Content uploaded by David Saah
Author content
All content in this area was uploaded by David Saah on Aug 05, 2019
Content may be subject to copyright.
i
MARCH2016
CEC‐600‐10‐006
AlternativeandRenewableFuelandVehicle
TechnologyProgram
FINALPROJECTREPORT
EFFECTSOFFUELREDUCTION
TREATMENTSONWILDFIREAND
CARBONMASSBALANCESINTHE
SIERRANEVADA,CALIFORNIA,USA
Preparedfor:CaliforniaEnergyCommission
Preparedby:SpatialInformaticsGroup,LLC
ii
DISCLAIMER
This report was prepared as the result of work sponsored by the California Energy Commission. It
does not necessarily represent the views of the Energy Commission, its employees or the State of
California. The Energy Commission, the State of California, its employees, contractors and
subcontractors make no warrant, express or implied, and assume no legal liability for the information
in this report; nor does any party represent that the uses of this information will not infringe upon
privately owned rights. This report has not been approved or disapproved by the California Energy
Commission nor has the California Energy Commission passed upon the accuracy or adequacy of
the information in this report.
Prepared by:
Primary Author(s):
Tadashi J. Moody1, Saah, David, Ph.D. 1,Travis Freed1, Roller, Gary1, John
Gunn, Ph.D.2, Paul Lilly, Ph.D.1, and Jason J. Moghaddas1
1Spatial Informatics Group, LLC and Spatial Informatics Group, Natural Assets
Laboratory2
3248 Northampton Ct., Pleasanton, CA 94588
Agreement Number: 600-10-006
Prepared for:
California Energy Commission
William Kinney
Agreement Manager
John P. Butler
Office Manager
Emerging Fuels and Technology Office
John Kato
Deputy Director
Robert P. Oglesby
Executive Director
iii
ACKNOWLEDGEMENTS
TheauthorswouldliketoacknowledgeJonathanLongoftheUSDAForestServicePacific
SouthwestResearchStationforallofhiseffortsmanagingthiscomplexproject.Wewouldalso
liketoacknowledgeDr.ScottStephensoftheUniversityofCaliforniaandDr.BrandonCollins
fortheirinputandexpertise.
iv
PREFACE
ThisreportissubmittedinfulfillmentofworkcontractedbytheUSForestService,Pacific
SouthwestResearchStationandCaliforniaEnergyCommissionunderthe“Assessingthe
SustainabilityofForestBiomassUtilizationinCalifornia”studyasTask11“Quantifythe
EfficacyofFuelReductionTreatments.”
AssemblyBill118(Núñez,Chapter750,Statutesof2007),createdtheAlternativeand
RenewableFuelandVehicleTechnologyProgram(ARFVTProgram).Thestatute,subsequently
amendedbyAB109(Núñez)Chapter313,Statutesof2008),authorizestheCaliforniaEnergy
Commissiontodevelopanddeployalternativeandrenewablefuelsandadvanced
transportationtechnologiestohelpattainthestate’sclimatechangepolicies.TheEnergy
Commissionhasanannualprogrambudgetofabout$100millionandprovidesfinancial
supportforprojectsthat:
Developandimprovealternativeandrenewablelow‐carbonfuels.
Enhancealternativeandrenewablefuelsforexistinganddevelopingengine
technologies.
Producealternativeandrenewablelow‐carbonfuelsinCalifornia.
Decrease,onafull‐fuel‐cyclebasis,theoverallimpactandcarbonfootprintof
alternativeandrenewablefuelsandincreasesustainability.
Expandfuelinfrastructure,fuelingstations,andequipment.
Improvelight‐,medium‐,andheavy‐dutyvehicletechnologies.
Retrofitmedium‐andheavy‐dutyon‐roadandnonroadvehiclefleets.
Expandinfrastructureconnectedwithexistingfleets,publictransit,and
transportationcorridors.
Establishworkforcetrainingprograms,conductpubliceducationandpromotion,
andcreatetechnologycenters.
ThisreportissubmittedinfulfillmentofworkcontractedbytheUSForestServiceand
CaliforniaEnergyCommissionunderthe“AssessingtheSustainabilityofForestBiomass
UtilizationinCalifornia”studyasTask11underAgreementNumber600‐10‐006withthe
SpatialInformaticsGroup,LLC.
v
ABSTRACT
WequantifiedtheeffectsandefficacyoffuelreductiontreatmentsintheSierraNevadaas
measuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Theanalysisintegrated
forecastedforestgrowthandGHGsequestration,expectedchangesinwildfirebehavior
followingfuelreductiontreatments(efficacy),expectedchangesinwildfireemissionsfollowing
fuelreductiontreatments,andalifecycleanalysis(LCA)ofthefateofGHGsinwoodremovals
overafortyyearperiodpost‐treatment.TheLCAtrackedthefateofcarbonfromwood
removalsstoredindurablewoodproducts,woodymaterialusedforbioenergyandbiofuels,
forestharvestresiduesandwaste,operationalemissions.TherewasanetGHGliability(carbon
loss)incurredbytheone‐timetreatmentofthelandscapebetween2003and2008,undera1%
annualprobabilityoffireoccurrence.Thetreatmentsonlyremainedeffectiveatreducingfire
sizethrough2025(17‐22yearsaftertreatment)afterwhichsimulatedfireswereactuallylarger
ontheprojectlandscape.Benefitsthatwereslowlyaccumulatingfromavoideddirectstockloss
andimprovedgrowthratesonthetreatedlandscape(by2045)wereerasedbythisoutcome.
Performingtwomaintenanceprescribedfiresonthetreatedlandscaperesultedinadditional
carbondeficitofin‐forestCstock,butkeptfiresizessmaller.Althoughundera1%annual
probabilityoffireabenefitwasnotrealizedby2050,theliabilitywasdecreasingfrom2025
onward,suggestingthatabenefitwasforthcoming.Withahigherassumedprobabilityoffire
(2%annual),abenefitwasrealizedby2045.Asensitivityanalysisofgrowthratesusedin
modelingsuggeststhatifratesintheuntreatedstandsareoverestimatedthenrecoveryof
carboninthetreatedlandscapemayoccurmorerapidlycomparedtothebaseline,whichwould
resultinamuchquickerachievementofgreenhousegasemissionsbenefits.
