Content uploaded by Gina Marano
Author content
All content in this area was uploaded by Gina Marano on Aug 14, 2019
Content may be subject to copyright.
Forests2019,10,690;doi:10.3390/f10080690www.mdpi.com/journal/forests
Article
AGeospatialDecisionSupportSystemToolfor
SupportingIntegratedForestKnowledgeatthe
LandscapeScale
GinaMarano1,GiulianoLangella1,2,*,AngeloBasile2,3,FrancescoCona1,CarloDeMichele4,
PieroManna2,3,MaurizioTeobaldelli1,AntonioSaracino1andFabioTerribile1,2
1DepartmentofAgriculture,UniversityofNapoliFedericoII,ViaUniversità100,
80055Portici(Naples),Italy
2CRISPResearchCenter,DepartmentofAgriculture,UniversityofNapoliFedericoII,ViaUniversità100,
80055Portici(Naples),Italy
3InstituteforMediterraneanAgriculturalandForestSystems,NationalResearchCouncil,ViaPatacca85,
80056Ercolano,Italy
4AriespaceSrl,CentroDirezionale,IsolaA3,80143Naples,Italy
*Correspondence:glangella@unina.it;Tel.:+39‐08‐1253‐2136
Received:23May2019;Accepted:12August2019;Published:14August2019
Abstract:Forestsarepartofacomplexlandscapemosaicandplayacrucialroleforpeopleliving
bothinruralandurbanizedspaces.RecentprogressesinmodellingandDecisionSupportSystem
(DSS)appliedtotheforestrysectorpromisetoimprovepublicparticipativeforestmanagementand
decision‐makinginplanningandconservationissues.However,mostDSSarenotopen‐source
systems,beinginmanycasessoftwaredesignedforsite‐specificapplicationsinforestecosystems.
Furthermore,someofthesesystemsoftenmisschallengingtheintegrationofotherlanduseswithin
thelandscapematrix,whichisakeyissueinmodernforestryplanningaimingatlinkingrecent
developmentsinopen‐sourceSpatial‐DSSsystemstosectorialforestknowledge.Thispaperaimsat
demonstratingthatanewtypeofS‐DSS,developedwithintheLife+projectSOILCONSWEBover
anopen‐sourceGeospatialCyber‐Infrastructure(GCI)platform,canprovideastrategicweb‐based
operationaltoolforforestresourcesmanagementandmulti‐purposeplanning.Inordertoperform
simulationmodelling,allaccessibleviatheWeb,theGCIplatformsupportsacquisitionand
processingofbothstaticanddynamicdata(e.g.,spatialdistributionofsoilandforesttypes,growing
stockandyield),datavisualizationandcomputeron‐the‐flyapplications.TheDSSforestrytoolhas
beenappliedtoaforestareaof5,574hainthesouthernApenninesofPeninsularItaly,andithas
beendesignedtoaddressforestknowledgeandmanagementprovidingoperationalsupportto
privateforestownersanddecision‐makersinvolvedinmanagementofforestlandscapeatdifferent
levels.SuchageospatialS‐DSStoolforsupportingintegratedforestknowledgeatlandscape
representsapromisingtooltoimplementsustainableforestmanagementandplanning.Resultsand
outputoftheplatformwillbeshownthroughashortselectionofpracticalcasestudies.
Keywords:spatialdecisionsupportsystem;forestry;LiDAR;simulation
1.Introduction
1.1.ForestDSSSystems
Forestplanningprocessesandmanagementoptionsarecomplexinterconnectedtasks,since
nowadaystheymustcopewiththemultifunctionalrolesofforestecosystemswiththedifferent
spatialandtemporalscalesofdecision‐makingandfinallythechangingeconomic,administrative,
Forests2019,10,6902of25
legal,andsocialscenarios[1].SincetheestablishmentofthenewparadigmofSustainableForest
Management(namedasSFM)bytheHelsinkiresolution[2,3],policymakersaremorethanever
advocatingforadvancedandintegratedforestknowledgeatlandscapescale.Definitely,theforestry
sectorisevolvingintoamulti‐purposerolewhichconcernsovertheenvironment,biodiversity,
protection,provisionofamenityandrecreationalfacilitiesthataremergingtogetherwiththemore
traditionalrequirementsoftimberproduction[4].Inforestscience,severalmodelshavebeen
developedinthelastdecadetoprovidebasicoperationaltoolstobeappliedwithinvariousforest
managementcontexts[5].Forinstance,yieldandgrowthmodelshaveclassicallybeenusedtoassess
profits,toplanharvestingschedulesandsilviculturaltreatmentofevenagedforeststandsandhave
beenfurtherimplementedinmoresophisticatedpredictionmodelsandresearchtools[6].Thelarge
numberofissuesrelatingtoforestmanagementmakethedevelopmentofforestplansacomplex
process[1].Asaconsequence,objectivesandapproacheshavebeenchangingovertimeand
accordinglythedemandfortoolstosupportplanninganddecision‐makinghasevolved[7]andwill
probablykeeponevolving.Indeed,forestresearchcommunityrealized—muchearlierthanmany
otherscientificdomains—thatitwasessentialtoimplementsuchmodelsintooperationalDecision
SupportSystem(DSS),inordertoassistoperationalforestplanningandmanagementatseveral
scales.Sincethe1980s,DecisionSupportSystems(DSSs)havebecomepopularplatformsfor
transferringknowledgefromscienceintopracticalforestmanagement[8],henceforthseveralDSSs
havebeenspecificallydesignedanddevelopedwithinforestcommunities[9]aimingatmodelling
andthenmanagingforestecosystemsforseveralpurposessuchasproduction,protectionand
recreationalfunctions.DSSsappliedtoforestryandintegratedwithGIStoolsincludealsospatial
components,thereforeaimingattacklingterritorialproblemsandinvolvingstakeholdersin
participatoryprocesses[1].TheGIStoolintegrationwithinDSShasledtothesteadydevelopmentof
spatialDSSs(S‐DSSs)thatrepresent.valuabletoolsforhelpingdecision‐makersanalyzingcomplex
spatialproblemsintotheircomponentsforsupportingmoreefficientlymultiplepurposeforest
resourceplanning[10–14].Sinceecologicalandenvironmentalconsiderationsareimportantfor
individualforest‐owners/decision‐makersaswellforsocietyinitswhole,thereisanincreasingneed
togethigherqualityinformationonthespatialstructureofforestsandtodevelopmeansbywhich
spatialobjectivescanbeexplicitlyincludedinforestplanning[11].NewtechnologiessuchasUAVs
(UnmannedAerialVehiclesuchasdrones)andLiDAR(LightDetectionAndRanging)representnew
foreststandparametersacquisitiontoolsmakingitpossibletoobtainaccuratedataoverlargeareas
[15].LiDARsystems,commonlymountedonsatellite,airplanesorhelicopters,representasolid
innovationformappingforestattributesonspatiallyextensiveareasandtheirusefindsseveral
applicationsinforestinventoryaswellastosupportdecision‐makingsustainableforestmanagement
