ThesisPDF Available

Ensuring Analyzing and Monetization of Data Using Data Science and Blockchain in loT Devices

Authors:

Abstract and Figures

Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. Decentralized classification fusion problem was the reason to use belief function based decision fusion approach in Wireless Sensor Networks (WSNs). With the consideration of improving the belief function fusion approach, we have proposed four classification techniques namely Enhanced K-Nearest Neighbor (EKNN), Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and Enhanced Recurrent Extreme Learning Machine (ERELM). In addition, WSNs are fallible to errors and faults because of their different software, hardware failures, and their deployment in diverse fields. These challenges require efficient fault detection methods to be used to detect faults in WSNs in a timely manner. We induced four type of faults: offset fault, gain fault, stuck-at fault, and out of bounds fault and used enhanced classification methods to solve the sensor failure issues. Experimental results show that ERELM has given the first best result for the improvement of belief function fusion approach. The other three proposed techniques ESVM, EELM, and EKNN have provided the second, third, and fourth best results, respectively. Proposed enhanced classifiers are used for fault detection and are evaluated using three performance metrics ,i.e., Detection Accuracy (DA), True Positive Rate (TPR), and Error Rate (ER). In this thesis, the owner of the (Internet of Thing) IoT device can generate revenueby selling IoT device’s data to interested users. However, on the other hand, users do not trust the owner of IoT device for data trading and are not confident about the quality of data. Traditional data trading systems have many limitations, as they involve third party and lack: decentralization, security and reputation mechanisms. Therefore, in this thesis, we have leveraged the IoTs with blockchain technology to provide trustful data trading through automatic review system for monetizing IoT’s data. We have developed blockchain based review system for IoT data monetization using Ethereum smart contracts. Review system encourages the owner to provide authenticated data and solve the issues regarding data integrity, fake reviews and conflict between entities. Data quality is ensured to users through reviews and ratings about the data, stored in blockchain. To maintain the data integrity, we have used Advanced Encryption Standard (AES)-256 encryption technique to encrypt data. All transactions are secure and payments are automated without any human intervention. Arbitrator entity is responsible to resolve problems between data owner and users. Incentive is provided to users and arbitrator in order to maintain the user participation and honesty. Additionally, Ethereum blockchain system requires gas for every transaction. Simulations are performed for the validation of our system. We have examined our model using three parameters: gas consumption, mining time and encryption time. Simulations show that the proposed methods outperform the existing techniques and give better results for belief function and fault detection in datascience WSNs. Additionally, blockchain based data trading in IoT system requires gas for every transaction. We have examined our model using three parameters: gas consumption, mining time and encryption time.
Content may be subject to copyright.
A preview of the PDF is not available
... The systems also provide the efficient use of devices data. Additionally, the authors in [30,31,32] presented a blockchain-based system to achieve trustfulness and authentication of data in the networks. ...
Thesis
Full-text available
In this thesis, a blockchain-based data sharing and access control system is proposed, for communication between the Internet of Things (IoT) devices. The proposed system is intended to overcome the issues related to trust and authentication for access control in IoT networks. Moreover, the objectives of the system are to achieve trustfulness, authorization, and authentication for data sharing in IoT networks. Multiple smart contracts such as Access Control Contract (ACC), Register Contract (RC), and Judge Contract (JC) are used to provide efficient access control management. Where ACC manages overall access control of the system, and RC is used to authenticate users in the system, JC implements the behavior judging method for detecting misbehavior of a subject (i.e., user). After the misbehavior detection, a penalty is defined for that subject. Several permission levels are set for IoT devices' users to share services with others. In the end, performance of the proposed system is analyzed by calculating cost consumption rate of smart contracts and their functions. A comparison is made between existing and proposed systems. Results show that the proposed system is efficient in terms of cost. The overall execution cost of the system is 6,900,000 gas units and the transaction cost is 5,200,000 gas units.