Keywords:Wildfire,forestcarbon,wildfireemissions,SierraNevada,Plumas,MeadowValley
fire,lifecycleanalysis
Pleaseusethefollowingcitationforthisreport:
Moody,Tadashi,Saah,David,Ph.D.TravisFreed,Roller,Gary,JohnGunn,Ph.D.,PaulLilly,
Ph.D.,Schmidt,David,andJasonJ.Moghaddas.2016.EffectsofFuelReductionTreatmentson
WildfireandCarbonMassBalancesintheSierraNevada,California,USA.Preparedforthe
CaliforniaEnergyCommissionundercontract#600‐10‐006.
vi
TABLE OF CONTENTS
ACKNOWLEDGEMENTS....................................................................................................................iii
PREFACE..................................................................................................................................................iv
ABSTRACT................................................................................................................................................v
TABLEOFCONTENTS.........................................................................................................................vi
EXECUTIVESUMMARY........................................................................................................................1
CHAPTER1:Introduction.......................................................................................................................5
1.1BackgroundandPurpose................................................................................................................5
1.2GoalsandObjectives1.2.................................................................................................................7
1.2.1ResearchQuestions...................................................................................................................7
CHAPTER2:Methods..............................................................................................................................8
2.1FireandCarbonAnalysisFramework..........................................................................................8
2.2StudyArea......................................................................................................................................11
2.2.1FireshedDelineation...............................................................................................................12
2.2.2FuelTreatments.......................................................................................................................13
2.3DataCollectionandDevelopment...............................................................................................14
2.4ForestGrowth,TreatmentSimulationandModelCalibration...............................................15
2.5FireBehaviorandEffectsSimulation..........................................................................................18
2.5.1FuelCharacteristics.................................................................................................................19
2.5.2FireSpread...............................................................................................................................21
2.6FireProbabilityEstimation...........................................................................................................25
2.7ForestCarbonStockandFluxEstimation..................................................................................26
2.7.1In‐ForestCarbonStock...........................................................................................................27
2.7.2RemovedCarbonLifeCycleAnalysis.................................................................................27
2.7.3AvoidedStockLossfromFire...............................................................................................28
2.8ForestCarbonAccounting............................................................................................................35
CHAPTER3:Results..............................................................................................................................37
3.1ForestGrowthandTreatment......................................................................................................37
vii
3.2Fuels,FireBehaviorandFireSpread..........................................................................................39
3.3FireProbability...............................................................................................................................47
3.4ForestCarbonEstimationandAccounting................................................................................48
3.5SensitivityAnalysis........................................................................................................................60
3.5.1EffectofTreatmentMaintenance..........................................................................................60
3.5.2EffectofFireProbability.........................................................................................................61
3.5.3EffectofGrowthRates............................................................................................................62
CHAPTER4:DiscussionandRecommendations............................................................................63
4.1QuestionsForFurtherStudyResultingfromCompletionofthisProject..........................65
REFERENCES..........................................................................................................................................67
1
EXECUTIVE SUMMARY
WequantifiedtheeffectsandefficacyoffuelreductiontreatmentsintheSierraNevadaas
measuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Theanalysisintegrated
forecastedforestgrowthandGHGsequestration,expectedchangesinwildfirebehavior
followingfuelreductiontreatments(efficacy),expectedchangesinwildfireemissionsfollowing
fuelreductiontreatments,andalifecycleanalysis(LCA)ofthefateofGHGsinwoodremovals
overafortyyearperiodpost‐treatment.TheLCAtrackedthefateofcarbonfromwood
removalsstoredindurablewoodproducts,woodymaterialusedforbioenergyandbiofuels,
forestharvestresiduesandwaste,operationalemissions.
Theconditionthatfueltreatmentsareintendedtoaddressisessentiallyoneofinstability.
Whetherconsideringthemarketvalueofwoodproducts,sequestrationofcarbon,orthe
provisionofservicessuchascleanwater,recreation,orwildlifehabitat,forestedecosystems
storeresourcesandprovideservicesthatarevaluedbyhumans,andputatriskbydisturbances
suchasfire,drought,insectsanddisease.Andwhiletheseagentsareknowntobenaturaland
cyclical,thereisageneralconsensusthatthecurrentconditions,bothwithinandexertedupon
westernfire‐adaptedforestsarenowlargelyoutofarangeofvariabilitywhichwouldallow
themtowithstandperiodicdisturbancewithoutlong‐termchange.Buildupofhazardousfuel
conditions,stressfromoverstocking,andchangingclimateplacethematgreaterriskofloss.
Fueltreatmentsareintendednotonlytoprotectresourcesdirectly,butalsotorestoreoverall
healthandresiliencetotheforest,andtherebyenhanceorimprovestabilityoftheresourcesit
provides.Giventheinevitablenatureoffireinthesesystems,thisistheprimarybenefitoffuel
treatmentsintermsofcarbonstorageandgreenhousegassequestration.
Fueltreatmentsbydefinitionremovecarbonfromthesystem,butevaluatingtheirbenefit
requiresnotonlyquantifyingstoredcarbonandreducedemissions,butalsoimprovedsystem
stabilityandresiliencetolossfromdisturbance.Furthermore,treatingtheselandscapesplaces
themonadifferentecologicaltrajectory,andthereforeevaluationoftreatmentsmustconsider
theireffectsoverappropriatelylongtimescales.Theframeworkappliedinthiscasestudytries
tocapturethreeprimaryeffectsoffueltreatmentswithinthestandsthemselves:
1. Changestoin‐forestcarbonaccumulationovertime,inducedbytreatment
2. Changestostandandlandscapeabilitytowithstandseverefire
3. Modificationofexpectedfirespreadacrossthelandscape.
Additionally,wetrytocapturethetruelossofcarbon,whichismitigatedbyplacing
merchantableremovalsintolong‐livedwoodproducts,andbyutilizingwoodybiomassfor
energyproduction.
