ArticlePDF Available

A Geospatial Decision Support System Tool for Supporting Integrated Forest Knowledge at the Landscape Scale

Authors:

Abstract and Figures

Forests are part of a complex landscape mosaic and play a crucial role for people living both in rural and urbanized spaces. Recent progresses in modelling and Decision Support System (DSS) applied to the forestry sector promise to improve public participative forest management and decision-making in planning and conservation issues. However, most DSS are not open-source systems, being in many cases software designed for site-specific applications in forest ecosystems. Furthermore, some of these systems often miss challenging the integration of other land uses within the landscape matrix, which is a key issue in modern forestry planning aiming at linking recent developments in open-source Spatial-DSS systems to sectorial forest knowledge. This paper aims at demonstrating that a new type of S-DSS, developed within the Life+ project SOILCONSWEB over an open-source Geospatial Cyber-Infrastructure (GCI) platform, can provide a strategic web-based operational tool for forest resources management and multipurpose planning. In order to perform simulation modelling, all accessible via the Web, the GCI platform supports acquisition and processing of both static and dynamic data (e.g., spatial distribution of soil and forest types, growing stock and yield), data visualization and computer on-the-fly applications. The DSS forestry tool has been applied to a forest area of 5,574 ha in the southern Apennines of Peninsular Italy, and it has been designed to address forest knowledge and management providing operational support to private forest owners and decision-makers involved in management of forest landscape at different levels. Such a geospatial S-DSS tool for supporting integrated forest knowledge at landscape represents a promising tool to implement sustainable forest management and planning. Results and output of the platform will be shown through a short selection of practical case studies.
Content may be subject to copyright.
Forests2019,10,690;doi:10.3390/f10080690www.mdpi.com/journal/forests
Article
AGeospatialDecisionSupportSystemToolfor
SupportingIntegratedForestKnowledgeatthe
LandscapeScale
GinaMarano1,GiulianoLangella1,2,*,AngeloBasile2,3,FrancescoCona1,CarloDeMichele4,
PieroManna2,3,MaurizioTeobaldelli1,AntonioSaracino1andFabioTerribile1,2
1DepartmentofAgriculture,UniversityofNapoliFedericoII,ViaUniversità100,
80055Portici(Naples),Italy
2CRISPResearchCenter,DepartmentofAgriculture,UniversityofNapoliFedericoII,ViaUniversità100,
80055Portici(Naples),Italy
3InstituteforMediterraneanAgriculturalandForestSystems,NationalResearchCouncil,ViaPatacca85,
80056Ercolano,Italy
4AriespaceSrl,CentroDirezionale,IsolaA3,80143Naples,Italy
*Correspondence:glangella@unina.it;Tel.:+390812532136
Received:23May2019;Accepted:12August2019;Published:14August2019
Abstract:Forestsarepartofacomplexlandscapemosaicandplayacrucialroleforpeopleliving
bothinruralandurbanizedspaces.RecentprogressesinmodellingandDecisionSupportSystem
(DSS)appliedtotheforestrysectorpromisetoimprovepublicparticipativeforestmanagementand
decisionmakinginplanningandconservationissues.However,mostDSSarenotopensource
systems,beinginmanycasessoftwaredesignedforsitespecificapplicationsinforestecosystems.
Furthermore,someofthesesystemsoftenmisschallengingtheintegrationofotherlanduseswithin
thelandscapematrix,whichisakeyissueinmodernforestryplanningaimingatlinkingrecent
developmentsinopensourceSpatialDSSsystemstosectorialforestknowledge.Thispaperaimsat
demonstratingthatanewtypeofSDSS,developedwithintheLife+projectSOILCONSWEBover
anopensourceGeospatialCyberInfrastructure(GCI)platform,canprovideastrategicwebbased
operationaltoolforforestresourcesmanagementandmultipurposeplanning.Inordertoperform
simulationmodelling,allaccessibleviatheWeb,theGCIplatformsupportsacquisitionand
processingofbothstaticanddynamicdata(e.g.,spatialdistributionofsoilandforesttypes,growing
stockandyield),datavisualizationandcomputerontheflyapplications.TheDSSforestrytoolhas
beenappliedtoaforestareaof5,574hainthesouthernApenninesofPeninsularItaly,andithas
beendesignedtoaddressforestknowledgeandmanagementprovidingoperationalsupportto
privateforestownersanddecisionmakersinvolvedinmanagementofforestlandscapeatdifferent
levels.SuchageospatialSDSStoolforsupportingintegratedforestknowledgeatlandscape
representsapromisingtooltoimplementsustainableforestmanagementandplanning.Resultsand
outputoftheplatformwillbeshownthroughashortselectionofpracticalcasestudies.
Keywords:spatialdecisionsupportsystem;forestry;LiDAR;simulation
1.Introduction
1.1.ForestDSSSystems
Forestplanningprocessesandmanagementoptionsarecomplexinterconnectedtasks,since
nowadaystheymustcopewiththemultifunctionalrolesofforestecosystemswiththedifferent
spatialandtemporalscalesofdecisionmakingandfinallythechangingeconomic,administrative,
Forests2019,10,6902of25
legal,andsocialscenarios[1].SincetheestablishmentofthenewparadigmofSustainableForest
Management(namedasSFM)bytheHelsinkiresolution[2,3],policymakersaremorethanever
advocatingforadvancedandintegratedforestknowledgeatlandscapescale.Definitely,theforestry
sectorisevolvingintoamultipurposerolewhichconcernsovertheenvironment,biodiversity,
protection,provisionofamenityandrecreationalfacilitiesthataremergingtogetherwiththemore
traditionalrequirementsoftimberproduction[4].Inforestscience,severalmodelshavebeen
developedinthelastdecadetoprovidebasicoperationaltoolstobeappliedwithinvariousforest
managementcontexts[5].Forinstance,yieldandgrowthmodelshaveclassicallybeenusedtoassess
profits,toplanharvestingschedulesandsilviculturaltreatmentofevenagedforeststandsandhave
beenfurtherimplementedinmoresophisticatedpredictionmodelsandresearchtools[6].Thelarge
numberofissuesrelatingtoforestmanagementmakethedevelopmentofforestplansacomplex
process[1].Asaconsequence,objectivesandapproacheshavebeenchangingovertimeand
accordinglythedemandfortoolstosupportplanninganddecisionmakinghasevolved[7]andwill
probablykeeponevolving.Indeed,forestresearchcommunityrealized—muchearlierthanmany
otherscientificdomains—thatitwasessentialtoimplementsuchmodelsintooperationalDecision
SupportSystem(DSS),inordertoassistoperationalforestplanningandmanagementatseveral
scales.Sincethe1980s,DecisionSupportSystems(DSSs)havebecomepopularplatformsfor
transferringknowledgefromscienceintopracticalforestmanagement[8],henceforthseveralDSSs
havebeenspecificallydesignedanddevelopedwithinforestcommunities[9]aimingatmodelling
andthenmanagingforestecosystemsforseveralpurposessuchasproduction,protectionand
recreationalfunctions.DSSsappliedtoforestryandintegratedwithGIStoolsincludealsospatial
components,thereforeaimingattacklingterritorialproblemsandinvolvingstakeholdersin