processes[16].Forexample,someS‐DSShaveprovenanovelapplicationofLiDARdatatoassess
woodproductionundervariousharvestingoptionsortheintegrationofavisualizationsystemwith
modellingasanewapproachtoforestmanagementplanninganddecision‐making[17–19].The
applicationofdecisionsupporttoolscanhelptoimprovetheeffectivenessofthedecisionalprocess,
thususingresourcesandmanageforestsefficiently[20]especiallywhenspatialinformationis
integratedwithinthesystem.SomeexamplesofS‐DSSincludeAFFOREST[21],Wildalpen[22],FOpP
[23],Biomasfor[24],andTooFE[25].Ascommonground,themajorityoftheseS‐DSShasbeen
developedtotacklesite‐specificforestmanagementissuessuchastheneedofcombiningsilvicultural
andharvestingoperationsorcarryoutregenerationplanninginprotectionforests[26].However,it
shouldbenotedthatthesesystemsaremostlyconceivedintheshapeofsoftwaredevelopedfor
professionalusetobeappliedtoaspecificgeographicareaforwhichtheyhavebeenspecifically
designed,inaddition,fewonlinetoolsaredesignedforprivateandnon‐professionalforestowners
inauser‐friendlyenvironment[27].Webtechnologiescanhelpbuildingplatform‐independent
distributedcomputationfacilitatingtheexchangeofcomplexinformation[28].Recentapplications
ofweb‐GISservicesallowustoovercomelimitationsinpublicparticipationprocessesenabling
publicparticipationindecisionsdesigningtoolsthatsupportunderstandingofenvironmentalissues,
developandevaluatealternativesprojectingtheconsequencesofdifferentcoursesofaction[7].The
needofspatialanalysis,open‐sourceplatformandeasytousewebcapabilitiesisgrowingdayby
Forests2019,10,6903of25
dayassuchsystemsarecapableofoffering—throughasmartWeb‐basedsystem—atrulyintegrated
geospatialknowledgearchivewhichcanbeuseddirectlyandfreelybyanyenduser[29].Inorderto
getsomeunderstandingaboutwhetherandhowopensourceandwebcapabilitieshavebeen
implementedintoS‐DSSappliedtoforestry,inparticularforsupportingforestmanagementplanning
[30],wehavereviewedcurrentDSSliterature,primarilytheworkscarriedoutbyPackalen[9]and
Borges[31].Wefoundoutthatamongthe62DSS‐likesoftwaresystemsdealingwithforest
management(from23countries)andreportedwithinFORSYSWiki,noneofthemhadallofthe
followingattributes:(i)open‐sourcecodes,(ii)web‐basedsystems,and(iii)geospatialanalysis[9].A
detailedmetanalysisoverviewaboutthe62ForestDSSsystemsisprovidedintheSupplementaryMaterials
TableS1.SomeofthemostpromisinglinesoffutureDSSdevelopmentsincludetheuseofthewebto
enableeasyaccesstopublicdataandenhancethecapabilityofparticipatorydecision‐making
processes[8].RecentdevelopmentsinS‐DSSsoccurringinotherdomains[32–34]aredelivering
interestingopportunitiesinlandmanagementandplanningbycombiningopen‐accessWEB‐GIS
systemsandopen‐sourcecodes.Infact,thiscombinationprovides‐throughtheweb‐freelyaccessof
criticalgeospatialdatatoanyend‐userwhiletheopen‐sourceapproachcreatesstrongsynergieswith
newcodedevelopment,especiallythoseoccurringinotherdomains.Boththesefeaturesempower
theso‐calledFAIR(Findable,Accessible,InteroperableandReusable)criteria[35]—Guiding
PrinciplesforscientificdatamanagementandstewardshipcravedbytheEuropeanUnion—which
inturnenablefuturereuseofdataandmodels.AreviewconductedbyMcIntosh[36]investigated
keysuccessandweakpointsofseveralDSSsthathavebeendevelopedinthepastacrossseveral
countriesandwithdifferentfocus.Themainchallengehighlightedregardstheoperationaladoption
ofDSSbyend‐users.Thestudyoutlineshow,despitetheeffortininvolvingpublicparticipationin
shapingDSS,mostDSShaveeithernotadoptedatallor,ifused,onlyforashorttime.Inaddition,
consideringthemanyDSSavailableforforestmanagementandplanning,wewonderwhetherthe
proliferationofmanyS‐DSSsystemseachoneofthoseadaptedtoaspecificsiteisagoodwaytogo.
Weshallseekforintegrationandadaptabilitytakingalsointoaccountthatthemoregeneralasystem
isintendedtobe,themoreadaptableitmustbeontheprogrammingside,becausethedevelopers
willneedtoalter,addandremovemanyfeaturesastheyencounternewusersinnewsituations[7].
Thus,inforestrywemustseekforS‐DSSsystemsthatincludethefollowingfeatures:interoperability,
replicability,modularity,web‐basedandopensource.
1.2.Aims
Consideringtheaboveframework,thegeneralaimofthispaperistodemonstratethatanew
typeofDSSsdevelopedoverGeospatialCyber‐Infrastructure(GCI)platformcanprovideastrategic
andflexibleweb‐basedoperationaltooltochallengemultifunctionalandsustainableforestry
knowledgeforplanningandmanagementpurposesatthelandscapelevel,withademonstrationof
potentialdeliveriesathighspatialdetail(e.g.,CadastralID)andforlargespatialextentareas.The
forestrytoolreportedhere(namedGIFTtoolwhichstandsfor“GeospatialIntegratedForest
knowledgeTool”)isacomponentofamoregeneralmultipurposeGeospatialDecisionSupport
System(S‐DSS)namedSOILCONSWEB[29],currentlyinuse(www.landconsultingweb.eu)andfully
activewithinthelimitoftheadministrativeboundariesofTelesinaValley(SouthItaly,Benevento).
ThissystemiscurrentlyunderfurtherdevelopmentundertheH2020LANDSUPPORTproject
(www.landsupport.eu).HeretheForestrymanagementplanningsupporttoolwillbedescribedwith
itsmainfunctionalitiesandmodellingengines.WechosetoshapeGIFTfocusingonforest
managementplanninginordertocomplywiththefollowings:(i)thenecessityofsafeguardingand
maintainingtheforestecosystemanditsfunctionsintheareaofstudyprovidingatoolthatcould
improvetheunderstandingofgoodsandservicesderivedfromforests;(ii)theforestowner’sneeds
ofmanagingforestresources,providingsupporttotheplanningandanassessmentoftheactivities
necessarytomeettherequestedobjectives[30].
Moreover,throughashortselectionofapplicativecasestudiestwomaindomainsof
applicationswillbedemonstrated,namely:(i)theuseofLiDARdatatoberelatedtoforest
productivity(i.e.,growingstock)astoolforforestmanagementplanning,(ii)landslideandsoil
Forests2019,10,6904of25
erosionriskanalysisconductedonthebasisofgeomorphologyandsoildatamodellingtosupport
forestroadnetworkconcessionsbythepublicauthoritywithintheCamposauroRegionalPark’s
protectedarea.