Overall,theprimaryanalysisinthisstudyindicatedthattherewasanetGHGliability(carbon
loss)incurredbytheone‐timetreatmentofthelandscapebetween2003and2008,undera1%
annualprobabilityoffireoccurrence.However,itisimportanttoconsidertheindividual
elementsofthisanalysis,asidentifiedabove.First,thedeficitofin‐forestforestcarboncreated
bytreatmentgrows(withoutfire)between2010and2045,butappearstobegindecreasingby
2
2050duetoaslightincreaseinaccumulationrateintheprojectscenarioandhigherproportion
ofcarboninlivepools.Ifthedeficitcontinuestodecrease,thenpresumablythein‐forestcarbon
onthetreatedlandscapewouldeventuallyovercometheBaselinestocklevels.Asensitivity
analysisofgrowthratesindicatesthatifFVSisindeedoverestimatinggrowthratesinthe
untreatedstands,thiseffectmightactuallybeenhanced,andrecoveryofcarbonoverBaseline
stocksmayoccurmorerapidly.
Intermsofdirectstockloss(theeffectivenessoftreatmentsatreducingseverity),thetreatments
remainedeffectiveforfiressimulatedthrough2050,i.e.asaproportionofstock,lesscarbonwas
lostperacreintheProjectscenariothantheBaselineunderthesamefireconditions.The
benefitsresultingfromthiseffectivenessaregreaterthefartheroutoneevaluates,through2050.
Thisisduenotonlytohigherlikelihoodoffireinalongertimewindow,butalsotolarger
proportionsofdeadbiomassdecayingovertime.
However,thetreatmentsonlyremainedeffectiveatreducingfiresizethrough2025(17‐22years
aftertreatment)afterwhichsimulatedfireswereactuallylargerontheprojectlandscape.
Benefitsthatwereslowlyaccumulatingfromavoideddirectstocklossandimprovedgrowth
ratesonthetreatedlandscape(by2045)wereerasedbythisoutcome.Performingtwo
maintenanceprescribedfiresonthetreatedlandscaperesultedinadditionalcarbondeficitofin‐
forestCstock,butkeptfiresizessmaller.Althoughundera1%annualprobabilityoffirea
benefitwasnotrealizedby2050,theliabilitywasdecreasingfrom2025onward,suggestingthat
abenefitwasforthcoming.Withahigherassumedprobabilityoffire(2%annual),abenefitwas
realizedby2045.
Althoughthefirescenariomodeledherewassevere(~98thpercentile),itstillresultedinless
carbonlossonthetreatedlandscape.Treatmentsmayhavebeenmoreeffectiveatreducing
severityandspreadunderlessthanextremeconditions(e.g.90thor95thpercentile),scenarios
whichshouldbeinvestigatedfurther.Furthermore,theprobabilityoffireinthisanalysiswas
characterizedbyanalyzingallfiresinsimilarforesttypes.Theprobabilityoffireoccurring
underanyweatherconditionisnecessarilyhigherthanunderextremeconditions.Although
thisisindirectlycapturedinthearea‐basedmetricoffire‐rotation,thesensitivityoftheanalysis
tovaryingprobabilitiesofweatherconditionsthatsupportdifferingseveritiesandextentsof
firesisalsoworthfurtherconsideration.
Puttingremovedcarbonintolong‐livedwoodproductsandenergyproductionoffset
approximatelyhalfofthepotentiallossofcarbonfromharvestremovals(deterioratingonly
about11%overthestudyperiod).However,inthistreatmentregime,overhalfofthecarbon
removedintreatmentwasduetoprescribedfires,animmediateemissionorloss.Puttingmore
carboninwoodproductsratherthantreatingwithprescribedfiremayhavereducedthisloss,
butthiswouldhavetobebalancedwiththeconcomitantdeficitofin‐forestcarboncreatedby
harvest,andchangesinpotentialfireseverityandspreadwouldalsoneedtobeaccountedfor.
Theseresultssupportseveralconclusionsfromthisstudy:
1. TreatmentssuchasthoseperformedinMeadowValleymayenhancetheoverall
sequestrationrateofcarbonacrossthelandscape,thoughrecoveryofCoverbaseline
3
levelsmaynotoccuruntilwellbeyonda40yearwindow.Ifthisenhancementisbeing
underestimatedbythemodel,recoverymayactuallyoccurmorerapidly.
2. Treatmentsthatreducepotentialfireseverityareofgreaterbenefitwhenanalyzed
fartheroutfromtimeoftreatment,sincehigherproportionsofdeadcarboninthe
untreatedlandscapedecayovertime,whilehigherproportionsoflivecarboninthe
treatedlandscapecontinuetoaccruecarbon.
3. One‐timetreatmentsmayreduceexpectedfireextent,butmayalsocausechangesin
fuelsthatresultinunwantedeffectsaftersomeperiodoftime.Theseeffectsmay
swampbenefitsfrom(1)and(2)above.
4. Maintenanceoftreatmentsmayincreasethein‐forestcarbondeficitincurred,butcan
alsokeepfiresizessmallerandseveritieslower.Itappearsthismayresultincarbon
benefits,butoverlongertimeperiodsthanthe40yearsanalyzedhere.
5. Thoughtreatmentsareoftenconsideredtohavealimited“lifespan”orperiodof
effectivefirebehaviormodification,thelandscapedoesnotnecessarilyreturntoapre‐
treatmentstate.Treatmentsputthelandscapeontoadifferenttrajectory,whichmayor
maynotshowacarbonbenefitwithintheirlifespan.Longerevaluationperiods(80or
100years)maybenecessarytotrulyevaluatethebenefitsofatreatmentortreatment
regime.
6. Theprobabilityoffireoccurrenceonthelandscapeisamajorfactorindeterminingthe
netbenefitgainedorliabilityincurredduetreatment,atleastintermsofavoidedcarbon
stockloss.Alandscapeunderanassumed2%probabilityoffire(50‐yearrotation)will
resultinanetbenefitsoonerthana1%probability(100‐yearrotation),potentiallywithin
a40‐yearwindowasanalyzedhere.Assuch,sound,defensiblecharacterizationofthe
probabilityoffireimpactingthelandscapeiscrucialtoquantifyingGHGbenefitsfrom
fueltreatment.Site‐specific,spatiallyexplicitcharacterizationoftheprobabilityoffires
ofvaryingseveritymayaidinmoreaccuratecharacterizationofcarbonoutcomes.
