Research ProposalPDF Available

PhD Synopsis Adia

Authors:

Abstract and Figures

With the emergence of smart grid, it has become possible to optimize the existing energy system. For this purpose, the concept of Demand Side Management (DSM) has been revolutionized. In this research work, we propose a home energy management system which employs load shifting strategy of DSM to optimize the energy consumption patterns of a smart home. It aims at managing load in such a way to minimize electricity cost and peak to average ratio while maintaining user comfort through coordination among home appliances. In order to meet the load demand of electricity consumer, we schedule the load in day-ahead and real-time basis. We propose a fitness criterion which helps in balancing the load during On-peak and Off-peak hours. To achieve the aforementioned system objectives, we propose a hybrid algorithm which optimally manages load considering system constraints. Moreover, for the purpose of real-time rescheduling, we present the concept of coordination among home appliances. This helps scheduler to optimally decide the ON/OFF status of appliances so that the waiting time of electricity consumer can be reduced. For this purpose, we formulate our real-time rescheduling problem as knapsack problem and solve it through dynamic programming. This study also evaluates the behaviour of proposed technique for three pricing schemes including: time of use, real time pricing and critical peak pricing. The simulation section shows some of our initial results. These results illustrate that the work we have done so far efficiently achieves the desired objectives without violating any of the given system constraints.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
IIn this paper, we propose a home energy management system which employs load shifting strategy of demand side management to optimize the energy consumption patterns of a smart home. It aims to manage the load demand in an efficient way to minimize electricity cost and peak to average ratio while maintaining user comfort through coordination among home appliances. In order to meet the load demand of electricity consumers, we schedule the load in day-ahead and real-time basis. We propose a fitness criterion for proposed hybrid technique which helps in balancing the load during On-peak and Off-peak hours. Moreover, for real-time rescheduling, we present the concept of coordination among home appliances. This helps the scheduler to optimally decide the ON/OFF status of appliances in order to reduce the waiting time of appliance. For this purpose, we formulate our realtime rescheduling problem as knapsack problem and solve it through dynamic programming. This study also evaluates the behavior of the proposed technique for three pricing schemes including: time of use, real-time pricing and critical peak pricing. Simulation results illustrate the significance of the proposed optimization technique with 95% confidence interval.
Article
Full-text available
Energy consumption in the form of fuel or electricity is ubiquitous globally. Among energy types, electricity is crucial to human life in terms of cooking, warming and cooling of shelters, powering of electronic devices as well as commercial and industrial operations. Users of electronic devices sometimes consume fluctuating amounts of electricity generated from smart-grid infrastructure owned by the government or private investors. However, frequent imbalance is noticed between the demand and supply of electricity, hence effective planning is required to facilitate its distribution among consumers. Such effective planning is stimulated by the need to predict future consumption within a short period. Although several interesting classical techniques have been used for such predictions, they still require improvement for the purpose of reducing significant predictive errors when used for short-term load forecasting. This research develops a near-zero cooperative probabilistic scenario analysis and decision tree (PSA-DT) model to address the lacuna of enormous predictive error faced by the state-of-the-art models. The PSA-DT is based on a probabilistic technique in view of the uncertain nature of electricity consumption, complemented by a DT to reinforce the collaboration of the two techniques. Based on detailed experimental analytics on residential, commercial and industrial data loads, the PSA-DT model outperforms the state-of-the-art models in terms of accuracy to a near-zero error rate. This implies that its deployment for electricity demand planning will be of great benefit to various smart-grid operators and homes.
Article
Full-text available
With the tendency to move toward automated home energy management systems, the cooperative capacity of the smart grid “SG” became more and more significant. Distributed generation “DG”, in addition to the novel patterns of electricity production, enabled the two-way energy flow. The concern of this paper is on introducing an automated control technique for optimizing the operational performance of the DG units within the residential applications. This problem is formulated in a constrained-nonlinear optimization structure based on a detailed economic system. Genetic algorithm “GA” technique is used to solve this problem by defining the optimal settings of the DG units. Availability of two-way communication and the use of smart meters will enable online implementation and facilitate data collection within a fully automated system. Based on certain tariffs and realistic load curves, many scenarios of operation are analyzed and assessed. The results show that using optimization technique in cooperative with advanced smart meters can enhance the economic situation of the overall grid significantly. Copyright
Article
This paper presents a multi-objective problem, whose resolution is carried out using a task management methodology and an evolutionary algorithm. The multi-objective problem includes demand response to real-time prices (RTP). Two objectives have been considered: the daily cost of electricity and consumer dissatisfaction, minimizing both. Hourly prices corresponding to a tariff currently existing in Spain have been used to evaluate the daily cost of the consumed electricity. The degree of compliance with the daily task programming required by the user has been used to evaluate the dissatisfaction of the consumer. Using a multi-objective evolutionary algorithm (NSGA-II), it has been possible to use the concept of Pareto optimality in order to determine the best solutions for the problem. The results show that the applied methodology can lead to cost savings between 6% and 12% without substantially changing the consumption habits of the consumer. If the consumer is willing to change his/her consumption habits, then the cost savings can reach 50%. In addition to cost savings, this methodology can reduce energy losses in the electric grid because the shift of consumption from peak to off-peak hours.
Article