2.MaterialsandMethods
2.1.TheStudyArea
TheGIFTforestrytool—appliedtoaforestareaof5.574ha(SouthItaly)—hasbeendesignedto
addresssustainableforestryknowledgeforintegratedforestmanagementplanninginacomplex
landscape,providingoperationalsupporttoforestersanddecision‐makersinvolvedinforest
planningatthelandscapescale.Thestudyarea(Figure1)istheTelesinaValley(~20,000ha,
41°12’59.37″N,14°31’33.43″EinsouthernApennines,Italy),featuringacultivatedflatarea,crossed
bytheCaloreriverandlyingbetweenthenorthernandsouthernslopesrespectivelybytheMatese
mountainchainandtheisolatedcalcareousTaburno‐Camposauromassif.TheTelesinaValley
representsamosaicofdifferentvegetationandlandusetypes,includingMediterraneanbroadleaf—
evergreenanddeciduous—forests,coniferplantations,pasturegrasslands,vineyards,olivegroves
andurbansettlements[37].Theterritoryhasalargeforestrylandscape(27.7%ofthestudyarea)and
itisalsoknownassuitablefortheproductionofhigh‐qualityagriculture.Theareaincludes60Soil
TypologicalUnits,themainsoiltypesincludesSilandic,Melanic,Mollic,Eutrosilic,VitricAndosols,
HaplicandVerticCalcisols,VerticLepticCambisol,HaplicRegosol,VitricPhaeozem,VitricLuvisol,
CalcicKastanozem,VitricKastanozem,FluvicCambisol(IUSSWorkingGroupWRB.2015).Soil
typesarespatiallyaggregatedinto47SoilMappingUnits.Theimportanceofthestudyareais
increasedduetothefactthatTelesinavalleyhoststhreedifferentSitesofCommunityImportance
(SCIs)underthe92/43/EECHabitatDirectivenamely:Camposauro(IT8020007),MonteMutria(IT
802009)andtheFiumiVolturnoandCaloreBeneventano(IT8010027)andtheMassicciodelMatese
SpecialProtectionArea(SPA)(IT8010026)underthe2009/147/EC.Forestswereclassifiedaccording
toEuropeanforesttypeclasses[38],whilethedefinitionofmainsilviculturalsystem(e.g.,highforests
orcoppices)derivedfromfieldsurveys,expertjudgementandthepublishedforestmanagement
plansofseveralmunicipalitieswithintheTelesinaValley.Eightforesttypeswereselectedand
analyzedinthestudyarea,correspondingtodifferentsilviculturalsystems,includinghighforest
(HF),coppices(C),andtransitionalstandsproducedbytheconversionofcoppicetohighforest(C‐
HF).Overall,thethermophilousdeciduousforestcategorycovered72.3%ofthetotalforestland,
followedbytheMountainousbeechforest(13.6%)andBroadleavedevergreenforest(6.0%)
categories.Theplantationsandself‐sownexoticforest(5.0%),Floodplainforest(3.2%)categoriesare
alsorecognized.
Figure1.ThestudyareaistheTelesinaValleyandit’slocatedinBeneventoProvince,inCampania
Region,Italy.
Forests2019,10,6905of25
2.2.TheGeospatialCyber‐Infrastructure
ThroughSOILCONSWEBtheuserscaninteractwithdigitalmapsandgeospatialdatathrough
anopensourcewebplatform,inrealtime.TheGCIplatformbelongingtothefamilyofGeospatial
Cyber‐Infrastructures(GCI),usesfreeopen‐sourcegeospatiallibrariesandprogramsandcanthus
supporttheacquisition,storage,managementandintegrationofbothstatic(e.g.,soil,geology,forest
typesdistributions)anddynamicdata(e.g.,dailyclimate,forestmanagement),datavisualization,
andcomputeron‐the‐flyapplications(suchasthoseenablingsimulationmodelling).Detailsonthe
functionalitiesandmethodologicalissuescanbefoundinTerribile[29].Aschemeoftheplatform
functionalitiescanbeaccessedbythedashboardassummarizedinFigure2.Insynthesis,thereisa
flowofdata(e.g.,fromgeo‐database)thatallowstheoperationofdifferentserverfunctions(e.g.,
models)whichproduceseveralservicesaccessiblebytheusersthroughthedashboard.Thesystem
hasa3‐tierstructureinwhichthedatamanagement,thedataprocessingfortheapplicationsandthe
datapresentationareseparateprocesses.Datamanagementtierconsistsofadatabaseinwhichthe
dataarestoredandretrievedinsuchawayastokeepinformationneutralandindependentof
applicationservers.Processingtiercontrolstheapplication’sfunctionalitybyperformingdetailed
processingdata,andthepresentationtierisdelegatedtodisplayingtheinformationcomingfrom
processingservices.Thisclient‐servercommunicationisbasedonAJAX(AsynchronousJavaScript
andXML)technologyandmostofthedataaretransferredinJSONformat.Graphsandmapsare
finallypresentedintheuserinterfaceusingYAHOOChartsasapartoftheExtJSlibrary.
Figure2.ThisisasyntheticdiagramshowingthebasicstructureoftheSOILCONSWEBGeospatial
CyberInfrastructurearchitectureinisfunctionsandtechnologicalcomponents.GUIisanabbreviation
forGraphicalUserInterface.
Forests2019,10,6906of25
2.3.Dataset
ThedatasetconnectedtotheGC‐IforestryWebtoolincludesgeo‐referenceddataandmetadata
fromdifferentsources(Table1).Themaintypesofdatainclude:(i)thematicmaps(withrelated
databases)informofpolygonorgriddatarelatedtosoilandgeology,landuses,foresttypes,
bioclimaticandbiodiversityindexes;(ii)datafromspecificfieldsurveyactivities(e.g.,soilhydrology,
chemicalandphysicalproperties),(iii)simulationmodelling(e.g.,soilwaterbalances).Inorderto
allowlocationqueries(runinSQL),beforebeingintegratedintothegeospatialdatabase,allspatial
data,namelyvectorandrasterlayers,werecheckedforanomaliesand,ifrequired(i.e.,lower
resolutiondataforspecificapplication)subjectedtoup‐scalingprocedures.Landusemapshaving
differentcodeclasses(seeSOILCONSWEBproject[29])wereharmonizedinordertobecomparable
andapplicableforlandusechangeanalysisovertime.Pointdata,suchasthosegeneratedfromsoil
samplingcampaigns,andderiveddatawerefirstlycheckedforanomalies(i.e.,spatialcoordinates,
missingdata,outlier,etc.)andthenloadedintothegeospatialdatabase.
Forests2019,10,6907of25
Table1.MaindatabasesemployedinSOILCONSWEB‐GCIfortheforestrytool:descriptionofdatatypeandexamplesoftheiruse/importanceinmodelling.
Theme
Data:CategoryandDescriptionDataUsedinForestryTool
SourceDatabaseand
(Spatial/Time)Resolution
Typeof
FileData
Parameters
(Obtainedby
Dataset)
AppliedModelExampleofModel
Outputs
Administrative
unitsMunicipalitiesPolygonAdministrativeboundariesAreaofmunicipalityClippingspatialdata
fromdatabase
Environmentaldata
withinadministrative
boundaries
Legalrestriction
tolanduse
e.g.,Natura2000;
Hydrogeologicalrestriction,
regionalforestryplans
PolygonLegalboundaries
Limitandtypeof
restriction
Regionalforestry
plans
Presence/absenceof
restriction
Regionalforestry
plan
ForestSurfacesunder
restrictionandforest
plans
DEM‐contour
lines20×20GridElevationpixel‐basedSpatialcoordinates,
elevation,height
zonalstatistics
Fuzzylandform
segmentation
Estimatesoilerosion
DEM‐LiDAR5×5(resampledLiDAR)GridElevationpixel‐basedMeanheight
Spatialcoordinates,
height,Solar
RadiationSRI,profile
curvature
Geomorphologicaldata,
environmentalphysical
data(elevation,aspect,
slope)
Climate
Rawdatafromweatherstations
ofregionalmeteorological
network;dailyandhourlydata;1
stationper2000ha
PointCheckeddataonrainfall,
temperature
Cumulativerainfall,
max/min/average
temperature
Clippingspatialdata
fromdatabase;zonal
statistic
Soilhydrological
properties
Geology
Geologicalmap/1:100,000
Polygon
GeologicalunitsDatadescriptionof
geologicaland
geomorphological
units
Clippingspatialdata
fromdatabase
Geomorphologicaldata
withintheAOI2Geomorphologicalmap/1:50,000Geomorphologicalunits
Hydrogeologymap/1:250,000HydrogeologyunitsNoneHydrogeologicaldata
withintheAOI
SoilSoilmappingdatabases/1:50,000PolygonMainsoilmorphological,
chemical,physicalparameters
SOM,texture,soil
depth,physical
parameters
Clippingspatialdata
fromdatabase;zonal
statistics
SoildatawithintheAOI
Landuse
Landusemap/1:50,000(1954
Touring,2001,2011newsurvey
SOILCONSWEB);CorineLand
CoverPolygonLanduseclassificationatseveral
spatialscales
Landusemapping
units
Comparisonbetween
matricesofdataLandusemaps
Erosion(RUSLE)Estimateofsoilerosion
(CLC,EEA,2010)
Forests2019,10,6908of25
Forestry‐LIDAR
High‐pulse‐density(5pointsm−2)
LiDARover20,000ha,Telesina
Valleycalibratedwithfield
measurements
GridMapsof5echoesHeightofforest
stands
LRM;Cstock;
growingstock;above‐
groundbiomass
Mapsofquantified
standsparameters
Forestroad
networkForestryroadnetworkmapLinesForestryroadnetworkmapby
photointerpretation1
Forestroadnetwork
classificationNoneForestroadnetwork
withintheAOI
Forestry
Mapofforesttype(CLCclasses),
Europeanforesttypeclasses
(EEA,2007),INFC20052andfield
surveys(sylviculturalsystems
e.g.,highforest,coppices,
transitionalsystems)
Polygon
Landscapeclassifiedaccording
toforesttypologies.Silvicultural
systemsanddendrometric
characteristicsderivedfrom
permanentplotsforselected
foresttypes
Mappingunits
(zones)
Clippingspatialdata
fromdatabase
Dataandparameters
relatedtoforest
typologieswithinthe
AOI
Forestrymap(1:5000)
Abbr.1AfterValentiniS.,2013;2NationalInventoryofForestsandForestCarbonpools.3AOIstandsforAreaofInterestanditisdefinedbytheend‐user.
