with
Qvectors Band Care used to correct for finite resolution
effects. The QnC vector corresponds to particles detected in
the HF calorimeter opposite to that used to define the QnA
vector. The QnB vector corresponds to particles measured
in the tracker with |η|<0.5. Since the vn(pT) coefficients
increase with pTup to 3GeV/c, the choice of either pTor ET
weighting results in a better event-plane resolution than with
unit weighting. The QnA and QnC vectors use ETweighting,
whereas the QnB vector uses pTweighting [30].
The Q-cumulant method is used in this analysis to obtain
the four- (vn{4}), six- (vn{6}), and eight- (vn{8}) particle nth-
order harmonic results by correlating unique combinations of
four, six, and eight particles within each event. The method
uses a generic framework described in Ref. [31]. This frame-
work allows for a track-by-track weighting to correct for the
detector acceptance effects. A wider pseudorapidity range
with |η|<2.4 is used for the cumulant method analysis, as
compared to the scalar-product method, to reduce statistical
uncertainties.
Results are presented in ranges of collision centrality. The
centrality variable is defined as a fraction of the inelastic
hadronic cross section, with 0% corresponding to full overlap
of the two colliding nuclei. The event centrality is determined
offline and is based on the total energy measured in calorime-
ters located in the forward pseudorapidity region 3 <|η|<
5. The analysis is performed in 11 centrality classes, with
intervals ranging from 0–5% to 60–70%. By comparing the
XeXe and PbPb results in given centrality ranges, similar
collision overlap geometries can be achieved, albeit with
different numbers of participants.
In comparing the XeXe and PbPb results for more periph-
eral collisions, it needs to be noted that the XeXe results can
be affected by an experimental bias introduced by the cen-
trality determination. Multiplicity fluctuations in the forward
region used to determine the event centrality can reduce the
centrality resolution. Monte Carlo studies using the HYDJET
event generator indicate this bias can be as large as 5% in the
50–60% centrality range and 10% in the 60–70% range for
the vn{2}coefficients. For the vn{4}coefficients, the bias is
less than 5% in the 60–70% centrality range. For more central
events, the bias is found to be negligible.
V. SYSTEMATIC UNCERTAINTIES
Four different sources of systematic uncertainties are con-
sidered. To study the effect of the track selection on the final
results, different track criteria are applied by varying the limits
for the impact parameter significance from 2 to 5, and the
relative pTuncertainty from 5% to 10%. These variations
are found to have a 1% influence on vnresults for peripheral
collisions, increasing to 10% for the most central collisions at
the lowest pTvalues. The effect of moving the primary vertex
position along the beam axis is studied by comparing the re-
sults with events from the vertex position ranges |zvtx|<3cm
and 3 <|zvtx|<15 cm to the default range of |zvtx|<15 cm.
A 1% systematic uncertainty is attributed to this source. The
systematic uncertainty resulting from the XeXe centrality
calibration is estimated by varying the event selection criteria.
This uncertainty is largest for the most peripheral centrality
044902-3
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
2
v
0
0.05
0.1
0.15
0.2
0.25
CMS
Centrality: 0-5%
2
v
0
0.05
0.1
0.15
0.2
0.25 20-25%
(GeV/c)
T
p
02468
2
v
0
0.05
0.1
0.15
0.2
0.25 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
= 5.44 TeV
NN
sXeXe
35-40%
(GeV/c)
T
p
02468
| > 2}ηΔ{2, |
2
v
{4}
2
v
{6}
2
v
{8}
2
v
| < 0.8η, |{SP}
2
v
| < 2.4η|
FIG. 1. Elliptic-flow coefficients v2based on different analysis techniques, as functions of transverse momentum and in bins of centrality,
from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle and multiparticle correlations
correspond to the range |η|<2.4, while the scalar-product results are for |η|<0.8. The bars and the shaded boxes represent statistical
and systematic uncertainties, respectively.
bin, where it reaches a value of 3%. To explore the sensitivity
of the results to the MC simulations on which the efficiency
determinations are based, analyses using the HYDJET 1.9 [32]
event generator are done for generated tracks both before and
after the detector effects are taken into account. The results for
the two cases differ by about 2% for most centrality ranges,
but the difference increases to 10% for the most central events
and the lowest track transverse momenta, 0.3–0.4 GeV/c.
The observed differences are included as a systematic un-
certainty. The different uncertainty sources are independent
and uncorrelated, therefore the total systematic uncertainty
is obtained by combining the individual contributions in
quadrature.
VI. RESULTS
Figure 1shows the v2results, as a function of pTand in
11 centrality bins, as measured with the different techniques.
The two- and multiparticle correlation results are averaged
over the pseudorapidity range of |η|<2.4, while the scalar-
product results are based on tracks with |η|<0.8. The elliptic
flow values extracted from two-particle correlations show the
same pattern as with the multiparticle correlations, but with
higher magnitudes. The difference in the results obtained
from the two different methods can be largely ascribed to
event-by-event fluctuations of the v2coefficient [20]. The
v2magnitude increases with pT, reaching a maximum value
of 0.21 around 3–4 GeV/c in the 30–35% centrality range,
and then slowly decreases. The maximum shifts to a lower
pTvalue as the events become more peripheral. Whereas
v2{SP}is found to be generally larger than v2{2,|η|>2},
as expected for the narrower range near midpseudorapidity
used for the scalar-product analysis, the situation switches at
higher pTvalues for centralities >30%. This might reflect
a larger nonflow contribution to the two-particle correlation
results. The pseudorapidity gap of two units used in the
two-particle correlation analysis is less effective in remov-
ing non-flow effects, as compared to the gap of three units
used for the scalar-product analysis. In the most peripheral
events, the v2{2}distribution becomes almost flat for pT>
3.0GeV/c. This may be a consequence of nonflow, dijet
correlations dominating the results as the system size becomes
small.
Figure 2shows the v3values. The difference between the
two- and four-particle v3values are larger than found for
the corresponding v2values, exceeding a factor of 2. This
suggests a larger fluctuation component to triangular flow as
compared to elliptic flow. The difference in amplitude would
be qualitatively expected if the v3correlations were dominated
by initial-state fluctuations [18]. For most centralities, the
four-particle distributions have no clear peak value and their
pTdependence is not as prominent as that found for the two-
particle and scalar-product methods. The v3{m>4}values
could not be reliably determined because of their large sta-
tistical uncertainties. The v3{2}(pT) distribution has a similar
shape as found for the v2{2}(pT) distribution, but with smaller
values that approach zero, or even become negative, at higher
pTvalues in the most peripheral centrality ranges.
044902-4
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
3
v
0
0.05
0.1
0.15
CMS
Centrality: 0-5%
3
v
0
0.05
0.1
0.15 20-25%
(GeV/c)
T
p
02468
3
v
0
0.05
0.1
0.15 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
= 5.44 TeV
NN
sXeXe
35-40%
(GeV/c)
T
p
02468
| > 2}ηΔ{2, |
3
v
{4}
3
v
| < 0.8η, |{SP}
3
v
| < 2.4η|
FIG. 2. Triangular-flow coefficients v3based on the different analysis techniques, as functions of transverse momentum and in bins of
centrality, from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle and multiparticle correlations
correspond to the range |η|<2.4, while the scalar-product results are for |η|<0.8. The bars and the shaded boxes represent statistical and
systematic uncertainties, respectively.
The v4results from the two-particle correlation and scalar-
product methods are presented in Fig. 3.TheQ-cumulant
results are not shown because of statistical limitations. The
shape of the v4(pT) distribution is similar to those for the other
measured harmonics. All three harmonics, with n=2, 3, and
4, are found to have maxima at similar pTvalues, but with
the n=3 and n=4 harmonics having a reduced centrality
dependence as compared to the n=2 harmonic. For all three
harmonics, the scalar-product values are systematically larger
than the two-particle correlation results. While fluctuation
effects are expected to affect both methods in a similar way,
the methods measure flow in different pseudorapidity ranges,
which might account for the observed difference. The similar-
ity of the results suggests there is only a weak pseudorapidity
dependence for all three harmonics.
The spectrum-weighted, single-particle anisotropy coeffi-
cients, using the two- and multiparticle correlation methods,
are presented in Fig. 4.Thev2coefficients show a strong
centrality dependence with a maximum value in the 40–
50% centrality bin. The v3and v4coefficients have only a
weak dependence on centrality. Results based on multiparticle
cumulants are below the vn{2}values, as expected for the
influence of flow fluctuations. The predictions of the IP-
GLASMA+MUSIC+UrQMD model are compared to the ex-
perimental vn{2}results. In this model, initial-state dynamics
are described by impact parameter dependent flowing Glasma
gluon fields [33]. The subsequent hydrodynamic evolution is
calculated with a MUSIC simulation [34], which is a relativistic
(3 +1)Dmodel that includes shear viscosity (with a shear
viscosity over entropy ratio η/s=0.16) and a temperature-
dependent bulk viscosity over entropy ratio [ζ/s(T)] [35]. The
simulation finally switches from a fluid-dynamic description
to a transport description using the ultrarelativistic quantum
molecular dynamics (UrQMD) model at the hadronization
hypersurface [36]. The theoretical calculations are in good
agreement with data for the v2and v4values. For the v3
coefficient, the calculation gives slightly larger values than
observed, with the difference increasing as the size of the
nuclear overlap region decreases (i.e., increasing centrality
percentage).
Figure 5shows the ratios v2{6}/v2{4},v2{4}/v2{2}, and
v3{4}/v3{2}. Theoretical predictions from a hydrodynamic
model [37] calculation that uses TRENTo initial conditions
[38] and from the IP-GLASMA+MUSIC+UrQMD model are
compared to the experimental results. The former starts the
hydrodynamic evolution at a time τ=0.6fm/cand has
a shear viscosity to entropy ratio of η/s=0.047. Xenon
is known to be a deformed nucleus with a quadrupole
deformation of 2=0.15 [39]. The TRENTo calculations are
performed assuming both spherical and nominally deformed
xenon nuclei. The v2{4}/v2{2}ratio shows a strong centrality
dependence, with the greatest deviation from unity, with a
value of 0.625, corresponding to 5–10% central events. The
v3{4}/v3{2}and v2{6}/v2{4}ratios show little, if any, central-
ity dependence. The v3{4}/v3{2}has a value close to 0.55 for
all centralities, indicating a strong influence of fluctuations
on triangular flow [20]. The v2{6}/v2{4}ratio is a few percent
below unity and suggests the existence of higher-order
044902-5
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
4
v
0
0.02
0.04
0.06
0.08
0.1
CMS
Centrality: 0-5%
4
v
0
0.02
0.04
0.06
0.08
0.1 20-25%
(GeV/c)
T
p
02468
4
v
0
0.02
0.04
0.06
0.08
0.1 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
= 5.44 TeV
NN
sXeXe
35-40%
(GeV/c)
T
p
02468
| > 2}ηΔ{2, |
4
v
| < 0.8η, |{SP}
4
v
| < 2.4η|
FIG. 3. The v4coefficients, based on the different analysis techniques, as functions of transverse momentum and in bins of centrality,
from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle correlations correspond to the range
|η|<2.4, while the scalar-product results are for |η|<0.8. The bars and the shaded boxes represent statistical and systematic uncertainties,
respectively.
corrections to a near-Gaussian distribution of the event-by-
event flow fluctuations [40]. The IP-GLASMA+MUSIC+
UrQMD and hydrodynamic models give comparable
agreement with data for the flow harmonic ratios. No
significant difference is found between the calculations that
assume spherical and deformed Xe nuclear shapes. This
suggests that the fluctuations are not sensitive to the small
deformation associated with the nucleus.
The v2coefficients obtained by the two-particle corre-
lations technique for XeXe collisions at sNN =5.44 TeV
are compared with corresponding PbPb data at 5.02 TeV
as a function of transverse momentum in various centrality
Centrality (%)
0 1020304050607080
n
v
0
0.02
0.04
0.06
0.08
0.1
0.12 CMS | < 2.4η|
n = 2
Centrality (%)
0 1020304050607080
< 3 GeV/c
T
0.3 < p
n = 3
Centrality (%)
0 1020304050607080
= 5.44 TeV
NN
sXeXe
n = 4
| > 2}ηΔ{2, |
n
v
{4}
n
v
{6}
n
v
{8}
n
v
IP-Glasma+MUSIC+UrQMD
FIG. 4. Centrality dependence of the spectrum-weighted v2,v3,andv4flow harmonics with 0.3<pT<3.0GeV/c. The v2results are
shown for two-, four-, six-, and eight-particle correlations (left panel). The v3results are shown for two- and four-particle correlations
(middle panel), while the v4values are presented for two-particle correlations technique, only. The solid curve in each panel is the
IP-GLASMA+MUSIC+UrQMD prediction for vn{2}. The shaded boxes represent systematic uncertainties.
044902-6
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
Centrality (%)
0 10203040506070
Ratio
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1 CMS
{4}
2
/v{6}
2
v
{2}
2
/v{4}
2
v
IP-Glasma+MUSIC+UrQMD
{
2
/v
{6}
/
/
2
v
{
2
/v
{4}
/
/
2
v
-
sm
Centrality (%)
0 10203040506070
{2}
3
/v{4}
3
v
ENTo
R
T
ENTo (Xe deformed)
R
T
= 5.44 TeV
NN
sXeXe
| < 2.4η|
< 3.0 GeV/c
T
0.3 < p
FIG. 5. Centrality dependence of v2{4}/v2{2},v2{6}/v2{4}(left panel), and v3{4}/v3{2}(right panel) ratios. The shaded bands represent the
theoretical predictions based on the IP-GLASMA+MUSIC+UrQMD and the relativistic hydrodynamic model from Ref. [37] considering both
spherical and deformed xenon nuclei, while the widths of the areas show the statistical uncertainties of the model. The TRENTo calculation is
done for the pTrange 0.2<pT<5.0GeV/c.
bins in Fig. 6.Thev2values for the two systems show
similar dependence on pT. However, the maximum value of
the PbPb elliptic flow coefficient is found to be greater than
the corresponding XeXe value except in the 0–5% centrality
bin. Since, for the most central collisions, the participant
fluctuations in the initial-state geometry provide the dominant
contribution to the final spacial anisotropy, lower values of v2
in that region are expected [37] for PbPb collisions because
of the larger system size. The v3{2,|η|>2}coefficients for
the two systems are compared in Fig. 7.Thev3harmonic
is entirely generated by initial participant fluctuations, so
slightly larger values are expected in XeXe than in PbPb for
| > 2}ηΔ{2, |
2
v
0
0.05
0.1
0.15
0.2
0.25
CMS
Centrality: 0-5%
| > 2}ηΔ{2, |
2
v
0
0.05
0.1
0.15
0.2
0.25 20-25%
(GeV/c)
T
p
02468
| > 2}ηΔ{2, |
2
v
0
0.05
0.1
0.15
0.2
0.25 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
< 3.0 GeV/c
assoc
T
1.0 < p
35-40%
(GeV/c)
T
p
02468
= 5.44 TeV
NN
sXeXe
= 5.02 TeV
NN
sPbPb
|>2}ηΔ{2, |
2
v
FIG. 6. Comparison of the v2results measured with two-particle correlations from two different systems, XeXe collisions at sNN =
5.44 TeV and PbPb collisions at 5.02 TeV, shown as a function of pTin eleven centrality bins. The bars (smaller than the marker size) and the
shaded boxes represent statistical and systematic uncertainties, respectively.