participatoryprocesses[1].TheGIStoolintegrationwithinDSShasledtothesteadydevelopmentof
spatialDSSs(SDSSs)thatrepresent.valuabletoolsforhelpingdecisionmakersanalyzingcomplex
spatialproblemsintotheircomponentsforsupportingmoreefficientlymultiplepurposeforest
resourceplanning[10–14].Sinceecologicalandenvironmentalconsiderationsareimportantfor
individualforestowners/decisionmakersaswellforsocietyinitswhole,thereisanincreasingneed
togethigherqualityinformationonthespatialstructureofforestsandtodevelopmeansbywhich
spatialobjectivescanbeexplicitlyincludedinforestplanning[11].NewtechnologiessuchasUAVs
(UnmannedAerialVehiclesuchasdrones)andLiDAR(LightDetectionAndRanging)representnew
foreststandparametersacquisitiontoolsmakingitpossibletoobtainaccuratedataoverlargeareas
[15].LiDARsystems,commonlymountedonsatellite,airplanesorhelicopters,representasolid
innovationformappingforestattributesonspatiallyextensiveareasandtheirusefindsseveral
applicationsinforestinventoryaswellastosupportdecisionmakingsustainableforestmanagement
processes[16].Forexample,someSDSShaveprovenanovelapplicationofLiDARdatatoassess
woodproductionundervariousharvestingoptionsortheintegrationofavisualizationsystemwith
modellingasanewapproachtoforestmanagementplanninganddecisionmaking[17–19].The
applicationofdecisionsupporttoolscanhelptoimprovetheeffectivenessofthedecisionalprocess,
thususingresourcesandmanageforestsefficiently[20]especiallywhenspatialinformationis
integratedwithinthesystem.SomeexamplesofSDSSincludeAFFOREST[21],Wildalpen[22],FOpP
[23],Biomasfor[24],andTooFE[25].Ascommonground,themajorityoftheseSDSShasbeen
developedtotacklesitespecificforestmanagementissuessuchastheneedofcombiningsilvicultural
andharvestingoperationsorcarryoutregenerationplanninginprotectionforests[26].However,it
shouldbenotedthatthesesystemsaremostlyconceivedintheshapeofsoftwaredevelopedfor
professionalusetobeappliedtoaspecificgeographicareaforwhichtheyhavebeenspecifically
designed,inaddition,fewonlinetoolsaredesignedforprivateandnonprofessionalforestowners
inauserfriendlyenvironment[27].Webtechnologiescanhelpbuildingplatformindependent
distributedcomputationfacilitatingtheexchangeofcomplexinformation[28].Recentapplications
ofwebGISservicesallowustoovercomelimitationsinpublicparticipationprocessesenabling
publicparticipationindecisionsdesigningtoolsthatsupportunderstandingofenvironmentalissues,
developandevaluatealternativesprojectingtheconsequencesofdifferentcoursesofaction[7].The
needofspatialanalysis,opensourceplatformandeasytousewebcapabilitiesisgrowingdayby
Forests2019,10,6903of25
dayassuchsystemsarecapableofoffering—throughasmartWebbasedsystem—atrulyintegrated
geospatialknowledgearchivewhichcanbeuseddirectlyandfreelybyanyenduser[29].Inorderto
getsomeunderstandingaboutwhetherandhowopensourceandwebcapabilitieshavebeen
implementedintoSDSSappliedtoforestry,inparticularforsupportingforestmanagementplanning
[30],wehavereviewedcurrentDSSliterature,primarilytheworkscarriedoutbyPackalen[9]and
Borges[31].Wefoundoutthatamongthe62DSSlikesoftwaresystemsdealingwithforest
management(from23countries)andreportedwithinFORSYSWiki,noneofthemhadallofthe
followingattributes:(i)opensourcecodes,(ii)webbasedsystems,and(iii)geospatialanalysis[9].A
detailedmetanalysisoverviewaboutthe62ForestDSSsystemsisprovidedintheSupplementaryMaterials
TableS1.SomeofthemostpromisinglinesoffutureDSSdevelopmentsincludetheuseofthewebto
enableeasyaccesstopublicdataandenhancethecapabilityofparticipatorydecisionmaking
processes[8].RecentdevelopmentsinSDSSsoccurringinotherdomains[32–34]aredelivering
interestingopportunitiesinlandmanagementandplanningbycombiningopenaccessWEBGIS
systemsandopensourcecodes.Infact,thiscombinationprovides‐throughtheweb‐freelyaccessof
criticalgeospatialdatatoanyenduserwhiletheopensourceapproachcreatesstrongsynergieswith
newcodedevelopment,especiallythoseoccurringinotherdomains.Boththesefeaturesempower
thesocalledFAIR(Findable,Accessible,InteroperableandReusable)criteria[35]—Guiding
PrinciplesforscientificdatamanagementandstewardshipcravedbytheEuropeanUnion—which
inturnenablefuturereuseofdataandmodels.AreviewconductedbyMcIntosh[36]investigated
keysuccessandweakpointsofseveralDSSsthathavebeendevelopedinthepastacrossseveral
countriesandwithdifferentfocus.Themainchallengehighlightedregardstheoperationaladoption
ofDSSbyendusers.Thestudyoutlineshow,despitetheeffortininvolvingpublicparticipationin
shapingDSS,mostDSShaveeithernotadoptedatallor,ifused,onlyforashorttime.Inaddition,
consideringthemanyDSSavailableforforestmanagementandplanning,wewonderwhetherthe
proliferationofmanySDSSsystemseachoneofthoseadaptedtoaspecificsiteisagoodwaytogo.
Weshallseekforintegrationandadaptabilitytakingalsointoaccountthatthemoregeneralasystem
isintendedtobe,themoreadaptableitmustbeontheprogrammingside,becausethedevelopers
willneedtoalter,addandremovemanyfeaturesastheyencounternewusersinnewsituations[7].
Thus,inforestrywemustseekforSDSSsystemsthatincludethefollowingfeatures:interoperability,
replicability,modularity,webbasedandopensource.
1.2.Aims
Consideringtheaboveframework,thegeneralaimofthispaperistodemonstratethatanew
typeofDSSsdevelopedoverGeospatialCyberInfrastructure(GCI)platformcanprovideastrategic
andflexiblewebbasedoperationaltooltochallengemultifunctionalandsustainableforestry
knowledgeforplanningandmanagementpurposesatthelandscapelevel,withademonstrationof
potentialdeliveriesathighspatialdetail(e.g.,CadastralID)andforlargespatialextentareas.The
forestrytoolreportedhere(namedGIFTtoolwhichstandsfor“GeospatialIntegratedForest
knowledgeTool”)isacomponentofamoregeneralmultipurposeGeospatialDecisionSupport
System(SDSS)namedSOILCONSWEB[29],currentlyinuse(www.landconsultingweb.eu)andfully
activewithinthelimitoftheadministrativeboundariesofTelesinaValley(SouthItaly,Benevento).
ThissystemiscurrentlyunderfurtherdevelopmentundertheH2020LANDSUPPORTproject
(www.landsupport.eu).HeretheForestrymanagementplanningsupporttoolwillbedescribedwith
itsmainfunctionalitiesandmodellingengines.WechosetoshapeGIFTfocusingonforest
managementplanninginordertocomplywiththefollowings:(i)thenecessityofsafeguardingand
maintainingtheforestecosystemanditsfunctionsintheareaofstudyprovidingatoolthatcould
improvetheunderstandingofgoodsandservicesderivedfromforests;(ii)theforestowner’sneeds
ofmanagingforestresources,providingsupporttotheplanningandanassessmentoftheactivities
necessarytomeettherequestedobjectives[30].
Moreover,throughashortselectionofapplicativecasestudiestwomaindomainsof
applicationswillbedemonstrated,namely:(i)theuseofLiDARdatatoberelatedtoforest
productivity(i.e.,growingstock)astoolforforestmanagementplanning,(ii)landslideandsoil
Forests2019,10,6904of25
erosionriskanalysisconductedonthebasisofgeomorphologyandsoildatamodellingtosupport
forestroadnetworkconcessionsbythepublicauthoritywithintheCamposauroRegionalPark’s
protectedarea.