... In the literature, some designs and implementations have been proposed that use blockchain technology to secure the connections between devices, allowing for the traceability of data in supply chains, creating automatic and unsupervised markets [26], [17], [14], [16] Blockchain is a technology that makes use of an encryption mechanism through key pairs with which point to point connections are secured [31]. In addition, the use of blockchain technology allows for the use of smart contracts to automate processes [18]. ...
Chapter
Industry 4.0 (the Fourth Industrial Revolution) is a concept devised for improving the operation of modern factories through the use of the latest technologies, under paradigms such as the Industrial Internet of Things (IIoT) or Big Data. One of such technologies is Blockchain, which is able to provide industrial processes with security, trust, traceability, reliability and automation. This paper proposes a technological framework that combines an information sharing platform and a Blockchain platform. One of the main features of the this framework is the use of smart contracts for validating and auditing the content received throughout the production process to ensure the correct traceability of the data. The conclusion drawn from this study is that this technology is under-researched and has significant potential to support and enhance the industrial revolution. Moreover, this study identifies areas for future research.
... This work is different than the work presented by Park et al. [4] and by Javaid [5] because we evaluate the monetary cost of storing IoT sensor data in a public blockchain rather than the monetary cost to create an IoT marketplace. In addition, both of the aforementioned studies use a model based on strings of characters (with no sensor data or IoT device used) to experiment with their market model. ...
Article
Full-text available
Blockchain is a developing technology that can be utilized for secure data storage and sharing. In this work, we examine the cost of Blockchain-based data storage for constrained Internet of Things (IoT) devices. We had two phases in the study. In the first phase, we stored data retrieved from a temperature/humidity sensor connected to an Ethereum testnet blockchain using smart contracts in two different ways: first, appending the new data to the existing data, storing all sensor data; and second, overwriting the new data onto the existing data, storing only a recent portion of the data. In the second phase, we stored simulated data from several sensors on the blockchain assuming sensor data is numeric. We proposed a method for encoding the data from the sensors in one variable and compared the costs of storing the data in an array versus storing the encoded data from all sensors in one variable. We also compared the costs of carrying out the encoding within the smart contract versus outside the smart contract. In the first phase, our results indicate that overwriting data points is more cost-efficient than appending them. In the second phase, using the proposed encoding method to store the data from several sensors costs significantly less than storing the data in an array, if the encoding is done outside the smart contract. If the encoding is carried out in the smart contract, the cost is still less than storing the data in an array, however, the difference is not significant. The study shows that even though expensive, for applications where the integrity and transparency of data are crucial, storing IoT sensor data on Ethereum could be a reliable solution.
... The systems also provide the efficient use of devices data. Additionally, the authors in [30][31][32] presented a blockchain-based system to achieve trustfulness and authentication of data in the networks. ...
Article
Full-text available
In this paper, a blockchain-based data sharing and access control system is proposed, for communication between the Internet of Things (IoT) devices. The proposed system is intended to overcome the issues related to trust and authentication for access control in IoT networks. Moreover, the objectives of the system are to achieve trustfulness, authorization, and authentication for data sharing in IoT networks. Multiple smart contracts such as Access Control Contract (ACC), Register Contract (RC), and Judge Contract (JC) are used to provide efficient access control management. Where ACC manages overall access control of the system, and RC is used to authenticate users in the system, JC implements the behavior judging method for detecting misbehavior of a subject (i.e., user). After the misbehavior detection, a penalty is defined for that subject. Several permission levels are set for IoT devices' users to share services with others. In the end, performance of the proposed system is analyzed by calculating cost consumption rate of smart contracts and their functions. A comparison is made between existing and proposed systems. Results show that the proposed system is efficient in terms of cost. The overall execution cost of the system is 6,900,000 gas units and the transaction cost is 5,200,000 gas units.