044902-7
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
| > 2}ηΔ{2, |
3
v
0
0.05
0.1
0.15
CMS
Centrality: 0-5%
| > 2}ηΔ{2, |
3
v
0
0.05
0.1
0.15 20-25%
(GeV/c)
T
p
02468
| > 2}ηΔ{2, |
3
v
0
0.05
0.1
0.15 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
< 3.0 GeV/c
assoc
T
1.0 < p
35-40%
(GeV/c)
T
p
02468
= 5.44 TeV
NN
sXeXe
= 5.02 TeV
NN
sPbPb
|>2}ηΔ{2, |
3
v
FIG. 7. Comparison of the v3results measured with two-particle correlations from two different systems, XeXe collisions at sNN =
5.44 TeV and PbPb collisions at 5.02 TeV, shown as a function of pTin 11 centrality bins. The bars (smaller than the marker size) and the
shaded boxes represent statistical and systematic uncertainties, respectively.
central events (e.g., 0–30% centrality), as observed in the data.
However, the v3harmonic has a larger sensitivity to transport
coefficients (i.e., the shear viscosity) of the created medium,
which tends to suppress the azimuthal anisotropy, especially
for systems with a small size. This might explain the trend
of v3where the system with the larger value is reversed in
the 30–70% centrality range, with the larger PbPb system
showing slightly higher v3values for more peripheral events.
The v4{2,|η|>2}coefficients in PbPb and XeXe collisions
are shown in Fig. 8. Higher v4values are found for PbPb
collisions, as compared to the corresponding XeXe collision
results, except for the transverse momentum interval pT<
3.0GeV/c in the 5% most central events. The ordering of the
measured harmonics between the two systems is consistent
with participant fluctuations having a dominant role in central
collisions, and viscosity effects becoming more important for
mid-central and peripheral collisions.
Since ideal hydrodynamics is scale invariant, the XeXe and
PbPb results should have similar behavior [37]. For the same
percentage centrality range, the interaction regions of the two
colliding systems will have similar average shapes, but will
have different size. For example, in the 30–40% centrality
class, the number of participating nucleons is about 1.6 times
higher for the PbPb collisions. However, initial-state fluctu-
ations and viscosity corrections can cause scale invariance
breaking. Fluctuations of the initial state are proportional to
A1/2, where Ais the atomic mass, and, therefore, one can
expect a larger fluctuation component for XeXe collisions
than for PbPb collisions [41]. However, the influence of the
localized fluctuations will decrease with increasing viscosity.
The viscosity is thought to be proportional to A1/3[42] and
is therefore also expected to be larger for XeXe collisions.
Although the hydrodynamic model simulations do not suggest
a large effect on the vn{4}/vn{2}and v2{6}/v2{4}ratios based
on the Xe deformation, this deformation can influence the
ratio of the XeXe and PbPb results. The quadrupole defor-
mation of the colliding nuclei is expected to have the greatest
influence for the XeXe v2values corresponding to the most
central collisions [37].
Figure 9shows the pTdependent ratios of XeXe and
PbPb harmonic coefficients for different centrality ranges.
The ratios reach a maximum value between 1 and 2 GeV/c,
within the current uncertainties, and then decrease up to pT
6GeV/c, at which point they start to increase again. The
increasing trend above 6 GeV/c, which is most pronounced
for the v2coefficient, might be a consequence of back-to-back
dijet correlations that cannot be fully eliminated with the
|η|>2 requirement. This nonflow behavior is increasingly
significant as the system size becomes smaller, with corre-
spondingly smaller particle multiplicities.
Figure 10 compares the spectrum-weighted v2,v3, and v4
values with 0.3<pT<3.0GeV/c for the XeXe and PbPb
systems. The largest difference between the two systems is
found for the v2coefficients corresponding to the most central
events, where the XeXe results are larger by a factor of about
1.3. For centralities above 10%, the PbPb results become
higher and the ratio has only a weak centrality dependence.
For the v3and v4coefficients, the ratio vn[XeXe]/vn[PbPb]
044902-8
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
|>2}ηΔ{2, |
4
v
0
0.02
0.04
0.06
0.08
0.1
CMS
Centrality: 0-5%
|>2}ηΔ{2, |
4
v
0
0.02
0.04
0.06
0.08
0.1 20-25%
(GeV/c)
T
p
02468
|>2}ηΔ{2, |
4
v
0
0.02
0.04
0.06
0.08
0.1 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
< 3.0 GeV/c
assoc
T
1.0 < p
35-40%
(GeV/c)
T
p
02468
= 5.44 TeV
NN
sXeXe
= 5.02 TeV
NN
sPbPb
|>2}ηΔ{2, |
4
v
FIG. 8. Comparison of the v4results measured with two-particle correlations from two different systems, XeXe collisions at sNN =
5.44 TeV and PbPb collisions at 5.02 TeV, shown as a function of pTin 11 centrality bins. The bars and the shaded boxes represent statistical
and systematic uncertainties, respectively.
[PbPb]
n
[XeXe]/v
n
v
0.6
0.8
1
1.2
1.4
CMS
Centrality: 0-5%
[PbPb]
n
[XeXe]/v
n
v
0.6
0.8
1
1.2
1.4 20-25%
(GeV/c)
T
p
02468
[PbPb]
n
[XeXe]/v
n
v
0.6
0.8
1
1.2
1.4 40-50%
5-10%
25-30%
(GeV/c)
T
p
02468
50-60%
10-15%
30-35%
(GeV/c)
T
p
02468
60-70%
15-20%
< 3.0 GeV/c
assoc
T
1.0 < p
35-40%
(GeV/c)
T
p
02468
n = 2
n = 3
n = 4
=5.02 TeV
NN
s[PbPb]
n
v
=5.44 TeV
NN
s[XeXe]
n
v
FIG. 9. Ratios of the v2,v3,andv4harmonic coefficients from two-particle correlations in XeXe and PbPb collisions as functions of pTin
11 centrality bins. The bars and the shaded boxes represent statistical and systematic uncertainties, respectively.
044902-9
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
| > 2}ηΔ{2, |
n
v
0.02
0.04
0.06
0.08
0.1
0.12 n = 2
CMS
Centrality (%)
0 1020304050607080
[PbPb]
n
[XeXe]/v
n
v
0.8
0.9
1
1.1
1.2
1.3 Data
ENTo
R
T
ENTo (Xe deformed)
R
T
n = 3
Centrality (%)
0 1020304050607080
n = 4
= 5.44 TeV
NN
sXeXe
= 5.02 TeV
NN
sPbPb
< 3 GeV/c
T
0.3 < p
Centrality (%)
0 1020304050607080
FIG. 10. Centrality dependence of the spectrum-weighted v2,v3,andv4harmonic coefficients from two-particle correlations method for
0.3<pT<3.0GeV/c for XeXe collisions at sNN =5.44 TeV and PbPb collisions at 5.02 TeV. The lower panels show the ratio of the results
for the two systems. The bars and the shaded boxes represent statistical and systematic uncertainties, respectively. Theoretical predictions from
Ref. [37] are compared to the data (shaded bands). The model calculation is done for the pTrange 0.2<pT<5.0GeV/c.
decreases with centrality with an almost constant slope. The
relativistic hydrodynamic model calculations of Ref. [37]are
also shown in Fig. 10. Compared to calculations assuming a
spherical Xe shape, including the xenon nuclear deformation
in hydrodynamic models has little effect on the predicted flow
characteristics over the centrality range 10–70%, as expected.
For the most central 0–10% range, the v2[XeXe]/v2[PbPb]
model ratio shows a greater sensitivity to the xenon nuclear
deformation, with the calculation including deformation in
better agreement with experiment. For all measured harmon-
ics, the model values lie below the experimental results, with
the greatest difference found for the v4coefficients.
VII. SUMMARY
In this paper, the v2,v3, and v4azimuthal flow harmonics
are shown for xenon-xenon (XeXe) collisions at a center-of-
mass energy per nucleon pair of sNN =5.44 TeV based
on data obtained with the CMS detector. Three analysis
techniques with different sensitivities to flow fluctuations, in-
cluding two-particle correlations, the scalar-product method,
and the multiparticle cumulant method, are used to explore
the event-by-event fluctuations. The harmonic coefficients are
compared to those found with lead-lead (PbPb) collisions at
sNN =5.02 TeV to explore the effect of the system size.
The magnitude of the v2coefficients for XeXe collisions
are larger than those found in PbPb collisions for the most
central collisions. This is attributed to a larger fluctuation
component in the lighter colliding system. In more peripheral
events, the PbPb vncoefficients are consistently larger than
those found for XeXe collisions. This behavior is qualitatively
consistent with expectations from hydrodynamic models. A
clear ordering v2{2}>v2{4}≈v2{6}≈v2{8}is observed for
XeXe collisions, with v2{6}and v2{4}values differing by
2–3%. The v3{4}/v3{2}ratio is found to be significantly
smaller than the v2{4}/v2{2}ratio, suggesting a dominant
fluctuation component for the v3harmonic. Hydrodynamic
models that consider the xenon nuclear deformation are able
to better describe the v2[XeXe]/v2[PbPb] ratio in central
collisions than those assuming a spherical Xe shape, al-
though the deformation appears to have little effect on the
fluctuation-sensitive ratio of the cumulant orders. These mea-
surements provide new tests of hydrodynamic models and
help to constrain hydrodynamic descriptions of the nuclear
collisions.
ACKNOWLEDGMENTS
We congratulate our colleagues in the CERN accelerator
departments for the excellent performance of the LHC and
thank the technical and administrative staffs at CERN and
at other CMS institutes for their contributions to the success
of the CMS effort. In addition, we gratefully acknowledge
the computing centers and personnel of the Worldwide
LHC Computing Grid for delivering so effectively the
computing infrastructure essential to our analyses. Finally,
we acknowledge the enduring support for the construction
and operation of the LHC and the CMS detector provided
by the following funding agencies: BMBWF and FWF
(Austria); FNRS and FWO (Belgium); CNPq, CAPES,
FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria);
CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES and CSF (Croatia); RPF (Cyprus);
SENESCYT (Ecuador); MoER, ERC IUT, and ERDF
(Estonia); Academy of Finland, MEC, and HIP (Finland);
CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF
044902-10
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
(Germany); GSRT (Greece); NKFIA (Hungary); DAE
and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy);
MSIP and NRF (Republic of Korea); MES (Latvia); LAS
(Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV,
CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS
(Montenegro); MBIE (New Zealand); PAEC (Pakistan);
MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON, RosAtom, RAS, RFBR, and NRC KI (Russia);
MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER
(Spain); MOSTR (Sri Lanka); Swiss Funding Agencies
(Switzerland); MST (Taipei); ThEPCenter, IPST, STAR,
and NSTDA (Thailand); TUBITAK and TAEK (Turkey);
NASU and SFFR (Ukraine); STFC (United Kingdom);
DOE and NSF (USA). Individuals have received support
from the Marie-Curie program and the European Research
Council and Horizon 2020 Grant, Contracts No. 675440 and
No. 765710 (European Union); the Leventis Foundation;
the A.P. Sloan Foundation; the Alexander von Humboldt
Foundation; the Belgian Federal Science Policy Office; the
Fonds pour la Formation à la Recherche dans l’Industrie et
dans l’Agriculture (FRIA-Belgium); the Agentschap voor
Innovatie door Wetenschap en Technologie (IWT-Belgium);
the F.R.S.-FNRS and FWO (Belgium) under the “Excellence
of Science EOS” be.h Project No. 30820817; the
Beijing Municipal Science & Technology Commission,
No. Z181100004218003; the Ministry of Education, Youth
and Sports (MEYS) of the Czech Republic; the Lendület
(“Momentum”) Program and the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences, the
New National Excellence Program ÚNKP, the NKFIA
Research Grants No. 123842, No. 123959, No. 124845,
No. 124850, and No. 125105 (Hungary); the Council of
Science and Industrial Research, India; the HOMING PLUS
program of the Foundation for Polish Science, cofinanced
by European Union, Regional Development Fund, the
Mobility Plus program of the Ministry of Science and
Higher Education, the National Science Center (Poland),
Contracts No. Harmonia 2014/14/M/ST2/00428, No.
Opus 2014/13/B/ST2/02543, No. 2014/15/B/ST2/03998,
and No. 2015/19/B/ST2/02861, No. Sonata-bis
2012/07/E/ST2/01406; the National Priorities Research
Program by Qatar National Research Fund; the Programa
Estatal de Fomento de la Investigación Científica y Técnica
de Excelencia María de Maeztu, Grant No. MDM-2015-0509
and the Programa Severo Ochoa del Principado de Asturias;
the Thalis and Aristeia programs cofinanced by EU-ESF
and the Greek NSRF; the Rachadapisek Sompot Fund for
Postdoctoral Fellowship, Chulalongkorn University and
the Chulalongkorn Academic into its 2nd Century Project
Advancement Project (Thailand); the Welch Foundation,
Contract No. C-1845; and the Weston Havens Foundation
(USA).
[1] F. Karsch, Lattice QCD at high temperature and density, in Lec-
tures on Quark Matter, edited by W. Plessas and L. Mathelitsch
(Springer, Berlin, Heidelberg, 2002), p. 209.
[2] I. Arsene et al. (BRAHMS Collaboration), Quark pluon plasma
an color glass condensate at RHIC? The perspective from the
BRAHMS experiment, Nucl. Phys. A 757,1(2005).
[3] B. B. Back et al. (PHOBOS Collaboration), The PHOBOS
perspective on discoveries at RHIC, Nucl. Phys. A 757,28
(2005).
[4] J. Adams et al. (STAR Collaboration), Experimental and theo-
retical challenges in the search for the quark gluon plasma: The
STAR Collaboration’s critical assessment of the evidence from
RHIC collisions, Nucl. Phys. A 757,102 (2005).
[5] K. Adcox et al. (PHENIX Collaboration), Formation of dense
partonic matter in relativistic nucleus-nucleus collisions at
RHIC: Experimental evaluation by the PHENIX collaboration,
Nucl. Phys. A 757,184 (2005).
[6] ALICE Collaboration, Energy dependence and fluctuations
of anisotropic flow in Pb-Pb collisions at sNN =5.02 and
2.76 TeV, J. High Energy Phys. 07 (2018)103.
[7] ATLAS Collaboration, Measurement of longitudinal flow
decorrelations in Pb+Pb collisions at sNN =2.76 and
5.02 TeV with the ATLAS detector, Eur.Phys.J.C78,142
(2018).
[8] CMS Collaboration, Measurement of higher-order harmonic
azimuthal anisotropy in PbPb collisions at a nucleon-nucleon
center-of-mass energy of 2.76 TeV, Phys.Rev.C89,044906
(2014).
[9] B. I. Abelev et al. (STAR Collaboration), Charged and strange
hadron elliptic flow in Cu+Cu collisions at 62.4 and 200 GeV,
Phys. Rev. C 81,044902 (2010).
[10] A. Adare et al. (PHENIX Collaboration), Scaling Properties
of Azimuthal Anisotropy in Au+Au and Cu+Cu Collisions at
sNN =200 GeV, Phys.Rev.Lett.98,162301 (2007).
[11] ALICE Collaboration, Multiparticle azimuthal correlations in
p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider,
Phys.Rev.C90,054901 (2014).
[12] CMS Collaboration, Evidence for Collective Multiparticle Cor-
relations in pPb Collisions, Phys. Rev. Lett. 115,012301
(2015).
[13] CMS Collaboration, Evidence for collectivity in pp collisions at
the LHC, Phys. Lett. B 765,193 (2017).
[14] ATLAS Collaboration, Measurement of multi-particle az-
imuthal correlations with the subevent cumulant method in pp
and p+Pb collisions with the ATLAS detector at the LHC,
Phys.Rev.C97,024904 (2018).