Forests2019,10,6909of25
2.4.LiDARData
Currently,AirborneLaserScannertechnologyrepresentsoneofthemostpromisingand
effectiveinnovationforawiderangeofforestryapplications,inparticular,itallowsavaluable
estimationofabove‐groundbiomass[16,39].WithinSOILCONSWEBactivities,discrete‐returnaerial
LiDARdata,collectedduring2011leaf‐offconditionwereusedtodistinguishforeststandparameters
andstructuraldiversityinthestudyarea.Adetailedmethodologicaloverviewoftheadopted
proceduresforLiDAR‐derivedvegetationindexescomputationaswellasnon‐parametricbootstrap
resamplingmethods[40]usedtovalidatetheregressionmodelsofLiDARmetricsvs.fielddatacan
befoundinTeobaldelli[37].
3.Results
TheforestrytooldevelopedintheframeworkoftheGCIwasfirstlydesignedasaninformative
decision‐makingprocesstosharerelevantknowledgerelatedtotheforestresourcesbetweenthe
mainstakeholdersandtherefore,asenvisagedbytheforestrylawsoftheCampaniaRegion(Italy),
tosupportfutureforestmanagementactivitieswithinthestudyarea.
3.1.DashboardandBasicFunctions
TheSOILCONSWEBS‐DSSdashboardwastheresultofmultipleinteractionsbetweenexpert,
end‐usersandstakeholders(e.g.,forestry,regionalpolicymakers,privateforestowners)who
requestedtheincorporationofthematicfacilitiesthatcouldbestrategicforforestknowledgeand
forestmanagementplanning.Afterlongpublicconcertation,thisiterativefeedback‐driven
methodologyledtothedevelopmentofaGUI(GraphicalUserInterface)thatcouldmeettheneeds
ofthemultipleS‐DSSuserswithindifferentfields(agriculture,forestry,landplanning,etc.).Itsmain
finalstructureincludedgraphicaltoolsandprocedurestocombine—on‐the‐fly—analysisand
visualizationofspatialdataandsubsequentproductionofmapsandtables.
Basically,dashboardconsistsoffivesections(Figure3):
(i) adedicatedareawhereuser’squeriesarerecorded;
(ii) webGISfacilitieswhichenabletheusertonavigatethroughspatialdatalayers,makequeries,
carryoutspatialstatisticsandotherrequests;
(iii) drawing/selectionoftheareaofinterest(AOI);
(iv) dashboardsfortheGeospatialforestrytool.
Forests2019,10,69010of25
Figure3.Thedashboardinbrief:theusercannavigatethroughtheplatformandexplorethefive
differentsections(inred).
SinceofficesoftheCampaniaRegionlocatednearbythestudyareawereamongthemain
stakeholdersofthedashboardandconsideringthatinsomecases,duetofundingandlegal
restrictions,theycannoteasilyaccessdesktopGISfacilities,aspecificmodule(point(ii)asgiven
above)wasdesignedtoallowpublicaccesstoterritorialinformationatseveralscalesandfreelymake
queriesonthegeo‐database,asforinstancedisplayingchangesonlanduseoccurredfrom1950ona
selectedforestarea.Theusers(e.g.,forestmanager)could,forexample,selectpre‐buildAOI(above‐
mentionedpoint(iii))withinaregionofinterestaccordingtotheirspecificneeds(e.g.,areastobe
harvestedaccordingtoforestplanscriteria)andthereforelaunchtheapplication(thepossibilityof
selectingspecificCadastralIDnumberisalsogiven).Thesystemallowsthecreationand
editing/deletingofoneormorepolygons(thatcanalsobemovedorresizedwithintheprojectarea);
oncedrawn,theAOIrepresentskeydatastoredinadatabaseandlinkedtotheuserthatcantherefore
decidetostoretheminapersonalhiddenspaceormadepublicforgeneraluse.Theforestrytoolcore
canbefoundintheapplicationdashboardanditaddressesforestrymanagementplanningtasksto
beperformedaccordingtoend‐users’necessities.
ThecontributiontoforestmanagementgivenbyGIFTisbasedonLiDAR‐derivedinformation
thathasbeencombined,byforestpractitioners,withexpert‐basedknowledgeoftheforestresources
andregulationapplication,aimedatorientingthefutureevolutionoftheresourcetakingintoaccount
theowner’snecessities.
Toseparatethemaindomainofforestryinterest,theforestrytooldashboardhasahierarchical
structurewiththreemaincategorieschosenonthebasisofmultipleinteractionswithstakeholders:
Forestmanagementplanningforbasicknowledge:itincludesapplicationsforthedescriptionof
theforestareachosenbytheenduser.Theuserselectsaforestarea(i.e.,drawstheAOI
boundaries)andgetsfromthesystemareport(i.e.,arealtimeautomaticallygenerated.pdffile)
describingthemaingeological,climate,soilandlandusefeaturesofittogetherwitha
descriptionofthemainforesttypologiesandstandstructurefeaturesandotherLiDAR‐derived
informationregardingthesoilmorphology(planandprofilecurvature).
Forestmanagementplanningforforestproductivity:specificcontributionreferringtoforest
managementapplicationsbymeansofclassicalapproaches:(i)infieldandLiDAR‐derived
dendrometricmeasurements;(ii).theprevailingfunctionsandtherelativepriorityplanning
Forests2019,10,69011of25
designation(protective,naturalistic,productive,freeevolution);(iii)theecosystemservices
(supply,regulation,supportandcultural);iv)thesustainableforestmanagementguidelinesthat
refertothetypeofmanagementtowardswhichitwouldbeappropriatetoaddressthe
typologicalunit.Therewillnotbeanyconsiderationtomanagementissuesrelatedtoforest
disturbanceslikewildfire,avalanches,pestcontrol.Thetoolhasbeensofarconceivedina
simplifiedshapeastoprovideaneasyandpreliminarysupporttoend‐usertobeguidedinthe
fulfilmentofthemanagementplansrequestsbyregionallaws.Mostapplicationsinforestrytool
applystatisticalmodelsfortheproductionofreports(mean,max,min,standarddeviation,etc.),
andspatialprocessingroutinestocalculatemainparametersovertimewithinspecificAOI(i.e.,
potentialsolarradiation,LiDAR‐derivedvegetationindexes).
