Preprint

20 years of developments in optical frequency comb technology and applications

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Optical frequency combs were developed nearly two decades ago to support the world's most precise atomic clocks. Acting as precision optical synthesizers, frequency combs enable the precise transfer of phase and frequency information from a high-stability reference to hundreds of thousands of tones in the optical domain. This versatility, coupled with near-continuous spectroscopic coverage from the terahertz to the extreme ultra-violet, has enabled precision measurement capabilities in both fundamental and applied contexts. This review takes a tutorial approach to illustrate how 20 years of source development and technology has facilitated the journey of optical frequency combs from the lab into the field.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Microwave photonics and optics-based analog links are technologies that are being developed for a growing number of applications. Photodetectors that operate at high power levels are key components. Additionally, it is important for many of these applications that the photodiodes have millimeter-wave bandwidths and highly linear response. This paper reviews the performance of modified uni-traveling carrier photodiodes with respect to these characteristics.
Article
Full-text available
Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 μm (370 to 3333 cm-1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm-1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.
Article
Full-text available
C 60 at high resolution It generally takes more energy for molecules to vibrate than to rotate. A vibrational absorption band thus encompasses many distinct concurrent rotational transitions, but these tend to blur together when the molecules have more than a few atoms. Changala et al. succeeded in cooling C 60 fullerenes sufficiently to obtain rotational resolution within a C–C stretching band. Success hinged on careful optimization of argon buffer gas flow. Such quantum state–resolved features could aid characterization of fullerene-type compounds in exotic environments such as interstellar space. Science , this issue p. 49
Article
Full-text available
The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10⁻¹⁷ level1–5. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10⁻¹⁸, measurement instability of 3.2 × 10⁻¹⁹ and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5)stat ± (8)sys] × 10⁻¹⁹, where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential5–9. Near the surface of Earth, clock comparisons at the 1 × 10⁻¹⁸ level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena¹⁰, detect gravitational waves¹¹, test general relativity¹² and search for dark matter13–17.
Article
Full-text available
Multidimensional coherent spectroscopy (MDCS)1,2 is a powerful method that enables the measurement of homogeneous linewidths in inhomogenously broadened systems, many-body interactions and coupling between excited resonances, all of which are not simultaneously accessible by any other method. Current implementations of MDCS require a bulky apparatus and suffer from resolution and acquisition speed limitations that constrain their applications outside the laboratory3–5. Here, we propose and demonstrate an approach to nonlinear coherent spectroscopy that utilizes three slightly different repetition-rate frequency combs. Unlike traditional nonlinear methods, tri-comb spectroscopy uses only a single photodetector and no mechanical moving elements to enable faster acquisition times, while also providing comb resolution. As a proof of concept, a multidimensional coherent spectrum with comb cross-diagonal resolution is generated using only 365 ms of data. These improvements make MDCS relevant for systems with narrow resonances and it has the potential to be field deployable for chemical-sensing applications.
Article
Full-text available
Due to their frequency scaling and long-term coherence, frequency combs at the single-photon level can provide a fascinating platform for developments in quantum technology. Here we demonstrate frequency comb single-photon interferometry in an unheralded manner. We are able to induce coherence by erasing the which-way information of path-entangled photon pairs. The photon pairs are prepared using a dual parametric down-conversion pumped by a highly stable frequency comb laser and an ultra-narrow seed laser. This is conducted at the extremely low-conversion efficiency regime. The unique feature of our quantum interferometer is that the induced one-photon interference of the path-encoded single photons (signal), with multiple frequency components, is observed with a unit visibility without heralding conjugate photons (idler). We demonstrate that quantum information and frequency comb technology can be combined to realize quantum information platforms. We expect this will contribute to the application of quantum information and optical measurements beyond the classical limit.
Article
Full-text available
We demonstrate two low-noise 750 MHz ytterbium fiber frequency combs that are independently stabilized to a continuous-wave laser. A bulk electro-optic modulator and a single-stack piezo-electric transducer are employed as fast actuators for stabilizing the respective cavity length to heterodyne beat notes. Both combs exhibit in-loop fractional frequency instabilities of ∼ 10 − 18 at 1 s. To the best of our knowledge, this is the first demonstration of tightly phase-locked ( < 1 rad root mean square phase noise integrated from 0.1 Hz to 10 MHz) fiber frequency combs with 750 MHz fundamental repetition rate.