[15] J.-Y. Ollitrault, Determination of the reaction plane in ultrarela-
tivistic nuclear collisions, Phys.Rev.D48,1132 (1993).
[16] S. Voloshin and Y. Zhang, Flow study in relativistic nuclear col-
lisions by Fourier expansion of azimuthal particle distributions,
Z. Phys. C 70,665 (1994).
[17] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing
anisotropic flow in relativistic nuclear collisions, Phys.Rev.C
58,1671 (1998).
[18] B. Alver and G. Roland, Collision geometry fluctuations and
triangular flow in heavy-ion collisions, Phys. Rev. C 81,054905
(2010).
[19] Y. Li and J.-Y. Ollitrault, v4,v5,v6,v7: nonlinear hydrodynamic
response versus LHC data, Phys. Lett. B 744,82 (2015).
[20] J.-Y. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, Effect
of flow fluctuations and nonflow on elliptic flow methods,
Phys.Rev.C80,014904 (2009).
044902-11
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
[21] L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, Eccentricity
distributions in nucleus-nucleus collisions, Phys. Rev. C 90,
024903 (2014).
[22] ALICE Collaboration, Anisotropic flow in Xe-Xe collisions at
sNN =5.44 TeV, Phys. Lett. B 784,82 (2018).
[23] CMS Collaboration, Description and performance of track and
primary-vertex reconstruction with the CMS tracker, J. Instrum.
09,P10009 (2014).
[24] CMS Collaboration, The CMS experiment at the CERN LHC,
J. Instrum. 03, S08004 (2008).
[25] S. Agostinelli et al. (GEANT4 Collaboration), Geant4 a
simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A
506,250 (2003).
[26] CMS Collaboration, Azimuthal anisotropy of charged particles
with transverse momentum up to 100 GeV/cin PbPb collisions
at sNN =5.02 TeV, Phys. Lett. B 776, 195 (2017).
[27] CMS Collaboration, Long-range and short-range dihadron
angular correlations in central PbPb collisions at sNN =
2.76 TeV, J. High Energy Phys. 07 (2011)076.
[28] CMS Collaboration, Centrality dependence of dihadron corre-
lations and azimuthal anisotropy harmonics in PbPb collisions
at sNN =2.76 TeV, Eur. Phys. J. C 72, 10052 (2012).
[29] CMS Collaboration, Pseudorapidity and transverse momentum
dependence of flow harmonics in pPb and PbPb collisions,
Phys.Rev.C98,044902 (2018).
[30] M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias
in anisotropic-flow measurements of high-energy nuclear colli-
sions, Phys.Rev.C87,044907 (2013).
[31] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen,
and Y. Zhou, Generic framework for anisotropic flow analyses
with multiparticle azimuthal correlations, Phys.Rev.C89,
064904 (2014).
[32] I. P. Lokhtin and A. M. Snigirev, A model of jet
quenching in ultrarelativistic heavy ion collisions and
high-pThadron spectra at RHIC, Eur. Phys. J. 45,211
(2006).
[33] B. Schenke and S. Schlichting, 3-D Glasma initial state for rel-
ativistic heavy ion collisions, Phys.Rev.C94,044907 (2016).
[34] B. Schenke, S. Jeon, and C. Gale, 3+1D hydrodynamic simula-
tion of relativistic heavy-ion collisions, Phys.Rev.C82,014903
(2010).
[35] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S.
Jeon, and C. Gale, Importance of the Bulk Viscosity of QCD
in Ultrarelativistic Heavy-Ion Collisions, Phys.Rev.Lett.115,
132301 (2015).
[36] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H.
Stocker, Fully integrated transport approach to heavy ion re-
actions with an intermediate hydrodynamic stage, Phys. Rev. C
78,044901 (2008).
[37] G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y.
Ollitrault, Hydrodynamic predictions for 5.44 TeV Xe+Xe
collisions, Phys. Rev. C 97,034904 (2018).
[38] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative
ansatz to wounded nucleon and binary collision scaling in
high-energy nuclear collisions, Phys.Rev.C92,011901(R)
(2015).
[39] P. Moller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Nuclear
ground-state masses and deformations: FRDM(2012), At. Data
Nucl. Data Tables 109-110,1(2015).
[40] G. Giacalone, J. Noronha-Hostler, and J.-Y. Ollitrault, Rela-
tive flow fluctuations as a probe of initial state fluctuations,
Phys. Rev. C 95,054910 (2017).
[41] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Understanding
anisotropy generated by fluctuations in heavy-ion collisions,
Phys. Rev. C 84,054901 (2011).
[42] P. Romatschke and U. Romatschke, Viscosity Information From
Relativistic Nuclear Collisions: How Perfect is the Fluid Ob-
served at RHIC? Phys. Rev. Lett. 99,172301 (2007).
A. M. Sirunyan,1A. Tumasyan,1W. Adam,2F. Ambrogi,2E. Asilar,2T. Bergauer,2J. Brandstetter,2M. Dragicevic,2J. Erö,2
A. Escalante Del Valle,2M. Flechl,2R. Frühwirth,2,aV. M. Ghete,2J. Hrubec,2M. Jeitler,2,bN. Krammer,2I. Krätschmer,2
D. Liko,2T. Madlener,2I. Mikulec,2N. Rad,2H. Rohringer,2J. Schieck,2,bR. Schöfbeck,2M. Spanring,2D. Spitzbart,2
A. Taurok,2W. Waltenberger,2J. Wittmann,2C.-E. Wulz,2,bM. Zarucki,2V. Chekhovsky,3V. Mossolov,3J. Suarez Gonzalez,3
E. A. De Wolf,4D. Di Croce,4X. Janssen,4J. Lauwers,4M. Pieters,4H. Van Haevermaet,4P. Van Mechelen,4N. Van
Remortel,4S. Abu Zeid,5F. Blekman,5J. D’Hondt,5I. De Bruyn,5J. De Clercq,5K. Deroover,5G. Flouris,5D. Lontkovskyi,5
S. Lowette,5I. Marchesini,5S. Moortgat,5L. Moreels,5Q. Python,5K. Skovpen,5S. Tavernier,5W. Van Doninck,5P. Va n
Mulders,5I. Van Parijs,5D. Beghin,6B. Bilin,6H. Brun,6B. Clerbaux,6G. De Lentdecker,6H. Delannoy,6B. Dorney,6
G. Fasanella,6L. Favart,6R. Goldouzian,6A. Grebenyuk,6A. K. Kalsi,6T. Lenzi,6J. Luetic,6N. Postiau,6E. Starling,6
L. Thomas,6C. Vander Velde,6P. Vanlaer,6D. Vannerom,6Q. Wang,6T. Cornelis,7D. Dobur,7A. Fagot,7M. Gul,7
I. Khvastunov,7,cD. Poyraz,7C. Roskas,7D. Trocino,7M. Tytgat,7W. Verbeke,7B. Vermassen,7M. Vit,7N. Zaganidis,7
H. Bakhshiansohi,8O. Bondu,8S. Brochet,8G. Bruno,8C. Caputo,8P. David,8C. Delaere,8M. Delcourt,8A. Giammanco,8
G. Krintiras,8V. Lemaitre,8A. Magitteri,8A. Mertens,8M. Musich,8K. Piotrzkowski,8A. Saggio,8M. Vidal Marono,8
S. Wertz,8J. Zobec,8F. L . A l ves , 9G. A. Alves,9M. Correa Martins Junior,9G. Correia Silva,9C. Hensel,9A. Moraes,9
M. E. Pol,9P. Rebello Teles,9E. Belchior Batista Das Chagas,10 W. Carvalho,10 J. Chinellato,10,dE. Coelho,10 E. M. Da
Costa,10 G. G. Da Silveira,10,eD. De Jesus Damiao,10 C. De Oliveira Martins,10 S. Fonseca De Souza,10 H. Malbouisson,10
D. Matos Figueiredo,10 M. Melo De Almeida,10 C. Mora Herrera,10 L. Mundim,10 H. Nogima,10 W. L. Prado Da Silva,10
L. J. Sanchez Rosas,10 A. Santoro,10 A. Sznajder,10 M. Thiel,10 E. J. Tonelli Manganote,10 ,dF. Torres Da Silva De Araujo,10
A. Vilela Pereira,10 S. Ahuja,11a,11b C. A. Bernardes,11a,11b L. Calligaris,11a,11b T. R. Fernandez Perez Tomei,11a,11b
E. M. Gregores,11a,11b P. G. Mercadante,11a,11b S. F. Novaes,11a,11b Sandra S. Padula,11a,11b A. Aleksandrov,12 R. Hadjiiska,12
P. Iaydjiev,12 A. Marinov,12 M. Misheva,12 M. Rodozov,12 M. Shopova,12 G. Sultanov,12 A. Dimitrov,13 L. Litov,13
044902-12
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
B. Pavlov,13 P. Petkov,13 W. Fang,14 ,fX. Gao,14,fL. Yuan,14 M. Ahmad,15 J. G. Bian,15 G. M. Chen,15 H. S. Chen,15 M. Chen,15
Y. Chen,15 C. H. Jiang,15 D. Leggat,15 H. Liao,15 Z. Liu,15 F. Romeo,15 S. M. Shaheen,15 ,gA. Spiezia,15 J. Tao,15 Z. Wang,15
E. Yazgan,15 H. Zhang,15 S. Zhang,15,gJ. Zhao,15 Y. Ban,16 G. Chen,16 A. Levin,16 J. Li,16 L. Li,16 Q. Li,16 Y. Mao,16
S. J. Qian,16 D. Wang,16 Z. Xu,16 Y. Wang,17 C. Avila,18 A. Cabrera,18 C. A. Carrillo Montoya,18 L. F. Chaparro Sierra,18
C. Florez,18 C. F. González Hernández,18 M. A. Segura Delgado,18 B. Courbon,19 N. Godinovic,19 D. Lelas,19 I. Puljak,19
T. Sculac,19 Z. Antunovic,20 M. Kovac,20 V. Brigljevic,21 D. Ferencek,21 K. Kadija,21 B. Mesic,21 A. Starodumov,21,hT. Susa,21
M. W. Ather,22 A. Attikis,22 M. Kolosova,22 G. Mavromanolakis,22 J. Mousa,22 C. Nicolaou,22 F. Ptochos,22 P. A. Razis,22
H. Rykaczewski,22 M. Finger,23,iM. Finger Jr.,23,iE. Ayala,24 E. Carrera Jarrin,25 A. Ellithi Kamel,26,jM. A. Mahmoud,26,k
Y. Mohammed,26,lS. Bhowmik,27 A. Carvalho Antunes De Oliveira,27 R. K. Dewanjee,27 K. Ehataht,27 M. Kadastik,27
M. Raidal,27 C. Veelken,27 P. Ee ro l a, 28 H. Kirschenmann,28 J. Pekkanen,28 M. Voutilainen,28 J. Havukainen,29 J. K. Heikkilä,29
T. Järvinen,29 V. Karimäki,29 R. Kinnunen,29 T. Lampén,29 K. Lassila-Perini,29 S. Laurila,29 S. Lehti,29 T. Lindén,29
P. Luukka,29 T. Mäenpää,29 H. Siikonen,29 E. Tuominen,29 J. Tuominiemi,29 T. Tuuva,30 M. Besancon,31 F. Couderc,31
M. Dejardin,31 D. Denegri,31 J. L. Faure,31 F. Ferri,31 S. Ganjour,31 A. Givernaud,31 P. Gra s, 31 G. Hamel de Monchenault,31
P. Jarry,31 C. Leloup,31 E. Locci,31 J. Malcles,31 G. Negro,31 J. Rander,31 A. Rosowsky,31 M. Ö. Sahin,31 M. Titov,31
A. Abdulsalam,32,mC. Amendola,32 I. Antropov,32 F. Beaudette,32 P. Busson,32 C. Charlot,32 R. Granier de Cassagnac,32
I. Kucher,32 A. Lobanov,32 J. Martin Blanco,32 C. Martin Perez,32 M. Nguyen,32 C. Ochando,32 G. Ortona,32 P. Pig a rd , 32
J. Rembser,32 R. Salerno,32 J. B. Sauvan,32 Y. Si ro is , 32 A. G. Stahl Leiton,32 A. Zabi,32 A. Zghiche,32 J.-L. Agram,33 ,n
J. Andrea,33 D. Bloch,33 J.-M. Brom,33 E. C. Chabert,33 V. Cherepanov,33 C. Collard,33 E. Conte,33,nJ.-C. Fontaine,33,n
D. Gelé,33 U. Goerlach,33 M. Jansová,33 A.-C. Le Bihan,33 N. Tonon,33 P. Van Hove,33 S. Gadrat,34 S. Beauceron,35
C. Bernet,35 G. Boudoul,35 N. Chanon,35 R. Chierici,35 D. Contardo,35 P. Depasse,35 H. El Mamouni,35 J. Fay,35 L. Finco,35
S. Gascon,35 M. Gouzevitch,35 G. Grenier,35 B. Ille,35 F. Lagarde,35 I. B. Laktineh,35 H. Lattaud,35 M. Lethuillier,35
L. Mirabito,35 S. Perries,35 A. Popov,35,oV. Sordini,35 G. Touquet,35 M. Vander Donckt,35 S. Viret,35 A. Khvedelidze,36,i
Z. Tsamalaidze,37,iC. Autermann,38 L. Feld,38 M. K. Kiesel,38 K. Klein,38 M. Lipinski,38 M. Preuten,38 M. P. Rauch,38
C. Schomakers,38 J. Schulz,38 M. Teroerde,38 B. Wittmer,38 V. Zhukov,38,oA. Albert,39 D. Duchardt,39 M. Erdmann,39
S. Erdweg,39 T. Esch,39 R. Fischer,39 S. Ghosh,39 A. Güth,39 T. Hebbeker,39 C. Heidemann,39 K. Hoepfner,39 H. Keller,39
L. Mastrolorenzo,39 M. Merschmeyer,39 A. Meyer,39 P. Millet,39 S. Mukherjee,39 T. Pook,39 M. Radziej,39 H. Reithler,39
M. Rieger,39 A. Schmidt,39 D. Teyssier,39 S. Thüer,39 G. Flügge,40 O. Hlushchenko,40 T. Kress,40 A. Künsken,40 T. Müller,40
A. Nehrkorn,40 A. Nowack,40 C. Pistone,40 O. Pooth,40 D. Roy,40 H. Sert,40 A. Stahl,40,pM. Aldaya Martin,41 T. Arndt,41
C. Asawatangtrakuldee,41 I. Babounikau,41 K. Beernaert,41 O. Behnke,41 U. Behrens,41 A. Bermúdez Martínez,41
D. Bertsche,41 A. A. Bin Anuar,41 K. Borras,41,qV. Botta,41 A. Campbell,41 P. Connor,41 C. Contreras-Campana,41
V. Danilov,41 A. De Wit,41 M. M. Defranchis,41 C. Diez Pardos,41 D. Domínguez Damiani,41 G. Eckerlin,41 T. Eichhorn,41
A. Elwood,41 E. Eren,41 E. Gallo,41,rA. Geiser,41 A. Grohsjean,41 M. Guthoff,41 M. Haranko,41 A. Harb,41 J. Hauk,41
H. Jung,41 M. Kasemann,41 J. Keaveney,41 C. Kleinwort,41 J. Knolle,41 D. Krücker,41 W. Lange,41 A. Lelek,41 T. Lenz,41
J. Leonard,41 K. Lipka,41 W. Lohmann,41 ,sR. Mankel,41 I.-A. Melzer-Pellmann,41 A. B. Meyer,41 M. Meyer,41 M. Missiroli,41
G. Mittag,41 J. Mnich,41 V. Myronenko,41 S. K. Pflitsch,41 D. Pitzl,41 A. Raspereza,41 M. Savitskyi,41 P. Saxena,41 P. Schütze,41
C. Schwanenberger,41 R. Shevchenko,41 A. Singh,41 H. Tholen,41 O. Turkot,41 A. Vagnerini,41 G. P. Van Onsem,41 R. Walsh,41
Y. Wen,41 K. Wichmann,41 C. Wissing,41 O. Zenaiev,41 R. Aggleton,42 S. Bein,42 L. Benato,42 A. Benecke,42 V. Blobel,42