2.MaterialsandMethods
2.1.TheStudyArea
TheGIFTforestrytool—appliedtoaforestareaof5.574ha(SouthItaly)—hasbeendesignedto
addresssustainableforestryknowledgeforintegratedforestmanagementplanninginacomplex
landscape,providingoperationalsupporttoforestersanddecisionmakersinvolvedinforest
planningatthelandscapescale.Thestudyarea(Figure1)istheTelesinaValley(~20,000ha,
41°12’59.37″N,14°31’33.43″EinsouthernApennines,Italy),featuringacultivatedflatarea,crossed
bytheCaloreriverandlyingbetweenthenorthernandsouthernslopesrespectivelybytheMatese
mountainchainandtheisolatedcalcareousTaburnoCamposauromassif.TheTelesinaValley
representsamosaicofdifferentvegetationandlandusetypes,includingMediterraneanbroadleaf—
evergreenanddeciduous—forests,coniferplantations,pasturegrasslands,vineyards,olivegroves
andurbansettlements[37].Theterritoryhasalargeforestrylandscape(27.7%ofthestudyarea)and
itisalsoknownassuitablefortheproductionofhighqualityagriculture.Theareaincludes60Soil
TypologicalUnits,themainsoiltypesincludesSilandic,Melanic,Mollic,Eutrosilic,VitricAndosols,
HaplicandVerticCalcisols,VerticLepticCambisol,HaplicRegosol,VitricPhaeozem,VitricLuvisol,
CalcicKastanozem,VitricKastanozem,FluvicCambisol(IUSSWorkingGroupWRB.2015).Soil
typesarespatiallyaggregatedinto47SoilMappingUnits.Theimportanceofthestudyareais
increasedduetothefactthatTelesinavalleyhoststhreedifferentSitesofCommunityImportance
(SCIs)underthe92/43/EECHabitatDirectivenamely:Camposauro(IT8020007),MonteMutria(IT
802009)andtheFiumiVolturnoandCaloreBeneventano(IT8010027)andtheMassicciodelMatese
SpecialProtectionArea(SPA)(IT8010026)underthe2009/147/EC.Forestswereclassifiedaccording
toEuropeanforesttypeclasses[38],whilethedefinitionofmainsilviculturalsystem(e.g.,highforests
orcoppices)derivedfromfieldsurveys,expertjudgementandthepublishedforestmanagement
plansofseveralmunicipalitieswithintheTelesinaValley.Eightforesttypeswereselectedand
analyzedinthestudyarea,correspondingtodifferentsilviculturalsystems,includinghighforest
(HF),coppices(C),andtransitionalstandsproducedbytheconversionofcoppicetohighforest(C
HF).Overall,thethermophilousdeciduousforestcategorycovered72.3%ofthetotalforestland,
followedbytheMountainousbeechforest(13.6%)andBroadleavedevergreenforest(6.0%)
categories.Theplantationsandselfsownexoticforest(5.0%),Floodplainforest(3.2%)categoriesare
alsorecognized.
Figure1.ThestudyareaistheTelesinaValleyandit’slocatedinBeneventoProvince,inCampania
Region,Italy.
Forests2019,10,6905of25
2.2.TheGeospatialCyberInfrastructure
ThroughSOILCONSWEBtheuserscaninteractwithdigitalmapsandgeospatialdatathrough
anopensourcewebplatform,inrealtime.TheGCIplatformbelongingtothefamilyofGeospatial
CyberInfrastructures(GCI),usesfreeopensourcegeospatiallibrariesandprogramsandcanthus
supporttheacquisition,storage,managementandintegrationofbothstatic(e.g.,soil,geology,forest
typesdistributions)anddynamicdata(e.g.,dailyclimate,forestmanagement),datavisualization,
andcomputerontheflyapplications(suchasthoseenablingsimulationmodelling).Detailsonthe
functionalitiesandmethodologicalissuescanbefoundinTerribile[29].Aschemeoftheplatform
functionalitiescanbeaccessedbythedashboardassummarizedinFigure2.Insynthesis,thereisa
flowofdata(e.g.,fromgeodatabase)thatallowstheoperationofdifferentserverfunctions(e.g.,
models)whichproduceseveralservicesaccessiblebytheusersthroughthedashboard.Thesystem
hasa3tierstructureinwhichthedatamanagement,thedataprocessingfortheapplicationsandthe
datapresentationareseparateprocesses.Datamanagementtierconsistsofadatabaseinwhichthe
dataarestoredandretrievedinsuchawayastokeepinformationneutralandindependentof
applicationservers.Processingtiercontrolstheapplication’sfunctionalitybyperformingdetailed
processingdata,andthepresentationtierisdelegatedtodisplayingtheinformationcomingfrom
processingservices.ThisclientservercommunicationisbasedonAJAX(AsynchronousJavaScript
andXML)technologyandmostofthedataaretransferredinJSONformat.Graphsandmapsare
finallypresentedintheuserinterfaceusingYAHOOChartsasapartoftheExtJSlibrary.
Figure2.ThisisasyntheticdiagramshowingthebasicstructureoftheSOILCONSWEBGeospatial
CyberInfrastructurearchitectureinisfunctionsandtechnologicalcomponents.GUIisanabbreviation
forGraphicalUserInterface.
Forests2019,10,6906of25
2.3.Dataset
ThedatasetconnectedtotheGCIforestryWebtoolincludesgeoreferenceddataandmetadata
fromdifferentsources(Table1).Themaintypesofdatainclude:(i)thematicmaps(withrelated
databases)informofpolygonorgriddatarelatedtosoilandgeology,landuses,foresttypes,
bioclimaticandbiodiversityindexes;(ii)datafromspecificfieldsurveyactivities(e.g.,soilhydrology,
chemicalandphysicalproperties),(iii)simulationmodelling(e.g.,soilwaterbalances).Inorderto
allowlocationqueries(runinSQL),beforebeingintegratedintothegeospatialdatabase,allspatial
data,namelyvectorandrasterlayers,werecheckedforanomaliesand,ifrequired(i.e.,lower
resolutiondataforspecificapplication)subjectedtoupscalingprocedures.Landusemapshaving
differentcodeclasses(seeSOILCONSWEBproject[29])wereharmonizedinordertobecomparable
andapplicableforlandusechangeanalysisovertime.Pointdata,suchasthosegeneratedfromsoil
samplingcampaigns,andderiveddatawerefirstlycheckedforanomalies(i.e.,spatialcoordinates,
missingdata,outlier,etc.)andthenloadedintothegeospatialdatabase.
Forests2019,10,6907of25
Table1.MaindatabasesemployedinSOILCONSWEBGCIfortheforestrytool:descriptionofdatatypeandexamplesoftheiruse/importanceinmodelling.