Theseresultsrelyheavilyonmultiplemodels,datasources,andassumptions.Specificallyfuel
characteristicssensitivetogrowthmodelparameterssuchasSDI,regeneration,fuelmodel
selection,mayrequireadditionalfieldbaseddataforvalidationofaccuracyinmodeling.Fire
spreadinparticularsensitivetohowFVSmodelssurfacefuels.Fireintensityandseverityover
timeareafunctionofmultiplefuelcharacteristics,whichareinturnafunctionofmultiple
standcharacteristicsinthemodel.RegenerationinFVSisnon‐spatialwithinstands,andhigh
spatialvariabilityinregenerationisdifficulttocaptureinFVS.Homogeneityoflandscapeover
timeresultingfromourregenerationparametersmayhavehadaneffectonfuturestand
density,andresultingmodeledbehavior.Thereremainoutstandingquestionstothebroader
FVSmodelofthedecayratesusedfordeadwood,andwhetherornottheyarereflectiveof
localizedconditions.
4
5
CHAPTER 1: Introduction
1.1 Background and Purpose
ThewesternU.S.hasmillionsofacresofoverstockedforestlandsatriskoflarge,
uncharacteristicallysevereorcatastrophicwildfireowingtoavarietyoffactors,including
anthropogenicchangesfromnearlyacenturyoftimberharvest,grazing,andparticularlyfire
suppression(Milleretal.2009).Modificationoffuelstructuresandreductionofunnaturally
highfuelloadsinordertoalterfirepatternsandbehaviorareaprimarycomponentofplanning
effortssuchastheNationalCohesiveWildlandFireManagementStrategy(WildlandFire
LeadershipCouncil2011)andtheSierraNevadaForestPlanAmendment(USDAForestService
2001),andarelikelytocontinueorincreaseintothefutureinresponsetoclimatechangeand
theresultingchangesinfireandfuels.Variousmethodsforfuelmodification,collectively
termed“fueltreatments,”includemasticationorremovalofsub‐merchantabletimberand
understorybiomass,pre‐commercialandcommercialtimberharvest,andprescribedfire.Cost
perunitareaforfueltreatmentsvariesbytreatmentmethodandvegetationtype(Hartsoughet
al.2008),butcompletetreatmentofvastareasofat‐riskwildlandsisneitherfinanciallyfeasible
norlogisticallyrealistic,orevendesirableundercertainlandmanagementobjectives.
Mechanismsforcostrecoveryoffueltreatmentsarenotwellestablished,andreturnon
investmentcomesprimarilyintheformofavoidedwildfire,thoughtheabsoluteprobabilityof
wildfireimpactingfueltreatmentsornearbyareaswithintheireffectivelifespancanbe
relativelylowandvariableacrossthelandscape(Hurteauetal.2009,Ageretal.2010,Syphard
etal.2011).
Variousstrategiesareemergingtodealwithfueltreatmentcost.Givenlimitedresourcesand
theinabilitytotreateveryat‐riskacre,treatmentscanbestrategicallyarrangedonthelandscape
inordertoincreasetheireffectivenessinprotectingcommunitieswithinthewildlandurban
interface(WUI)andnaturalresources,changingexpectedfireeffects,andaidingfire
suppressionefforts,whichcanreduceoverallfiresizes(Ageretal..2007a,Ageretal..2007b,
Moghaddasetal..2010).Additionally,forestwoodybiomassremovedinfueltreatmentscan
beusedforhighervaluepurposesandproducts,suchaselectricityandheat,transportation
fuels(e.g.,advancedbiofuels),chemicals,andphysicalproductsuseddirectlyinmanyactivities
andindustries(e.g.bioplastics,ash,glassaggregates).ThefederalinteragencyBiomass
ResearchandDevelopmentTechnicalAdvisoryCommittee,createdtosupporttheBiomass
R&Dactof2000,hassetgoalsofincreasingthemarketshareofbiopowerto7.0%(3.8
quadrillionBtu)by2030(BiomassResearchDevelopmentTechnicalAdvisoryCommittee2006).
However,whilethemarketforwoodybiomassmaybeexpanding,itstillfacessignificant
hurdles,suchaslimitedaccesstofunding,distancebetweenforesttreatmentandbiomass
utilizationfacilities,publicperceptionoftheeffectsofbiomassremoval,andscientific
documentationtosupportthesustainabilityoftheseactivities(Evans2008).
Asmarket‐basedapproachestoglobalclimatechangearebeingconsideredandimplemented,
oneimportantemergingstrategyforchangingtheeconomicsoffuelstreatmentsistosell
carbonemissionoffsets,tradablecertificatesorpermitsrepresentingtherighttoemita
designatedamountofcarbondioxideorothergreenhousegasses(GHGs).Theseoffsetsare
6
generatedwhenprojectsoractionsreduceGHGemissionsbeyondwhatisrequiredbypermits
andrules,andcanbetraded,leased,bankedforfutureuse,orsoldtootherentitiesthatneedto
provideemissionoffsets(SedjoandMarland2003).Inthecaseoffueltreatments,carbon
emissionoffsetscantheoreticallybegeneratedbyprojectsthatreducepotentialemissionsfrom
wildfire,asbymodifyingtheprobabilityofextremefirebehaviorandresultantemissionsfora
givenportionofland.Carboncreditscanbegeneratedforeithervoluntaryorregulatory
(compliance)markets,andcarbonoffsetprojectsmustmeetthestandardsandprotocolssetby
oneofseveralregistryorganizations,suchastheAmericanCarbonRegistry.Thisis
accomplishedbyusingoneregistry‐approvedaccountingmethodologiesfordifferenttypesof
carbonprojects.Forforestryprojects,approvedmethodologiesexistforImprovedForest
Management(IFM)projects,Afforestation‐Reforestation(AR)projects,andReducedEmissions
fromDeforestationandDegradation(REDD)projects.
Currently,nomethodologiesexistthataccountforavoidedwildfireemissions,andfuel
treatmentactivity(primarilymechanicalthinningandprescribedfire)isconsideredasnet
emissions.Demonstratinganetcarbonbenefitfromfueltreatmentthereforerequiresan
integratedapproachthataccountsfornetforestcarbonsequestrationovertime,woodremovals
fromtheforest,thefateofwoodfiber(lifecycleanalysis)inwoodproducts,bioenergy,
transportationfuels,andwaste,andthereductioninGHGemissionsexpectedfromtreatment.
Additionally,becausetheremovalsareinanticipationofafutureevent(wildfire)thistypeof
analysismustaccountforanexpectedprobabilityoffireoccurring,similartoavoided
conversionmethodologies.
