In multi-objective optimization problem, a set of optimal solutions is obtained from an optimization algorithm. There are many trade-off optimal solutions. However, in practice, a decision maker or user only needs one or very few solutions for implementation. Moreover, these solutions are difficult to determine from a set of optimal solutions of complex system. Therefore, a trade-off method for
... [Show full abstract] multi-objective optimization is proposed for identifying the preferred solutions according to the decision maker’s preference. The preference is expressed by using the trade-off between any two objectives where the decision maker is willing to worsen in one objective value in order to gain improvement in the other objective value. The trade-off method is demonstrated by using well-known two-objective and three-objective benchmark problems. Furthermore, a system design problem with component allocation is also considered to illustrate the applicability of the proposed method. The results show that the trade-off method can be applied for solving practical problems to identify the final solution(s) and easy to use even when the decision maker lacks some knowledge or not an expert in the problem solving. The decision maker only gives his/her preference information. Then, the corresponding optimal solutions will be obtained, accordingly.