Theme
Data:CategoryandDescriptionDataUsedinForestryTool
SourceDatabaseand
(Spatial/Time)Resolution
Typeof
FileData
Parameters
(Obtainedby
Dataset)
AppliedModelExampleofModel
Outputs
Administrative
unitsMunicipalitiesPolygonAdministrativeboundariesAreaofmunicipalityClippingspatialdata
fromdatabase
Environmentaldata
withinadministrative
boundaries
Legalrestriction
tolanduse
e.g.,Natura2000;
Hydrogeologicalrestriction,
regionalforestryplans
PolygonLegalboundaries
Limitandtypeof
restriction
Regionalforestry
plans
Presence/absenceof
restriction
Regionalforestry
plan
ForestSurfacesunder
restrictionandforest
plans
DEMcontour
lines20×20GridElevationpixelbasedSpatialcoordinates,
elevation,height
zonalstatistics
Fuzzylandform
segmentation
Estimatesoilerosion
DEMLiDAR5×5(resampledLiDAR)GridElevationpixelbasedMeanheight
Spatialcoordinates,
height,Solar
RadiationSRI,profile
curvature
Geomorphologicaldata,
environmentalphysical
data(elevation,aspect,
slope)
Climate
Rawdatafromweatherstations
ofregionalmeteorological
network;dailyandhourlydata;1
stationper2000ha
PointCheckeddataonrainfall,
temperature
Cumulativerainfall,
max/min/average
temperature
Clippingspatialdata
fromdatabase;zonal
statistic
Soilhydrological
properties
Geology
Geologicalmap/1:100,000
Polygon
GeologicalunitsDatadescriptionof
geologicaland
geomorphological
units
Clippingspatialdata
fromdatabase
Geomorphologicaldata
withintheAOI2Geomorphologicalmap/1:50,000Geomorphologicalunits
Hydrogeologymap/1:250,000HydrogeologyunitsNoneHydrogeologicaldata
withintheAOI
SoilSoilmappingdatabases/1:50,000PolygonMainsoilmorphological,
chemical,physicalparameters
SOM,texture,soil
depth,physical
parameters
Clippingspatialdata
fromdatabase;zonal
statistics
SoildatawithintheAOI
Landuse
Landusemap/1:50,000(1954
Touring,2001,2011newsurvey
SOILCONSWEB);CorineLand
CoverPolygonLanduseclassificationatseveral
spatialscales
Landusemapping
units
Comparisonbetween
matricesofdataLandusemaps
Erosion(RUSLE)Estimateofsoilerosion
(CLC,EEA,2010)
Forests2019,10,6908of25
ForestryLIDAR
Highpulsedensity(5pointsm2)
LiDARover20,000ha,Telesina
Valleycalibratedwithfield
measurements
GridMapsof5echoesHeightofforest
stands
LRM;Cstock;
growingstock;above
groundbiomass
Mapsofquantified
standsparameters
Forestroad
networkForestryroadnetworkmapLinesForestryroadnetworkmapby
photointerpretation1
Forestroadnetwork
classificationNoneForestroadnetwork
withintheAOI
Forestry
Mapofforesttype(CLCclasses),
Europeanforesttypeclasses
(EEA,2007),INFC20052andfield
surveys(sylviculturalsystems
e.g.,highforest,coppices,
transitionalsystems)
Polygon
Landscapeclassifiedaccording
toforesttypologies.Silvicultural
systemsanddendrometric
characteristicsderivedfrom
permanentplotsforselected
foresttypes
Mappingunits
(zones)
Clippingspatialdata
fromdatabase
Dataandparameters
relatedtoforest
typologieswithinthe
AOI
Forestrymap(1:5000)
Abbr.1AfterValentiniS.,2013;2NationalInventoryofForestsandForestCarbonpools.3AOIstandsforAreaofInterestanditisdefinedbytheenduser.
Forests2019,10,6909of25
2.4.LiDARData
Currently,AirborneLaserScannertechnologyrepresentsoneofthemostpromisingand
effectiveinnovationforawiderangeofforestryapplications,inparticular,itallowsavaluable
estimationofabovegroundbiomass[16,39].WithinSOILCONSWEBactivities,discretereturnaerial
LiDARdata,collectedduring2011leafoffconditionwereusedtodistinguishforeststandparameters
andstructuraldiversityinthestudyarea.Adetailedmethodologicaloverviewoftheadopted
proceduresforLiDARderivedvegetationindexescomputationaswellasnonparametricbootstrap
resamplingmethods[40]usedtovalidatetheregressionmodelsofLiDARmetricsvs.fielddatacan
befoundinTeobaldelli[37].
3.Results
TheforestrytooldevelopedintheframeworkoftheGCIwasfirstlydesignedasaninformative
decisionmakingprocesstosharerelevantknowledgerelatedtotheforestresourcesbetweenthe
mainstakeholdersandtherefore,asenvisagedbytheforestrylawsoftheCampaniaRegion(Italy),
tosupportfutureforestmanagementactivitieswithinthestudyarea.
3.1.DashboardandBasicFunctions
TheSOILCONSWEBSDSSdashboardwastheresultofmultipleinteractionsbetweenexpert,
endusersandstakeholders(e.g.,forestry,regionalpolicymakers,privateforestowners)who
requestedtheincorporationofthematicfacilitiesthatcouldbestrategicforforestknowledgeand
forestmanagementplanning.Afterlongpublicconcertation,thisiterativefeedbackdriven
methodologyledtothedevelopmentofaGUI(GraphicalUserInterface)thatcouldmeettheneeds
ofthemultipleSDSSuserswithindifferentfields(agriculture,forestry,landplanning,etc.).Itsmain
finalstructureincludedgraphicaltoolsandprocedurestocombine—onthefly—analysisand
visualizationofspatialdataandsubsequentproductionofmapsandtables.
Basically,dashboardconsistsoffivesections(Figure3):
(i) adedicatedareawhereuser’squeriesarerecorded;
(ii) webGISfacilitieswhichenabletheusertonavigatethroughspatialdatalayers,makequeries,
carryoutspatialstatisticsandotherrequests;
(iii) drawing/selectionoftheareaofinterest(AOI);
(iv) dashboardsfortheGeospatialforestrytool.
Forests2019,10,69010of25
Figure3.Thedashboardinbrief:theusercannavigatethroughtheplatformandexplorethefive
differentsections(inred).
SinceofficesoftheCampaniaRegionlocatednearbythestudyareawereamongthemain
stakeholdersofthedashboardandconsideringthatinsomecases,duetofundingandlegal
restrictions,theycannoteasilyaccessdesktopGISfacilities,aspecificmodule(point(ii)asgiven
above)wasdesignedtoallowpublicaccesstoterritorialinformationatseveralscalesandfreelymake
queriesonthegeodatabase,asforinstancedisplayingchangesonlanduseoccurredfrom1950ona
selectedforestarea.Theusers(e.g.,forestmanager)could,forexample,selectprebuildAOI(above
mentionedpoint(iii))withinaregionofinterestaccordingtotheirspecificneeds(e.g.,areastobe
harvestedaccordingtoforestplanscriteria)andthereforelaunchtheapplication(thepossibilityof
selectingspecificCadastralIDnumberisalsogiven).Thesystemallowsthecreationand
editing/deletingofoneormorepolygons(thatcanalsobemovedorresizedwithintheprojectarea);
oncedrawn,theAOIrepresentskeydatastoredinadatabaseandlinkedtotheuserthatcantherefore
decidetostoretheminapersonalhiddenspaceormadepublicforgeneraluse.Theforestrytoolcore
canbefoundintheapplicationdashboardanditaddressesforestrymanagementplanningtasksto
beperformedaccordingtoendusers’necessities.
ThecontributiontoforestmanagementgivenbyGIFTisbasedonLiDARderivedinformation
thathasbeencombined,byforestpractitioners,withexpertbasedknowledgeoftheforestresources
andregulationapplication,aimedatorientingthefutureevolutionoftheresourcetakingintoaccount
theowner’snecessities.
Toseparatethemaindomainofforestryinterest,theforestrytooldashboardhasahierarchical
structurewiththreemaincategorieschosenonthebasisofmultipleinteractionswithstakeholders:
Forestmanagementplanningforbasicknowledge:itincludesapplicationsforthedescriptionof
theforestareachosenbytheenduser.Theuserselectsaforestarea(i.e.,drawstheAOI
boundaries)andgetsfromthesystemareport(i.e.,arealtimeautomaticallygenerated.pdffile)
describingthemaingeological,climate,soilandlandusefeaturesofittogetherwitha
descriptionofthemainforesttypologiesandstandstructurefeaturesandotherLiDARderived
informationregardingthesoilmorphology(planandprofilecurvature).