Westernforestshavethepotentialtosequesterlargeamountsofcarbonintheformofwoody
biomass,butincreasedforestdensitiesandunderstorygrowthcanalsoincreasefirehazard
(Stephensetal.2009a).Fueltreatmentsintendedtoreducetheriskofseverewildfireand
associatedemissions,bydefinition,removeliveanddeadwoodybiomassavailableforburning,
therebyreducingstoredcarbon.Fueltreatmentoperationsthemselvescanalsoresultindirect
anddelayedatmosphericcarbonemissions,aswithbiomasstransportationandprescribed
broadcastorpileburning(e.g.Jonesetal.2010).Increasedfireresistancecanbeachievedwith
relativelysmallreductionsincurrentcarbonstockswhilegrowingandretaininglargertreescan
reducecarbonlossfromwildfire(Stephensetal.2012b).Inwildfire‐proneforests,tree‐based
carbonstocksarebestprotectedbyfueltreatmentsthatproducealow‐densitystandstructure
dominatedbylarge,fire‐resistantpines(HurteauandNorth2009).Ifforestsweremanagedfor
maximumcarbonsequestrationtotalcarbonstockscoulddoubleintheCoastRangeandSierra
Nevada,giventheabsenceofstandreplacingdisturbance.Thepotentialtostoreadditional
carbonintheseforestsishighastheyarelonglivedandmaintainrelativelyhighproductivity
andbiomass(Hudibergetal.2009).Severalrecentstudieshaveinvestigatedtheseemingly
competingvaluesofcarbonsequestrationandfueltreatment,examiningwhetherandtowhat
extentreducedcarbonsequestrationfromtreatmentismitigatedbyavoidedemissions
(HurteauandNorth2009,Northetal..2009,Stephensetal..2009b,Ageretal..2010,Reinhardt
andHolsinger2010,Campbelletal..2011).Improvingtheaccuracyandusefulnessof
assessmentsoffueltreatmentwildfiretrade‐offsforCstorage,requiresunderstandingthelong‐
7
termeffectsofmultiplemanagementanddisturbancescenarios,includingpostwildfire
treatments(salvage,reforestation)overtime(Loehmanetal.2014;RestainoandPeterson2013).
1.2 Goals and Objectives 1.2
Thegoalofthistaskistoquantifytheeffectsandefficacyoffuelreductiontreatmentsinthe
SierraNevadaasmeasuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Takinga
long‐termapproach(40yearsposttreatment),theanalysisintegratesforecastedforestgrowth
andGHGsequestration,expectedchangesinwildfirebehaviorfromtreatment(efficacy),
expectedchangesinwildfireemissionsfromtreatment,andalifecycleanalysis(LCA)ofthe
fateofGHGsinwoodremovals.TheLCAincludes,butisnotlimitedto,ananalysisofwood
removalsstoredindurablewoodproducts,woodfibergoingtobioenergyandbiofuels,forest
residuesandwaste,operationalemissions,andmillefficiencies.
1.2.1 Research Questions
Whataretheeffectsovertimeofcomprehensivefueltreatmentplansonexpectedfire
behavior,GHGbalances,andbiomassutilization?
Howeffectivearethefueltreatmentplansatreducingadversefirebehaviorandeffects
overtime?
HoweffectiveisthefueltreatmentplanatreducingGHGemissionsovertime?
8
CHAPTER 2: Methods
ThisprojectleveragespreviousworkdonebySpatialInformaticsGroup(SIG),UCBerkeley
(UCB),andtheUSDAForestServicePacificSouthwestResearchStation(PSW),inorderto
examineastudysitethathashadafullimplementationoffueltreatmentsapplied.Priorwork
atthisnorthernSierraNevadasite(“MeadowValley”)generatedanextensivefielddatasetused
tocharacterizeforeststandcharacteristics,structure,andfirebehavior.Weusethisfielddatain
anintegratedframeworkofacceptedmodelsforforestgrowth,firebehavior,firerisk,and
wildfireemissions,alongwithlocalinformationaboutGHGlifecyclepathwaystoevaluatethe
effectsandeffectivenessoffueltreatments.
2.1 Fire and Carbon Analysis Framework
Theframeworkusedtoevaluateprojecteffectsongreenhousegasesismodifiedfromearlier
workperformedbySIGonsimilarforesttypesinnearbyPlacerCounty,CA(Saahetal.2012,
Figure1).Thisandpriorversionsoftheframeworkareintendedtocaptureandquantifythe
effectofhazardousfuelreductionorotherforesthealthtreatments(hereafterreferredto
collectivelyas“fueltreatments”)ongreenhousegas(GHG)storageandsequestration.GHG’s
arequantifiedintermsofcarbon(C),whichisconvertedtometrictonsofcarbondioxide
equivalent(MTCO2e).
Themodifiedframeworktakesacarbonstockapproach,quantifyingCstoredinforestsor
displaced(asinwithalternativeenergyproduction)overtime,withnetpositivechangesin
carbonstockconsideredassequestration,andnetnegativechangesinstockconsideredaslosses
oremissions.Thisdiffersfrompriorversionsoftheframeworkwhichalsotriedtocapturethe
massofCemittedduringfires.Itconsiderssixprimaryelements,describedinfurtherdetail
belowandinfigure1.Figure1isaconceptualdiagramoftheanalysisframework.The
frameworkincludesthefollowingsteps,describedindetailbelow:
1. Firesheddelineation,selection,andcharacterization:Thefireshedisthebasicunitof
measureusedinthisanalysisframework.Itisanareaoflandlargeenoughtoallowthe
ecologicallyrelevantintegrationofwildfirerisk,wildfirehazard,andforestcarbon
accounting.Afireshedisdelineated,vegetationwithinisquantifiedandclassified,and
theresultsfromeachoftheotherframeworkelementsaregeo‐summarizedatthe
fireshedscaleintocommonunits.FireshedsforMeadowValleyhadbeendefined
previously,andanextensivefielddatasethasbeendevelopedandintegratedintoan
analysis‐readydatabase.
