Conference Paper

Combined atropine with orthokeratology in childhood myopia control (AOK) - A randomized controlled trial

Authors:
  • Hong Kong Ophthalmic Associates
  • Hong Kong Laser Eye Center
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Purpose : To present the initial 6-month results of a two-year randomized control trial, comparing the efficacy of combined 0.01% atropine with Orthokeratology (AOK) versus orthokeratology alone (OK) for myopia control. Methods : This is an examiner-masked, randomized control trial carried out in Hong Kong. Chinese children, aged from 6 to 11 years old, with 1.00 to 4.00 D myopia and astigmatism less than 2.50 D were recruited. They were randomly assigned to AOK or OK groups. In the AOK group, single-dose 0.01% preservative-free atropine was given topically to both eyes every night before ortho-k lens wear. The primary outcome measure was the axial length elongation measured using partial coherence interferometry (IOL master 500). Results : Thirty subjects were included in the AOK group and 35 in the OK group. The average age was 9.1±1.2 years in AOK and 9.1±1.0 in OK. The OK lens first-fit success rate was 97% and 94% respectively. At the 6-month visit, there were 30 subjects in AOK group and 32 subjects in OK group (3 were terminated from the study due to contact lens intolerance). Axial elongation in AOK group was - 0.02 ± 0.11 mm (- 0.16 – 0.03 mm) and that in OK group was 0.06 ± 0.09 mm (P = 0.0027). Atropine 0.01% ophthalmic solution, when combined with ortho-k lens wear, was well-tolerated in all subjects. Conclusions : Our initial 6-month result showed that combination of single-dose 0.01% atropine with ortho-k lens wear have an additive effect in slowing axial elongation, when compared with monotherapy of ortho-k alone or 0.01% atropine alone. The combined treatment was well-tolerated. This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Background: Myopia is a common refractive error, where elongation of the eyeball causes distant objects to appear blurred. The increasing prevalence of myopia is a growing global public health problem, in terms of rates of uncorrected refractive error and significantly, an increased risk of visual impairment due to myopia-related ocular morbidity. Since myopia is usually detected in children before 10 years of age and can progress rapidly, interventions to slow its progression need to be delivered in childhood. Objectives: To assess the comparative efficacy of optical, pharmacological and environmental interventions for slowing myopia progression in children using network meta-analysis (NMA). To generate a relative ranking of myopia control interventions according to their efficacy. To produce a brief economic commentary, summarising the economic evaluations assessing myopia control interventions in children. To maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE; Embase; and three trials registers. The search date was 26 February 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of optical, pharmacological and environmental interventions for slowing myopia progression in children aged 18 years or younger. Critical outcomes were progression of myopia (defined as the difference in the change in spherical equivalent refraction (SER, dioptres (D)) and axial length (mm) in the intervention and control groups at one year or longer) and difference in the change in SER and axial length following cessation of treatment ('rebound'). DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. We assessed bias using RoB 2 for parallel RCTs. We rated the certainty of evidence using the GRADE approach for the outcomes: change in SER and axial length at one and two years. Most comparisons were with inactive controls. Main results: We included 64 studies that randomised 11,617 children, aged 4 to 18 years. Studies were mostly conducted in China or other Asian countries (39 studies, 60.9%) and North America (13 studies, 20.3%). Fifty-seven studies (89%) compared myopia control interventions (multifocal spectacles, peripheral plus spectacles (PPSL), undercorrected single vision spectacles (SVLs), multifocal soft contact lenses (MFSCL), orthokeratology, rigid gas-permeable contact lenses (RGP); or pharmacological interventions (including high- (HDA), moderate- (MDA) and low-dose (LDA) atropine, pirenzipine or 7-methylxanthine) against an inactive control. Study duration was 12 to 36 months. The overall certainty of the evidence ranged from very low to moderate. Since the networks in the NMA were poorly connected, most estimates versus control were as, or more, imprecise than the corresponding direct estimates. Consequently, we mostly report estimates based on direct (pairwise) comparisons below. At one year, in 38 studies (6525 participants analysed), the median change in SER for controls was -0.65 D. The following interventions may reduce SER progression compared to controls: HDA (mean difference (MD) 0.90 D, 95% confidence interval (CI) 0.62 to 1.18), MDA (MD 0.65 D, 95% CI 0.27 to 1.03), LDA (MD 0.38 D, 95% CI 0.10 to 0.66), pirenzipine (MD 0.32 D, 95% CI 0.15 to 