Article
Full-text available
The Internet of Things (IoT) industry is growing very fast to transform factories, homes, farms and practically everything else to make them efficient and intelligent. IoT is applied in different resilient scenarios and applications. IoT faces lots of challenges due to lack of computational power, battery and storage resources. Fortunately, the rise of blockchain technology facilitates IoT in many security solutions. Using blockchain, communication between IoT and emerging computing technologies is made efficient. In this work, we propose a secure service provisioning scheme with a fair payment system for Lightweight Clients (LCs) based on blockchain. Furthermore, an incentive mechanism based on reputation is proposed. We use consortium blockchain with the Proof of Authority (PoA) consensus mechanism. Furthermore, we use Smart Contracts (SCs) to validate the services provided by the Service Providers (SPs) to the LCs, transfer cryptocurrency to the SPs and maintain the reputation of the SPs. Moreover, the Keccak256 hashing algorithm is used for converting the data of arbitrary size to the hash of fixed size. AES128 encryption technique is used to encrypt service codes before sending to the LCs. The simulation results show that the LCs receive validated services from the SPs at an affordable cost. The results also depict that the participation rate of SPs is increased because of the incentive mechanism.
Chapter
The Internet of Things (IoT) industry is growing very fast to transform factories, homes and farms to make them automatic and efficient. In the past, IoT is applied in different resilient scenarios and applications. IoT faces a lot of challenges due to the lack of computational power, battery and storage resources. Fortunately, the rise of blockchain technology facilitates IoT devices in security solutions. Nowadays, blockchain is used to make reliable and efficient communication among IoT devices and emerging computing technologies. In this paper, a blockchain-based secure service provisioning scheme is proposed for Lightweight Clients (LCs). Furthermore, an incentive mechanism based on reputation is proposed. We used consortium blockchain with the Proof of Authority (PoA) consensus mechanism. Furthermore, we used Smart Contracts (SCs) to validate the services provided by the Service Providers (SPs) to the LCs, transfer cryptocurrency to the SPs and maintain the reputation of the SPs. Moreover, the keccak256 hashing algorithm is used for converting the data of arbitrary size to the hash of fixed size. The simulation results show that the LCs receive validated services from the SPs at an affordable cost. The results also depict that the participation rate of SPs is increased because of the incentive mechanism.
Chapter
Nowadays, Wireless Sensor Networks (WSNs) are facing various challenges. Cost efficiency, low energy consumption, reliable data communication between nodes and security are the major challenges in the field of WSNs. On the other hand, blockchain is also a very hot domain in this era. Blockchain has a remedy for some challenges, which are faced by the WSNs, e.g., secure data transactions and trustworthiness, etc. By keeping in mind the security issues, we induce blockchain into the WSNs. In short, we have proposed a trust model to avoid the malicious attacks and keep the transact data using the blockchain property of immutability. Moreover, an enhanced version of Proof of Stack (PoS), i.e., the Proof of Authority (PoA) consensus mechanism is being used to add a new node in the network. Additionally, the smart contract is also written to check the working status of nodes. Simulations are performed in order to record the transaction cost and execution cost.
Chapter
The data sharing is the claim of actual scholars datasets to share and reuse in the future from any domain. The rise of blockchain technology has to increase universally and enhancement in share and reuse of scholars datasets. Despite there are numbers of security management frameworks for share data securely. However, those frameworks is a centralize based to make data share digitally. Its has restriction and owned by third party authority. The access and reuse of research datasets have a variety of issues it misinterpretation. In this aspect, the researcher or publisher has not to share data publicly due to reuse and perceive the risk in a data sharing environment. Preparing and storing data is difficult in contents sharing. To overcome the limitation and restriction, we proposed distributed data sharing management based on blockchain network (peer to peer P2P network). To signify on Ethereum framework, we proposed the case study of data sharing on the Ethereum smart contract platform to achieve the access.
Chapter
Nowaday’s energy demand and energy production are increasing. Renewable energy resources will play an important role in managing future production of electricity due to an increase in the development of societies. The centralized energy trading system faces a challenge in terms of fair energy distribution. Centralized existing energy trading system totally relies on a central system or third party, because the third party has many drawbacks in the form of record tampering or record altering. The fair transaction is the main issue in the energy trading sector. When the bitcoin is introduced in the market, the trust of Blockchain technology is increased. We proposed a Blockchain based energy trading system in peer to peer networks. Blockchain technology provides trust, security, and transparency for energy trading. In Blockchain technology, there is no necessary need of the third party in the energy supply sector. In our proposed paper, we facilitate the prosumer who produces renewable energy and sells surplus energy to the consumer. We achieved transparency, accuracy, efficiency in our proposed paper. Using a double auction process, we obtain low energy price and acheived consumer trust in energy trading.