Forestmanagementplanningforforestproductivity:specificcontributionreferringtoforest
managementapplicationsbymeansofclassicalapproaches:(i)infieldandLiDARderived
dendrometricmeasurements;(ii).theprevailingfunctionsandtherelativepriorityplanning
Forests2019,10,69011of25
designation(protective,naturalistic,productive,freeevolution);(iii)theecosystemservices
(supply,regulation,supportandcultural);iv)thesustainableforestmanagementguidelinesthat
refertothetypeofmanagementtowardswhichitwouldbeappropriatetoaddressthe
typologicalunit.Therewillnotbeanyconsiderationtomanagementissuesrelatedtoforest
disturbanceslikewildfire,avalanches,pestcontrol.Thetoolhasbeensofarconceivedina
simplifiedshapeastoprovideaneasyandpreliminarysupporttoendusertobeguidedinthe
fulfilmentofthemanagementplansrequestsbyregionallaws.Mostapplicationsinforestrytool
applystatisticalmodelsfortheproductionofreports(mean,max,min,standarddeviation,etc.),
andspatialprocessingroutinestocalculatemainparametersovertimewithinspecificAOI(i.e.,
potentialsolarradiation,LiDARderivedvegetationindexes).
Forestmanagementplanningforsoilprotection:GIFTincludesaspecificmoduleonsoil
protectionasrequestedbythecompetentauthorityandforestprivateowners.
Inordertodescribeourphysicallybasedandempiricalmodelsweaggregatedthemintoa
modularschemenamedmodellingcluster(MC).Theemployedmodellingclustersavailableinthe
forestrytoolaredescribedbelowandreportedinTable2.
TheoriginalItalianversionofthedashboardhasaslightlydifferentlabellingwithadichotomic
distinctionbetweenplanningandmanagement(Figure3)becausethisclassificationwasrequested
byforestpractitionersaccordingtotheCampaniaregionalforestlaw.
Forests2019,10,69012of25
Table2.MainmodelsemployedinSOILCONSWEBGCIfortheforestrytool:descriptionofmodellingclusterandexamplesoftheiruse/importance.
Modelling
ClusterApplicationMainFunctionalitiesRequiredActivityExamplesofInputParametersExamplesofOutputin
theSDSS
Forestmanagementplanning
GeneraldescriptionoftheAOI
Basicknowledgeofforest
(MC1)Basic
forestrydata
Providingbasicforest
databasedon:
(i) orthophoto
interpretation,
(ii) image
classification,
(iii) samplingplots
withextensive
datacollection
Clipofdataonthebaseof
AOIandbasicspatial
statistics;GIScapabilitiesfor
calculationofenvironmental
parameters(physical
parameters)
Raster,vectorandtableddatarelatedtosoiltype,elevation,
landuse,geology,administrativeunits,foresttypologies,
solarradiationindex,profileandplancurvatures
Rastermaps(provided
withdynamiclegends
appropriatetotheAOI
dimension)depicting
themaindescriptive
parameterstosupport
forestbasicknowledge
atstandandlandscape
scale
Forestproduction
(MC2)
Supportto
forest
resources
management
Mappingindexes
relatedtomain
dendrometic
parametersatstand
scale(LiDARderived
metrics)
Writingnewcodes:(i)
applyinglinearregression
modeltoretrieveLiDAR
derivedindexes(non
parametricbootstrap
resamplingmethodusedto
validatetheregression
modelsofLiDARmetricsvs
fielddata),(ii)clipofdataon
thebaseofAOIandbasic
spatialstatistics;(iii)forest
practitioner’sexpertbased
datainterpretationand
managementguidelines
Forestryexpertbasedreportcontainingindicationsof
managementpracticesaccordingtoharvestingplans
requirementsbyregionalregulation
PDFreportcontaining
infoonforesttypes,
mainsilvicultural
parametersandforest
expertbasedindication
forforestmanagement
Descriptive
standstructure
statistics
(LiDARmetrics
fielddata
calibration)
Canopycover(%)Rastermap
Meanforeststand
height(m)Rastermap
Growingstock
volumeofstemand
branches(m3/ha)
Rastermap
Totalaboveground
biomass(kg/ha)Rastermap
Soilprotection
(MC3)
Soilerosion:
RUSLE
Interactiverealtime
RUSLERateofsoilerosionLandcovertype,datafromsoildatabase,typeofanti
erosionmanagement
Rastermapsof
potentialand
interactivesoilerosion
(MC3)
Soilstability‐
landsliderisk
Mappinglandslide
riskthrough
combined
geomorphological
andpedological
modelling
Geomorphometricanalysis
andsoildatabaseprocessingVectordataoflandslidecrownsandofandicsoiltype
Vectormaps(provided
withdynamiclegends
appropriatetotheAOI
dimension)depicting
thelandsliderisk
assessment
Forests2019,10,69013of25
3.1.1.MC1—ReportingForestryKeyParametersforBasicForestKnowledge
Thismoduleincorporatesbasicproceduresusedforthebasicknowledgeofforestresources
withintheareaofstudy.Itconsistsoftwomainprocedures:(i)spatialstatisticswithintheAOIon
either/bothvectorandrasterbase;(ii)reportmaking(exportable.pdffile)containingstatisticsand
otherinformationintableformat.PostGisfunctionalitiesenabletodefinetheanalysisoftherasteror
vectorlayersstoredinthegeodatabaseinrelationwiththeoperationchosenbytheuser.The
productionofautomaticPDFreportincorporatesdatafromspatiallayersrelevantforforest
managementplanning.Amongthem:landscapefeatures(e.g.,digitalelevationmodel,geologyand
soilandforesttypesmaps,etc.)andaverageclimaticfeatures(e.g.,precipitation,temperatureand
solarradiationmaps).Themoduleoperatesby:(i)“clipping”thelayersusingtheAOIasforestarea;
(ii)calculatingpixelbasedzonalstatistics(min,mean,max);(iii)buildingthe.pdffileintabular
formatbyreportingdatathankstothefreePDFgenerator(FPDF).Additionalroutinesareappliedin
ordertoincludeusefulinformationinthereportsuchaspicturesofsoilprofilescorrespondingtosoil
typestypicallyspatiallyassociatedwiththeAOI.Soilandclimateinputdatastoredinthegeo
databaseare“pickedup”byautomaticroutinesallowingtheapplicationofthemodelthroughout
thestudyarea.ClimatedataintheDSScanbeaccessedthroughtheterritorialthemes.
3.1.2.MC2—LiDARModelsandVegetationIndexesSpatializationwithinForestAreasat
LandscapeScale
Accordingtoexpertbasedevaluation,eightforesttypologies,overallrepresenting~98.3%ofthe
entireforestedareaoftheTelesinaValley,wereidentifiedbyphotointerpretationofdigital
orthophotos(moredetailsinTeobaldelli[37]);maindendrometricparameters(diameteratbreast
height,meanheight,basalarea),obtainedwithin26georeferencedplotareasfromgroundfield
surveys,wereusedtoestimategrowingstockvolumeandmerchantableandtotalaboveground
biomassthroughallometricequations[41].Eightlinearmodelswereusedtopredictbetterestimation
ofseveraldendrometricparametersincludingmeanstandheight(Hm),growingstockvolume(V)
andtotalabovegroundbiomass(AGB),asafunctionofseveralLiDARmetrics(estimatedusingthe
FUSIONsoftware;[37])withinthe26georeferencedplotsamplingareas.Thelinearequationmodel
providedthebestestimationfortheselecteddendrometricparameters(moredetailin[37].Onthe
basisofthedataobtained,alltheinformationwasspatializedonallthe8foresttypologies(5477.55
ha)ofthestudyareaand,finally,mapswerecreatedandexportedasrasterdata.Themoduleoutputs
consistintheproductionofgraphsandmapsrelatedrespectivelytocanopycover(%),meanstand
height(m),growingstockvolumeofstemandbranches(m3ha1),totalabovegrounddrybiomass
(kgha1)withinthespecificAOIdefinedbytheuser.
