ThesisPDF Available

Energy Efficient Routing with Void Hole Alleviation in Underwater Wireless Sensor Networks

Authors:
Thesis

Energy Efficient Routing with Void Hole Alleviation in Underwater Wireless Sensor Networks

Abstract

Underwater Wireless Sensor Network (UWSN) is quite useful in monitoring different tasks including: from instrument monitoring to the climate recording and from pollution control to the prediction of natural disasters, etc. Recently, different routing protocols have been proposed in UWSN to explore the underwater environment for military and scientific purposes. In this regard, traditional transmission approaches increase the transmission overhead, i.e., packets' collision and congestion, which affect reliable data delivery. In addition, replacement of the sensors' battery in the harsh aquatic environment is also a challenging task. Therefore, to avoid the drastic failure of the network and to prolong the lifespan of the network, efficient routing protocols are needed. However, there are some challenges which affect the performance of the network, i.e., high Energy Consumption (EC), high End to End (E2E) delay, low Packet Delivery Ratio (PDR), minimum network lifetime, high probability of void hole occurrence, limited bandwidth and high bit error rate.~Thus, fast, energy efficient, reliable, collision and interference free routing protocols are required to improve the throughput of a network. Therefore, in this thesis, firstly, two routing protocols are proposed namely: Improved GEogrphic Depth Adjustment Routing (Im-GEDAR) and Co-Improved GEographic Depth Adjustment Routing (Co-Im-GEDAR) to maximize the PDR by minimizing the probability of void hole occurrence (with minimum EC). This enhanced PDR is attained by prohibiting the immutable forwarder nodes selection using three parameters including energy, depth and number of neighbor nodes. Moreover, the probability of void hole occurrence is minimized up to 30\% using fixed nodes deployment at different strategic locations in the network. Secondly, two energy efficient routing protocols namely: Shortest Path-Collision avoidance Based Energy-Efficient Routing (SP-CBE2R) protocol and Improved-Collision avoidance Based Energy-Efficient Routing (Im-CBE2R) protocol are proposed. These routing protocols minimize the probability of void hole occurrence, which minimizes the EC and E2E delay. In addition, both proposed routing protocols enhance the PDR and throughput of the network. In both routing protocols, greedy forwarding is opted to forward the data packets. Moving towards Wireless Sensor Networks (WSNs), during the data transmission, maximum energy is consumed in void hole recovery. In addition, location error and nodes' battery consumption are inevitable. Meanwhile, the loss of data packets and more EC degrade the performance of the network, significantly. Thirdly, three energy conservation routing protocols are implemented. These routing protocols are proposed to maximize the network stability (by avoiding void hole). Fourthly, a Proactive routing Approach with Energy efficient Path Selection (PA-EPS-Case I) is proposed to provide interference free communication. The proposed protocol adaptively changes its communication strategy depending on the type of the network, i.e., dense network, partially dense network and sparse network. Similarly, Bellman-Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three) protocols are proposed for an efficient, reliable, collision and interference free communication. Afterward, the algorithms for the proposed routing protocols are also presented. Feasible regions for proposed routing protocols using linear programming are also computed for optimal EC and maximum network throughput. Moreover, the scalability of the proposed routing protocols is also analyzed by varying the number of nodes. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocol. Meanwhile, comparative analysis is performed with state-of-the-art reactive and proactive routing protocols. The comparative analysis clearly shows that proposed routing protocols namely: Im-GEDAR and Co-Im-GEDAR achieved 21\% higher PDR and minimized 7\% EC than GEographic and opportunistic routing with DA based topology control for communication Recovery (GEDAR). The proposed routing protocols outperformed Transmission Adjustment Neighbor-node Approaching Distinct Energy Efficient Mates (TA-NADEEM) and minimized the void hole occurrence up to 30\%. Meanwhile, Im-CBE2R, SP-CBE2R, HA-ECMAE, HA-ECMAE2H and GTBPS-3H outperformed the counterparts. Furthermore, in PA-EPS-Case I, comparative analysis is performed with two cutting edge routing protocols namely: Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) and Cluster-based WDFAD-DBR (C-DBR). Results demonstrate that proposed protocol achieve 12.64\% higher PDR with 20\% decrease in E2E delay than C-DBR. Furthermore, the proposed routing protocol outperformed C-DBR in terms of packet drop ratio up to 14.29\% with an increase of EC up to 30\%. In the end, comparative analysis of BF-SPR-Three and EP-VIR with benchmarks disclose that the proposed routing protocols outperformed in order to provide efficient path selection and to minimize the void hole occurrence.