2. ManagementScenarioDevelopmentandFuelTreatmentDesign:Ecological,
operational,andothergoalsandobjectivesunderdifferentmanagementscenariosfora
fireshedorlandscapehelpdeterminethetype,intensity,andgeographicallayoutoffuel
treatments.Comparingdifferentmanagementscenariosoralternativeswithdifferent
treatmentschemesagainstabaselinescenario(e.g.“no‐treatment”)withinthe
frameworkallowsforcomparisonofeffectsanddifferences.Asfueltreatmentsforthe
9
MeadowValleystudyareahadalreadybeendesignedandimplemented,thisproject
wasintendedtoevaluatetheGHGimplicationsofanalreadycompletedmanagement
scenario,ratherthananalyzingalterativetreatmentschemes.
3. In‐ForestCarbon(ForestGrowthandSequestration):Forestgrowthandnetcarbon
balancesunderBaseline(e.g.untreated)andProject(e.g.treated)scenariosaremodeled
usingtheUSForestServicemodelForestVegetationSimulator(FVS).FVSisinitialized
withthefield‐deriveddatabaseforpre‐treatmentforestconditionstoprojectforest
growthanddevelopmentunderBaselineandProjectscenariosoutatleast40years,
quantifiedin5‐yeartimesteps.Weexaminethenetdifferencesincarbonstored
betweentheBaselineandProjectlandscapes,wherewoodisremovedfromthestand.
FVSsimulatesindividualtreegrowthanddevelopment,regeneration,backgroundand
density‐inducedmortality,andchangesinstandcharacteristicssuchasfirefuels.
4. ForestRemovalsLifeCycleAnalysis(Bioenergy,WoodProducts):Understandingthe
fateofbiomassremovedfromthefireshed,andultimatelyhowmuchwindsupas
carbonsourcesvs.sinksisanimportantcomponentofthisframework.Merchantable
andnon‐merchantablewoodremovalsareconsideredinseparateLCAs.Theduration
ofCstoredinwoodproducts,quantitiesofslashandwastefromharvestoperations,
biomassutilizationandefficiency,millefficiencyandwaste,andtransportation
emissionsareconsidered.
5. PotentialCarbonStockLossfromWildfire:Inadditiontoimprovingthehealthand
vigorofpreviouslyoverstockedstands,fueltreatmentsintheirvariousformsare
intendedtomodifypotentialwildfirebehaviorintwoways.Firsttheycanreducefire
severity,ortheamountofvegetationkilledbyfire,byreducingfireintensityand
potentialforfiretoenterintoforestcanopy.Secondtheycanslow,stoporotherwise
modifythelateralspreadoffire,providingbetteropportunitiesforsuppressionand
ultimatelyresultinginsmallerfires.Treatmentsthushavea“shadoweffect”,changing
theoutcomesoffireonthelandscapebeyondjusttheirboundaries.Thisframework
termsthesetwoprimaryeffectsasDirectStockLossandExtentStockLoss,and
quantifiesthemasdescribedbelow.
a. DirectStockLoss:Directstocklossisdefinedasthelossinstoredcarbon
observedorexpectedforeachunitofareaonthelandscape,ifthatunitburned
instantaneouslyandindependently.Reductions(benefits)indirectemissions
fromtreatmentareadirectresultoffuelloadreductionandre‐arrangements
(andless‐intenseresultantfirebehavior)withinthosetreatmentareas.Potential
directstocklossisestimatedusingtheFireandFuelsExtensiontoFVS,and
summarizedatthefireshedscale(perunit‐area).Itisindependentofanyeffect
oftreatmentonlateralwildfirespread.DirectstocklossexpectedunderBaseline
andProjectscenariosarecompared.Changesinefficacyoffueltreatmentsover
timeiscapturedbyestimatingpotentialdirectstocklossunderchangingforest
conditionsateach5‐yeartimestep.Additionally,onlyaportionofthestockloss
isincurredinthefireitselfincombustion.Fire‐killedvegetationcontinuesto
emitcarbonasitdecaysforyearsafterfire.Thisframeworkattemptstocapture
10
andquantifythesedelayedemissionsbysimulatingfireatvarioustimespriorto
anevaluationpoint.
b. ExtentStockLoss:Extentstocklossisdefinedastheobservedorexpectedlossof
carbononthelandscaperelativetotheexpectedsizeofwildfire.Inthis
framework,thepotentialsizeoffiresburningforagivendurationundera
specifiedweatherscenarioisestimatedfortheBaselineandProjectscenarios,
andcompared.Weuseinformationfromforestgrowthanddevelopment
simulations(FVS)tocharacterizesurfaceandcanopyfuelsforeachstandonthe
landscape,andsimulatefirespreadintheFlamMapprogram.Changesinfuel
treatmentefficacyovertimearecapturedbysimulatingfireunderchangingfuel
conditionsateach5‐yeartimestep.
6. FireProbability:Weanalyzetheprobabilityoffireactuallyimpactinganygivenacre
onthefireshedbyexaminingpre‐historicfirefrequency(e.g.fromtreeringstudies)for
thestudyareaandsimilarvegetationtypes,historicandcontemporaryrecordsoffire,
andfuturefiremanagementexpectations.Weadjustourexpecteddirectandextent
stocklossfromfirerelativetotheprobabilityoffireactuallyoccurring.
7. EmissionsAccounting:AllGHGlossesorsavingsaresummarizedfortheentire
fireshedonaper‐unit‐areabasis.Foreachtreatmentscenario(vs.baseline)ateachtime
step,weexaminenetGHGstoragelossfromtreatment,offsetbyGHGbenefitsrealized
frommerchantableandnon‐merchantablewoodremovallifecycles.Weexaminethe
benefitsexpectedfrombothavoided‐directandavoided‐extentstocklossfromfire,and
modifythesebenefitsbytheprobabilityoffireactuallyoccurringonthelandscape.We
sumtheselossesandsavingstodeterminetheeffectoffueltreatmentonthecarbon
balanceateachtimestep.
11
Figure1:Conceptualframeworkforcarbonaccountingusedinthisproject.
2.2 Study Area
ThestudyareausedinthistaskislocatednearthecommunityofMeadowValley,California,
andincludesthesurroundinglandwhichislargelymanagedbythePlumasNationalForest
(Figure2)(Collinsetal.2013).Thestudyarea(hereafterreferredtoasMeadowValley)has
beenthefocusofalargefueltreatmenteffort,aspartoftheHerger‐FeinsteinQuincyLibrary
GroupAct(USDA2004,HFQLG1998).Anetworkoffueltreatmentswasimplementedin
MeadowValley,mostlybetween2003and2008.