Chapter
Wireless Sensor Network (WSN) is a network of nodes connected through a wireless channel. The sensor nodes in the network are resource constrained in terms of energy, storage and computational power. Node failure is a common phenomenon, which occurs due to environmental factors, adversary attacks, draining of battery power, etc. After node failure, recovery is challenging that needs a strong mechanism. In this paper, Blockchain-based Node Recovery (BNR) scheme for WSNs is proposed. In BNR scheme, recovery of failed nodes is on the basis of node degree. The working mechanism of the scheme is that firstly, the failed nodes are detected using the state (active or inactive) of Cluster Heads (CHs). In the second phase, the recovery process is initiated for inactive nodes. The main purpose of this step is to recover the failed CH, which ultimately results in restoring the active states of its member nodes. NodeRecovery Smart Contract (SC) is written for the purpose. The cost analysis for NodeRecovery is also performed in the proposed work. Moreover, the security analysis is performed to ensure the security of the proposed scheme. Effectiveness of the proposed model is shown by the simulation results.
Thesis
Full-text available
Underwater Wireless Sensor Network (UWSN) is quite useful in monitoring different tasks including: from instrument monitoring to the climate recording and from pollution control to the prediction of natural disasters, etc. Recently, different routing protocols have been proposed in UWSN to explore the underwater environment for military and scientific purposes. In this regard, traditional transmission approaches increase the transmission overhead, i.e., packets' collision and congestion, which affect reliable data delivery. In addition, replacement of the sensors' battery in the harsh aquatic environment is also a challenging task. Therefore, to avoid the drastic failure of the network and to prolong the lifespan of the network, efficient routing protocols are needed. However, there are some challenges which affect the performance of the network, i.e., high Energy Consumption (EC), high End to End (E2E) delay, low Packet Delivery Ratio (PDR), minimum network lifetime, high probability of void hole occurrence, limited bandwidth and high bit error rate.~Thus, fast, energy efficient, reliable, collision and interference free routing protocols are required to improve the throughput of a network. Therefore, in this thesis, firstly, two routing protocols are proposed namely: Improved GEogrphic Depth Adjustment Routing (Im-GEDAR) and Co-Improved GEographic Depth Adjustment Routing (Co-Im-GEDAR) to maximize the PDR by minimizing the probability of void hole occurrence (with minimum EC). This enhanced PDR is attained by prohibiting the immutable forwarder nodes selection using three parameters including energy, depth and number of neighbor nodes. Moreover, the probability of void hole occurrence is minimized up to 30\% using fixed nodes deployment at different strategic locations in the network. Secondly, two energy efficient routing protocols namely: Shortest Path-Collision avoidance Based Energy-Efficient Routing (SP-CBE2R) protocol and Improved-Collision avoidance Based Energy-Efficient Routing (Im-CBE2R) protocol are proposed. These routing protocols minimize the probability of void hole occurrence, which minimizes the EC and E2E delay. In addition, both proposed routing protocols enhance the PDR and throughput of the network. In both routing protocols, greedy forwarding is opted to forward the data packets. Moving towards Wireless Sensor Networks (WSNs), during the data transmission, maximum energy is consumed in void hole recovery. In addition, location error and nodes' battery consumption are inevitable. Meanwhile, the loss of data packets and more EC degrade the performance of the network, significantly. Thirdly, three energy conservation routing protocols are implemented. These routing protocols are proposed to maximize the network stability (by avoiding void hole). Fourthly, a Proactive routing Approach with Energy efficient Path Selection (PA-EPS-Case I) is proposed to provide interference free communication. The proposed protocol adaptively changes its communication strategy depending on the type of the network, i.e., dense network, partially dense network and sparse network. Similarly, Bellman-Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three) protocols are proposed for an efficient, reliable, collision and interference free communication. Afterward, the algorithms for the proposed routing protocols are also presented. Feasible regions for proposed routing protocols using linear programming are also computed for optimal EC and maximum network throughput. Moreover, the scalability of the proposed routing protocols is also analyzed by varying the number of nodes. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocol. Meanwhile, comparative analysis is performed with state-of-the-art reactive and proactive routing protocols. The comparative analysis clearly shows that proposed routing protocols namely: Im-GEDAR and Co-Im-GEDAR achieved 21\% higher PDR and minimized 7\% EC than GEographic and opportunistic routing with DA based topology control for communication Recovery (GEDAR). The proposed routing protocols outperformed Transmission Adjustment Neighbor-node Approaching Distinct Energy Efficient Mates (TA-NADEEM) and minimized the void hole occurrence up to 30\%. Meanwhile, Im-CBE2R, SP-CBE2R, HA-ECMAE, HA-ECMAE2H and GTBPS-3H outperformed the counterparts. Furthermore, in PA-EPS-Case I, comparative analysis is performed with two cutting edge routing protocols namely: Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) and Cluster-based WDFAD-DBR (C-DBR). Results demonstrate that proposed protocol achieve 12.64\% higher PDR with 20\% decrease in E2E delay than C-DBR. Furthermore, the proposed routing protocol outperformed C-DBR in terms of packet drop ratio up to 14.29\% with an increase of EC up to 30\%. In the end, comparative analysis of BF-SPR-Three and EP-VIR with benchmarks disclose that the proposed routing protocols outperformed in order to provide efficient path selection and to minimize the void hole occurrence.
Thesis
Full-text available
In a research community, data sharing is an essential step to gain maximum knowledge from the prior work. Existing data sharing platforms depend on trusted third party (TTP). Due to involvement of TTP, such systems lack trust, transparency, security and immutability. To over come these issues, this thesis proposed a blockchain based secure data sharing platform by leveraging the benefits of interplanetary file system (IPFS). A meta data is uploaded to IPFS server by owner and then divided into n secret shares. The proposed scheme achieves security and access control by executing the access roles written in smart contract by owner. Users are first authenticated through RSA signatures and then submit the requested amount as a price of digital content. After the successful delivery of data, a user is encouraged to register reviews about data by announcing customer incentives. In this way, maximum reviews are submitted against every file. In this scenario, decentralized storage, Ethereum blockchain, encryption and decryption schemes and incentive mechanism are combined. To implement the proposed scenario, smart contracts are written in solidity and deployed on local Ethereum test network. The proposed scheme achieves transparency, security, access control, authenticity of owner and quality of data. In simulation results, an analysis is performed on gas consumption and actual cost required in terms of USD, so that a good price estimate can be done while deploying the implemented scenario in real setup. Moreover, computational time for different encryption schemes are plotted to represent the performance of implemented scheme, which is shamir secret sharing (SSS). Results show that SSS shows least computational time as compared to advanced encryption standard (AES) 128 and 256.
Thesis
Full-text available
Wireless Sensor Networks (WSNs) are vulnerable to faults because of their deployment in unpredictable and hazardous environments. This makes WSN prone to failure such as software, hardware, and communication failures. Due to the sensor’s limited resources and diverse deployment fields, fault detection in WSNs has become a daunting task. To solve this problem, Support Vector Machine (SVM), Probabilistic Neural Network (PNN), Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), Random Forest (RF), and Convolutional Neural Network (CNN) classifiers are used for classification of gain, offset, spike, data loss, out of bounds, and stuck-at faults at the sensor level. Out of six faults, two of them are induced in the datasets, i.e., spike and data loss faults. Likewise, sensors embedded mobile phones are used for the collection of data for some specific task which can effectively save cost and time in Crowd Sensing Network (CSN). The quality of collected data depends on the participation level from all entities of CSN, i.e., service provider, service consumers and data collectors. In comparison with the centralized traditional incentive and reputation mechanisms, we propose a blockchain based incentive and reputation mechanism for CSNs, which mainly consists of three smart contracts. The incentives are used to stimulate the involvement of data collectors and motivate the participants to join the network. Also, the issue of privacy leakage is tackled by using Advanced Encryption Standard (AES128) technique. In addition to that, a reputation system is implemented to tackle the issues like untrustworthiness, fake reviews, and conflicts among entities. Through registering reviews, the system encourages data utilization by providing correct, consistent and reliable data. Furthermore, the results of first scenario are compared on the basis of their Detection Accuracy (DA), True Positive Rate (TPR), Matthews Correlation Coefficients (MCC), and F1-score. In this thesis, a comparative analysis is performed among the classifiers mentioned previously on real-world datasets and simulations demonstrate that the RF algorithm secures a better rate of fault detection than the rest of the classifiers. Similarly, the second scenario is evaluated through analyzing the gas consumption of all the smart contracts, whereas, the encryption technique is validated through comparing the execution time with base paper technique. Lastly, the reputation system is inspected through analyzing the gas consumption and mining time of input string length.