A preview of the PDF is not available
... Blockchain is a peer-to-peer network that eliminates the third party. The authors of [10] have worked on IoT-enabled WSNs and achieved efficient routing. The authors of [11][12][13][14][15][16][17][18][19][20] have implemented blockchain in various domains like IoTs, healthcare, smart grids and crowd sensing networks. ...
Conference Paper
Full-text available
With an increase in the development of Internet of Things (IoT), people have started using medical sensors for health monitoring purpose. The huge amount of health data generated by these sensors must be recorded and conveyed in a secure manner in order to take appropriate measures in critical conditions of patients. Additionally , privacy of the personal information of users must be preserved and the health records must be stored in a secure manner. Possession details of IoT devices must be stored electronically for eradication of counterfeited actions. The emerging blockchain is a distributed and transparent technology that provides a trusted and unalterable log of transactions. We have made a healthcare system using blockchain-based smart contracts which supports enrolments of patients and doctors in a health centre thereby increasing user participation in remote patient monitoring. Our system monitors the patients at distant places and generates alerts in case of emergency. We have used smart contracts for authorization of IoT devices and provided a legalised and secure way of using medical sensors. Using the blockchain technology , forgery and privacy hack in healthcare setting is reduced thereby increasing the trust of people in remote monitoring. We have provided graphical comparison of costs that verifies the successful deployment of contracts.
... Road congestion has increased manifold due to vast increase in the number of vehicles. To reduce this huge amount of energy, scientific and research community has focused on the EVs as a source of clean energy [16][17][18][19][20]. ...
Conference Paper
Full-text available
The explosive development of Intelligent Vehicles (IVs) has led to a complex network, which is difficult to manage due to the extensive communication of vehicles and storage of vehicles data. Due to increase in number of vehicles, IVs come up with large difficulties. Huge data generated by IVs is very difficult to handle due to limited storage and lack of intelligent management. Many information security and privacy problems are also related to the IV networks. Traditional centralized approaches are used for storage and security purposes to face some issues. Increasing number of vehicles expand the number of links in network and also leads to the intensive data. Lack of coordination of vehicles, reliability of the network and traffic among vehicles are also some of the major issues. These issues hinder the performance of the vehicle industry. We propose a consensus based mechanism using blockchain technology to manage the intensive data and authenticate the data of vehicles in the EV industry. This mechanism also ensures data privacy, security and also promotes data immutability. The transactions are stored in distributed ledger making transparency a realization. In a nutshell, blockchain technology incorporated in EVs sector is a revolutionary thing.
... Authors in [3][4][5] proposed a blockchain oriented secure service provisioning mechanism for the lightweight Internet of Things (IoT) devices. Authors applied smart contracts to check the validity of acquired services. ...
Conference Paper
Full-text available
Nowadays, Wireless Sensor Networks (WSNs) are facing various challenges. Cost efficiency, low energy consumption, reliable data communication between nodes and security are the major challenges in the field of WSNs. On the other hand, blockchain is also a very hot domain in this era. Blockchain has a remedy for some challenges, which are faced by the WSNs, e.g., secure data transactions and trustworthiness, etc. By keeping in mind the security issues, we induce blockchain into the WSNs. In short, we have proposed a trust model to avoid the malicious attacks and keep the transact data using the blockchain property of immutability. Moreover, an enhanced version of Proof of Stack (PoS), i.e., the Proof of Authority (PoA) consensus mechanism is being used to add a new node in the network. Additionally , the smart contract is also written to check the working status of nodes. Simulations are performed in order to record the transaction cost and execution cost.
... Different authors [17], [18], [19], [20] and [21] have used blockchain to tackle the several problems such as: under water routing, efficient energy routing data trading, data rights management,data trading and healthcare issues. ...