3.1.3.MC3—SoilProtection
Thismoduleprovidessomebasicknowledgeaboutsoilprotectioninforestecosystems.It
consistsoftwomainassessments:(i)potentialsoilerosion;(ii)potentiallandslideinitiation.The
importanceofthesemodellingclustersreferstotheevidencethatforestsoilsofthearea(mainly
Silandic,Mollic,EutrosilicAndosols,andVitricPhaeozem)haveagenerallyhighsiltcontent(above
60%),highverticalphysicalsoilhorizondiscontinuities,veryhighwaterretention,lowadhesion
towardsthebedrock,highthixotropy.Allabovefeaturesmakethesesoilsextremelyfertileandvery
pronetowardserosionandfastmudflows/debrisflows[42–45].Thisconditionisworsenedwhen
soilcontinuityisinterrupted[46]byroads,cliffsandforesttracksduetoforestoperations.Thus,this
moduleenablesuserstonavigatebetweenforestcover,forestmanagement(e.g.,tracks)soilerosion
andfastmudflows.OncetheuserselectsorcreatesanAOIthesoilerosionmodulecancalculatethe
potentialsoilerosionaftertheRUSLEapproach[47]thuscombiningthefollowingfactors:rainfall
runofferosivity,soilerodibility,slopelength,slopesteepness,covermanagementandsupport
practice.Themodelincludesa“whatif”approach;forinstance,theusercanevaluate—inrealtime—
howfarpotentialsoilerosioncanbereducedafteradoptingnewcover(canopydensity).Inthecase
Forests2019,10,69014of25
ofthelandslidetool,theusercanaccessthesystemtoknowtheselectedforestAOIandthespecific
connectionbetweensoiltypeandlandformwithanestimateofthemudflowriskclassification.
3.2.CaseStudies
TheforestrytooldevelopedwithinSOILCONSWEBwasappliedtoaninlandareaofthe
southernApennineswhichwashighlyrepresentativeoflanduseandforesttypes.Theaimwasto
supportmanagementplanningactivitiescarriedbyforestowners.Thissupportstartedwitha
preliminaryrecognitiveanalysisofforestresourcesthroughtheidentificationofthemainforest
types,pastandcurrentmanagementandsilviculturalsystemaccordingtoforestplans,mappingof
themaindendrometricparameters,displayoftheabovementionedinformationandcreationof
reports.Thefinalproductfortheuserwasrepresentedbyraster/vectormaps,tablesandsummaries
intechnicalsheetsincludingthedescriptionofthestation(soil,slope,exposure),foresttypes,
presenceofeventualsitesofcommunityinterest,suggestedmanagementtechniques(i.e.,
silviculturalsystem)definedwithintheareasofinterestchosebytheenduser.Fromanoperational
pointofview,wechosetodividethecasesofapplicationintothreedomains,allpartofforest
managementplanning:basicknowledgeofforestresources,managementplanningforforest
productionandmanagementplanningforintegratedsoilprotection.WeconsiderGIFTafull
functionalmanagementplanningtoolprovidingforestexpertswithsupportduringplanning
processes.Figure4depictsthevariousstepstheuserhadtofollowtoobtainthedesiredoutput
information.
Figure4.TheflowchartoftheGIFTtoolforsupportingintegratedforestknowledgeatthelandscape
scale.
Forests2019,10,69015of25
3.2.1.Case1:SupporttoManagementPlanningforBasicForestKnowledge
RegionalforestplanninginCampaniaRegion,Italy[48](namedfromnowonRR)isdivided
intothefollowingplanninglevels:a.General‐GeneralForestryPlan;b.Executive‐ForestryPlanning
ExecutiveDocument;c.local‐ includingtheTerritorialForestryPlan(PFT)andtheForest
ManagementPlans(PGF).ThehereproposedGIFTtoolhasthefullpotentialofprovidingsupport
bothtoforestplanners,asitoffersfactfindingsurveyoftheforestresources,andtoprivateforest
ownersinthecuttingseriesplan.TheGeneralForestryPlanactualizationisformalizedbyForest
ManagementPlans[49].Privateforestownerswhotypicallywanttocutaspecificforestparcel/lot
mustsubmitanauthorizationrequestoracommunicationtotheMountainCommunity(Mc,
ProvincialAdministration(PrA),MetropolitanCity(MeC)wherethelottobecutfalls,usingoneof
themodels[48]asappropriate.Forboththeseapplications,theforestrytoolcanbeusedforcollecting
basicforestdatawithinaspecificAOI.
Indeed,theproposedprocedurecanbeemployedbyenduserswhoareinterestedin:
i) gettinginformation,thataretypicallynoteasilyavailable,relatedtoforesttypesand
quantitativestandattributesofaspecificAOI,withthepurposeofprovidingadditional
informationforassistingplanningphaseofthechosenforestarea.Ofcourse,moredetailedand
completeinformationatstandscalesregardingstanddensity,treeheightanddiameter
distributionandaveragestandagemustbeperformedwithfieldsurveys.Theabovementioned
tasksareperformedbyapplyingtheMC1routine;
ii) havingasupportforidentificationofhighergrowingstockareas;
iii) evaluatewhethersomekeyenvironmentalfactorscouldeaseforestoperations.More
specifically,ausercan“explore”her/hisAOI(Figure5)byevaluatingsomeenvironmental
factors(DTM,profilecurvature,soil,andforesttypes)thatmightfacilitatethestudyofforest
areasanditsmainsilviculturalandenvironmentalfeatures.
Forests2019,10,69016of25
Figure5.ResultsfromthreesimulationsoftheGIFTtool.Threeidenticalareasofinterest(AOI)have
beengeneratedaccordingtotheforeststandinformationtheuserwasinterestedtoget(canopycover
orgrowingstockvolume).Accordingly,atechnicalreporthasbeencreatedwithinformationofthe
AOI.TheoriginalinformationisinItalian(heretranslatedmanuallyinEnglish)sincetheplatform
hasbeendesignedforItalianforestowneruse.
Forests2019,10,69017of25
3.2.2.Case2:SupporttoManagementPlanningforForestProductivity
Thisprocedurecanbeemployedmainlybyprivateforestownerswhoaimatoptimizingforest
resourcesbyperformingcuttingseriesplanfor(Attachment14—art.30c1lettersabauthorization
forcutsintheabsenceofaForestManagementPlan—forpublicsubjects;Attachment15—art.30
lettera,communicationcutsinabsenceofaForestManagementPlan—privatesubjects).
ItisstatedbyRR[48]thatinordertoharvest:
(i) coppices(withreserves,mixedorselection)withtotalsurfacesgreaterthanorequalto2hectares
andlessthan10hectares,intheabsenceofaForestManagementPlan;
(ii) highforestsandcoppicesinconversiontohighforestsforatotalareagreaterthanorequalto
0.5hectaresandlessthan10hectares,intheabsenceofaForestManagementPlan
Itiscompulsory,fortheprivateforestowner,toobtainapriorharvestingauthorizationissued
bytheterritoriallycompetentdelegatedbody(Mc,PrA,MeC).Thesebodieswillretrievethe
authorizationsfromtheSingleDeskforForestActivities(namedS.U.A.F.,inItalianSportelloUnico
perleAttivitàForestali).