Forestmanagementplanningforsoilprotection:GIFTincludesaspecificmoduleonsoil
protectionasrequestedbythecompetentauthorityandforestprivateowners.
Inordertodescribeourphysicallybasedandempiricalmodelsweaggregatedthemintoa
modularschemenamedmodellingcluster(MC).Theemployedmodellingclustersavailableinthe
forestrytoolaredescribedbelowandreportedinTable2.
TheoriginalItalianversionofthedashboardhasaslightlydifferentlabellingwithadichotomic
distinctionbetweenplanningandmanagement(Figure3)becausethisclassificationwasrequested
byforestpractitionersaccordingtotheCampaniaregionalforestlaw.
Forests2019,10,69012of25
Table2.MainmodelsemployedinSOILCONSWEB‐GCIfortheforestrytool:descriptionofmodellingclusterandexamplesoftheiruse/importance.
Modelling
ClusterApplicationMainFunctionalitiesRequiredActivityExamplesofInputParametersExamplesofOutputin
theS‐DSS
Forestmanagementplanning
GeneraldescriptionoftheAOI
Basicknowledgeofforest
(MC1)Basic
forestrydata
Providingbasicforest
databasedon:
(i) orthophoto
interpretation,
(ii) image
classification,
(iii) samplingplots
withextensive
datacollection
Clipofdataonthebaseof
AOIandbasicspatial
statistics;GIScapabilitiesfor
calculationofenvironmental
parameters(physical
parameters)
Raster,vectorandtableddatarelatedtosoiltype,elevation,
landuse,geology,administrativeunits,foresttypologies,
solarradiationindex,profileandplancurvatures
Rastermaps(provided
withdynamiclegends
appropriatetotheAOI
dimension)depicting
themaindescriptive
parameterstosupport
forestbasicknowledge
atstandandlandscape
scale
Forestproduction
(MC2)
Supportto
forest
resources
management
Mappingindexes
relatedtomain
dendrometic
parametersatstand
scale(LiDAR‐derived
metrics)
Writingnewcodes:(i)
applyinglinearregression
modeltoretrieveLiDAR‐
derivedindexes(non‐
parametricbootstrap
resamplingmethodusedto
validatetheregression
modelsofLiDARmetricsvs
fielddata),(ii)clipofdataon
thebaseofAOIandbasic
spatialstatistics;(iii)forest
practitioner’sexpert‐based
datainterpretationand
managementguidelines
Forestryexpert‐basedreportcontainingindicationsof
managementpracticesaccordingtoharvestingplans
requirementsbyregionalregulation
PDFreportcontaining
infoonforesttypes,
mainsilvicultural
parametersandforest
expert‐basedindication
forforestmanagement
Descriptive
standstructure
statistics
(LiDARmetrics
fielddata
calibration)
Canopycover(%)Rastermap
Meanforeststand
height(m)Rastermap
Growingstock
volumeofstemand
branches(m3/ha)
Rastermap
Totalabove‐ground
biomass(kg/ha)Rastermap
Soilprotection
(MC3)
Soilerosion:
RUSLE
Interactiverealtime
RUSLERateofsoilerosionLandcovertype,datafromsoildatabase,typeofanti‐
erosionmanagement
Rastermapsof
potentialand
interactivesoilerosion
(MC3)
Soilstability‐
landsliderisk
Mappinglandslide
riskthrough
combined
geomorphological
andpedological
modelling
Geomorphometricanalysis
andsoildatabaseprocessingVectordataoflandslidecrownsandofandicsoiltype
Vectormaps(provided
withdynamiclegends
appropriatetotheAOI
dimension)depicting
thelandsliderisk
assessment
Forests2019,10,69013of25
3.1.1.MC1—ReportingForestryKeyParametersforBasicForestKnowledge
Thismoduleincorporatesbasicproceduresusedforthebasicknowledgeofforestresources
withintheareaofstudy.Itconsistsoftwomainprocedures:(i)spatialstatisticswithintheAOIon
either/bothvectorandrasterbase;(ii)reportmaking(exportable.pdffile)containingstatisticsand
otherinformationintableformat.PostGisfunctionalitiesenabletodefinetheanalysisoftherasteror
vectorlayersstoredinthegeo‐databaseinrelationwiththeoperationchosenbytheuser.The
productionofautomaticPDF‐reportincorporatesdatafromspatiallayersrelevantforforest
managementplanning.Amongthem:landscapefeatures(e.g.,digitalelevationmodel,geologyand
soilandforesttypesmaps,etc.)andaverageclimaticfeatures(e.g.,precipitation,temperatureand
solarradiationmaps).Themoduleoperatesby:(i)“clipping”thelayersusingtheAOIasforestarea;
(ii)calculatingpixel‐basedzonalstatistics(min,mean,max);(iii)buildingthe.pdffileintabular
formatbyreportingdatathankstothefreePDFgenerator(FPDF).Additionalroutinesareappliedin
ordertoincludeusefulinformationinthereportsuchaspicturesofsoilprofilescorrespondingtosoil
typestypicallyspatiallyassociatedwiththeAOI.Soilandclimateinputdatastoredinthegeo‐
databaseare“pickedup”byautomaticroutinesallowingtheapplicationofthemodelthroughout
thestudyarea.ClimatedataintheDSScanbeaccessedthroughtheterritorialthemes.
3.1.2.MC2—LiDARModelsandVegetationIndexesSpatializationwithinForestAreasat
LandscapeScale
Accordingtoexpert‐basedevaluation,eightforesttypologies,overallrepresenting~98.3%ofthe
entireforestedareaoftheTelesinaValley,wereidentifiedbyphoto‐interpretationofdigital
orthophotos(moredetailsinTeobaldelli[37]);maindendrometricparameters(diameteratbreast
height,meanheight,basalarea),obtainedwithin26georeferencedplotareasfromgroundfield
surveys,wereusedtoestimategrowingstockvolumeandmerchantableandtotalabove‐ground
biomassthroughallometricequations[41].Eightlinearmodelswereusedtopredictbetterestimation
ofseveraldendrometricparametersincludingmeanstandheight(Hm),growingstockvolume(V)
andtotalabove‐groundbiomass(AGB),asafunctionofseveralLiDARmetrics(estimatedusingthe
FUSIONsoftware;[37])withinthe26georeferencedplotsamplingareas.Thelinearequationmodel
providedthebestestimationfortheselecteddendrometricparameters(moredetailin[37].Onthe
basisofthedataobtained,alltheinformationwasspatializedonallthe8foresttypologies(5477.55
ha)ofthestudyareaand,finally,mapswerecreatedandexportedasrasterdata.Themoduleoutputs
consistintheproductionofgraphsandmapsrelatedrespectivelytocanopycover(%),meanstand
height(m),growingstockvolumeofstemandbranches(m3ha‐1),totalabove‐grounddrybiomass
(kgha‐1)withinthespecificAOIdefinedbytheuser.