Thestudyareaincludesthefireshed(describedbelow)aswellasa2kilometerbuffer.
Elevationswithinthestudyarearangefrom850to2100m(Collinsetal.2013).Vegetationon
thislandscapeisprimarilySierranmixedconiferforest(Schoenherr,1992),includingprimarily
whitefir(Abiesconcolor),Douglas‐fir(Pseudotsugamenzesii),sugarpine(Pinuslambertiana),
ponderosapine(Pinusponderosa),Jeffreypine(Pinusjeffreyi),incensecedar(Calocedrus
decurrens),andCaliforniablackoak(Quercuskellogii),withredfir(Abiesmagnifica)occurringat
higherelevations.Additional,lesscommonhardwoodandsoftwoodspecies,aswellas
montanechaparralandsomemeadowsareinterspersedinthelandscape.Treedensityvariesas
12
aresultofrecentfireandtimbermanagementhistory,elevation,slope,aspect,andedaphic
conditions.Historicalfireoccurrence,inferredfromfirescarsrecordedintreerings,suggestsa
historicalfireregimewithpredominantlyfrequent,low‐tomoderate‐severityfiresoccurringat
intervalsrangingfrom7to19years(Moodyetal.2006).
Figure2:MeadowValleyStudyArea(fromCollinsetal.2013)
2.2.1 Fireshed Delineation
Thefireshed,delineatedforapriorstudy,wasdefinedgenerallyasfourHUC12watersheds,
withafurthermodificationtoincludeareatothesouth.Thisistheareauponwhichvaluesin
thisstudyaregeo‐summarized,andwasconsideredappropriateforanalysisinthepresent
study.Thesefourwatershedscombinetocreateabasinencompassingthecommunityof
MeadowValley,andformalogicalforestmanagementandplanningunit.Firehaslargelybeen
13
excludedfromthisbasininthecontemporaryera,andrecentnearbylargefiressuchasthe2007
Moonlightfirehighlighttheneedforalargeareaforfiremanagementplanning.Mostofthe
fueltreatmentsimplementedintheMeadowValleyareaareincludedinthefireshed.Thefull
studyareaincludes2kmbufferofthefireshed.Totalfireshedareais47,533acres(19,236
hectares).Thefullstudyarea(bufferedfireshed)is84,842acres(34,334hectares).Thetotalarea
treatedcomprised19.2%ofthefireshed(FigureXX).
2.2.2 Fuel Treatments
Treatmentswereimplementedbetween2003and2008,creatinganetworkofDefensibleFuel
ProfileZones(DFPZ’s),withthebulkofthetreatmentsoccurringin2007and2008.Treatments
canbeclassifiedintofivegroups(Collinsetal..2013)asfollows:(1)Handthinandpileburn:
treesupto12”werecutandburnedinpiles;(2)Mastication:primarilyshrubsandsmalltrees
wereshreddedandchippedinplace,withmaterialleftonsite;(3)Prescribedfireonly:stand
burnedundermoderaterelativehumidityandfuelmoistureconditions;(4)Mechanicalthinand
prescribedburn:Treesupto20”or30”DBH(dependingonwhetherornotstandswere
consideredinthewildland‐urbaninterface)werethinnedfrombelow,usingawhole‐tree
harvestsystem,toaresidualcanopycoverofapproximately40%,andthenunderburned;and
(5)Groupselectionharvest:removalofallconifersupto30inchesDBH,followedbyslash
removal,theneithernaturalregenerationorreplantingtoadensityofapproximately100trees
peracrewithamixofsugarpine,ponderosapine,andDouglas‐fir.Treatmenttypesandthe
areacoveredareshowninFigure3andTable1.
Table1:AreaandproportionoffireshedbytreatmenttypeimplementedinMeadowValley.
TreatmentType Area(ac) ProportionofFireshed
DFPZharvestfollowedbyprescribedfire 3,915.04 8.24%
Prescribedfireonly 2,661.23 5.60%
Handthinfollowedbypileandburn 1,191.85 2.51%
Understorymastication 765.98 1.61%
Groupselectionfollowedbyslashremoval 591.23 1.24%
Subtotal 9,125.34 19.20%
NoTreatment 38,407.17 80.80%
GrandTotal 47,532.50 100.00%
14
Figure3:Studyarea,includingfireshed,modelingbuffer,andtreatments.
2.3 Data Collection and Development
Datatocharacterizeforestandfuelcharacteristicswascollectedinfieldplotspriortotreatment,
aswellaspost‐treatment.Plot‐leveldatawasassignedtoeachstandintheforeststandmap,
(roughlyequivalenttoFSexistingvegetationpolygons).Standdatawasusedtocreatepre‐
treatmentandpost‐treatmentFVSinputdatabases.Pre‐andPost‐treatmentdatabaseswere
providedforthisprojectbyBrandonCollins(USFS)andJasonMoghaddas(SIG).
Thepre‐treatmentdatabaseformedthefoundationofthedataforthisproject.Treatmentswere
simulatedinFVS,andcalibratedtomatchthepost‐treatmentdatabaseascloselyaspossible.In
thisway,themodelingofforestgrowthanddevelopmentrepresentstheimplementationofa
fulltreatmentprograminarealisticmanner.Treatmentsweresimulatedoverthecourseof8
years.VariabilityinthefinaloutcomesofplannedtreatmentswererepresentedinFVSthrough
thecalibrationprocess,describedinmoredetailbelow.
15
2.4 Forest Growth, Treatment Simulation and Model Calibration
Thepre‐andpost‐treatmentdatabasesofstandsandtreeswereusedforforestgrowthand
developmentmodelingintheForestVegetationSimulator(FVS)program.FVSisamodelfor
predictingforestgrowthandstanddynamicsdevelopedandmaintainedbytheUSForest
Service.AtitscoreFVSinanintegratedsetofmodelsforestimatingindividualtree‐growth
andmortality,standdevelopment,wildfirepotentialandotherstandcharacteristics.Specific
variantsofFVSareusedfordifferentgeographicregionsoftheUnitedStates,andFVS
capabilitiesareextendedbyuseofmodulesforfireandfuels,economics,climate,water,and
more.FVSusesasystemof“keywords”tosendcommandstotheprogram.Additional
informationcanbefoundinthedocument“EssentialFVS:AUser’sGuidetotheForest
VegetationSimulator”(Dixon2015).