T. Dreyer,42 A. Ebrahimi,42 E. Garutti,42 D. Gonzalez,42 P. Gunnellini,42 J. Haller,42 A. Hinzmann,42 A. Karavdina,42
G. Kasieczka,42 R. Klanner,42 R. Kogler,42 N. Kovalchuk,42 S. Kurz,42 V. Kutzner,42 J. Lange,42 D. Marconi,42 J. Multhaup,42
M. Niedziela,42 C. E. N. Niemeyer,42 D. Nowatschin,42 A. Perieanu,42 A. Reimers,42 O. Rieger,42 C. Scharf,42 P. Schleper,42
S. Schumann,42 J. Schwandt,42 J. Sonneveld,42 H. Stadie,42 G. Steinbrück,42 F. M. Stober,42 M. Stöver,42 A. Vanhoefer,42
B. Vormwald,42 I. Zoi,42 M. Akbiyik,43 C. Barth,43 M. Baselga,43 S. Baur,43 E. Butz,43 R. Caspart,43 T. Chwalek,43
F. Colombo,43 W. De Boer,43 A. Dierlamm,43 K. El Morabit,43 N. Faltermann,43 B. Freund,43 M. Giffels,43 M. A. Harrendorf,43
F. Hartmann,43 ,pS. M. Heindl,43 U. Husemann,43 F. Kassel,43,pI. Katkov,43,oS. Kudella,43 S. Mitra,43 M. U. Mozer,43
Th. Müller,43 M. Plagge,43 G. Quast,43 K. Rabbertz,43 M. Schröder,43 I. Shvetsov,43 G. Sieber,43 H. J. Simonis,43 R. Ulrich,43
S. Wayand,43 M. Weber,43 T. Weiler,43 S. Williamson,43 C. Wöhrmann,43 R. Wolf,43 G. Anagnostou,44 G. Daskalakis,44
T. Geralis,44 A. Kyriakis,44 D. Loukas,44 G. Paspalaki,44 I. Topsis-Giotis,44 B. Francois,45 G. Karathanasis,45 S. Kesisoglou,45
P. Kontaxakis,45 A. Panagiotou,45 I. Papavergou,45 N. Saoulidou,45 E. Tziaferi,45 K. Vellidis,45 K. Kousouris,46
I. Papakrivopoulos,46 G. Tsipolitis,46 I. Evangelou,47 C. Foudas,47 P. Gianneios,47 P. Katsoulis,47 P. Kokkas,47 S. Mallios,47
N. Manthos,47 I. Papadopoulos,47 E. Paradas,47 J. Strologas,47 F. A. Triantis,47 D. Tsitsonis,47 M. Bartók,48,tM. Csanad,48
N. Filipovic,48 P. Maj or , 48 M. I. Nagy,48 G. Pasztor,48 O. Surányi,48 G. I. Veres,48 G. Bencze,49 C. Hajdu,49 D. Horvath,49,u
Á. Hunyadi,49 F. Sikler,49 T. Á. Vámi,49 V. Veszpremi,49 G. Vesztergombi,49,vN. Beni,50 S. Czellar,50 J. Karancsi,50,w
A. Makovec,50 J. Molnar,50 Z. Szillasi,50 P. Ra ic s,51 Z. L. Trocsanyi,51 B. Ujvari,51 S. Choudhury,52 J. R. Komaragiri,52
P. C. Ti w ar i ,52 S. Bahinipati,53,xC. Kar,53 P. Ma l,53 K. Mandal,53 A. Nayak,53 ,yD. K. Sahoo,53,xS. K. Swain,53 S. Bansal,54
S. B. Beri,54 V. Bhatnagar,54 S. Chauhan,54 R. Chawla,54 N. Dhingra,54 R. Gupta,54 A. Kaur,54 M. Kaur,54 S. Kaur,54
R. Kumar,54 P. Kum a ri ,54 M. Lohan,54 A. Mehta,54 K. Sandeep,54 S. Sharma,54 J. B. Singh,54 A. K. Virdi,54 G. Walia,54
A. Bhardwaj,55 B. C. Choudhary,55 R. B. Garg,55 M. Gola,55 S. Keshri,55 Ashok Kumar,55 S. Malhotra,55 M. Naimuddin,55
P. Priyanka,55 K. Ranjan,55 Aashaq Shah,55 R. Sharma,55 R. Bhardwaj,56,zM. Bharti,56,zR. Bhattacharya,56 S. Bhattacharya,56
044902-13
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
U. Bhawandeep,56,zD. Bhowmik,56 S. Dey,56 S. Dutt,56,zS. Dutta,56 S. Ghosh,56 K. Mondal,56 S. Nandan,56 A. Purohit,56
P. K. Rout,56 A. Roy,56 S. Roy Chowdhury,56 G. Saha,56 S. Sarkar,56 M. Sharan,56 B. Singh,56,zS. Thakur,56 ,zP. K. Behera,57
R. Chudasama,58 D. Dutta,58 V. Jha,58 V. Ku m a r ,58 P. K. Netrakanti,58 L. M. Pant,58 P. Shukla,58 T. Aziz,59 M. A. Bhat,59
S. Dugad,59 G. B. Mohanty,59 N. Sur,59 B. Sutar,59 Ravindra Kumar Verma,59 S. Banerjee,60 S. Bhattacharya,60 S. Chatterjee,60
P. Da s ,60 M. Guchait,60 Sa. Jain,60 S. Karmakar,60 S. Kumar,60 M. Maity,60,aa G. Majumder,60 K. Mazumdar,60 N. Sahoo,60
T. Sarkar,60,aa S. Chauhan,61 S. Dube,61 V. Hegde,61 A. Kapoor,61 K. Kothekar,61 S. Pandey,61 A. Rane,61 S. Sharma,61
S. Chenarani,62,ab E. Eskandari Tadavani,62 S. M. Etesami,62,ab M. Khakzad,62 M. Mohammadi Najafabadi,62 M. Naseri,62
F. Rezaei Hosseinabadi,62 B. Safarzadeh,62 ,ac M. Zeinali,62 M. Felcini,63 M. Grunewald,63 M. Abbrescia,64a,64b,64c
C. Calabria,64a,64b,64c A. Colaleo,64a,64b,64c D. Creanza,64a,64b,64c L. Cristella,64a,64b,64c N. De Filippis,64a,64b,64c M. De
Palma,64a,64b,64c A. Di Florio,64a,64b,64c F. Errico,64a,64b,64c L. Fiore,64a,64b,64c A. Gelmi,64a,64b,64c G. Iaselli,64a,64b,64c
M. Ince,64a,64b,64c S. Lezki,64a,64b,64c G. Maggi,64a,64b,64c M. Maggi,64a,64b,64c G. Miniello,64a,64b,64c S. My,64a,64b,64c
S. Nuzzo,64a,64b,64c A. Pompili,64a,64b,64c G. Pugliese,64a,64b,64c R. Radogna,64a,64b,64c A. Ranieri,64a,64b,64c G. Selvaggi,64a,64b,64c
A. Sharma,64a,64b,64c L. Silvestris,64a,64b,64c R. Venditti,64a,64b,64c P. Verwilligen,64a,64b,64c G. Zito,64a,64b,64c G. Abbiendi,65a,65b
C. Battilana,65a,65b D. Bonacorsi,65a,65b L. Borgonovi,65a,65b S. Braibant-Giacomelli,65a,65b R. Campanini,65a,65b
P. Capiluppi,65a,65b A. Castro,65a,65b F. R. Cavallo,65a,65b S. S. Chhibra,65a,65b C. Ciocca,65a,65b G. Codispoti,65a,65b
M. Cuffiani,65a,65b G. M. Dallavalle,65a,65b F. Fabbri,65a,65b A. Fanfani,65a,65b E. Fontanesi,65a,65b P. Giacomelli,65a,65b
C. Grandi,65a,65b L. Guiducci,65a,65b F. Iemmi,65a,65b S. Lo Meo,65a,65b S. Marcellini,65a,65b G. Masetti,65a,65b A. Montanari,65a,65b
F. L. Navarria,65a,65b A. Perrotta,65a,65b F. Primavera,65a,65b,pT. Rovelli,65a,65b G. P. Siroli,65a,65b N. Tosi,65a,65b S. Albergo,66a,66b
A. Di Mattia,66a,66b R. Potenza,66a,66b A. Tricomi,66a,66b C. Tuve,66a,66b G. Barbagli,67a,67b K. Chatterjee,67a,67b V. Ciulli,67a,67b
C. Civinini,67a,67b R. D’Alessandro,67a,67b E. Focardi,67a,67b G. Latino,67a,67b P. Lenzi,67a,67b M. Meschini,67a,67b
S. Paoletti,67a,67b L. Russo,67a,67b,ad G. Sguazzoni,67a,67b D. Strom,67a,67b L. Viliani,67a,67b L. Benussi,68 S. Bianco,68 F. Fabbri,68
D. Piccolo,68 F. Ferro,69a,69b F. R avera,69a,69b E. Robutti,69a,69b S. Tosi,69a,69b A. Benaglia,70a,70b A. Beschi,70a,70b
L. Brianza,70a,70b F. Briv i o , 70a,70b V. Ciriolo,70a,70b,pS. Di Guida,70a,70b,pM. E. Dinardo,70a,70b S. Fiorendi,70a,70b
S. Gennai,70a,70b A. Ghezzi,70a,70b P. Govoni,70a,70b M. Malberti,70a,70b S. Malvezzi,70a,70b A. Massironi,70a,70b D. Menasce,70a,70b
F. Monti,70a,70b L. Moroni,70a,70b M. Paganoni,70a,70b D. Pedrini,70a,70b S. Ragazzi,70a,70b T. Tabarelli de Fatis,70a,70b
D. Zuolo,70a,70b S. Buontempo,71a,71b,71c,71d N. Cavallo,71a,71b,71c,71d A. De Iorio,71a,71b,71c,71d A. Di Crescenzo,71a,71b,71c,71d
F. Fabozzi,71a,71b,71c,71d F. Fienga,71a,71b,71c,71d G. Galati,71a,71b,71c,71d A. O. M. Iorio,71a,71b,71c,71d W. A. Khan,71a,71b,71c,71d
L. Lista,71a,71b,71c,71d S. Meola,71a,71b,71c,71d,pP. Paolucci,71a,71b,71c,71d,pC. Sciacca,71a,71b,71c,71d E. Voevodina,71a,71b,71c,71d
P. Azzi,72a,72b,72c N. Bacchetta,72a,72b,72c D. Bisello,72a,72b,72c A. Boletti,72a,72b,72c A. Bragagnolo,72a,72b,72c R. Carlin,72a,72b,72c
P. Checchia,72a,72b,72c M. Dall’Osso,72a,72b,72c P. De Castro Manzano,72a,72b,72c T. Dorigo,72a,72b,72c U. Dosselli,72a,72b,72c
F. Gasparini,72a,72b,72c U. Gasparini,72a,72b,72c A. Gozzelino,72a,72b,72c S. Y. Hoh,72a,72b,72c S. Lacaprara,72a,72b,72c
P. Lujan,72a,72b,72c M. Margoni,72a,72b,72c A. T. Meneguzzo,72a,72b,72c J. Pazzini,72a,72b,72c P. Ronchese,72a,72b,72c
R. Rossin,72a,72b,72c F. Simonetto,72a,72b,72c A. Tiko,72a,72b,72c E. Torassa,72a,72b,72c M. Zanetti,72a,72b,72c P. Zotto,72a,72b,72c
G. Zumerle,72a,72b,72c A. Braghieri,73a,73b A. Magnani,73a,73b P. Montagna,73a,73b S. P. Ratti,73a,73b V. R e ,73a,73b
M. Ressegotti,73a,73b C. Riccardi,73a,73b P. Salvini,73a,73b I. Vai,73a,73b P. Vitulo,73a,73b M. Biasini,74a,74b G. M. Bilei,74a,74b
C. Cecchi,74a,74b D. Ciangottini,74a,74b L. Fanò,74a,74b P. Lariccia,74a,74b R. Leonardi,74a,74b E. Manoni,74a,74b G. Mantovani,74a,74b
V. Mariani,74a,74b M. Menichelli,74a,74b A. Rossi,74a,74b A. Santocchia,74a,74b D. Spiga,74a,74b K. Androsov,75a,75b,75c
P. Azzurri,75a,75b,75c G. Bagliesi,75a,75b,75c L. Bianchini,75a,75b,75c T. Boccali,75a,75b,75c L. Borrello,75a,75b,75c R. Castaldi,75a,75b,75c
M. A. Ciocci,75a,75b,75c R. Dell’Orso,75a,75b,75c G. Fedi,75a,75b,75c F. Fiori,75a,75b,75c L. Giannini,75a,75b,75c A. Giassi,75a,75b,75c
M. T. Grippo,75a,75b,75c F. Ligabue,75a,75b,75c E. Manca,75a,75b,75c G. Mandorli,75a,75b,75c A. Messineo,75a,75b,75c F. Palla,75a,75b,75c
A. Rizzi,75a,75b,75c P. Spagnolo,75a,75b,75c R. Tenchini,75a,75b,75c G. Tonelli,75a,75b,75c A. Venturi,75a,75b,75c P. G. Verdini,75a,75b,75c
L. Barone,76a,76b F. Cavallari,76a,76b M. Cipriani,76a,76b D. Del Re,76a,76b E. Di Marco,76a,76b M. Diemoz,76a,76b S. Gelli,76a,76b
E. Longo,76a,76b B. Marzocchi,76a,76b P. Meridiani,76a,76b G. Organtini,76a,76b F. Pandolfi,76a,76b R. Paramatti,76a,76b
F. Preiato,76a,76b S. Rahatlou,76a,76b C. Rovelli,76a,76b F. Santanastasio,76a,76b N. Amapane,77a,77b,77c R. Arcidiacono,77a,77b,77c
S. Argiro,77a,77b,77c M. Arneodo,77a,77b,77c N. Bartosik,77a,77b,77c R. Bellan,77a,77b,77c C. Biino,77a,77b,77c N. Cartiglia,77a,77b,77c
F. Cenna,77a,77b,77c S. Cometti,77a,77b,77c M. Costa,77a,77b,77c R. Covarelli,77a,77b,77c N. Demaria,77a,77b,77c B. Kiani,77a,77b,77c
C. Mariotti,77a,77b,77c S. Maselli,77a,77b,77c E. Migliore,77a,77b,77c V. Monaco,77a,77b,77c E. Monteil,77a,77b,77c M. Monteno,77a,77b,77c
M. M. Obertino,77a,77b,77c L. Pacher,77a,77b,77c N. Pastrone,77a,77b,77c M. Pelliccioni,77a,77b,77c G. L. Pinna Angioni,77a,77b,77c
A. Romero,77a,77b,77c M. Ruspa,77a,77b,77c R. Sacchi,77a,77b,77c K. Shchelina,77a,77b,77c V. Sola,77a,77b,77c A. Solano,77a,77b,77c
D. Soldi,77a,77b,77c A. Staiano,77a,77b,77c S. Belforte,78a,78b V. Candelise,78a,78b M. Casarsa,78a,78b F. Cossutti,78a,78b A. Da
Rold,78a,78b G. Della Ricca,78a,78b F. Vazzoler,78a,78b A. Zanetti,78a,78b D. H. Kim,79 G. N. Kim,79 M. S. Kim,79 J. Lee,79
S. Lee,79 S. W. Lee,79 C. S. Moon,79 Y. D. Oh,79 S. I. Pak,79 S. Sekmen,79 D. C. Son,79 Y. C. Yang,79 H. Kim,80 D. H. Moon,80
G. Oh,80 J. Goh,81,ae T. J. Kim,81 S. Cho,82 S. Choi,82 Y. Go ,82 D. Gyun,82 S. Ha,82 B. Hong,82 Y. J o, 82 K. Lee,82 K. S. Lee,82
S. Lee,82 J. Lim,82 S. K. Park,82 Y. Roh,82 H. S. Kim,83 J. Almond,84 J. Kim,84 J. S. Kim,84 H. Lee,84 K. Lee,84 K. Nam,84
S. B. Oh,84 B. C. Radburn-Smith,84 S. h. Seo,84 U. K. Yang,84 H. D. Yoo,84 G. B. Yu,84 D. Jeon,85 H. Kim,85 J. H. Kim,85
J. S. H. Lee,85 I. C. Park,85 Y. Choi,86 C. Hwang,86 J. Lee,86 I. Yu,86 V. Dudenas,87 A. Juodagalvis,87 J. Vaitkus,87 I. Ahmed,88
Z. A. Ibrahim,88 M. A. B. Md Ali,88,af F. Mohamad Idris,88,ag W. A. T. Wan Abdullah,88 M. N. Yusli,88 Z. Zolkapli,88
J. F. Benitez,89 A. Castaneda Hernandez,89 J. A. Murillo Quijada,89 H. Castilla-Valdez,90 E. De La Cruz-Burelo,90
044902-14
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
M. C. Duran-Osuna,90 I. Heredia-De La Cruz,90,ah R. Lopez-Fernandez,90 J. Mejia Guisao,90 R. I. Rabadan-Trejo,90
M. Ramirez-Garcia,90 G. Ramirez-Sanchez,90 R Reyes-Almanza,90 A. Sanchez-Hernandez,90 S. Carrillo Moreno,91
C. Oropeza Barrera,91 F. Vazquez Valencia,91 J. Eysermans,92 I. Pedraza,92 H. A. Salazar Ibarguen,92 C. Uribe Estrada,92
A. Morelos Pineda,93 D. Krofcheck,94 S. Bheesette,95 P. H. Butler,95 A. Ahmad,96 M. Ahmad,96 M. I. Asghar,96 Q. Hassan,96
H. R. Hoorani,96 A. Saddique,96 M. A. Shah,96 M. Shoaib,96 M. Waqas,96 H. Bialkowska,97 M. Bluj,97 B. Boimska,97
T. Frueboes,97 M. Górski,97 M. Kazana,97 M. Szleper,97 P. Traczyk,97 P. Za l ews ki , 97 K. Bunkowski,98 A. Byszuk,98,ai
K. Doroba,98 A. Kalinowski,98 M. Konecki,98 J. Krolikowski,98 M. Misiura,98 M. Olszewski,98 A. Pyskir,98 M. Walczak,98
M. Araujo,99 P. Bargassa,99 C. Beirão Da Cruz E Silva,99 A. Di Francesco,99 P. Faccioli,99 B. Galinhas,99 M. Gallinaro,99
J. Hollar,99 N. Leonardo,99 M. V. Nemallapudi,99 J. Seixas,99 G. Strong,99 O. Toldaiev,99 D. Vadruccio,99 J. Varela,99
S. Afanasiev,100 P. Bunin,100 M. Gavrilenko,100 I. Golutvin,100 I. Gorbunov,100 A. Kamenev,100 V. Karjavine,100 A. Lanev,100
A. Malakhov,100 V. Matveev,100,aj P. Moisenz,100 V. Palichik,100 V. Perelygin,100 S. Shmatov,100 S. Shulha,100 N. Skatchkov,100