3.1.3.MC3—SoilProtection
Thismoduleprovidessomebasicknowledgeaboutsoilprotectioninforestecosystems.It
consistsoftwomainassessments:(i)potentialsoilerosion;(ii)potentiallandslideinitiation.The
importanceofthesemodellingclustersreferstotheevidencethatforestsoilsofthearea(mainly
Silandic,Mollic,EutrosilicAndosols,andVitricPhaeozem)haveagenerallyhighsiltcontent(above
60%),highverticalphysicalsoilhorizondiscontinuities,veryhigh‐waterretention,lowadhesion
towardsthebedrock,highthixotropy.Allabovefeaturesmakethesesoilsextremelyfertileandvery
pronetowardserosionandfastmudflows/debrisflows[42–45].Thisconditionisworsenedwhen
soilcontinuityisinterrupted[46]byroads,cliffsandforesttracksduetoforestoperations.Thus,this
moduleenablesuserstonavigatebetweenforestcover,forestmanagement(e.g.,tracks)soilerosion
andfastmudflows.OncetheuserselectsorcreatesanAOIthesoilerosionmodulecancalculatethe
potentialsoilerosionaftertheRUSLEapproach[47]thuscombiningthefollowingfactors:rainfall‐
runofferosivity,soilerodibility,slopelength,slopesteepness,cover‐managementandsupport
practice.Themodelincludesa“whatif”approach;forinstance,theusercanevaluate—inrealtime—
howfarpotentialsoilerosioncanbereducedafteradoptingnewcover(canopydensity).Inthecase
Forests2019,10,69014of25
ofthelandslidetool,theusercanaccessthesystemtoknowtheselectedforestAOIandthespecific
connectionbetweensoiltypeandlandformwithanestimateofthemudflowriskclassification.
3.2.CaseStudies
TheforestrytooldevelopedwithinSOILCONSWEBwasappliedtoaninlandareaofthe
southernApennineswhichwashighlyrepresentativeoflanduseandforesttypes.Theaimwasto
supportmanagementplanningactivitiescarriedbyforestowners.Thissupportstartedwitha
preliminaryrecognitiveanalysisofforestresourcesthroughtheidentificationofthemainforest
types,pastandcurrentmanagementandsilviculturalsystemaccordingtoforestplans,mappingof
themaindendrometricparameters,displayoftheabove‐mentionedinformationandcreationof
reports.Thefinalproductfortheuserwasrepresentedbyraster/vectormaps,tablesandsummaries
intechnicalsheetsincludingthedescriptionofthestation(soil,slope,exposure),foresttypes,
presenceofeventualsitesofcommunityinterest,suggestedmanagementtechniques(i.e.,
silviculturalsystem)definedwithintheareasofinterestchosebytheend‐user.Fromanoperational
pointofview,wechosetodividethecasesofapplicationintothreedomains,allpartofforest
managementplanning:basicknowledgeofforestresources,managementplanningforforest
productionandmanagementplanningforintegratedsoilprotection.WeconsiderGIFTafull
functionalmanagementplanningtoolprovidingforestexpertswithsupportduringplanning
processes.Figure4depictsthevariousstepstheuserhadtofollowtoobtainthedesiredoutput
information.
Figure4.TheflowchartoftheGIFTtoolforsupportingintegratedforestknowledgeatthelandscape
scale.
Forests2019,10,69015of25
3.2.1.Case1:SupporttoManagementPlanningforBasicForestKnowledge
RegionalforestplanninginCampaniaRegion,Italy[48](namedfromnowonRR)isdivided
intothefollowingplanninglevels:a.General‐GeneralForestryPlan;b.Executive‐ForestryPlanning
ExecutiveDocument;c.local‐ includingtheTerritorialForestryPlan(PFT)andtheForest
ManagementPlans(PGF).ThehereproposedGIFTtoolhasthefullpotentialofprovidingsupport
bothtoforestplanners,asitoffersfact‐findingsurveyoftheforestresources,andtoprivateforest
ownersinthecuttingseriesplan.TheGeneralForestryPlanactualizationisformalizedbyForest
ManagementPlans[49].Privateforestownerswhotypicallywanttocutaspecificforestparcel/lot
mustsubmitanauthorizationrequestoracommunicationtotheMountainCommunity(Mc,
ProvincialAdministration(PrA),MetropolitanCity(MeC)wherethelottobecutfalls,usingoneof
themodels[48]asappropriate.Forboththeseapplications,theforestrytoolcanbeusedforcollecting
basicforestdatawithinaspecificAOI.
Indeed,theproposedprocedurecanbeemployedbyend‐userswhoareinterestedin:
i) gettinginformation,thataretypicallynoteasilyavailable,relatedtoforesttypesand
quantitativestandattributesofaspecificAOI,withthepurposeofprovidingadditional
informationforassistingplanningphaseofthechosenforestarea.Ofcourse,moredetailedand
completeinformationatstandscalesregardingstanddensity,treeheightanddiameter
distributionandaveragestandagemustbeperformedwithfieldsurveys.Theabove‐mentioned
tasksareperformedbyapplyingtheMC1routine;
ii) havingasupportforidentificationofhighergrowingstockareas;
iii) evaluatewhethersomekeyenvironmentalfactorscouldeaseforestoperations.More
specifically,ausercan“explore”her/hisAOI(Figure5)byevaluatingsomeenvironmental
factors(DTM,profilecurvature,soil,andforesttypes)thatmightfacilitatethestudyofforest
areasanditsmainsilviculturalandenvironmentalfeatures.
Forests2019,10,69016of25
Figure5.ResultsfromthreesimulationsoftheGIFTtool.Threeidenticalareasofinterest(AOI)have
beengeneratedaccordingtotheforeststandinformationtheuserwasinterestedtoget(canopycover
orgrowingstockvolume).Accordingly,atechnicalreporthasbeencreatedwithinformationofthe
AOI.TheoriginalinformationisinItalian(heretranslatedmanuallyinEnglish)sincetheplatform
hasbeendesignedforItalianforestowneruse.
Forests2019,10,69017of25
3.2.2.Case2:SupporttoManagementPlanningforForestProductivity
Thisprocedurecanbeemployedmainlybyprivateforestownerswhoaimatoptimizingforest
resourcesbyperformingcuttingseriesplanfor(Attachment14—art.30c1lettersa‐bauthorization
forcutsintheabsenceofaForestManagementPlan—forpublicsubjects;Attachment15—art.30
lettera,communicationcutsinabsenceofaForestManagementPlan—privatesubjects).
ItisstatedbyRR[48]thatinordertoharvest:
(i) coppices(withreserves,mixedorselection)withtotalsurfacesgreaterthanorequalto2hectares
andlessthan10hectares,intheabsenceofaForestManagementPlan;
(ii) highforestsandcoppicesinconversiontohighforestsforatotalareagreaterthanorequalto
0.5hectaresandlessthan10hectares,intheabsenceofaForestManagementPlan
Itiscompulsory,fortheprivateforestowner,toobtainapriorharvestingauthorizationissued
bytheterritoriallycompetentdelegatedbody(Mc,PrA,MeC).Thesebodieswillretrievethe
authorizationsfromtheSingleDeskforForestActivities(namedS.U.A.F.,inItalianSportelloUnico
perleAttivitàForestali).
Fortheabove‐referredpurposes,theowner,orotherlegitimatelyauthorizedperson,must
presentaspecificrequestinordertogetacuttingauthorization[50].Therequestconsistsinareport
thatmustcontainthefollowinginformationregarding:cadastraldataoftheforestarea,totalareato
beharvested,classificationoftheterritorialcontextinwhichtheforestfallswiththespecificationof
anyrestrictions(whetherpresent),maindendrometricparametersofthestand,etc.Theentire
requiredinformationthatmustbecontainedinthereportaccordingtotheregionalforestrylawand
theparametersthatcanbeprovidedbytheGIFTtoolisavailableinTableS2ofSupplementary
Materials.