Technological advancements, such as smart appliances, have enabled residential buildings to become a true Cyber-Physical System (CPS), where the devices correspond to the physical system and the smart computation and control mechanisms define the cyber part. An important aspect of these residential cyber-physical systems is their large portion of the overall energy consumption in the electric grid. Researchers have proposed several methods to address the issue, targeting to reduce both the consumption and the cost associated with it, either individually or simultaneously. These methods include using renewable energy sources, energy storage devices, efficient control methods to maximize the benefits of these resources, and smart appliance rescheduling. However, a residential CPS, different than a common CPS, has a lot of direct human interaction within the system. Although the previous residential energy management methods are effective, they do not consider the inherent and dominant human factor. This paper develops a human-behavior-centric smart appliance rescheduling method for a residential neighborhood. We first show an accurate representation of the relationship between the activities of the household members and the power demand of the house. We use this model to efficiently generate several power profiles based on different household characteristics. Then, we formally model how flexible users are when rescheduling appliances. In contrast to previous studies, our work is able to capture the intrinsic human behavior related decisions and actions when automating the residential energy consumption. Our results show 16% energy savings and 22% reduction in peak power relative to the case without appliance rescheduling while accurately representing and meeting human-related constraints. We also demonstrate that ignoring human preferences can lead to up to more than 90% violation of user deadlines.
Article
Smart grid applications are becoming increasingly popular, as they aim to meet the energy requirements with innovative solutions by integrating the latest digital communications and advanced control technologies to the existing power grid. In smart metering management systems, several incentives, such as demand response programs, time-of-use and real-time pricing, are applied by utilities in order to encourage customers to reduce their load during peak load hours. However, it is usually a hassle for residential customers to manually respond to prices that vary over time. To overcome this limitation, this paper presents an Artificial Neural Network (ANN) as a support for a Home Energy Management (HEM) system based on Bluetooth Low Energy (BLE), called BluHEMS. The proposed mechanism is able to forecast the energy consumption conditions, i.e., to predict the home energy requirements at different times of the day or on different days of the week. The paper provides a detailed description of the ANN configuration, an analytical analysis on the embedding parameters for the derivation of best performance conditions values, and simulative assessments, obtained through Matlab and NS-2 simulations.
Article
In this paper, we comparatively evaluate the performance of home energy management controller which is designed on the basis of heuristic algorithms; genetic algorithm (GA), binary particle swarm optimization (BPSO) and ant colony optimization (ACO). In this regard, we introduce a generic architecture for demand side management (DSM) which integrates residential area domain with smart area domain via wide area network. In addition, problem formulation is carried via multiple knapsack problem. For energy pricing, combined model of time of use tariff and inclined block rates is used. Simulation results show that all designed models for energy management act significantly to achieve our objections and proven as a cost-effective solution to increase sustainability of smart grid. GA based energy management controller performs more efficiently than BPSO based energy management controller and ACO based energy management controller in terms of electricity bill reduction, peak to average ratio minimization and user comfort level maximization.
Article
The safe operation of appliances is of great concern to users. The safety risk increases when the appliances are in operation during periods when users are not at home or when they are asleep. In this paper, multi-objective demand side scheduling is investigated with consideration to the appliances’ operational safety together with the electricity cost and the operational delay. The formulation of appliances’ operational safety is proposed based on users’ at-home status and awake status. Then the relationships between the operational safety and the other two objectives are investigated through the approach of finding the Pareto-optimal front. Moreover, this approach is compared with the Weigh and Constraint approaches. As the Pareto-optimal front consists of a set of optimal solutions, this paper proposes a method to make the final scheduling decision based on the relationships among the multiple objectives. Simulation results demonstrate that the operational safety is improved with the sacrifice of the electricity cost and the operational delay, and that the approach of finding the Pareto-optimal front is effective in presenting comprehensive optimal solutions of the multi-objective demand side scheduling.
Article
Power companies are unable to withstand the consumer power requirement due to growing population, industries and buildings. The use of automated electrical appliances have increased exponentially in day to day activity. To maintain a possible balance between the supply and demand the power companies are introducing the demand side management approach. As a result, consumers are adopted for load shifting or scheduling their loads into off-peak hours to reduce the electricity bill. When all the consumers are trying to run the scheduled electrical appliances at the same time then the usage of energy in the off peak hour curve is marginally high. However, service providers are in need of a load balancing mechanism to avoid over or under utilization of the power grid. In the existing works, threshold limit is applied for a home to maintain the balanced load and if the consumer exceeds it then the additional charges are applied in the bill. To overcome the above mentioned drawbacks there is a need to increase the power usage with minimum cost and reducing the waiting time. For this purpose, in this paper we implement multi-objective evolutionary algorithm, which results in the cost reduction for energy usage and minimize the waiting time for appliance execution. The result reveals that if the consumer exceeds the threshold limit, the scheduled running electrical appliances temporarily stops to maintain the energy usage under threshold level for cost benefit and resumes the stopped appliances later. Further, the proposed technique minimizes the overall electricity bill and waiting time for the execution of electrical appliances.