Article
Full-text available
We present a progress review on the advance of distance measurements made at KAIST by making use of mode-locked lasers as the light source to meet ever-growing industrial demands on the measurement precision and functionality. Diverse principles exploited for the progress are described in this review with focus on four attributes: first, the optical spectrum of a mode-locked laser, distinctively called the frequency comb, permits multi-wavelength interferometry to be realized for absolute distance measurement up to several meters without losing the nanometer precision of well-established laser-based phase-measuring displacement measurement. Second, the frequency comb enables spectrally resolved interferometry for absolute distance measurement to be conducted with a nanometer resolution by Fourier transform analysis of the dispersive interference data captured using a spectrometer. Third, the mode-locked laser in the time domain appears as a train of ultrashort pulses, of which the time-of-flight is measured with a picosecond resolution by control of the pulse repetition rate with reference to the radio-frequency atomic clock. Fourth, the pulse-to-pulse cross-correlation occurring in the optical frequency domain is down-converted to the radio-frequency domain to achieve femtosecond pulse timing precision by means of dual-comb interference. All these principles based on unique spectral and temporal characteristics of ultrashort mode-locked lasers are anticipated to make contributions to the advance of nanotechnology particularly in manufacturing and metrology.
Article
Full-text available
Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500–4,000 cm⁻¹), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis. © 2018 © The Author(s) 2018, under exclusive licence to Macmillan Publishers Limited, part of Springer Nature
Article
Full-text available
We demonstrated Doppler-free two-photon absorption dual-comb spectroscopy of 5S1/2 - 5D5/2 and 5D3/2 transitions of Rb. We employed simple pulse-shaping of the dual-comb source and eliminated Doppler-broadening backgrounds, which cause fitting errors of the Doppler-free signals. Moreover, to improve sensitivity, we investigated the coherence in dual-comb fluorescence signals and the coherent averaging method was applied to fluorescence dual-comb detection for the first time. The detection sensitivity was significantly improved by coherent averaging to reduce the noise floor. Observed Doppler-free spectra was fitted to Voigt profiles and we performed absolute frequency determination with a precision of about 100 kHz.
Article
Full-text available
Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1–5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as ¹³C, ¹⁸O, ¹⁷O, ¹⁵N, ³⁴S, ³³S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.
Article
Full-text available
Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m), integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB). The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells) through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model–data mismatch. It is also tested with field observations of (1) a non-leaking source location and (2) a source location where a controlled emission of 3.1 × 10-5 kg s-1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests). The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability) and measurement uncertainty of 5 ppb (1σ), when measurements are averaged over 2 min. The results of the synthetic and field data testing show that the new observing system and statistical approach greatly decreases the incidence of false alarms (that is, wrongly identifying a well site to be leaking) compared with the same tests that do not use the NZMB approach and therefore offers increased leak detection and sizing capabilities.
Article
Full-text available
We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10-17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein's general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today's best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10-18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.
Article
Full-text available
We present a hybrid fiber/waveguide design for a 100-MHz frequency comb that is fully self-referenced and temperature controlled with less than 5 W of electrical power. Self-referencing is achieved by supercontinuum generation in a silicon nitride waveguide, which requires much lower pulse energies (~200 pJ) than with highly nonlinear fiber. These low-energy pulses are achieved with an erbium fiber oscillator/amplifier pumped by two 250-mW passively-cooled pump diodes that consume less than 5 W of electrical power. The temperature tuning of the oscillator, necessary to stabilize the repetition rate in the presence of environmental temperature changes, is achieved by resistive heating of a section of gold-palladium-coated fiber within the laser cavity. By heating only the small thermal mass of the fiber, the repetition rate is tuned over 4.2 kHz (corresponding to an effective temperature change of 4.2 °C) with a fast time constant of 0.5 s, at a low power consumption of 0.077 W/°C, compared to 2.5 W/°C in the conventional 200-MHz comb design.
Article
Full-text available
Soliton microcombs with repetition rates as low as 1.86 GHz are demonstrated, thereby entering a regime more typical of table–top combs. Low rates are important in spectroscopy and relax requirements on comb processing electronics.