Themajorityofthepre‐listedinformationrequestedbyforestregionalregulationcanbederived
fromtheforestrytool(Figures4and5b.)byusingMC2,i.e.,canplansylviculturaltreatmentsand
harvestingoperationsevaluatingbreastheight(1.3m)treediameterandheightdistribution,growing
stockandabove‐groundbiomasswithindifferentAOIs.Thisallowsalsotoidentifythebestareasto
activelymanagetotakealookattheareashavinghigherbiomassindexes,bettersoilconditionsand
easy‐to‐accessforestroadnetwork.TheusercandrawtheAOIandimmediatelygettheabove‐
mentionedinformationandbiomassdata,andastheMC2applicationcanberepeatedelsewherein
thestudyarea(i.e.,TelesinaValley)thereforeobtainingseveralscenarioanalyseswith,potentiallya
largespatialvariabilityofthepredominantenvironmentalfactors(e.g.,soilproperties,forest
typologies,altitude,exposition,etc.).Eventhroughanaggregatedandsimplifiedapproach,the
forestryDSStoolmakesitcapabletoadapttoseveralpurposes.
3.2.3.Case3:SupporttoManagementPlanningforSoilProtectionandForestRoadEvaluation
Havingatoolthatcaninformdecision‐makers(RegionalForestryOffice,Mc,PrA,etc.)ofareas
thatarepotentiallyatriskoflandslidesiscrucialforissuingauthorizationproceduresforforest
management.Theseareasshouldbemanagedwithspecialcarewheneithersilvicultural
managementmustbeperformedoradjustments/opening/wideningofforestroadsnetworkmustbe
made.Indeed,thewoodsextractionmust,byregulation,takeplaceonexistingroads,ductsand
canals,avoidingrollingandloggingonrecentlycutpatchesorinregenerationpatches.Accordingto
theregionalforestregulationand,similartotheareassubjecttohydrogeologicalconstraint,the
openingofforestroadsandforesttracksforloggingoperationsissubjecttopriorauthorization,to
berequestedtogetherwiththeauthorizationforforestcutting.IfanAOIfallswithinlandslide
vulnerablezones,theprotectivefunctionwithrelativemanagementcouldbeassignedtothatforest
area,accordingtotheregionalforestregulation.Ithasbeenprovedthatforesttracksareinsome
casescorrelatedtolandslideoccurrences[46].Accordingtotheregionalforestregulation[48]the
openingofroadsandforesttracksfortheextractionoftimberissubjecttopriorauthorization.We
hypothesizedthatifaprivateforestowner’sneedstocutapatchofcoppiceandopennewforest
roads,beforesubmittingtherelativeauthorizationtoCampaniaRegionForestofficers,might
performapreliminarilyself‐assessmentoftheareausingtheMC3oftheforestryDSStoolasshown
Forests2019,10,69018of25
inFigure6.Bydoingso,itwouldbepossiblefortheprivateforestownertocheckthesusceptibility
oftheAOItobemanagedandtherefore,accordingtotheresultsobtained,provideextraelementsto
thedocumentationsthatwillbefinallysubjectedtotheauthorizationofthepublicauthority.
Figure6.ResultsfromtwosimulationsproducedwiththeGIFTtool.TwoidenticalAOIhavebeen
generatedanddefinedasareastobemanaged.Thetooliscapableofidentifyingpotentiallyrisky
Forests2019,10,69019of25
areasaccordingtothesoilandgeomorphologictypes.Thisinformationcanbeusedbyprivateforest
toobtainpriorauthorizationforforestmanagement.
4.Discussion
Inthispaper,wepresenttheproduct,developedwithintheSOILCONSWEBLifeproject,named
GIFTtoolthathasbeenconceivedasaGeospatialdecisionsupportsystemtoolforsupporting
IntegratedForestknowledgeatthelandscapescale.Thistoolwastheresultofabottom‐up
consultationprocessthatinvolvedresearchersandstakeholdersinthefieldofforestrywhowere
askingforaneasy‐to‐use,friendlyandopen‐accessgeospatialweb‐baseddecisionsystemtosupport
forestresourcesknowledgeinaholisticandintegratedway.ThroughthisGCIweattemptedtobuild
aprototypethatmightrepresentanewwayaheadforprovidingamulti‐userandmultiscaleforest
toolrangingfromsingleforestparceltodistrict(13municipalities)level.
4.1.FutureProspects
GIFTrepresentsanattemptofsharingknowledgeintheframeworkoffunctionalalthoughina
simplisticway,whendataavailabilityintheforestrysectorandregionalregulationhardlyconvey
intoforestmanagementplanning.Giventheneedforanoperationaltooltobeoperational,herewe
trytosummarizesomeofthemainachievementsthatmighthelptoshapefutureforestS‐DSS
development.
Amongthepositiveacknowledgmentswename:
Themultifunctionalapproachaspushintowoodmarket;Weknowthatforestsarepartofan
integratedandmuchwidersustainableframework.Indeed,forestryisconnectedtootherland
uses:accordingly,thiscanbeturnedintopracticebyend‐users(e.g.,forestowner)byquerying
informationregardingmainsoilthreatsorlandusechangesoveradesiredtime‐lapsewithinthe
AOIs.Theforestrytoolheredevelopedcontainsalsoaninnovationgivingspecialemphasison
appliedsoilknowledge.Theforestknowledgecouldpotentially,evenifindirectly,helpwood
productsmarketdevelopmentinCampaniaRegion.Infact,farmers/privateforestowners
believethatobtainingeasytointerpretdataofforestproductivity(biomass)foraspecificAOI
mightawakentheknowledgeoftheavailableforestresourcesoftheirterritory,makingit
possibletoaffectespeciallythepriceoffirewoodinthearea;
• Thesimplicitybehindabottom‐upproduct.Thesystemallowsforestowners/foresttechnicians
todrawtheirownforestareaandgetinformationstrictlydedicatedtotheirspecificterritory.
Suchasimplequerywasperceivedasaninnovativetooltogetquickandeasytoready
informationofforestareasofinterest;Thefeedbackgivenbyendstakeholders,throughface‐to‐
facemeetingsandinterviews,havebeenfundamentalforthedevelopmentandmanagementof
thisplatform;
• WOG(web,open,geospatial).Inamoregeneraltheme,thekeyandcrucialaspectofthispaper
refertotheimportanceofusingfree,open‐sourcegeospatiallibrariesandprogramsallowing
thepotentialinvolvementofalargecommunityofdevelopers,includingtheprocessingof
data/modelsfromdifferentsourcesandformats;
• Soilsupportsforestplanningaccordingtosilviculturaltypes;TheGIFTtoolrepresentsafirst
attemptofsupportingforestplanninginaRegionofthesouthernApennineswherecoppice
standsmainlyoccupyslopesandcover42%oftheforestsurface[51].Theirperiodicalcuttings
(onaverageevery14–18years)implyenvironmentalimpactsatlocalandlandscapescales.As
stressedinMC3—Soilapplicationsection,superimposedallochthonoussoilsfromvolcanic
originarewidespreadintheCampaniaRegion.
4.2.TheInnovationofGIFTintheFrameworkofForestS‐DSS
TheSoilConsWeb,underwhichGIFThasbeendeveloped,isacomplexGCI,asdepictedin
Figure2,whosemainfeaturesare(i)theuseofopensourcetechnologiesaimedatbuilding(ii)a
freelyavailablewebapplicationenabling(iii)geospatialanalysispossibly(iv)onthefly.
Forests2019,10,69020of25
Itthissense,GIFTtakesitsshapeintheframeworkoflandscapemanagement,altogetherwithother
landusestoolswithwhichitisintimatelylinked(e.g.,DigitalSoilMapping(DSM)andsoil‐plant‐
atmosphereengines(SPA)DSMinformationandSPAmodelsareinterconnectedbetweenthe
differentland‐uses).