V. Smirnov,100 N. Voytishin,100 A. Zarubin,100 V. Golovtsov,101 Y. Ivanov,101 V. Kim,101,ak E. Kuznetsova,101,al
P. Levchenko,101 V. Mu r z i n, 101 V. Oreshkin,101 I. Smirnov,101 D. Sosnov,101 V. Sulimov,101 L. Uvarov,101 S. Vavilov,101
A. Vorobyev,101 Yu. Andreev,102 A. Dermenev,102 S. Gninenko,102 N. Golubev,102 A. Karneyeu,102 M. Kirsanov,102
N. Krasnikov,102 A. Pashenkov,102 D. Tlisov,102 A. Toropin,102 V. Epshteyn,103 V. Gavrilov,103 N. Lychkovskaya,103
V. Popov,103 I. Pozdnyakov,103 G. Safronov,103 A. Spiridonov,103 A. Stepennov,103 V. Stolin,103 M. Toms,103 E. Vlasov,103
A. Zhokin,103 T. Au s h ev,104 R. Chistov,105,am M. Danilov,105,am P. Parygin,105 D. Philippov,105 S. Polikarpov,105,am
E. Tarkovskii,105 V. Andreev,106 M. Azarkin,106 I. Dremin,106,an M. Kirakosyan,106 S. V. Rusakov,106 A. Terkulov,106
A. Baskakov,107 A. Belyaev,107 E. Boos,107 A. Ershov,107 A. Gribushin,107 A. Kaminskiy,107 ,ao O. Kodolova,107
V. Korotkikh,107 I. Lokhtin,107 I. Miagkov,107 S. Obraztsov,107 S. Petrushanko,107 V. Savrin,107 A. Snigirev,107 I. Vardanyan,107
A. Barnyakov,108,ap V. Blinov,108,ap T. Dimova,108,ap L. Kardapoltsev,108,ap Y. Skovpen,108,ap I. Azhgirey,109 I. Bayshev,109
S. Bitioukov,109 D. Elumakhov,109 A. Godizov,109 V. Kachanov,109 A. Kalinin,109 D. Konstantinov,109 P. Mandrik,109
V. Petrov,109 R. Ryutin,109 S. Slabospitskii,109 A. Sobol,109 S. Troshin,109 N. Tyurin,109 A. Uzunian,109 A. Volkov,109
A. Babaev,110 S. Baidali,110 V. Okhotnikov,110 P. Adzic,111,aq P. C ir k ovi c,111 D. Devetak,111 M. Dordevic,111 J. Milosevic,111
M. Stojanovic,111 J. Alcaraz Maestre,112 A. Álvarez Fernández,112 I. Bachiller,112 M. Barrio Luna,112
J. A. Brochero Cifuentes,112 M. Cerrada,112 N. Colino,112 B. De La Cruz,112 A. Delgado Peris,112 C. Fernandez Bedoya,112
J. P. Fernández Ramos,112 J. Flix,112 M. C. Fouz,112 O. Gonzalez Lopez,112 S. Goy Lopez,112 J. M. Hernandez,112 M. I. Josa,112
D. Moran,112 A. Pérez-Calero Yzquierdo,112 J. Puerta Pelayo,112 I. Redondo,112 L. Romero,112 M. S. Soares,112 A. Triossi,112
C. Albajar,113 J. F. de Trocóniz,113 J. Cuevas,114 C. Erice,114 J. Fernandez Menendez,114 S. Folgueras,114
I. Gonzalez Caballero,114 J. R. González Fernández,114 E. Palencia Cortezon,114 V. Rodríguez Bouza,114 S. Sanchez Cruz,114
P. Vischia,114 J. M. Vizan Garcia,114 I. J. Cabrillo,115 A. Calderon,115 B. Chazin Quero,115 J. Duarte Campderros,115
M. Fernandez,115 P. J. Fernández Manteca,115 A. García Alonso,115 J. Garcia-Ferrero,115 G. Gomez,115 A. Lopez Virto,115
J. Marco,115 C. Martinez Rivero,115 P. Martinez Ruiz del Arbol,115 F. Matorras,115 J. Piedra Gomez,115 C. Prieels,115
T. Rodrigo,115 A. Ruiz-Jimeno,115 L. Scodellaro,115 N. Trevisani,115 I. Vila,115 R. Vilar Cortabitarte,115 N. Wickramage,116
D. Abbaneo,117 B. Akgun,117 E. Auffray,117 G. Auzinger,117 P. Baillon,117 A. H. Ball,117 D. Barney,117 J. Bendavid,117
M. Bianco,117 A. Bocci,117 C. Botta,117 E. Brondolin,117 T. Camporesi,117 M. Cepeda,117 G. Cerminara,117 E. Chapon,117
Y. Chen,117 G. Cucciati,117 D. d’Enterria,117 A. Dabrowski,117 N. Daci,117 V. Daponte,117 A. David,117 A. De Roeck,117
N. Deelen,117 M. Dobson,117 M. Dünser,117 N. Dupont,117 A. Elliott-Peisert,117 P. Everaerts,117 F. Fallavollita,117,ar
D. Fasanella,117 G. Franzoni,117 J. Fulcher,117 W. Funk,117 D. Gigi,117 A. Gilbert,117 K. Gill,117 F. Glege,117 M. Guilbaud,117
D. Gulhan,117 J. Hegeman,117 C. Heidegger,117 V. Innocente,117 A. Jafari,117 P. Janot,117 O. Karacheban,117,sJ. Kieseler,117
A. Kornmayer,117 M. Krammer,117,bC. Lange,117 P. Lecoq,117 C. Lourenço,117 L. Malgeri,117 M. Mannelli,117 F. Meijers,117
J. A. Merlin,117 S. Mersi,117 E. Meschi,117 P. Milenovic,117,as F. Moortgat,117 M. Mulders,117 J. Ngadiuba,117 S. Nourbakhsh,117
S. Orfanelli,117 L. Orsini,117 F. Pantaleo,117,pL. Pape,117 E. Perez,117 M. Peruzzi,117 A. Petrilli,117 G. Petrucciani,117
A. Pfeiffer,117 M. Pierini,117 F. M. Pitters,117 D. Rabady,117 A. Racz,117 T. Reis,117 G. Rolandi,117,at M. Rovere,117
H. Sakulin,117 C. Schäfer,117 C. Schwick,117 M. Seidel,117 M. Selvaggi,117 A. Sharma,117 P. Silva,117 P. Sphicas,117,au
A. Stakia,117 J. Steggemann,117 M. Tosi,117 D. Treille,117 A. Tsirou,117 V. Veckalns,117 ,av M. Verzetti,117 W. D. Zeuner,117
L. Caminada,118,aw K. Deiters,118 W. Erdmann,118 R. Horisberger,118 Q. Ingram,118 H. C. Kaestli,118 D. Kotlinski,118
U. Langenegger,118 T. Rohe,118 S. A. Wiederkehr,118 M. Backhaus,119 L. Bäni,119 P. Berger,119 N. Chernyavskaya,119
G. Dissertori,119 M. Dittmar,119 M. Donegà,119 C. Dorfer,119 T. A. Gómez Espinosa,119 C. Grab,119 D. Hits,119 T. Klijnsma,119
W. Lustermann,119 R. A. Manzoni,119 M. Marionneau,119 M. T. Meinhard,119 F. Micheli,119 P. Musella,119 F. Nessi-Tedaldi,119
J. Pata,119 F. Pauss,119 G. Perrin,119 L. Perrozzi,119 S. Pigazzini,119 M. Quittnat,119 C. Reissel,119 D. Ruini,119
D. A. Sanz Becerra,119 M. Schönenberger,119 L. Shchutska,119 V. R. Tavolaro,119 K. Theofilatos,119
M. L. Vesterbacka Olsson,119 R. Wallny,119 D. H. Zhu,119 T. K. Aarrestad,120 C. Amsler,120,ax D. Brzhechko,120
M. F. Canelli,120 A. De Cosa,120 R. Del Burgo,120 S. Donato,120 C. Galloni,120 T. Hreus,120 B. Kilminster,120 S. Leontsinis,120
I. Neutelings,120 G. Rauco,120 P. Robmann,120 D. Salerno,120 K. Schweiger,120 C. Seitz,120 Y. Takahashi,120 A. Zucchetta,120
Y. H. Chang,121 K. y. Cheng,121 T. H. Doan,121 R. Khurana,121 C. M. Kuo,121 W. Lin, 121 A. Pozdnyakov,121 S. S. Yu,121
P. Chang,122 Y. Chao,122 K. F. Chen,122 P. H. Chen,122 W.-S. Hou,122 Arun Kumar,122 Y. F. L i u ,122 R.-S. Lu,122 E. Paganis,122
A. Psallidas,122 A. Steen,122 B. Asavapibhop,123 N. Srimanobhas,123 N. Suwonjandee,123 A. Bat,124 F. Boran,124
044902-15
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
S. Damarseckin,124 Z. S. Demiroglu,124 F. Dolek,124 C. Dozen,124 I. Dumanoglu,124 E. Eskut,124 S. Girgis,124 G. Gokbulut,124
Y. Gu l e r ,124 E. Gurpinar,124 I. Hos,124,ay C. Isik,124 E. E. Kangal,124,az O. Kara,124 A. Kayis Topaksu,124 U. Kiminsu,124
M. Oglakci,124 G. Onengut,124 K. Ozdemir,124,ba A. Polatoz,124 D. Sunar Cerci,124 ,bb B. Tali,124,bb U. G. Tok,124
S. Turkcapar,124 I. S. Zorbakir,124 C. Zorbilmez,124 B. Isildak,125,bc G. Karapinar,125,bd M. Yalvac,125 M. Zeyrek,125
I. O. Atakisi,126 E. Gülmez,126 M. Kaya,126,be O. Kaya,126 ,bf S. Ozkorucuklu,126,bg S. Tekten,126 E. A. Yetkin,126 ,bh
M. N. Agaras,127 A. Cakir,127 K. Cankocak,127 Y. Komurcu,127 S. Sen,127,bi B. Grynyov,128 L. Levchuk,129 F. Ball,130
L. Beck,130 J. J. Brooke,130 D. Burns,130 E. Clement,130 D. Cussans,130 O. Davignon,130 H. Flacher,130 J. Goldstein,130
G. P. Heath,130 H. F. Heath,130 L. Kreczko,130 D. M. Newbold,130 ,bj S. Paramesvaran,130 B. Penning,130 T. Sakuma,130
D. Smith,130 V. J. Smith,130 J. Taylor,130 A. Titterton,130 A. Belyaev,131,bk C. Brew,131 R. M. Brown,131 D. Cieri,131
D. J. A. Cockerill,131 J. A. Coughlan,131 K. Harder,131 S. Harper,131 J. Linacre,131 E. Olaiya,131 D. Petyt,131
C. H. Shepherd-Themistocleous,131 A. Thea,131 I. R. Tomalin,131 T. Williams,131 W. J. Womersley,131 R. Bainbridge,132
P. Bloch,132 J. Borg,132 S. Breeze,132 O. Buchmuller,132 A. Bundock,132 D. Colling,132 P. Dauncey,132 G. Davies,132
M. Della Negra,132 R. Di Maria,132 Y. Haddad,132 G. Hall,132 G. Iles,132 T. James,132 M. Komm,132 C. Laner,132 L. Lyons,132
A.-M. Magnan,132 S. Malik,132 A. Martelli,132 J. Nash,132,bl A. Nikitenko,132,hV. Palladino,132 M. Pesaresi,132
D. M. Raymond,132 A. Richards,132 A. Rose,132 E. Scott,132 C. Seez,132 A. Shtipliyski,132 G. Singh,132 M. Stoye,132
T. Strebler,132 S. Summers,132 A. Tapper,132 K. Uchida,132 T. Virdee,132,pN. Wardle,132 D. Winterbottom,132 J. Wright,132
S. C. Zenz,132 J. E. Cole,133 P. R. Hobson,133 A. Khan,133 P. Kyberd,133 C. K. Mackay,133 A. Morton,133 I. D. Reid,133
L. Teodorescu,133 S. Zahid,133 K. Call,134 J. Dittmann,134 K. Hatakeyama,134 H. Liu,134 C. Madrid,134 B. Mcmaster,134
N. Pastika,134 C. Smith,134 R. Bartek,135 A. Dominguez,135 A. Buccilli,136 S. I. Cooper,136 C. Henderson,136 P. Rum er i o, 136
C. West,136 D. Arcaro,137 T. B ose,137 D. Gastler,137 D. Pinna,137 D. Rankin,137 C. Richardson,137 J. Rohlf,137 L. Sulak,137
D. Zou,137 G. Benelli,138 X. Coubez,138 D. Cutts,138 M. Hadley,138 J. Hakala,138 U. Heintz,138 J. M. Hogan,138,bm
K. H. M. Kwok,138 E. Laird,138 G. Landsberg,138 J. Lee,138 Z. Mao,138 M. Narain,138 S. Sagir,138,bn R. Syarif,138 E. Usai,138
D. Yu,138 R. Band,139 C. Brainerd,139 R. Breedon,139 D. Burns,139 M. Calderon De La Barca Sanchez,139 M. Chertok,139
J. Conway,139 R. Conway,139 P. T. Cox,139 R. Erbacher,139 C. Flores,139 G. Funk,139 W. Ko,139 O. Kukral,139 R. Lander,139
M. Mulhearn,139 D. Pellett,139 J. Pilot,139 S. Shalhout,139 M. Shi,139 D. Stolp,139 D. Taylor,139 K. Tos,139 M. Tripathi,139
Z. Wang,139 F. Zhang,139 M. Bachtis,140 C. Bravo,140 R. Cousins,140 A. Dasgupta,140 A. Florent,140 J. Hauser,140
M. Ignatenko,140 N. Mccoll,140 S. Regnard,140 D. Saltzberg,140 C. Schnaible,140 V. Val ue v , 140 E. Bouvier,141 K. Burt,141
R. Clare,141 J. W. Gary,141 S. M. A. Ghiasi Shirazi,141 G. Hanson,141 G. Karapostoli,141 E. Kennedy,141 F. Lacroix,141
O. R. Long,141 M. Olmedo Negrete,141 M. I. Paneva,141 W. S i,141 L. Wang,141 H. Wei,141 S. Wimpenny,141 B. R. Yates,141
J. G. Branson,142 P. Chang,142 S. Cittolin,142 M. Derdzinski,142 R. Gerosa,142 D. Gilbert,142 B. Hashemi,142 A. Holzner,142
D. Klein,142 G. Kole,142 V. Krutelyov,142 J. Letts,142 M. Masciovecchio,142 D. Olivito,142 S. Padhi,142 M. Pieri,142 M. Sani,142
V. Sharma,142 S. Simon,142 M. Tadel,142 A. Vartak,142 S. Wasserbaech,142,bo J. Wood,142 F. Würthwein,142 A. Yagil,142
G. Zevi Della Porta,142 N. Amin,143 R. Bhandari,143 J. Bradmiller-Feld,143 C. Campagnari,143 M. Citron,143 A. Dishaw,143
V. Dutta,143 M. Franco Sevilla,143 L. Gouskos,143 R. Heller,143 J. Incandela,143 A. Ovcharova,143 H. Qu,143 J. Richman,143
D. Stuart,143 I. Suarez,143 S. Wang,143 J. Yoo,143 D. Anderson,144 A. Bornheim,144 J. M. Lawhorn,144 H. B. Newman,144
T. Q. Nguyen,144 M. Spiropulu,144 J. R. Vlimant,144 R. Wilkinson,144 S. Xie,144 Z. Zhang,144 R. Y. Zhu,144 M. B. Andrews,145
T. Ferguson,145 T. Mudholkar,145 M. Paulini,145 M. Sun,145 I. Vorobiev,145 M. Weinberg,145 J. P. Cumalat,146 W. T. Fo r d,146
F. Jensen,146 A. Johnson,146 M. Krohn,146 E. MacDonald,146 T. Mulholland,146 R. Patel,146 A. Perloff,146 K. Stenson,146
K. A. Ulmer,146 S. R. Wagner,146 J. Alexander,147 J. Chaves,147 Y. Cheng,147 J. Chu,147 A. Datta,147 K. Mcdermott,147
N. Mirman,147 J. R. Patterson,147 D. Quach,147 A. Rinkevicius,147 A. Ryd,147 L. Skinnari,147 L. Soffi,147 S. M. Tan,147 Z. Tao,147
J. Thom,147 J. Tucker,147 P. Wittich,147 M. Zientek,147 S. Abdullin,148 M. Albrow,148 M. Alyari,148 G. Apollinari,148
A. Apresyan,148 A. Apyan,148 S. Banerjee,148 L. A. T. Bauerdick,148 A. Beretvas,148 J. Berryhill,148 P. C. Bhat,148 K. Burkett,148
J. N. Butler,148 A. Canepa,148 G. B. Cerati,148 H. W. K. Cheung,148 F. Chlebana,148 M. Cremonesi,148 J. Duarte,148
V. D. E l v i ra ,148 J. Freeman,148 Z. Gecse,148 E. Gottschalk,148 L. Gray,148 D. Green,148 S. Grünendahl,148 O. Gutsche,148
J. Hanlon,148 R. M. Harris,148 S. Hasegawa,148 J. Hirschauer,148 Z. Hu,148 B. Jayatilaka,148 S. Jindariani,148 M. Johnson,148
U. Joshi,148 B. Klima,148 M. J. Kortelainen,148 B. Kreis,148 S. Lammel,148 D. Lincoln,148 R. Lipton,148 M. Liu,148 T. Liu,148
J. Lykken,148 K. Maeshima,148 J. M. Marraffino,148 D. Mason,148 P. McBride,148 P. Me rke l, 148 S. Mrenna,148 S. Nahn,148