Article
Full-text available
Optical frequency combs based on ultrafast lasers have enabled numerous scientific breakthroughs. However, their use for commercial applications is limited by the complexity and cost of femtosecond laser technology. Ultrafast semiconductor lasers might change this issue as they can be mass produced in a cost-efficient way while providing large spectral coverage from a single technology. However, it has not been proven to date if ultrafast semiconductor lasers are suitable for stabilization of their carrier-envelope offset (CEO) frequency. Here we present what we believe to be the first CEO frequency stabilization of an ultrafast semiconductor disk laser (SDL). The optically pumped SDL is passively modelocked by a semiconductor saturable absorber mirror. It operates at a repetition rate of 1.8 GHz and a center wavelength of 1034 nm. The 273 fs pulses of the oscillator are amplified to an average power level of 6 W and temporally compressed down to 120 fs. A coherent octave-spanning supercontinuum spectrum is generated in a photonic crystal fiber. The CEO frequency is detected in a standard f – to – 2 f interferometer and phase locked to an external reference by feedback applied to the current of the SDL pump diode. This proof-of-principle demonstrates that ultrafast SDLs are suitable for CEO stabilization and constitutes a key step for further developments of this comb technology expected in the coming years.
Article
Full-text available
We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm². The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs.
Article
Full-text available
Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States, and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m), integrated open path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB). The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells) through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model-data mismatch. It is also tested with field observations of 1) a non-leaking source location and 2) a source location where a controlled emission of 2.1 E-5 kg s−1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrate the viability of the approach for the detection and sizing of very small (
Article
Full-text available
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
Article
Full-text available
Mid-infrared dual-comb spectroscopy has the potential to supplant conventional high-resolution Fourier transform spectroscopy in applications that require high resolution, accuracy, signal-to-noise ratio, and speed. Until now, dual-comb spectroscopy in the mid-infrared has been limited to narrow optical bandwidths or to low signal-to-noise ratios. Using a combination of digital signal processing and broadband frequency conversion in waveguides, we demonstrate a mid-infrared dual-comb spectrometer that can measure comb-tooth resolved spectra across an octave of bandwidth in the mid-infrared from 2.6-5.2 μ\mum with sub-MHz frequency precision and accuracy and with a spectral signal-to-noise ratio as high as 6500. As a demonstration, we measure the highly structured, broadband cross-section of propane (C3H8) in the 2860-3020 cm-1 region, the complex phase/amplitude spectrum of carbonyl sulfide (COS) in the 2000 to 2100 cm-1 region, and the complex spectra of methane, acetylene, and ethane in the 2860-3400 cm-1 region.
Article
Full-text available
Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.010137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.710157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.
Article
Full-text available
The comparison of optical atomic clocks with frequency instabilities reaching 1 part in 10 16 at 1 s will enable more stringent tests of fundamental physics. These comparisons, mediated by optical frequency combs, require optical synthesis and measurement with a performance better than, or comparable to, the best optical clocks. Fiber-based mode-locked lasers have shown great potential for compact, robust, and efficient optical clockwork but typically require multiple amplifier and fiber optic paths that limit the achievable fractional frequency stability near 1 part in 10 16 at 1 s. Here we describe an erbium-fiber laser frequency comb that overcomes these conventional challenges by ensuring that all critical fiber paths are common mode and within the servo-controlled feedback loop. Using this architecture, we demonstrate a fractional optical measurement uncertainty below 1 × 10 − 19 and fractional frequency instabilities less than 3 × 10 − 18 at 1 s and 1 × 10 − 19 at 1000 s.
Article
Full-text available
A new regime of precision radial-velocity measurements in the search for Earth-like exoplanets is being facilitated by high-resolution spectrographs calibrated by laser frequency combs. Here we review recent advances in the development of astrocomb technology, and discuss the state of the field going forward.
Article
Full-text available
The advent of novel measurement instrumentation can lead to paradigm shifts in scientific research. Optical atomic clocks, due to their unprecedented stability and uncertainty, are already being used to test physical theories and herald a revision of the International System of units (SI). However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy, a major challenge remains. This is their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations. Here we report the first field measurement campaign performed with a ubiquitously applicable 87^{87}Sr optical lattice clock. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km apart, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171^{171}Yb lattice clock also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.
Article
Full-text available
Using aluminum-nitride photonic-chip waveguides, we generate optical-frequency-comb supercontinuum spanning from 500 nm to 4000 nm with a 0.8 nJ seed pulse, and show that the spectrum can be tailored by changing the waveguide geometry. Since aluminum nitride exhibits both quadratic and cubic nonlinearities, the spectra feature simultaneous contributions from numerous nonlinear mechanisms: supercontinuum generation, difference-frequency generation, second-harmonic generation, and third-harmonic generation. As one application of integrating multiple nonlinear processes, we measure and stabilize the carrier-envelope-offset frequency of a laser comb by direct photodetection of the output light. Additionally, we generate ~0.3 mW in the 3000 nm to 4000 nm region, which is potentially useful for molecular spectroscopy. The combination of broadband light generation from the visible through the mid-infrared, combined with simplified self-referencing, provides a path towards robust comb systems for spectroscopy and metrology in the field.