Fortheabovereferredpurposes,theowner,orotherlegitimatelyauthorizedperson,must
presentaspecificrequestinordertogetacuttingauthorization[50].Therequestconsistsinareport
thatmustcontainthefollowinginformationregarding:cadastraldataoftheforestarea,totalareato
beharvested,classificationoftheterritorialcontextinwhichtheforestfallswiththespecificationof
anyrestrictions(whetherpresent),maindendrometricparametersofthestand,etc.Theentire
requiredinformationthatmustbecontainedinthereportaccordingtotheregionalforestrylawand
theparametersthatcanbeprovidedbytheGIFTtoolisavailableinTableS2ofSupplementary
Materials.
Themajorityoftheprelistedinformationrequestedbyforestregionalregulationcanbederived
fromtheforestrytool(Figures4and5b.)byusingMC2,i.e.,canplansylviculturaltreatmentsand
harvestingoperationsevaluatingbreastheight(1.3m)treediameterandheightdistribution,growing
stockandabovegroundbiomasswithindifferentAOIs.Thisallowsalsotoidentifythebestareasto
activelymanagetotakealookattheareashavinghigherbiomassindexes,bettersoilconditionsand
easytoaccessforestroadnetwork.TheusercandrawtheAOIandimmediatelygettheabove
mentionedinformationandbiomassdata,andastheMC2applicationcanberepeatedelsewherein
thestudyarea(i.e.,TelesinaValley)thereforeobtainingseveralscenarioanalyseswith,potentiallya
largespatialvariabilityofthepredominantenvironmentalfactors(e.g.,soilproperties,forest
typologies,altitude,exposition,etc.).Eventhroughanaggregatedandsimplifiedapproach,the
forestryDSStoolmakesitcapabletoadapttoseveralpurposes.
3.2.3.Case3:SupporttoManagementPlanningforSoilProtectionandForestRoadEvaluation
Havingatoolthatcaninformdecisionmakers(RegionalForestryOffice,Mc,PrA,etc.)ofareas
thatarepotentiallyatriskoflandslidesiscrucialforissuingauthorizationproceduresforforest
management.Theseareasshouldbemanagedwithspecialcarewheneithersilvicultural
managementmustbeperformedoradjustments/opening/wideningofforestroadsnetworkmustbe
made.Indeed,thewoodsextractionmust,byregulation,takeplaceonexistingroads,ductsand
canals,avoidingrollingandloggingonrecentlycutpatchesorinregenerationpatches.Accordingto
theregionalforestregulationand,similartotheareassubjecttohydrogeologicalconstraint,the
openingofforestroadsandforesttracksforloggingoperationsissubjecttopriorauthorization,to
berequestedtogetherwiththeauthorizationforforestcutting.IfanAOIfallswithinlandslide
vulnerablezones,theprotectivefunctionwithrelativemanagementcouldbeassignedtothatforest
area,accordingtotheregionalforestregulation.Ithasbeenprovedthatforesttracksareinsome
casescorrelatedtolandslideoccurrences[46].Accordingtotheregionalforestregulation[48]the
openingofroadsandforesttracksfortheextractionoftimberissubjecttopriorauthorization.We
hypothesizedthatifaprivateforestowner’sneedstocutapatchofcoppiceandopennewforest
roads,beforesubmittingtherelativeauthorizationtoCampaniaRegionForestofficers,might
performapreliminarilyselfassessmentoftheareausingtheMC3oftheforestryDSStoolasshown
Forests2019,10,69018of25
inFigure6.Bydoingso,itwouldbepossiblefortheprivateforestownertocheckthesusceptibility
oftheAOItobemanagedandtherefore,accordingtotheresultsobtained,provideextraelementsto
thedocumentationsthatwillbefinallysubjectedtotheauthorizationofthepublicauthority.
Figure6.ResultsfromtwosimulationsproducedwiththeGIFTtool.TwoidenticalAOIhavebeen
generatedanddefinedasareastobemanaged.Thetooliscapableofidentifyingpotentiallyrisky
Forests2019,10,69019of25
areasaccordingtothesoilandgeomorphologictypes.Thisinformationcanbeusedbyprivateforest
toobtainpriorauthorizationforforestmanagement.
4.Discussion
Inthispaper,wepresenttheproduct,developedwithintheSOILCONSWEBLifeproject,named
GIFTtoolthathasbeenconceivedasaGeospatialdecisionsupportsystemtoolforsupporting
IntegratedForestknowledgeatthelandscapescale.Thistoolwastheresultofabottomup
consultationprocessthatinvolvedresearchersandstakeholdersinthefieldofforestrywhowere
askingforaneasytouse,friendlyandopenaccessgeospatialwebbaseddecisionsystemtosupport
forestresourcesknowledgeinaholisticandintegratedway.ThroughthisGCIweattemptedtobuild
aprototypethatmightrepresentanewwayaheadforprovidingamultiuserandmultiscaleforest
toolrangingfromsingleforestparceltodistrict(13municipalities)level.
4.1.FutureProspects
GIFTrepresentsanattemptofsharingknowledgeintheframeworkoffunctionalalthoughina
simplisticway,whendataavailabilityintheforestrysectorandregionalregulationhardlyconvey
intoforestmanagementplanning.Giventheneedforanoperationaltooltobeoperational,herewe
trytosummarizesomeofthemainachievementsthatmighthelptoshapefutureforestSDSS
development.
Amongthepositiveacknowledgmentswename:
Themultifunctionalapproachaspushintowoodmarket;Weknowthatforestsarepartofan
integratedandmuchwidersustainableframework.Indeed,forestryisconnectedtootherland
uses:accordingly,thiscanbeturnedintopracticebyendusers(e.g.,forestowner)byquerying
informationregardingmainsoilthreatsorlandusechangesoveradesiredtimelapsewithinthe
AOIs.Theforestrytoolheredevelopedcontainsalsoaninnovationgivingspecialemphasison
appliedsoilknowledge.Theforestknowledgecouldpotentially,evenifindirectly,helpwood
productsmarketdevelopmentinCampaniaRegion.Infact,farmers/privateforestowners
believethatobtainingeasytointerpretdataofforestproductivity(biomass)foraspecificAOI
mightawakentheknowledgeoftheavailableforestresourcesoftheirterritory,makingit
possibletoaffectespeciallythepriceoffirewoodinthearea;
Thesimplicitybehindabottomupproduct.Thesystemallowsforestowners/foresttechnicians
todrawtheirownforestareaandgetinformationstrictlydedicatedtotheirspecificterritory.
Suchasimplequerywasperceivedasaninnovativetooltogetquickandeasytoready
informationofforestareasofinterest;Thefeedbackgivenbyendstakeholders,throughfaceto
facemeetingsandinterviews,havebeenfundamentalforthedevelopmentandmanagementof
thisplatform;
WOG(web,open,geospatial).Inamoregeneraltheme,thekeyandcrucialaspectofthispaper
refertotheimportanceofusingfree,opensourcegeospatiallibrariesandprogramsallowing
thepotentialinvolvementofalargecommunityofdevelopers,includingtheprocessingof
data/modelsfromdifferentsourcesandformats;
Soilsupportsforestplanningaccordingtosilviculturaltypes;TheGIFTtoolrepresentsafirst
attemptofsupportingforestplanninginaRegionofthesouthernApennineswherecoppice
standsmainlyoccupyslopesandcover42%oftheforestsurface[51].Theirperiodicalcuttings
(onaverageevery14–18years)implyenvironmentalimpactsatlocalandlandscapescales.As
stressedinMC3—Soilapplicationsection,superimposedallochthonoussoilsfromvolcanic
originarewidespreadintheCampaniaRegion.
4.2.TheInnovationofGIFTintheFrameworkofForestSDSS
TheSoilConsWeb,underwhichGIFThasbeendeveloped,isacomplexGCI,asdepictedin
Figure2,whosemainfeaturesare(i)theuseofopensourcetechnologiesaimedatbuilding(ii)a
freelyavailablewebapplicationenabling(iii)geospatialanalysispossibly(iv)onthefly.
