Conference Paper

Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities –planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable ‘now-term’ as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid’s properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Grundmann et al. (2021); Ceriotti et al. (2021) Re-targeting of fictitiously on-going missions to the exercise target asteroid was again considered. Grundmann et al. (2019b) These studies followed up on earlier re-use oriented concepts. Grundmann et al. (2015) For comparison, the as of this writing ongoing samplereturn missions of the solar-electric propelled (SEP) Hayabusas and OSIRIS-REx are effectively of the SNRplus-fly-by type, including Earth itself as a "NEO" for the fast fly-by to drop the sample capsule. ...
... Between the envisaged size and performance of Gossamer-2 and Gossamer-3, it would be highly suited to map the natural and artificial debris environment in the Earth-Moon system. Grundmann et al. (2015Grundmann et al. ( , 2019b So far, all space debris sensors in Earth orbit have been deployed on ballistic orbits only subject to natural atmospheric decay. Using a solar sail, it becomes possible to map the entire cislunar space by slowly spiralling out with a very large detector area -the membrane itself. ...
Article
Full-text available
For precursor solar sail activities a strategy for a controlled deployment of large membranes was developed based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. This strategy required four autonomous deployment units that were jettisoned after the deployment is completed. In order to reduce the complexity of the system an adaptation of that deployment strategy is investigated. A baseline design for the deployment mechanisms is established that allows the deployment actuation from a central bus system in order to reduce the complexity of the system. The mass of such a sail craft will be slightly increased but its performance is still be reasonable for first solar sail missions. The presented design will be demonstrated on breadboard level showing the feasibility of the deployment strategy. The characteristic acceleration will be evaluated and compared to the requirements of certain proposed solar sail missions.
Article
Full-text available
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules. Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids. At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)², i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms. Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.
Article
Full-text available
Near-Earth object (NEO) in-situ exploration can provide invaluable information for science, possible future deflection actions and resource utilisation. This is only possible with space missions which approach the asteroid from its vicinity, i.e. rendezvous. This paper explores the use of solar sailing as means of propulsion for NEO rendezvous missions. Given the current state of sail technology, we search for multiple rendezvous missions of up to ten years and characteristic acceleration of up to 0.10 mm/s². Using a tree-search technique and subsequent trajectory optimisation, we find numerous options of up to three NEO encounters in the launch window 2019-2027. In addition, we explore steerable and throttleable low-thrust (e.g. solar-electric) rendezvous to a particular group of NEOs, the Taurid swarm. We show that an acceleration of 0.23 mm/s² would suffice for a rendezvous in approximately 2000 days, while shorter transfers are available as the acceleration increases. Finally, we show low-thrust options (0.3 mm/s²) to the fictitious asteroid 2019 PDC, as part of an asteroid deflection exercise.
Conference Paper
Full-text available
Sample-return missions to near-Earth asteroids (NEAs) are invaluable for the scientific community to learn more about the initial stages of the solar system formation and life evolution. Thanks to its high specific impulse, a low-thrust propulsion technology is capable of performing multiple asteroid rendezvouses (to collect samples) and eventually returning to Earth. To identify the best asteroid sequences with return to Earth, this work proposes to employ machine learning techniques and, specifically, artificial neural networks (ANNs), to quickly estimate the cost of each transfer between asteroids. The ANN is integrated within a sequence search algorithm based on a tree search, which identifies the asteroid sequences and selects the best ones in terms of propellant mass required and interest value. This algorithm can design the sequences so that specific asteroids of interest, for which a sample return would be more valuable, can be targeted. A pseudospectral optimal control solver is then used to find the optimal trajectory and control history. The performance of the proposed methodology is assessed by analyzing three distinctive NEA sequences ending with return to Earth and rendezvous. A near-term low-thrust propulsion enables to rendezvous five asteroids, and ideally return samples to Earth in about ten years from launch. It is demonstrated that visiting more interesting asteroids from the scientific point of view increases the appeal of the sequence at the cost of a greater propellant mass required.
ResearchGate has not been able to resolve any references for this publication.