Thereisamajorcostintheinitialdesignandthefurtherimplementationofsuchaplatform,but
herewewanttohighlightthepossibilitiesthatsuchsystemcanofferwhencomparedtothemore
traditionalForestDSSs.
ThemajorityofthealreadydevelopedforestDSSconsistsofstandalonessystemswithaclosed
sourcesoftware[9,31]tobeinstalledonlocalcomputers,designedforindividualorspecificuse.In
manycases,theuserhastodealwithissuesrelatedtotheinstallationprocess—includingthe
operativesystemrequirementsandtheinstallationofprerequisites—andtofurthermaintenance,
suchasupdatesoftheoperativesystemhostingtheDSSsoftwareortheupdateoftheDSSsoftware
itself.Ontheotherhand,whenweb‐basedsystemsareavailabletheseareeventuallynotcovering
geospatialanalysis.
TheSoilConsWebplatformismaintainedinacentralizedway:softwarecomponentscanbe
easilyupdated(inparticularthosethirdspartiesopensourcecomponents,suchasGeoServer),the
hardwarecanbeupgradedtoraisephysicalresourcesandnavigationperformanceandcompatibility
issuescanbefixedwithoutleaningontheendusercontribution.
TheGCIplatforms,likeGIFT,comparedtomoretraditionalforestDSSaremoreadaptabletobe
transferredtolargerareasmovingtowardsitsapplicationonalandscapescaleturningappealing
alsointermsofcostreduction.TheGCIisflexibleenoughthatanewtoolcanbeeasilyaddedtothe
toolbox.Indeed,thisoperationissimplebothonserverside(tobeperformedbytheadministrator)
aswellasontheclientsidewhereonlyaquickwebpagerefreshisrequired.Thislastfacilitationwas
usefulduringtheinteractionwithstakeholderswhichledtothefrequentmodificationsofexisting
toolsorcreationofnewones.Theplatformcanbenavigatedalsobysmartdevices(phonesand
tablets)thathaveaccesstotheinternetconnection,andthisenhancetheportabilityofthetoolseven
inthecasealoginisrequired.Onedisadvantagemightbethewebbrowsercompatibility,butthe
mostwidespreadbrowsersarefullycompatible,suchasMozillaFirefoxandGoogleChrome.
Anotherlimitationistheinternetconnection:withoutconnectionorincaseoflowbandwidth,there
isnochancetoproperlyusetheDSS.
4.3.LimitationsoftheGCIandFurtherDevelopment
Somemajorandchallengingproblemshavebeenidentifiedduringthebuildingprocessofthe
GCIandtheseshouldaswellleadfurtherdevelopmentoftheGIFTtoolandofforestS‐DSSin
general.
Firstofall,noforestmodelsforsimulatingsilviculturalpracticeshavebeenyetdevelopedor
appliedwithintheGIFT,neverthelessfurtherdevelopmentsarerequiredandcrucialforsuch
CyberInfrastructure.Indeed,accordingtotheexperiencegainedwithinSOILCONSWEBprojects,a
frameworkhasbeenestablishedinanewfollow‐upplatformtobebuiltundertheLANDSUPPORT
projectfundedbytheEuropeanUnion’sHorizon2020FrameworkProgramforResearchand
Innovation(H2020‐RUR‐2017‐2).Simulatedsilviculturaltreatmentsthroughprocess‐basedmodels
(PBMs)willbeperformedatlocalandregionallevel,takingintoaccountforeststructurecomplexity
andsoilpropertiesinintegratedForestEcosystemModels(FEMs).The3D‐CMCC‐FEMmodel[52]
willbeimplementedinLANDSUPPORTandwillinvestigatedifferentforestmanagementoption
accordingtoclimaticscenariosincludingbiomasspoolsandtheirpartitioning,forcomplexmulti‐
layerforests[52–54].
Duetolackofhomogeneousanddetailedinformation,nosocio‐economicdatawastakeninto
accounttoestimate,measureandtestthepotentialimpactthatthetoolcouldhavewithinthestudy
area.WewouldstronglyrecommendintegratingeconomicinformationinS‐DSSandsimilarforestry
toolstogiveitasolideconomicdimensionforencouraginganactivemanagementoftheforest
resource.Inthiscase,aninterestingapproachcanbefoundinanovelSpatially‐basedEconomic
Modeltoolsforestimationoftheharvestingcostoflogging[55].
Forests2019,10,69021of25
Wemustfurtherstressthatdataavailabilityandupgradearecrucialforarobustassessmentof
theparametersofinterest(especiallybiomass).Nevertheless,fieldandLiDAR‐deriveddataofthe
forestareasactuallydisplacedontheplatformreferto2011measurementsandhavenotbeen
refreshedorupdatedeversince.
DespitemanyforestDSSalsoprocesstime‐seriesdatasuchasmeteorologicalvariables[56]and
others[57–60]havebeendevelopedhavingasmainfocustheeffectsofdifferentclimatechange
scenariosonCO2assimilationoronforestdisturbancessuchasthegrowingriskofdrought,forest
fire,winddamagesandbarkbeetleoutbreaks[20,61–64]thisDSSdoesnottaketheseissuesinto
accountbecausewithinthestudyareatheywerenotexpresslydemandedbystakeholders.
Theuserscannotuploadhis/herowndata(ktmfiles,dendrometricsurveys)intotheforestry
tooltocustomizetheirAOI.
TheRegionalForestOfficeofCampaniaRegion,stakeholderoftheproject,doesnotpossessa
ForestTerritorialInformationSystemandthisabsenceweakensthewebgeospatialDSSandthe
forestrytool.Webelievethatatechnicalconnectionbetweenthetwosystemscouldbepossibleand
couldenhanceforestresourcesmanagementanddataharmonizationataregionallevel.Application
overlargerareaswouldbefundamentaltosupportforestregionalplanning.
Sensingimplementation:usingproximalsensingcouldallowaclimatechangescenariotrend
analysis,butreliabledailyclimatedatacollectedbytheRegionatsuitablescalesareabsent.Afurther
investmentondataobtainedonfurtherLiDARflightsitwouldbeuseful.
Applicationatlargerextentareasthanthepresentworkishighlydesirabletosupportforest
planningatdistrictandregionalscales.Inordertofacethischallengeitwouldbecrucialtoaddress:
(i)moreinvestmentstobeperformedbythepublicauthorityondataassimilationbymeansofLiDAR
onthewholeregion;(ii)aproperandformalizedreliability/qualityoftheinputdataandthe
resolutionoftheinformationprovidedatalargespatialscale;(iii)theneedofhigh‐performance
computingsystemstoprocessinrealtimelargeamountsofdata.
Atlast,wemuststressthatthepotentialdeliveriesoftheforesttoolareveryfragileifgood
maintenanceofthesystemcomponentsisnotguaranteed.
5.Conclusions
Gettingaccesstoforestry,agriculture,environment,andurbanplanningdataisnowadaysof
undiscussedimportancefortheyarethestartingpointtosupportbestdecisions/practicesfor
managementissues.Overall,wethinkthatinthedomainofS‐DSS,manyofthesesystemscanfailin
theirmissionandthesefailuresareoftenrelatedtothedevelopmentofmanycomplexsystemswhich
arebothdifficulttooperateanddifficulttomodify[65].DSSmaybedesignedforaparticular
problem,supportingaspecificdecisionprocessorjustadecision‐makingphaseortheymaybe
generalandadaptivetofitarangeofdecisionproblemsandprocesses