Conference Paper
Full-text available
Wireless Sensor Network (WSN) is a network of nodes connected through a wireless channel. The sensor nodes in the network are resource-constrained in terms of energy, storage and computational power. Node failure is a common phenomenon , which occurs due to environmental factors, adversary attacks, draining of battery power, etc. After node failure, recovery is challenging that needs a strong mechanism. In this paper, Blockchain based Node Recovery (BNR) scheme for WSNs is proposed. In BNR scheme, recovery of failed nodes is on the basis of node degree. The working mechanism of the scheme is that, first the failed nodes are detected using state (active or inactive) of the Cluster Heads (CHs). In the second phase, the recovery process is initiated for inactive nodes. The main purpose at this step is to recover the failed CH, which will ultimately result in restoring the active states of its member nodes. NodeRecovery Smart Contract (SC) is written for the purpose. Furthermore, cost analysis for NodeRecovery is performed. Also, security analysis for the proposed scheme is performed to assure the security. Simulation results show the effectiveness of the proposed model. 1 Background Wireless Sensor Network (WSN) has attracted extensive attention of researchers in recent times. It consists of several sensor nodes, working collectively to monitor the environmental conditions: temperature, humidity, sound and pollution levels. This data is then stored at a central location, which is termed as the sink or the base station. Such nodes have a microcontroller, radio transceiver, wireless communicating devices and an energy source (battery). The nodes have limited energy,
Conference Paper
Full-text available
The growing number of Renewable Energy Sources (RES) in the energy system provides new market approaches according to price and decentralized generation of electricity. Local markets, on which consumers and prosumers can trade locally with each other by produced renewable generation directly within their community. This approach creates a balance between generation and consumption in a decentralized manner. In this paper, a distributed technology of Blockchain is used, which highlights the decentralized nature of local market. Thus, provides a decentralized market platform for trading locally without the need of central intermediary through Periodic Double Auction (PDA) mechanism. With the introduction of Smart Grid (SG) systems, there have been improvements in how utility companies interact with customers with regards of electricity usage. However, since the readings are done through the internet, there is a tendency for the data to be compromised. However, customers do not know why they pay huge amount of bills. In this proposed system, users are able to do trading through PDA and get access of their own previous history.The Blockchain technology provides transparency and is utilized to mitigate the above mentioned problems. Smart contacts, are used to exclude the third party to provide a transparent system between users on the network.
Conference Paper
Full-text available
Crowd Sensing Network (CSN) uses sensor embedded mobile phones for the collection of data for some specific task which can effectively save cost and time. The quality of collected data depends on the participation level from all entities of CSN, i.e., service provider, service consumers and data collectors. In comparison with the centralized traditional incentive mechanisms devised for CSN, we have proposed a decentralized system model where incentives are used to stimulate the involvement among data collectors and motivate the participants to join the network. Moreover, the issue of privacy leakage is tackled by using AES128 technique. Furthermore , the system is evaluated through analyzing the gas consumption of all the smart contracts, whereas, the encryption technique is validated through comparing the execution time with base paper methods.