V. O’Dell,148 K. Pedro,148 C. Pena,148 O. Prokofyev,148 G. Rakness,148 L. Ristori,148 A. Savoy-Navarro,148,bp B. Schneider,148
E. Sexton-Kennedy,148 A. Soha,148 W. J. Spalding,148 L. Spiegel,148 S. Stoynev,148 J. Strait,148 N. Strobbe,148 L. Taylor,148
S. Tkaczyk,148 N. V. Tran,148 L. Uplegger,148 E. W. Vaandering,148 C. Vernieri,148 M. Verzocchi,148 R. Vidal,148 M. Wang,148
H. A. Weber,148 A. Whitbeck,148 D. Acosta,149 P. Avery,149 P. Bortignon,149 D. Bourilkov,149 A. Brinkerhoff,149
L. Cadamuro,149 A. Carnes,149 M. Carver,149 D. Curry,149 R. D. Field,149 S. V. Gleyzer,149 B. M. Joshi,149 J. Konigsberg,149
A. Korytov,149 K. H. Lo,149 P. Ma ,149 K. Matchev,149 H. Mei,149 G. Mitselmakher,149 D. Rosenzweig,149 K. Shi,149
D. Sperka,149 J. Wang,149 S. Wang,149 X. Zuo,149 Y. R. Joshi,150 S. Linn,150 A. Ackert,151 T. Adams,151 A. Askew,151
S. Hagopian,151 V. Hagopian,151 K. F. Johnson,151 T. Kolberg,151 G. Martinez,151 T. Perry,151 H. Prosper,151 A. Saha,151
C. Schiber,151 R. Yohay,151 M. M. Baarmand,152 V. Bhopatkar,152 S. Colafranceschi,152 M. Hohlmann,152 D. Noonan,152
M. Rahmani,152 T. Roy,152 F. Yumiceva,152 M. R. Adams,153 L. Apanasevich,153 D. Berry,153 R. R. Betts,153 R. Cavanaugh,153
X. Chen,153 S. Dittmer,153 O. Evdokimov,153 C. E. Gerber,153 D. A. Hangal,153 D. J. Hofman,153 K. Jung,153 J. Kamin,153
044902-16
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
C. Mills,153 I. D. Sandoval Gonzalez,153 M. B. Tonjes,153 H. Trauger,153 N. Varelas,153 H. Wang,153 X. Wang,153 Z. Wu,153
J. Zhang,153 M. Alhusseini,154 B. Bilki,154,bq W. Clarida,154 K. Dilsiz,154,br S. Durgut,154 R. P. Gandrajula,154
M. Haytmyradov,154 V. Khristenko,154 J.-P. Merlo,154 A. Mestvirishvili,154 A. Moeller,154 J. Nachtman,154 H. Ogul,154,bs
Y. Onel,154 F. Ozok,154,bt A. Penzo,154 C. Snyder,154 E. Tiras,154 J. Wetzel,154 B. Blumenfeld,155 A. Cocoros,155 N. Eminizer,155
D. Fehling,155 L. Feng,155 A. V. Gritsan,155 W. T. Hung,155 P. Maksimovic,155 J. Roskes,155 U. Sarica,155 M. Swartz,155
M. Xiao,155 C. You,155 A. Al-bataineh,156 P. Baringer,156 A. Bean,156 S. Boren,156 J. Bowen,156 A. Bylinkin,156 J. Castle,156
S. Khalil,156 A. Kropivnitskaya,156 D. Majumder,156 W. Mcbrayer,156 M. Murray,156 C. Rogan,156 S. Sanders,156 E. Schmitz,156
J. D. Tapia Takaki,156 Q. Wang,156 S. Duric,157 A. Ivanov,157 K. Kaadze,157 D. Kim,157 Y. Maravin,157 D. R. Mendis,157
T. Mitchell,157 A. Modak,157 A. Mohammadi,157 L. K. Saini,157 N. Skhirtladze,157 F. Rebassoo,158 D. Wright,158 A. Baden,159
O. Baron,159 A. Belloni,159 S. C. Eno,159 Y. Feng,159 C. Ferraioli,159 N. J. Hadley,159 S. Jabeen,159 G. Y. Jeng,159
R. G. Kellogg,159 J. Kunkle,159 A. C. Mignerey,159 S. Nabili,159 F. Ricci-Tam,159 Y. H. Shin,159 A. Skuja,159 S. C. Tonwar,159
K. Wong,159 D. Abercrombie,160 B. Allen,160 V. Azzolini,160 A. Baty,160 G. Bauer,160 R. Bi,160 S. Brandt,160 W. Busza,160
I. A. Cali,160 M. D’Alfonso,160 Z. Demiragli,160 G. Gomez Ceballos,160 M. Goncharov,160 P. Harris,160 D. Hsu,160 M. Hu,160
Y. Iiyama,160 G. M. Innocenti,160 M. Klute,160 D. Kovalskyi,160 Y.-J. Lee,160 P. D. Luckey,160 B. Maier,160 A. C. Marini,160
C. Mcginn,160 C. Mironov,160 S. Narayanan,160 X. Niu,160 C. Paus,160 C. Roland,160 G. Roland,160 G. S. F. Stephans,160
K. Sumorok,160 K. Tatar,160 D. Velicanu,160 J. Wang,160 T. W. Wang,160 B. Wyslouch,160 S. Zhaozhong,160
A. C. Benvenuti,161,bu R. M. Chatterjee,161 A. Evans,161 P. Hansen,161 Sh. Jain,161 S. Kalafut,161 Y. Kubota,161 Z. Lesko,161
J. Mans,161 N. Ruckstuhl,161 R. Rusack,161 J. Turkewitz,161 M. A. Wadud,161 J. G. Acosta,162 S. Oliveros,162 E. Avdeeva,163
K. Bloom,163 D. R. Claes,163 C. Fangmeier,163 F. Go l f , 163 R. Gonzalez Suarez,163 R. Kamalieddin,163 I. Kravchenko,163
J. Monroy,163 J. E. Siado,163 G. R. Snow,163 B. Stieger,163 A. Godshalk,164 C. Harrington,164 I. Iashvili,164 A. Kharchilava,164
C. Mclean,164 D. Nguyen,164 A. Parker,164 S. Rappoccio,164 B. Roozbahani,164 G. Alverson,165 E. Barberis,165 C. Freer,165
A. Hortiangtham,165 D. M. Morse,165 T. Orimoto,165 R. Teixeira De Lima,165 T. Wamorkar,165 B. Wang,165 A. Wisecarver,165
D. Wood,165 S. Bhattacharya,166 O. Charaf,166 K. A. Hahn,166 N. Mucia,166 N. Odell,166 M. H. Schmitt,166 K. Sung,166
M. Trovato,166 M. Velasco,166 R. Bucci,167 N. Dev,167 M. Hildreth,167 K. Hurtado Anampa,167 C. Jessop,167 D. J. Karmgard,167
N. Kellams,167 K. Lannon,167 W. Li ,167 N. Loukas,167 N. Marinelli,167 F. Meng,167 C. Mueller,167 Y. Musienko,167,bv
M. Planer,167 A. Reinsvold,167 R. Ruchti,167 P. Siddireddy,167 G. Smith,167 S. Taroni,167 M. Wayne,167 A. Wightman,167
M. Wolf,167 A. Woodard,167 J. Alimena,168 L. Antonelli,168 B. Bylsma,168 L. S. Durkin,168 S. Flowers,168 B. Francis,168
A. Hart,168 C. Hill,168 W. Ji,168 T. Y. Ling,168 W. Luo,168 B. L. Winer,168 S. Cooperstein,169 P. El m er , 169 J. Hardenbrook,169
S. Higginbotham,169 A. Kalogeropoulos,169 D. Lange,169 M. T. Lucchini,169 J. Luo,169 D. Marlow,169 K. Mei,169 I. Ojalvo,169
J. Olsen,169 C. Palmer,169 P. Piroué,169 J. Salfeld-Nebgen,169 D. Stickland,169 C. Tully,169 S. Malik,170 S. Norberg,170
A. Barker,171 V. E. Barnes,171 S. Das,171 L. Gutay,171 M. Jones,171 A. W. Jung,171 A. Khatiwada,171 B. Mahakud,171
D. H. Miller,171 N. Neumeister,171 C. C. Peng,171 S. Piperov,171 H. Qiu,171 J. F. Schulte,171 J. Sun,171 F. Wang,171 R. Xiao,171
W. Xie,171 T. Cheng,172 J. Dolen,172 N. Parashar,172 Z. Chen,173 K. M. Ecklund,173 S. Freed,173 F. J. M. Geurts,173
M. Kilpatrick,173 W. Li,173 B. P. Padley,173 R. Redjimi,173 J. Roberts,173 J. Rorie,173 W. Shi,173 Z. Tu,173 J. Zabel,173
A. Zhang,173 A. Bodek,174 P. de Barbaro,174 R. Demina,174 Y. t. Duh,174 J. L. Dulemba,174 C. Fallon,174 T. Ferbel,174
M. Galanti,174 A. Garcia-Bellido,174 J. Han,174 O. Hindrichs,174 A. Khukhunaishvili,174 P. Tan,174 R. Taus,174 A. Agapitos,175
J. P. Chou,175 Y. Gershtein,175 E. Halkiadakis,175 M. Heindl,175 E. Hughes,175 S. Kaplan,175 R. Kunnawalkam Elayavalli,175
S. Kyriacou,175 A. Lath,175 R. Montalvo,175 K. Nash,175 M. Osherson,175 H. Saka,175 S. Salur,175 S. Schnetzer,175
D. Sheffield,175 S. Somalwar,175 R. Stone,175 S. Thomas,175 P. Thomassen,175 M. Walker,175 A. G. Delannoy,176 J. Heideman,176
G. Riley,176 S. Spanier,176 O. Bouhali,177,bw A. Celik,177 M. Dalchenko,177 M. De Mattia,177 A. Delgado,177 S. Dildick,177
R. Eusebi,177 J. Gilmore,177 T. Huang,177 T. Kamon,177,bx S. Luo,177 R. Mueller,177 D. Overton,177 L. Perniè,177 D. Rathjens,177
A. Safonov,177 N. Akchurin,178 J. Damgov,178 F. De Guio,178 P. R. Dudero,178 S. Kunori,178 K. Lamichhane,178 S. W. Lee,178
T. Mengke,178 S. Muthumuni,178 T. Peltola,178 S. Undleeb,178 I. Volobouev,178 Z. Wang,178 S. Greene,179 A. Gurrola,179
R. Janjam,179 W. Johns,179 C. Maguire,179 A. Melo,179 H. Ni,179 K. Padeken,179 J. D. Ruiz Alvarez,179 P. Sheldon,179 S. Tuo,179
J. Velkovska,179 M. Verweij,179 Q. Xu,179 M. W. Arenton,180 P. Ba rr i a, 180 B. Cox,180 R. Hirosky,180 M. Joyce,180
A. Ledovskoy,180 H. Li,180 C. Neu,180 T. Sinthuprasith,180 Y. Wang,180 E. Wolfe,180 F. Xia,180 R. Harr,181 P. E. Karchin,181
N. Poudyal,181 J. Sturdy,181 P. Thapa,181 S. Zaleski,181 M. Brodski,182 J. Buchanan,182 C. Caillol,182 D. Carlsmith,182
S. Dasu,182 L. Dodd,182 B. Gomber,182 M. Grothe,182 M. Herndon,182 A. Hervé,182 U. Hussain,182 P. Klabbers,182 A. Lanaro,182
K. Long,182 R. Loveless,182 T. Ruggles,182 A. Savin,182 V. Sharma,182 N. Smith,182 W. H. Smith,182 and N. Woods182
(CMS Collaboration)
1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
044902-17
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11aUniversidade Estadual Paulista, São Paulo, Brazil
11b Universidade Federal do ABC, São Paulo, Brazil
12Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13University of Sofia, Sofia, Bulgaria
14Beihang University, Beijing, China
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Tsinghua University, Beijing, China
18Universidad de Los Andes, Bogota, Colombia
19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
20University of Split, Faculty of Science, Split, Croatia
21Institute Rudjer Boskovic, Zagreb, Croatia
22University of Cyprus, Nicosia, Cyprus
23Charles University, Prague, Czech Republic
24Escuela Politecnica Nacional, Quito, Ecuador
25Universidad San Francisco de Quito, Quito, Ecuador
26Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
27National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
28Department of Physics, University of Helsinki, Helsinki, Finland
29Helsinki Institute of Physics, Helsinki, Finland
30Lappeenranta University of Technology, Lappeenranta, Finland
31IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
32Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
33Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
34Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
35Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
36Georgian Technical University, Tbilisi, Georgia
37Tbilisi State University, Tbilisi, Georgia
38RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
39RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
41Deutsches Elektronen-Synchrotron, Hamburg, Germany
42University of Hamburg, Hamburg, Germany
43Karlsruher Institut fuer Technologie, Karlsruhe, Germany
44Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
45National and Kapodistrian University of Athens, Athens, Greece
46National Technical University of Athens, Athens, Greece
47University of Ioánnina, Ioánnina, Greece
48MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
49Wigner Research Centre for Physics, Budapest, Hungary
50Institute of Nuclear Research ATOMKI, Debrecen, Hungary
51Institute of Physics, University of Debrecen, Debrecen, Hungary
52Indian Institute of Science (IISc), Bangalore, India
53National Institute of Science Education and Research, HBNI, Bhubaneswar, India
54Panjab University, Chandigarh, India
55University of Delhi, Delhi, India
56Saha Institute of Nuclear Physics, HBNI, Kolkata, India
57Indian Institute of Technology Madras, Madras, India
58Bhabha Atomic Research Centre, Mumbai, India
59Tata Institute of Fundamental Research-A, Mumbai, India
60Tata Institute of Fundamental Research-B, Mumbai, India
61Indian Institute of Science Education and Research (IISER), Pune, India
62Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
63University College Dublin, Dublin, Ireland
64aINFN Sezione di Bari, Bari, Italy
044902-18
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
64bUniversità di Bari, Bari, Italy
64cPolitecnico di Bari, Bari, Italy
65aINFN Sezione di Bologna, Bologna, Italy
65bUniversità di Bologna, Bologna, Italy
66aINFN Sezione di Catania, Catania, Italy
66bUniversità di Cataniab, Catania, Italy
67aINFN Sezione di Firenze, Firenze, Italy
67bUniversità di Firenze, Firenze, Italy
68INFN Laboratori Nazionali di Frascati, Frascati, Italy
69aINFN Sezione di Genova, Genova, Italy
69bUniversità di Genova, Genova, Italy
70aINFN Sezione di Milano-Bicocca, Milano, Italy
70bUniversità di Milano-Bicocca, Milano, Italy
71aINFN Sezione di Napoli, Napoli, Italy
71bUniversità di Napoli ‘Federico II’, Napoli, Italy
71cUniversità della Basilicata, Potenza, Italy
71dUniversità G. Marconi, Roma, Italy
72aINFN Sezione di Padova, Padova, Italy
72bUniversità di Padova, Padova, Italy
72cUniversità di Trento, Trento, Italy
73aINFN Sezione di Pavia, Pavia, Italy
73bUniversità di Pavia, Pavia, Italy
74aINFN Sezione di Perugia, Perugia, Italy
74bUniversità di Perugia, Perugia, Italy