Article
Full-text available
We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNE-SYRTE (Laboratoire National de métrologie et d'Essais—SYstème de Références Temps-Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around . They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10⁻¹⁶ for all the comparisons, which fully supports the stated PFSs' uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the ⁸⁷Rb ground state hyperfine transition frequency with an uncertainty of . This paper is dedicated to the memory of André Clairon, who passed away on 24 December 2015, for his pioneering and long-lasting efforts in atomic fountains. He also pioneered optical links from as early as 1997.
Article
Full-text available
We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the −30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.
Article
Full-text available
We report on a novel architecture for robust mode-locked femtosecond fiber lasers using a nonlinear optical loop mirror with all polarization-maintaining fibers. Due to a nonreciprocal phase shift, the loop mirror can be operated in a compact and efficient reflection mode, offering the possibility to reach high repetition rates and easy implementation of tuning elements. In particular, longitudinal mode spacing and carrier-envelope offset frequency may be controlled in order to operate the laser as an optical frequency comb. We demonstrate femtosecond pulse generation at three different wavelengths (1030, 1565, and 2050 nm) using Ytterbium, Erbium, and co-doped Thulium–Holmium as gain media, respectively. Robust operation is achieved for a wide range of parameters, including repetition rates from 10 to 250 MHz.
Article
Full-text available
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology.
Article
Full-text available
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broadband spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly used techniques. We finish this review by discussing potential future advances in techniques and applications of broadband spectroscopy.
Article
Full-text available
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 μ\mum. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<< 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate broadband high-SNR absorption spectroscopy of dichloromethane spanning 170 nm using the dual comb source over a 20 μ\mus acquisition time. Our device paves the way for compact and robust dual-comb spectrometers at nanosecond timescales.
Article
Full-text available
Low-noise, high-repetition-rate mode-locked solid-state lasers are attractive for precision measurement and microwave generation, but the best lasers in terms of noise performance still consist of complex, bulky optical setups, which limits their range of applications. In this Letter, we present an approach for producing highly stable pulse trains with a record-low residual integrated offset frequency phase noise of 14 mrad at 1 GHz fundamental repetition rate using a monolithic mode-locked solid-state laser. The compact monolithic design simplifies implementation of the laser by fixing the cavity parameters and operates using just 265 mW of 980 nm pump light.
Article
Full-text available
Optical solitons are waveforms that preserve their shape while travelling, relying on a balance of dispersion and nonlinearity. Data transmission schemes using solitons were heavily investigated in the 1980s promising to overcome the limitations imposed by dispersion of optical fibers. These approaches, however, were eventually abandoned in favour of WDM schemes, that are easier to implement and offer much better scalability to higher data rates. Here, we show that optical solitons may experience a comeback in optical terabit communications, this time not as a competitor, but as a key element of massively parallel WDM. Instead of encoding data on the soliton itself, we exploit continuously circulating solitons in Kerr-nonlinear microresonators to generate broadband optical frequency combs. In our experiments, we use two interleaved Kerr combs to transmit data on a total of 179 individual optical carriers that span the entire C and L bands. Using higher-order modulation formats (16QAM), net data rates exceeding 50 Tbit/s are attained, the highest value achieved with a chip-scale frequency comb source to date. Equally important, we demonstrate coherent detection of a WDM data stream by using a second Kerr soliton comb as a multi-wavelength local oscillator (LO) at the receiver. As a consequence, the microresonator soliton based sources exploit the scalability advantages for massively parallel optical communications at both the transmitter and the receiver side, contrasting commonly employed cw-lasers as optical LO for detection. Taken together the results prove the tremendous technological potential of photonic chip based microresonator soliton comb sources in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, microresonator soliton combs may bring chip scale petabit/s transceiver systems into reach.
Article
Full-text available
Photonic synthesis of radiofrequency revived the quest for unrivalled microwave purity by its seducing ability to convey the benefits of the optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fiber-based frequency comb and cutting-edge photo-detection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 x 10^-16 at 1 s and a timing noise floor below 41 zs.Hz^-1/2 (phase noise below -173 dBc.Hz^-1 for a 12 GHz carrier). This outclasses existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved by building two auxiliary low noise optoelectronic microwave reference and using a heterodyne cross-correlation scheme with lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. Furthermore, the measurement methods developed here can benefit the characterization of a broad range of signals, beyond comb-based systems.