Conference Paper
Full-text available
Crowd Sensing Network (CSN) uses sensor embedded mobile phones for the collection of data for some specific task which can effectively save cost and time. The quality of collected data depends on the participation level from all entities of CSN, i.e., service provider, service consumers and data collectors. In comparison with the centralized traditional incentive mechanisms devised for CSN, we have proposed a decentralized system model where incentives are used to stimulate the involvement among data collectors and motivate the participants to join the network. Moreover, the issue of privacy leakage is tackled by using AES128 technique. Furthermore , the system is evaluated through analyzing the gas consumption of all the smart contracts, whereas, the encryption technique is validated through comparing the execution time with base paper methods.
... Different authors have used blockchain to tackle the several problems such as: data trading, energy trading, node recovery, efficient energy routing, edge servers participation, data rights management, healthcare issues, securing data, fair sharing of data and under water routing problems. In [17][18][19][20][21][22][23][24][25][26][27] authors, have provided solutions for the above mentioned problems using blockchain. ...
Conference Paper
Full-text available
Internet of Things (IoT) is growing exponentially and bringing revolution in today's modern society. IoT based smart devices are source of convenience to human life and producing huge amount of data on daily basis. This data is useful for consumers like industries, marketplaces, and researchers to extract valuable and functional data from raw data generated by these devices. This data is used by industries and developers to provide more efficient devices and services to users. Owner of the IoT device can generate revenue by selling IoT device data to interested consumers. However, on the other hand consumers do not trust the owner of IoT device for data trading and are not confident about the quality of data. Traditional systems for data trading have many limitations, such as they are centralized, lack reputation system, security and involve third party. Therefore in this paper, we have leveraged the IoT with blockchain technology to provide a trustful trading through automatic review system for monetizing IoT data. We have developed blockchain based review system for IoT data monetization using Ethereum smart contracts. All transactions are secure and payments are automated without any human intervention. Data quality is ensured to consumer through reviews and ratings about the data. Additionally, Ethereum blockchain system requires gas for every transaction. We have used 2 parameters: gas consumption, string input length and in terms of time and cost, and examined our model.
Chapter
Nowadays, Wireless Sensor Networks (WSNs) are facing various challenges. Cost efficiency, low energy consumption, reliable data communication between nodes and security are the major challenges in the field of WSNs. On the other hand, blockchain is also a very hot domain in this era. Blockchain has a remedy for some challenges, which are faced by the WSNs, e.g., secure data transactions and trustworthiness, etc. By keeping in mind the security issues, we induce blockchain into the WSNs. In short, we have proposed a trust model to avoid the malicious attacks and keep the transact data using the blockchain property of immutability. Moreover, an enhanced version of Proof of Stack (PoS), i.e., the Proof of Authority (PoA) consensus mechanism is being used to add a new node in the network. Additionally, the smart contract is also written to check the working status of nodes. Simulations are performed in order to record the transaction cost and execution cost.
Chapter
With an increase in the development of the Internet of Things (IoT), people have started using medical sensors for health monitoring purpose. The huge amount of health data generated by these sensors must be recorded and conveyed in a secure manner in order to take appropriate measures in critical conditions of patients. Additionally, privacy of the personal information of users must be preserved and the health records must be stored in a secure manner. Possession details of IoT devices must be stored electronically for eradication of counterfeited actions. The emerging blockchain is a distributed and transparent technology that provides a trusted and unalterable log of transactions. We have made a healthcare system using blockchain-based smart contracts which support enrollments of patients and doctors in a health center thereby increasing user participation in remote patient monitoring. Our system monitors the patients at distant places and generates alerts in case of emergency. We have used smart contracts for authorization of its devices and provided a legalized and secure way of using medical sensors. Using the blockchain technology, forgery and privacy hack in healthcare settings is reduced, thereby increasing the trust of people in remote monitoring. We have provided a graphical comparison of costs that verifies the successful deployment of contracts.