75aINFN Sezione di Pisa, Pisa, Italy
75bUniversità di Pisa, Pisa, Italy
75cScuola Normale Superiore di Pisa, Pisa, Italy
76aINFN Sezione di Roma, Rome, Italy
76bSapienza Università di Roma, Rome, Italy
77aINFN Sezione di Torino, Torino, Italy
77bUniversità di Torino, Torino, Italy
77cUniversità del Piemonte Orientale, Novara, Italy
78aINFN Sezione di Trieste, Trieste, Italy
78bUniversità di Trieste, Trieste, Italy
79Kyungpook National University, Daegu, Korea
80Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
81Hanyang University, Seoul, Korea
82Korea University, Seoul, Korea
83Sejong University, Seoul, Korea
84Seoul National University, Seoul, Korea
85University of Seoul, Seoul, Korea
86Sungkyunkwan University, Suwon, Korea
87Vilnius University, Vilnius, Lithuania
88National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
89Universidad de Sonora (UNISON), Hermosillo, Mexico
90Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
91Universidad Iberoamericana, Mexico City, Mexico
92Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
93Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
94University of Auckland, Auckland, New Zealand
95University of Canterbury, Christchurch, New Zealand
96National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
97National Centre for Nuclear Research, Swierk, Poland
98Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
99Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
100Joint Institute for Nuclear Research, Dubna, Russia
101Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
102Institute for Nuclear Research, Moscow, Russia
103Institute for Theoretical and Experimental Physics, Moscow, Russia
044902-19
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
104Moscow Institute of Physics and Technology, Moscow, Russia
105National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
106P. N. Lebedev Physical Institute, Moscow, Russia
107Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
108Novosibirsk State University (NSU), Novosibirsk, Russia
109Institute for High Energy Physics of National Research Centre ’Kurchatov Institute’, Protvino, Russia
110National Research Tomsk Polytechnic University, Tomsk, Russia
111University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
112Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
113Universidad Autónoma de Madrid, Madrid, Spain
114Universidad de Oviedo, Oviedo, Spain
115Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
116University of Ruhuna, Department of Physics, Matara, Sri Lanka
117CERN, European Organization for Nuclear Research, Geneva, Switzerland
118Paul Scherrer Institut, Villigen, Switzerland
119ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
120Universität Zürich, Zurich, Switzerland
121National Central University, Chung-Li, Taiwan
122National Taiwan University (NTU), Taipei, Taiwan
123Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
124Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
125Middle East Technical University, Physics Department, Ankara, Turkey
126Bogazici University, Istanbul, Turkey
127Istanbul Technical University, Istanbul, Turkey
128Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
129National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
130University of Bristol, Bristol, United Kingdom
131Rutherford Appleton Laboratory, Didcot, United Kingdom
132Imperial College, London, United Kingdom
133Brunel University, Uxbridge, United Kingdom
134Baylor University, Waco, Texas, USA
135Catholic University of America, Washington, DC, USA
136The University of Alabama, Tuscaloosa, Alabama, USA
137Boston University, Boston, Massachusetts, USA
138Brown University, Providence, Rhode Island, USA
139University of California, Davis, Davis, California, USA
140University of California, Los Angeles, California, USA
141University of California, Riverside, Riverside, California, USA
142University of California, San Diego, La Jolla, California, USA
143Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA
144California Institute of Technology, Pasadena, California, USA
145Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
146University of Colorado Boulder, Boulder, Colorado, USA
147Cornell University, Ithaca, New York, USA
148Fermi National Accelerator Laboratory, Batavia, Illinois, USA
149University of Florida, Gainesville, Florida, USA
150Florida International University, Miami, Florida, USA
151Florida State University, Tallahassee, Florida, USA
152Florida Institute of Technology, Melbourne, Florida, USA
153University of Illinois at Chicago (UIC), Chicago, Illinois, USA
154The University of Iowa, Iowa City, Iowa, USA
155Johns Hopkins University, Baltimore, Maryland, USA
156The University of Kansas, Lawrence, Kansas, USA
157Kansas State University, Manhattan, Kansas, USA
158Lawrence Livermore National Laboratory, Livermore, California, USA
159University of Maryland, College Park, Maryland, USA
160Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
161University of Minnesota, Minneapolis, Minnesota, USA
162University of Mississippi, Oxford, Mississippi, USA
044902-20
CHARGED-PARTICLE ANGULAR CORRELATIONS PHYSICAL REVIEW C 100, 044902 (2019)
163University of Nebraska-Lincoln, Lincoln, Nebraska, USA
164State University of New York at Buffalo, Buffalo, New York, USA
165Northeastern University, Boston, Massachusetts, USA
166Northwestern University, Evanston, Illinois, USA
167University of Notre Dame, Notre Dame, Indiana, USA
168The Ohio State University, Columbus, Ohio, USA
169Princeton University, Princeton, New Jersey, USA
170University of Puerto Rico, Mayaguez, Puerto Rico, USA
171Purdue University, West Lafayette, Indiana, USA
172Purdue University Northwest, Hammond, Indiana, USA
173Rice University, Houston, Texas, USA
174University of Rochester, Rochester, New York, USA
175Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
176University of Tennessee, Knoxville, Tennessee, USA
177Texas A&M University, College Station, Texas, USA
178Texas Tech University, Lubbock, Texas, USA
179Vanderbilt University, Nashville, Tennessee, USA
180University of Virginia, Charlottesville, Virginia, USA
181Wayne State University, Detroit, Michigan, USA
182University of Wisconsin - Madison, Madison, Wisconsin, USA
aAlso at Vienna University of Technology, Vienna, Austria.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
dAlso at Universidade Estadual de Campinas, Campinas, Brazil.
eAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
fAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
gAlso at University of Chinese Academy of Sciences, Beijing, China.
hAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
iAlso at Joint Institute for Nuclear Research, Dubna, Russia.
jNow at Cairo University, Cairo, Egypt.
kNow at Fayoum University, El-Fayoum, Egypt, Cairo, Egypt; Now at British University in Egypt, Cairo, Egypt.
lNow at Fayoum University, El-Fayoum, Egypt.
mAlso at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
nAlso at Université de Haute Alsace, Mulhouse, France.
oAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
pAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
qAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
rAlso at University of Hamburg, Hamburg, Germany.
sAlso at Brandenburg University of Technology, Cottbus, Germany.
tAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
uAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
vAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary; Deceased.
wAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary.
xAlso at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
yAlso at Institute of Physics, Bhubaneswar, India.
zAlso at Shoolini University, Solan, India.
aaAlso at University of Visva-Bharati, Santiniketan, India.
abAlso at Isfahan University of Technology, Isfahan, Iran.
acAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
adAlso at Università degli Studi di Siena, Siena, Italy.
aeAlso at Kyunghee University, Seoul, Korea.
afAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
agAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
ahAlso at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
aiAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
ajAlso at Institute for Nuclear Research, Moscow, Russia; Now at National Research Nuclear University ’Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia.
akAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
alAlso at University of Florida, Gainesville, USA.
044902-21
A. M. SIRUNYAN et al. PHYSICAL REVIEW C 100, 044902 (2019)
amAlso at P. N. Lebedev Physical Institute, Moscow, Russia.
anAlso at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
aoAlso at INFN Sezione di Padova, Padova, Italy; Università di Padova, Padova, Italy; Università di Trento (Trento), Padova, Italy.
apAlso at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
aqAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
arAlso at INFN Sezione di Pavia, Pavia, Italy; Università di Pavia, Pavia, Italy.
asAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
atAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
auAlso at National and Kapodistrian University of Athens, Athens, Greece.
avAlso at Riga Technical University, Riga, Latvia.
awAlso at Universität Zürich, Zurich, Switzerland.
axAlso at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria.
ayAlso at Istanbul Aydin University, Istanbul, Turkey.
azAlso at Mersin University, Mersin, Turkey.
baAlso at Piri Reis University, Istanbul, Turkey.
bbAlso at Adiyaman University, Adiyaman, Turkey.
bcAlso at Ozyegin University, Istanbul, Turkey.
bdAlso at Izmir Institute of Technology, Izmir, Turkey.
beAlso at Marmara University, Istanbul, Turkey.
bfAlso at Kafkas University, Kars, Turkey.
bgAlso at Istanbul University, Faculty of Science, Istanbul, Turkey.
bhAlso at Istanbul Bilgi University, Istanbul, Turkey.
biAlso at Hacettepe University, Ankara, Turkey.
bjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
bkAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
blAlso at Monash University, Faculty of Science, Clayton, Australia.
bmAlso at Bethel University, St. Paul, USA.
bnAlso at Karamano ˘
glu Mehmetbey University, Karaman, Turkey.
boAlso at Utah Valley University, Orem, USA.
bpAlso at Purdue University, West Lafayette, USA.
bqAlso at Beykent University, Istanbul, Turkey.
brAlso at Bingol University, Bingol, Turkey.
bsAlso at Sinop University, Sinop, Turkey.
btAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.
buDeceased.
bvAlso at Institute for Nuclear Research, Moscow, Russia.
bwAlso at Texas A&M University at Qatar, Doha, Qatar.
bxAlso at Kyungpook National University, Daegu, Korea.
044902-22
... It was demonstrated that tuned HYDJET++ model can reproduce LHC data on centrality and transverse momentum dependence of charged particle multiplicity density, transverse momentum p T and [22,23]. In the present study, we have compared HYDJET++ simulation results with the LHC experimental data from all the three detectors (ALICE, CMS, and ATLAS) [45][46][47] for our analysis. The data measured from ALICE and CMS experiments have been calculated using 2-particle cumulant technique, whereas the ATLAS experimental data have been measured using Scalar Product Method, the average value of each flow coefficient being root mean square value. ...