Article
Full-text available
We have observed an ultra-broadband frequency comb with a wavelength range of at least 0.35 to 4.4 μm in a ridge-waveguide-type periodically poled lithium niobate device. The PPLN waveguide is pumped by a 1.0–2.4 μm wide frequency comb with an average power of 120 mW generated using an erbium-based mode-locked fiber laser and a following highly nonlinear fiber. The coherence of the extended comb is confirmed in both the visible (around 633 nm) and the mid-infrared regions.
Conference Paper
We explore the regime of strong thermal-noise correlations between a Kerr soliton and its environment, including a thermal-noise-limited carrier-envelope phase. By passive photothermal backaction, we effectively laser cool the soliton to 84 K.
Article
We describe an optical atomic clock based on quantum-logic spectroscopy of the S01↔P30 transition in Al+27 with a systematic uncertainty of 9.4×10−19 and a frequency stability of 1.2×10−15/τ. A Mg+25 ion is simultaneously trapped with the Al+27 ion and used for sympathetic cooling and state readout. Improvements in a new trap have led to reduced secular motion heating, compared to previous Al+27 clocks, enabling clock operation with ion secular motion near the three-dimensional ground state. Operating the clock with a lower trap drive frequency has reduced excess micromotion compared to previous Al+27 clocks. Both of these improvements have led to a reduced time-dilation shift uncertainty. Other systematic uncertainties including those due to blackbody radiation and the second-order Zeeman effect have also been reduced.
Article
Future free-space optical clock networks will require optical links for time and frequency transfer. In many potential realizations of these networks, these links will extend over long distances and will span moving platforms, e.g., ground-to-air or ground-to-satellite. In these cases, the transverse platform motion coupled with spatial variations in atmospheric optical turbulence will lead to a breakdown in the time-of-flight reciprocity upon which optical two-way time-frequency transfer is based. Here, we report experimental measurements of this effect by use of comb-based optical two-way time-frequency transfer over two spatially separated optical links. We find only a modest degradation in the time synchronization and frequency syntonization between two sites, in good agreement with theory. Based on this agreement, we can extrapolate this 2-km result to longer distances, finding only a few-fs timing noise increase due to turbulence for a link from ground to a midearth orbit satellite.
Article
Recent developments in chip-based nonlinear photonics offer the tantalizing prospect of realizing many applications that can use optical frequency comb devices that have form factors smaller than 1 cm ³ and that require less than 1 W of power. A key feature that enables such technology is the tight confinement of light due to the high refractive index contrast between the core and the cladding. This simultaneously produces high optical nonlinearities and allows for dispersion engineering to realize and phase match parametric nonlinear processes with laser-pointer powers across large spectral bandwidths. In this Review, we summarize the developments, applications and underlying physics of optical frequency comb generation in photonic-chip waveguides via supercontinuum generation and in microresonators via Kerr-comb generation that enable comb technology from the near-ultraviolet to the mid-infrared regime.
Article
Making ultrafast cycles of light The ability to generate coherent optical frequency combs has had a huge impact on precision metrology, imaging, and sensing applications. On closer inspection, the broadband “white light” generated through the interaction of femtosecond mode-locked laser pulses is composed of billions or trillions of precisely spaced wavelengths of light. Carlson et al. demonstrate an alternative to the mode-locked laser approach—the electro-optic modulation of a continuous-wave laser light source can also generate optical frequency combs (see the Perspective by Torres-Company). The electro-optic modulation techniques can operate at much higher repetition rates than mode-locked lasers, which means they could potentially yield even more precise measurements. Science , this issue p. 1358 ; see also p. 1316
Article
The kinetic analysis of irreversible protein reactions requires an analytical technique that provides access to time-dependent infrared spectra in a single shot. Here, we present a spectrometer based on dual frequency comb spectroscopy using mid-infrared frequency combs generated by quantum cascade lasers. Attenuation of the intensity of the combs by molecular vibrational resonances results in absorption spectra covering 55 cm⁻¹ in the fingerprint region. The setup has a native resolution of 0.3 cm⁻¹, noise levels in the µOD range, and achieves submicrosecond time resolution. We demonstrate the simultaneous recording of both spectra and transients of the photoactivated proton pump bacteriorhodopsin. More importantly, a single shot, i.e. a single visible light excitation, is sufficient to extract spectral and kinetic characteristics of several intermediates in the bacteriorhodopsin photocycle. This development paves the way for the non-invasive analysis of enzymatic conversions with high time resolution, broad spectral coverage, and minimal sample consumption.