0.49), MFSCL (MD 0.26 D, 95% CI 0.17 to 0.35), PPSLs (MD 0.51 D, 95% CI 0.19 to 0.82), and multifocal spectacles (MD 0.14 D, 95% CI 0.08 to 0.21). By contrast, there was little or no evidence that RGP (MD 0.02 D, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.07 D, 95% CI -0.09 to 0.24) or undercorrected SVLs (MD -0.15 D, 95% CI -0.29 to 0.00) reduce progression. At two years, in 26 studies (4949 participants), the median change in SER for controls was -1.02 D. The following interventions may reduce SER progression compared to controls: HDA (MD 1.26 D, 95% CI 1.17 to 1.36), MDA (MD 0.45 D, 95% CI 0.08 to 0.83), LDA (MD 0.24 D, 95% CI 0.17 to 0.31), pirenzipine (MD 0.41 D, 95% CI 0.13 to 0.69), MFSCL (MD 0.30 D, 95% CI 0.19 to 0.41), and multifocal spectacles (MD 0.19 D, 95% CI 0.08 to 0.30). PPSLs (MD 0.34 D, 95% CI -0.08 to 0.76) may also reduce progression, but the results were inconsistent. For RGP, one study found a benefit and another found no difference with control. We found no difference in SER change for undercorrected SVLs (MD 0.02 D, 95% CI -0.05 to 0.09). At one year, in 36 studies (6263 participants), the median change in axial length for controls was 0.31 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.33 mm, 95% CI -0.35 to 0.30), MDA (MD -0.28 mm, 95% CI -0.38 to -0.17), LDA (MD -0.13 mm, 95% CI -0.21 to -0.05), orthokeratology (MD -0.19 mm, 95% CI -0.23 to -0.15), MFSCL (MD -0.11 mm, 95% CI -0.13 to -0.09), pirenzipine (MD -0.10 mm, 95% CI -0.18 to -0.02), PPSLs (MD -0.13 mm, 95% CI -0.24 to -0.03), and multifocal spectacles (MD -0.06 mm, 95% CI -0.09 to -0.04). We found little or no evidence that RGP (MD 0.02 mm, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.03 mm, 95% CI -0.10 to 0.03) or undercorrected SVLs (MD 0.05 mm, 95% CI -0.01 to 0.11) reduce axial length. At two years, in 21 studies (4169 participants), the median change in axial length for controls was 0.56 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.47mm, 95% CI -0.61 to -0.34), MDA (MD -0.33 mm, 95% CI -0.46 to -0.20), orthokeratology (MD -0.28 mm, (95% CI -0.38 to -0.19), LDA (MD -0.16 mm, 95% CI -0.20 to -0.12), MFSCL (MD -0.15 mm, 95% CI -0.19 to -0.12), and multifocal spectacles (MD -0.07 mm, 95% CI -0.12 to -0.03). PPSL may reduce progression (MD -0.20 mm, 95% CI -0.45 to 0.05) but results were inconsistent. We found little or no evidence that undercorrected SVLs (MD -0.01 mm, 95% CI -0.06 to 0.03) or RGP (MD 0.03 mm, 95% CI -0.05 to 0.12) reduce axial length. There was inconclusive evidence on whether treatment cessation increases myopia progression. Adverse events and treatment adherence were not consistently reported, and only one study reported quality of life. No studies reported environmental interventions reporting progression in children with myopia, and no economic evaluations assessed interventions for myopia control in children. Authors' conclusions: Studies mostly compared pharmacological and optical treatments to slow the progression of myopia with an inactive comparator. Effects at one year provided evidence that these interventions may slow refractive change and reduce axial elongation, although results were often heterogeneous. A smaller body of evidence is available at two or three years, and uncertainty remains about the sustained effect of these interventions. Longer-term and better-quality studies comparing myopia control interventions used alone or in combination are needed, and improved methods for monitoring and reporting adverse effects.
Article
Full-text available
Orthokeratology (ortho-k) is the process of deliberately reshaping the anterior cornea by utilising specialty contact lenses to temporarily and reversibly reduce refractive error after lens removal. Modern ortho-k utilises reverse geometry lens designs, made with highly oxygen permeable rigid materials, worn overnight to reshape the anterior cornea and provide temporary correction of refractive error. More recently, ortho-k has been extensively used to slow the progression of myopia in children. This report reviews the practice of ortho-k, including its history, mechanisms of refractive and ocular changes, current use in the correction of myopia, astigmatism, hyperopia, and presbyopia, and standard of care. Suitable candidates for ortho-k are described, along with the fitting process, factors impacting success, and the potential options for using newer lens designs. Ocular changes associated with ortho-k, such as alterations in corneal thickness, development of microcysts, pigmented arcs, and fibrillary lines are reviewed. The safety of ortho-k is extensively reviewed, along with an overview of non-compliant behaviours and appropriate disinfection regimens. Finally, the role of ortho-k in myopia management for children is discussed in terms of efficacy, safety, and potential mechanisms of myopia control, including the impact of factors such as initial fitting age, baseline refractive error, the role of peripheral defocus, higher order aberrations, pupil size, and treatment zone size.
ResearchGate has not been able to resolve any references for this publication.