Recent discovery of two distinct types of 150 km echoes, namely type-A and type-B, and subsequent progress in the large-scale kinetic simulation of photoelectron induced plasma waves have begun a new era in resolving the five decades long 150 km echoing riddle. In this paper, we present hitherto unrevealed three important and unexpected findings on the two distinct types of 150 km echoes based on
... [Show full abstract] Gadanki radar observations. Our observations show unexpected predominance of type-A echoes, strong seasonal dependence of both type-A and type-B echoes, and a surprising connection of the type-B echoes to the unusually deep solar minimum of 2008-2009. We discuss how these results provide important new clues in tethering the competing processes involved in the daytime 150 km echoes and have significance in the recently proposed photoelectron-induced plasma fluctuations as a potential mechanism for the 150 km echoes.