Forests2019,10,69020of25
Itthissense,GIFTtakesitsshapeintheframeworkoflandscapemanagement,altogetherwithother
landusestoolswithwhichitisintimatelylinked(e.g.,DigitalSoilMapping(DSM)andsoilplant
atmosphereengines(SPA)DSMinformationandSPAmodelsareinterconnectedbetweenthe
differentlanduses).
Thereisamajorcostintheinitialdesignandthefurtherimplementationofsuchaplatform,but
herewewanttohighlightthepossibilitiesthatsuchsystemcanofferwhencomparedtothemore
traditionalForestDSSs.
ThemajorityofthealreadydevelopedforestDSSconsistsofstandalonessystemswithaclosed
sourcesoftware[9,31]tobeinstalledonlocalcomputers,designedforindividualorspecificuse.In
manycases,theuserhastodealwithissuesrelatedtotheinstallationprocess—includingthe
operativesystemrequirementsandtheinstallationofprerequisites—andtofurthermaintenance,
suchasupdatesoftheoperativesystemhostingtheDSSsoftwareortheupdateoftheDSSsoftware
itself.Ontheotherhand,whenwebbasedsystemsareavailabletheseareeventuallynotcovering
geospatialanalysis.
TheSoilConsWebplatformismaintainedinacentralizedway:softwarecomponentscanbe
easilyupdated(inparticularthosethirdspartiesopensourcecomponents,suchasGeoServer),the
hardwarecanbeupgradedtoraisephysicalresourcesandnavigationperformanceandcompatibility
issuescanbefixedwithoutleaningontheendusercontribution.
TheGCIplatforms,likeGIFT,comparedtomoretraditionalforestDSSaremoreadaptabletobe
transferredtolargerareasmovingtowardsitsapplicationonalandscapescaleturningappealing
alsointermsofcostreduction.TheGCIisflexibleenoughthatanewtoolcanbeeasilyaddedtothe
toolbox.Indeed,thisoperationissimplebothonserverside(tobeperformedbytheadministrator)
aswellasontheclientsidewhereonlyaquickwebpagerefreshisrequired.Thislastfacilitationwas
usefulduringtheinteractionwithstakeholderswhichledtothefrequentmodificationsofexisting
toolsorcreationofnewones.Theplatformcanbenavigatedalsobysmartdevices(phonesand
tablets)thathaveaccesstotheinternetconnection,andthisenhancetheportabilityofthetoolseven
inthecasealoginisrequired.Onedisadvantagemightbethewebbrowsercompatibility,butthe
mostwidespreadbrowsersarefullycompatible,suchasMozillaFirefoxandGoogleChrome.
Anotherlimitationistheinternetconnection:withoutconnectionorincaseoflowbandwidth,there
isnochancetoproperlyusetheDSS.
4.3.LimitationsoftheGCIandFurtherDevelopment
Somemajorandchallengingproblemshavebeenidentifiedduringthebuildingprocessofthe
GCIandtheseshouldaswellleadfurtherdevelopmentoftheGIFTtoolandofforestSDSSin
general.
Firstofall,noforestmodelsforsimulatingsilviculturalpracticeshavebeenyetdevelopedor
appliedwithintheGIFT,neverthelessfurtherdevelopmentsarerequiredandcrucialforsuch
CyberInfrastructure.Indeed,accordingtotheexperiencegainedwithinSOILCONSWEBprojects,a
frameworkhasbeenestablishedinanewfollowupplatformtobebuiltundertheLANDSUPPORT
projectfundedbytheEuropeanUnion’sHorizon2020FrameworkProgramforResearchand
Innovation(H2020RUR20172).Simulatedsilviculturaltreatmentsthroughprocessbasedmodels
(PBMs)willbeperformedatlocalandregionallevel,takingintoaccountforeststructurecomplexity
andsoilpropertiesinintegratedForestEcosystemModels(FEMs).The3DCMCCFEMmodel[52]
willbeimplementedinLANDSUPPORTandwillinvestigatedifferentforestmanagementoption
accordingtoclimaticscenariosincludingbiomasspoolsandtheirpartitioning,forcomplexmulti
layerforests[52–54].
Duetolackofhomogeneousanddetailedinformation,nosocioeconomicdatawastakeninto
accounttoestimate,measureandtestthepotentialimpactthatthetoolcouldhavewithinthestudy
area.WewouldstronglyrecommendintegratingeconomicinformationinSDSSandsimilarforestry
toolstogiveitasolideconomicdimensionforencouraginganactivemanagementoftheforest
resource.Inthiscase,aninterestingapproachcanbefoundinanovelSpatiallybasedEconomic
Modeltoolsforestimationoftheharvestingcostoflogging[55].
Forests2019,10,69021of25
Wemustfurtherstressthatdataavailabilityandupgradearecrucialforarobustassessmentof
theparametersofinterest(especiallybiomass).Nevertheless,fieldandLiDARderiveddataofthe
forestareasactuallydisplacedontheplatformreferto2011measurementsandhavenotbeen
refreshedorupdatedeversince.
DespitemanyforestDSSalsoprocesstimeseriesdatasuchasmeteorologicalvariables[56]and
others[57–60]havebeendevelopedhavingasmainfocustheeffectsofdifferentclimatechange
scenariosonCO2assimilationoronforestdisturbancessuchasthegrowingriskofdrought,forest
fire,winddamagesandbarkbeetleoutbreaks[20,61–64]thisDSSdoesnottaketheseissuesinto
accountbecausewithinthestudyareatheywerenotexpresslydemandedbystakeholders.
Theuserscannotuploadhis/herowndata(ktmfiles,dendrometricsurveys)intotheforestry
tooltocustomizetheirAOI.
TheRegionalForestOfficeofCampaniaRegion,stakeholderoftheproject,doesnotpossessa
ForestTerritorialInformationSystemandthisabsenceweakensthewebgeospatialDSSandthe
forestrytool.Webelievethatatechnicalconnectionbetweenthetwosystemscouldbepossibleand
couldenhanceforestresourcesmanagementanddataharmonizationataregionallevel.Application
overlargerareaswouldbefundamentaltosupportforestregionalplanning.
Sensingimplementation:usingproximalsensingcouldallowaclimatechangescenariotrend
analysis,butreliabledailyclimatedatacollectedbytheRegionatsuitablescalesareabsent.Afurther
investmentondataobtainedonfurtherLiDARflightsitwouldbeuseful.
Applicationatlargerextentareasthanthepresentworkishighlydesirabletosupportforest
planningatdistrictandregionalscales.Inordertofacethischallengeitwouldbecrucialtoaddress:
(i)moreinvestmentstobeperformedbythepublicauthorityondataassimilationbymeansofLiDAR
onthewholeregion;(ii)aproperandformalizedreliability/qualityoftheinputdataandthe
resolutionoftheinformationprovidedatalargespatialscale;(iii)theneedofhighperformance
computingsystemstoprocessinrealtimelargeamountsofdata.
Atlast,wemuststressthatthepotentialdeliveriesoftheforesttoolareveryfragileifgood
maintenanceofthesystemcomponentsisnotguaranteed.
5.Conclusions
Gettingaccesstoforestry,agriculture,environment,andurbanplanningdataisnowadaysof
undiscussedimportancefortheyarethestartingpointtosupportbestdecisions/practicesfor
managementissues.Overall,wethinkthatinthedomainofSDSS,manyofthesesystemscanfailin
theirmissionandthesefailuresareoftenrelatedtothedevelopmentofmanycomplexsystemswhich
arebothdifficulttooperateanddifficulttomodify[65].DSSmaybedesignedforaparticular
problem,supportingaspecificdecisionprocessorjustadecision