Article
We present a novel approach to realize microresonator-comb-based high resolution spectroscopy that combines a fiber-laser cavity with a microresonator. Although the spectral resolution of a chip-based comb source is typically limited by the free spectral range (FSR) of the microresonator, we overcome this limit by tuning the 200-GHz repetition-rate comb over one FSR via control of an integrated heater. Our dual-cavity scheme allows for self-starting comb generation without the need for conventional pump-cavity detuning while achieving a spectral resolution equal to the comb linewidth. Wemeasure broadband molecular absorption spectra of acetylene by interleaving 800 spectra taken at 250-MHz per spectral step using a 60-GHz-coarse-resolution spectrometer and exploits advances of integrated heater which can locally and rapidly change the refractive index of a microresonator with low electrical consumption (0.9 GHz/mW), which is orders of magnitude lower than a fiber-based comb. This approach offers a path towards a simple, robust and low-power consumption CMOS-compatible platform capable of remote sensing.
Article
We perform a long distance measurement up to 1.2 km on the outdoor baseline by electro-optic dual-comb interferometry. A frequency comb pair is developed by phase modulating a continuous laser with a narrow linewidth, and the slightly different repetition frequencies are synchronized to the Rb clock via the signal generators. A RF electrical comb can be generated by multi-wavelength heterodyne interferometry, and thus, a series of synthetic wavelengths can be obtained, whose phases can be used to determine the distances. Compared with the reference values, the experimental results show an agreement within 379 μm in the 1180 m range. In the long-time experiments, the Allan deviation can be below 20 μm with an averaging time of 10 s, and can be further improved to be less than 600 nm when the averaging time is above 350 s at 435 m and 1180 m, respectively.
Article
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2x1017^{-17} at 1 second across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20x and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier-phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 attoseconds) at 1-sec averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.
Article
It has been known for some time that the steady-state pulse propagating inside a mode-locked laser is the optical equivalent of a mechanical flywheel. By measuring the timing error spectrum between phase-locked optical pulse trains emitted from two nearly identical 10 fs Ti:sapphire lasers, we demonstrate a record low integrated timing error of less than 13 as, measured from d.c. to the Nyquist frequency of the pulse train, which is 41 MHz. This corresponds to the lowest high-frequency phase noise ever recorded of -203 dBc Hz⁻¹ (assuming a 10 GHz carrier) for offset frequencies greater than 1 MHz. Such a highly uniform train of pulses will enable the synchronization of pump-probe experiments that measure the evolution dynamics of chemical1,2 and atomic processes3,4, evolving on femtosecond and attosecond timescales. The ultralow timing jitter of such pulse trains will also allow photonic analog-to-digital conversion of mid-infrared waveforms with a resolution of 6 bits⁵.
Article
Miniaturized optical ranging and tracking Light detection and ranging systems are used in many engineering and environmental sensing applications. Their relatively large size and cost, however, tend to be prohibitive for general use in autonomous vehicles and drones. Suh and Vahala and Trocha et al. show that optical frequency combs generated by microresonator devices can be used for precision ranging and the tracking of fast-moving objects. The compact size of the microresonators could broaden the scope for widespread applications, providing a platform for miniaturized laser ranging systems suitable for photonic integration. Science , this issue p. 884 , p. 887
Article
Dual-comb spectroscopy offers the potential for high accuracy combined with fast data acquisition. Applications are often limited, however, by the complexity of optical comb systems. Here we present dual-comb spectroscopy of water vapor using a substantially simplified single-laser system. Very good spectroscopy measurements with fast sampling rates are achieved with a free-running dual-comb mode-locked semiconductor disk laser. The absolute stability of the optical comb modes is characterized both for free-running operation and with simple microwave stabilization. This approach drastically reduces the complexity for dual-comb spectroscopy. Bandgap engineering to tune the center wavelength from the UV to the mid-IR could optimize frequency combs for specific gas targets, further enabling dual-comb spectroscopy for a wider range of industrial applications.
Article
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson--Mansouri--Sexl parameter α1.1×108|\alpha|\lesssim 1.1 \times10^{-8} quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives--Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.
Article
An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the D1D_1 and D2D_2 transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 μ\mus (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.