Chapter
The explosive development of Intelligent Vehicles (IVs) has led to a complex network, which is difficult to manage due to the extensive communication of vehicles and storage of vehicles’ data. Due to increase in number of vehicles, IVs come up with large difficulties. Huge data generated by IVs is very difficult to be handled due to limited storage and lack of intelligent management. Many security and privacy problems are also related to the IV networks. Traditional centralized approaches are used to deal with limited storage and security issues. Increasing number of vehicles expand the number of links in network and also leads to the intensive data. Lack of coordination of vehicles, reliability of the network and traffic among vehicles are some of the major issues. These issues hinder the performance of the vehicle industry. We propose a consensus based mechanism using blockchain technology to manage the intensive data and authenticate the data of vehicles in the EV industry. This mechanism also ensures data privacy, security and also promotes data immutability. The transactions are stored in distributed ledger to provide facility of transparency. In a nutshell, blockchain technology is incorporated in EVs sector to revolutionize the World.
Chapter
Internet of Things (IoT) is growing exponentially and bringing revolution in today’s modern society. IoT based smart devices are source of convenience to human life and producing huge amount of data on daily basis. This data is useful for consumers like industries, marketplaces, and researchers to extract valuable and functional data from raw data generated by these devices. This data is used by industries and developers to provide more efficient devices and services to users. Owner of the IoT device can generate revenue by selling IoT device data to interested consumers. However, on the other hand consumers do not trust the owner of IoT device for data trading and are not confident about the quality of data. Traditional systems for data trading have many limitations, such as they are centralized, lack reputation system, security and involve third party. Therefore in this paper, we have leveraged the IoT with blockchain technology to provide a trustful trading through automatic review system for monetizing IoT data. We have developed blockchain based review system for IoT data monetization using Ethereum smart contracts. All transactions are secure and payments are automated without any human intervention. Data quality is ensured to consumer through reviews and ratings about the data. Additionally, Ethereum blockchain system requires gas for every transaction. We have used 2 parameters: gas consumption, string input length and in terms of time and cost, and examined our model.
Thesis
Full-text available
Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. Decentralized classification fusion problem was the reason to use belief function based decision fusion approach in Wireless Sensor Networks (WSNs). With the consideration of improving the belief function fusion approach, we have proposed four classification techniques namely Enhanced K-Nearest Neighbor (EKNN), Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and Enhanced Recurrent Extreme Learning Machine (ERELM). In addition, WSNs are fallible to errors and faults because of their different software, hardware failures, and their deployment in diverse fields. These challenges require efficient fault detection methods to be used to detect faults in WSNs in a timely manner. We induced four type of faults: offset fault, gain fault, stuck-at fault, and out of bounds fault and used enhanced classification methods to solve the sensor failure issues. Experimental results show that ERELM has given the first best result for the improvement of belief function fusion approach. The other three proposed techniques ESVM, EELM, and EKNN have provided the second, third, and fourth best results, respectively. Proposed enhanced classifiers are used for fault detection and are evaluated using three performance metrics ,i.e., Detection Accuracy (DA), True Positive Rate (TPR), and Error Rate (ER). In this thesis, the owner of the (Internet of Thing) IoT device can generate revenueby selling IoT device’s data to interested users. However, on the other hand, users do not trust the owner of IoT device for data trading and are not confident about the quality of data. Traditional data trading systems have many limitations, as they involve third party and lack: decentralization, security and reputation mechanisms. Therefore, in this thesis, we have leveraged the IoTs with blockchain technology to provide trustful data trading through automatic review system for monetizing IoT’s data. We have developed blockchain based review system for IoT data monetization using Ethereum smart contracts. Review system encourages the owner to provide authenticated data and solve the issues regarding data integrity, fake reviews and conflict between entities. Data quality is ensured to users through reviews and ratings about the data, stored in blockchain. To maintain the data integrity, we have used Advanced Encryption Standard (AES)-256 encryption technique to encrypt data. All transactions are secure and payments are automated without any human intervention. Arbitrator entity is responsible to resolve problems between data owner and users. Incentive is provided to users and arbitrator in order to maintain the user participation and honesty. Additionally, Ethereum blockchain system requires gas for every transaction. Simulations are performed for the validation of our system. We have examined our model using three parameters: gas consumption, mining time and encryption time. Simulations show that the proposed methods outperform the existing techniques and give better results for belief function and fault detection in datascience WSNs. Additionally, blockchain based data trading in IoT system requires gas for every transaction. We have examined our model using three parameters: gas consumption, mining time and encryption time.
ResearchGate has not been able to resolve any references for this publication.