... Considering charged-hadron multiplicity (which decreases from most-central to most-peripheral class of collisions) as a representative for system-size (in context to centrality of collision), we conclude that anisotropic flow decreases as collision system-size increases [23]. We have presented our model results in |η|< 0.8 and |η|< 2.5 kinematic ranges comparing model results with LHC experimental data [45][46][47]. At small pseudorapidities (|η|< 0.8), HYDJET++ model results show a suitable match with available ALICE and CMS experimental data. ...
Preprint
By employing the Monte Carlo HYDJET++ model (HYDrodynamics plus JETs), we produce anisotropic harmonic flow coefficients vnv_n (n=4n = 4-7) in deformed Xe-Xe collisions at sNN=5.44 TeV\sqrt{s_{NN}} = 5.44~\mathrm{TeV}. These harmonics are measured with respect to a plane constructed using the lower-order Fourier harmonics v2v_2 and v3v_3, produced using the reaction plane method. The cross-talk between elliptic and triangular flows in the model generates both even and odd higher-order harmonics. By combining analyses of higher harmonics with those of v2v_2 and v3v_3, one can eliminate uncertainties in modeling anisotropic flow from initial conditions and define quantities that involve only nonlinear hydrodynamic response coefficients. In this context, we study the individual response of higher-order flow coefficients to the lower-order ones through a power-law scaling technique of the form vn/vmmv_n / v_m^m, as a function of collision centrality. We report that the higher-order flow coefficients vnv_n (n=4n = 4-7) exhibit strong centrality dependence and are significantly correlated with the elliptic and triangular flow. The results are compared with data from recent ALICE, ATLAS, and CMS experiments at the LHC.
... In recent years, high-energy scattering experiments have emerged as a new tool for probing nuclear deformations [6]. Quite remarkably, collective flow measurements in high-energy nuclear collisions reveal a rather strong dependence on the lowenergy structure of the colliding ions [7,8,9,10,11,12,13,14,15], showing sensitivity to their shapes [16,17,18,19,20,21,22,23,24,25,26], their skin thickness [27,28,29,30], and potential clustering phenomena [31,32,33,34,35]. Similarly, deep inelastic scattering in γA collisions is also sensitive to the nuclear structure [36,37,38,39]. ...
Preprint
There is growing evidence that high-energy scattering processes involving nuclei can offer unique insights into the many-body correlations present in nuclear ground states, in particular those of deformed nuclei. These processes involve, for instance, the collective anisotropic flows in heavy-ion collisions, or the diffractive production of vector mesons in photo-nuclear (γA\gamma A) interactions. In this paper, we use a classical approximation and simple analytical models in order to exhibit characteristic and universal features of ground-state correlation functions that result from the presence of a deformed intrinsic state. In the case of a small axial quadrupole deformation, we show that the random rotation of the intrinsic density of the nucleus leads to a specific quadrupole modulation of the lab-frame two-body density as a function of the relative azimuthal angle. As a phenomenological, albeit academic application, we analyze the diffractive production of vector mesons in high-energy γ+8\gamma+^8Be collisions. This demonstrates with the simplest deformed nucleus how the two-body correlations impact the t|t| dependence of the incoherent cross sections.
... Due to the completely different time scales at play, this novel platform to study nuclear structure [48] reveals more vividly the inter-nucleon correlations characterizing the ground state of the collided species [49] through the analysis of the momentum distributions of hadrons emitted from the quark-gluon plasma (QGP [50,51]). Analysis of these experiments via a rigid-rotor model of the colliding ions have already revealed key information regarding collective correlations in these nuclei in terms of intrinsic deformations, including quadrupole [52][53][54][55][56], triaxial [2,57], octupole [58], and hexadecapole [59,60] deformations. Effectively, high-energy colliders have the potential to shed a complementary view of the nucleon dynamics in nuclear ground states. ...
Preprint
Smashing nuclei at ultrarelativistic speeds and analyzing the momentum distribution of outgoing debris provides a powerful method to probe the many-body properties of the incoming nuclear ground states. Within a perturbative description of initial-state fluctuations in the quark-gluon plasma, we express the measurement of anisotropic flow in ultra-central heavy-ion collisions as the quantum-mechanical average of a specific set of operators measuring the harmonic structure of the two-body azimuthal correlations among nucleons in the colliding states. These observables shed a new light on spatial correlations in atomic nuclei, while enabling us to test the complementary pictures of nuclear structure delivered by low- and high-energy experiments on the basis of state-of-the-art theoretical approaches rooted in quantum chromodynamics.
... At the other end of the energy spectrum, collider studies have established that measurements of the collective flow of hadrons in the soft sector of high-energy nuclear collisions enable us to experimentally access fine properties of the shapes and radial distributions of nuclei in their ground states [29][30][31][32][33][34][35][36][37]. In particular, by studying how observables such as anisotropic flow coefficients vary across collision systems involving isobaric isotopes [38], one can measure signatures of the structure of these nuclei while drastically mitigating the impact of theoretical uncertainties on poorly understood features of the QGP, such as out-of-equilibrium or hadronization phenomena, in the interpretation of the data [39][40][41][42][43][44][45][46][47]. ...
Preprint
Reducing uncertainties in the nuclear matrix element (NME) remains a critical challenge in designing and interpreting experiments aimed at discovering neutrinoless double beta (0νββ0\nu\beta\beta) decay. Here, we identify a class of observables, distinct from those employed in low-energy nuclear structure applications, that are strongly correlated with the NME: momentum correlations among hadrons produced in high-energy nuclear collisions. Focusing on the 150^{150}Nd\rightarrow150^{150}Sm transition, we combine a Bayesian analysis of the structure of 150^{150}Nd with simulations of high-energy 150^{150}Nd+150^{150}Nd collisions. We reveal prominent correlations between the NME and features of the quark-gluon plasma (QGP) formed in these processes, such as spatial gradients and anisotropies, which are accessible via collective flow measurements. Our findings demonstrate collider experiments involving 0νββ0\nu\beta\beta decay candidates as a platform for benchmarking theoretical predictions of the NME.
Article
Long-range multi-particle correlations in heavy-ion collisions have shown conclusive evidence of the hydrodynamic behavior of strongly interacting matter and are associated with the final-state azimuthal momentum anisotropy. In small collision systems, azimuthal anisotropy can be influenced by the hadronization mechanism and residual jet-like correlations. Thus, one of the motives of the planned p–O and O–O collisions at the LHC and RHIC is to understand the origin of small system collectivity. As the anisotropic flow coefficients (vnv_n) are sensitive to the initial-state effects including nuclear shape, deformation, and charge density profiles, studies involving 12^{12}C and 16^{16}O nuclei are transpiring due to the presence of exotic α\alpha (4^{4}He) clusters in such nuclei. In this study, for the first time, we investigate the effects of nuclear α\alpha –clusters on the azimuthal anisotropy of the final-state hadrons in p–C and p–O collisions at sNN=9.9\sqrt{s_\textrm{NN}}= 9.9 TeV within a multi-phase transport model framework. We report the transverse momentum (pTp_\textrm{T}) and pseudorapidity (η\eta ) spectra, participant eccentricity (ϵ2\epsilon _2) and triangularity (ϵ3\epsilon _3), and estimate the elliptic flow (v2v_2) and triangular flow (v3v_3) of the final-state hadrons using the two-particle cumulant method. These results are compared with a model-independent Sum of Gaussians (SOG) type nuclear density profile for 12^{12}C and 16^{16}O nuclei.
Preprint
Full-text available
In this thesis, we focus on the fluctuations and correlations of the collective observables such as the mean transverse momentum per particle ([pT][p_T]) and harmonic flow coefficients (vnv_n) of particles produced in the ultrarelativistic heavy-ion collisions at RHIC and the LHC. Specifically, we show that the fluctuations of harmonic flow can be probed by the factorization-breaking coefficients between flow vectors in different pTp_T-bins. Experimental difficulty can be reduced by taking one of the flow vectors momentum averaged. Fluctuations cause a decorrelation between the flow vectors, which can be attributed to equal contributions from the flow magnitude and flow angle decorrelation. We study fluctuations of mean transverse momentum per particle ([pT][p_T]) in ultra-central collisions and show that our model can explain the steep fall of its variance observed by the ATLAS collaboration. We also present robust predictions for the skewness and kurtosis, and highlight the role of impact parameter fluctuations in ultracentral collisions. We study the Pearson correlation coefficients between [pT][p_T] and vn2v_n^2, which can map the initial state correlations between the shape and size of the fireball. We show that higher order normalized and symmetric cumulants between these observables can be constructed, which put useful additional constraints on the initial state properties. Furthermore, we study the momentum dependent Pearson correlation between [pT][p_T] and the transverse momentum dependent flow. It shows sensitivity to the Gaussian width of the nucleon at the initial state. Finally, we show that such correlations and fluctuations of collective observables can be used to study nuclear deformation and put robust constraints on their deformation parameters through high energy nuclear collisions.
Article
Full-text available
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes 1–3 , traditionally explored using non-invasive spectroscopic techniques at low energies 4,5 . However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors 6,7 . We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Article
Full-text available
Measurements of azimuthal angular correlations are presented for high-multiplicity pPb collisions at sNN=5.02TeV and peripheral PbPb collisions at sNN=2.76TeV. The data used in this work were collected with the Compact Muon Solenoid (CMS) detector at the European Organization for Nuclear Research (CERN) Large Hadron Collider (LHC). Fourier coefficients as functions of transverse momentum and pseudorapidity are studied using the scalar product method; four-, six-, and eight-particle cumulants; and the Lee-Yang zero technique. The influence of event plane decorrelation is evaluated using the scalar product method and found to account for most of the observed pseudorapidity dependence.
Article
Full-text available
A bstract Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 s N N = 5.02 and 2.76 TeV are reported in the pseudorapidity range | η | < 0.8 and transverse momentum 0.2 < p T < 50 GeV/ c . The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) μ b ⁻¹ in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic ( v 6 ) are reported and a detailed comparison among results at the two energies is carried out. The p T dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number n are investigated. An approximate power-law scaling of the form v n ( p T ) ∼ p T n /3 is observed for all flow harmonics at low p T (0.2 < p T < 3 GeV/ c ). At the same time, the ratios v n / v m n / m are observed to be essentially independent of p T for most centralities up to about p T = 10 GeV/ c . Analysing the differences among higher-order cumulants of elliptic flow ( v 2 ), which have different sensitivities to flow fluctuations, a measurement of the standardised skewness of the event-by-event v 2 distribution P ( v 2 ) is reported and constraints on its higher moments are provided. The Elliptic Power distribution is used to parametrise P ( v 2 ), extracting its parameters from fits to cumulants. The measurements are compared to different model predictions in order to discriminate among initial-state models and to constrain the temperature dependence of the shear viscosity to entropy-density ratio.
Article
Full-text available
The first measurements of anisotropic flow coefficients vn for mid-rapidity charged particles in Xe–Xe collisions at sNN=5.44 TeV are presented. Comparing these measurements to those from Pb–Pb collisions at sNN=5.02 TeV, v2 is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of v3 are generally larger in Xe–Xe than in Pb–Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both v2 and v3 are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe–Xe and Pb–Pb, with some deviations observed in central Xe–Xe and Pb–Pb collisions. These results assist in placing strong constraints on both the initial state geometry and medium response for relativistic heavy-ion collisions.
Article
Full-text available
Measurements of longitudinal flow correlations are presented for charged particles in the pseudorapidity range η<2.4|\eta |<2.4 using 7 and 470 \upmu \hbox {b}^{-1} of Pb+Pb collisions at sNN=2.76\sqrt{s_{\text {NN}}}=2.76 and 5.02 TeV, respectively, recorded by the ATLAS detector at the LHC. It is found that the correlation between the harmonic flow coefficients vnv_n measured in two separated η\eta intervals does not factorise into the product of single-particle coefficients, and this breaking of factorisation, or flow decorrelation, increases linearly with the η\eta separation between the intervals. The flow decorrelation is stronger at 2.76 TeV than at 5.02 TeV. Higher-order moments of the correlations are also measured, and the corresponding linear coefficients for the kthk{\text {th}}-moment of the vnv_n are found to be proportional to k for v3v_3, but not for v2v_2. The decorrelation effect is separated into contributions from the magnitude of vnv_n and the event-plane orientation, each as a function of η\eta . These two contributions are found to be comparable. The longitudinal flow correlations are also measured between vnv_n of different order in n. The decorrelations of v2v_2 and v3v_3 are found to be independent of each other, while the decorrelations of v4v_4 and v5v_5 are found to be driven by the nonlinear contribution from v22v_2^2 and v2v3v_2v_3, respectively.
Article
Full-text available
A detailed study of multiparticle azimuthal correlations is presented using pp data at s=5.02 and 13 TeV, and p+Pb data at sNN=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4} and flow coefficients vn{4}=(−cn{4})1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4} are obtained as a function of the average number of charged particles per event, Nch, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4}, and therefore a well-defined v2{4}, nearly independent of Nch, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v2{4} is found to be smaller than the v2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v2{4} and v2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.
Article
Full-text available
We argue that relativistic hydrodynamics is able to make robust predictions for soft particle production in Xe+Xe collisions at the CERN Large Hadron Collider (LHC). The change of system size from Pb+Pb to Xe+Xe provides a unique opportunity to test the scaling laws inherent to fluid dynamics. Using event-by-event hydrodynamic simulations, we make quantitative predictions for several observables: Mean transverse momentum, anisotropic flow coefficients, and their fluctuations. Results are shown as function of collision centrality.
Article
Full-text available
Elliptic flow, v2v_2, and triangular flow, v3v_3, are to a good approximation linearly proportional to the corresponding spatial anisotropies of the initial density profile, ε2\varepsilon_2 and ε3\varepsilon_3. Using event-by-event hydrodynamic simulations, we point out when deviations from this linear scaling are to be expected. When these deviations are negligible, relative vnv_n fluctuations are equal to relative εn\varepsilon_n fluctuations, and one can directly probe models of initial conditions using ratios of cumulants, for instance vn{4}/vn{2}v_n\{4\}/v_n\{2\}. We argue that existing models of initial conditions tend to overestimate flow fluctuations in central Pb+Pb collisions, and to underestimate them in peripheral collisions. We make predictions for v3{6}v_3\{6\} in noncentral Pb+Pb collisions, and for v3{4}v_3\{4\} and v3{6}v_3\{6\} in high-multiplicity p+Pb collisions.
Article
Full-text available
Measurements of two- and multi-particle angular correlations in pp collisions at s=5,7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0pb−1 (5 TeV), 6.2pb−1 (7 TeV), and 0.7pb−1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v2 of KS0 and Λ/Λ‾ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v2 values of charged hadrons (mostly pions), KS0, and Λ/Λ‾, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT≈2GeV/c. For 13 TeV data, the v2 signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
Article
We extend the impact parameter dependent Glasma model (IP-Glasma) to three dimensions using explicit small x evolution of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the early time energy momentum tensor as a function of space-time rapidity and transverse coordinates. We study rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and compare to existing models for the three dimensional initial state.
Article
We introduce a new parametric initial-condition model for high-energy nuclear collisions based on eikonal entropy deposition via a "reduced-thickness" function. The model simultaneously describes experimental proton-proton, proton-nucleus, and nucleus-nucleus multiplicity distributions and generates nucleus-nucleus eccentricity harmonics consistent with experimental flow constraints. In addition, the model is compatible with ultracentral uranium-uranium data unlike existing models that include binary collision terms.