Content uploaded by Nicolas Johannes Kraff
Author content
All content in this area was uploaded by Nicolas Johannes Kraff on Aug 31, 2019
Content may be subject to copyright.
sed diam nonumy eirmod tempor
•invidunt ut labore et dolore magna
•aliquyam erat sed diam voluptua
•at vero eos et accusam et justo
duo
•dolores et ea rebum
•stet clita kasd gubergren kimata
sanctus est
Lorem ipsum dolor sit amet
•consetetur sadipscing elitr, ipsum dolor sit amet
•ipsum dolor sit amet
•consetetur sadipscing elitr
Results
Approach
Motivation
Aliquyam Erat Sed Diam Voluptua
Lorem ipsum dolor sit amet
•consetetur sadipscing elitr, ipsum dolor sit
amet
•ipsum dolor sit amet
•consetetur sadipscing elitr
Motivation and background
Concept
Findings
• 1.6 bio. people expected to live in slums
by the year 2025 (Woetzel et al., 2014)
• International appeal
to reduce poverty,
Sustainable Development
Goal 1 (United Nations, 2017)
• Temporal dynamics of complex
building alignments have
hardly been subject of research
(Kuer, Pfeer & Sliuzas, 2016)
• Classication of 3D buildings (LoD1) by visual
image interpretation (Taubenböck & Kra, 2014)
• Using 6 detailed spatial variables to measure
organic dynamics entirely, blockwise
and for single constructions:
1. building height
2. building size
3. building density
4. orientation of buildings
5. heterogeneity of the pattern
6. distance to neighbouring buildings
• Application of categorization (A-D) of
morphologic forms of urban poverty
(Taubenböck, Kra, & Wurm, 2018) i n K i b e r a f o r
2006 and 2014
Kibera‘s morphologic transformation
05/24/2014 © Google Earth
600 m1500
t2
t1
t1
t2
t1 + t2
Change in heterogeneity
< -0,5 Std. Dev.
-0,5 - 0,5 Std. Dev.
0,5 - 1,5 Std. Dev.
1,5 - 2,5 Std. Dev.
> 2,5 Std. Dev.
Max. (%)
195
22
13
Min. (%)
4-61-4
Change in
no. of buildings
building size
building height
• Signicant increase in number of
buildings (76.9%) and building
density (10.1%)
• Signicant decrease in
building sizes (-37.8%)
• General morphologic patterns
and category remain stable
• Population growth aecting the urban
morphology by splitting, re-building and re-
organizing buildings
Nicolas J. Kra, Hannes Taubenböck & Michael Wurm
German Remote Sensing Data Center (DFD) , German Aerospace Center (DLR), Wessling, Germany
Woetzel, J., Ram, S., Mischke, J., Garemo, N., Sankhe, S. (2014): A blueprint for addressing the global af-
fordable housing challenge. McKinsey Global Institute (2014)
United Nations (2017): The Sustainable Development Goals Report 2017. New York.
Kuer, M., Pfeer, K., & Sliuzas, R. (2016): Slums from space—15 years of slum mapping using remote sen-
sing. Remote Sensing, 8(6), 455.
Taubenböck, H., & Kra, N. J. (2014): The physical face of slums: A structural comparison of slums in Mum-
bai, India, based on remotely sensed data. Journal of Housing and the Built Environment, 29(1), 15–38 [On-
line rst 2013], print 03/2014) March 2014.
Taubenböck, H., Kra, N. J., & Wurm, M. (2018): The morphology of the Arrival City-A global categorization
based on literature surveys and remotely sensed data. Applied Geography, 92, 150-167.
11 Change in density (%)
Legend