ForestgrowthsimulationwasperformedfortheBaseline(notreatment)andProject(treatment)
scenariosintheWesternSierravariantofFVS(KeyserandDixon2013)fromthestand
inventoryyear(e.g.pre‐treatmentmeasurementdate)through2050.Siteindexforallstands
wasadjustedtomatchtheaverageofFIAsiteindexforthearea,asrecordedinthe2003
vegetationdataforthePlumasNF(PonderosaPineSI50=65).Densityinducedmortalitywas
settobeginat70%oftheoreticalmaximumSDI,insteadofthedefault55%,inordertoslow
whatappearedoveralltobetoo‐rapidoverstorymortalityandunusualcanopyfuel
development.Thischangeresultedinonlyslightincreases(0.0‐0.2%)intotalnon‐soilforest
carbonateachtimestep,andveryslightdifferencesincarbonaccumulationrates(0.00‐0.01%).
TreatmentsweresimulatedinFVSaccordingtotheirparticularprescriptionandyearof
implementation.Itwasassumedthatforaparticularstand,theyearrecordedinthepost‐
treatmentdatabasewasone‐yearposttreatment,andthatthepre‐treatmentdatawasmeasured
one‐yearpriortotreatment.Treatmentparameterswerecalibratedsuchthatthesimulatedpost‐
treatmentlandscape(Projectscenario)matchedtheactualpost‐treatmentlandscapeascloselyas
possiblefortheyear2010.Becausetreatmentsareimperfectintheiractualexecution,this
methodologywasintendedtosimulateareal‐worldoutcomeascloselyaspossible,ratherthan
atheoreticalbest‐casescenario.
ExampletreatmentsimulationsforaDFPZtreatmentandaprescribedfireonlytreatmentare
showninFigure4.
16
Stand3712–DFPZharvestfollowedby
underburn
Stand3717–Prescribedfireonly
(a) Stand3712–Atinventory (d)Stand3717‐Atinventory
(b) Stand3712‐Duringharvest (e)Stand3717‐Duringfire
(c) Stand3712‐Post‐treatment(2010) (f) Stand3717‐Post‐treatment(2010)
Figure4:ExampletreatmentsimulationsinaDFPZtreatmentandaprescribedfireonlytreatment
17
SimulatedharvesttreatmentswerecalibratedbythinningthroughouteachofseveralDBH
ranges(>1in)toachievesimilarresidualstandstructureasreal‐worldstands,asmeasuredby
treesperacre(TPA),basalareaperacre(BA),quadraticmeandiameter(QMD),andStand
DensityIndex(SDI)aggregatedoverallstandsforaparticulartreatmenttype.Handlingof
slash,sub‐merchantable,andmasticatedmaterialsinsimulationswashandledinasimilar
fashiontothegeneralmethodemployedontheground.Simulatedprescribedfireswere
performedundermoderateconditions,withmodificationstoflamelengthmadetoachievea
posttreatmentstandstructureassimilartorealworldstandconditionsaspossible.Keywords
andparametersusedcanbefoundinthereportappendix.Treeslessthan1”DBHwerenot
calibrated,duetodifferencesinmeasurementmethodologybetweenthepre‐andpost‐
treatmentdatabase.Calibrationmetricsfortrees>1”DBHforsimulationyear2010areshown
inFigure5.
(a)TPA (b)BA
(c)QMD (d)SDI
Figure5:Calibrationmetricsfortrees>1”DBHforsimulationyear2010.“BASE”istheuntreated
stands,“FVS”isthetreatmentssimulatedinFVS,and“POST”isthereal‐world‐posttreatment
landscape(grownto2010).
Inoursimulationdatabase,thenumberoftrees<1”DBHineachstandattimeofinventorywas
highlyvariableandrangedfrom0togreaterthan2000treesperacre.Insimulatingingrowth
fromnaturalregeneration,wewerenotabletoreplicatethishighspatialvariability,butrather
18
followedtheseedlingdensitiessuggestedas“moderate”byCollinsetal.(2013).Seedlings
wereestablishedafterdisturbance(treatment),andthenevery5yearsfrom2010‐2050.Exact
numberofseedlingswasrandomizedwithinasomewhatnarrowrange,withseedlingdensities
from2010onwardaveragingapproximately70TPA.
Oncetreatmentswerecalibrated,twoscenariosweremodelledinFVS:
1. Baselinescenario–Allstandsweregrownfrominventoryyearto2050,withcommon
cycleboundaries(outputs)at2010andeach5yearsafter.Notreatmentswereapplied.
2. Projectscenario–Allstandsweregrownfrominventoryyearto2050,withcommon
cycleboundaries(outputs)at2010andeach5yearsafter.Calibratedtreatmentswere
applied1yearafterinventory.
2.5 Fire Behavior and Effects Simulation
FirebehaviorandeffectsweresimulatedusingacombinationofFVSandFlamMap.FVSwas
usedtoestimatesurfaceandcanopyfuelcharacteristicsacrossthelandscapeandtheir
developmentthroughtimeat5‐yeartimesteps(2010‐2050),aswellaspotentialwithin‐stand
firebehaviorcharacteristicsandvegetationmortality.Additionally,expectedfirebehavior(rate
ofspread,flamelength,firelineintensity)wasestimatedinFVSforeachstandateachtime
step.Dataforeachstandateachtimestepundereachscenariowereusedtogeneratethe
following18spatialfuellandscapes,basedonthestudyareastandmap.
Table2:Inputlandscapes(fuelsandtopography)generatedforuseinfirespreadsimulations.
BaselineScenario ProjectScenario
Baseline2010 Project2010
Baseline2015 Project2015
Baseline2020 Project2020
Baseline2025 Project2025
Baseline2030 Project2030
Baseline2035 Project2035
Baseline2040 Project2040
Baseline2045 Project2045
Baseline2050 Project2050
19
2.5.1 Fuel Characteristics
SurfaceandcanopyfuelcharacteristicsforeachstandateachtimestepwereestimatedinFVS.
Surfacefuels(dead/downwoodymaterial)areestimatedinFVSasmassperunitareain
differentsizeclasses,thenmatchedtotheclosestofthe53stylizedfuelmodelscommonlyused
infirebehaviorsimulation(Anderson’s13orScottandBurgan’s40).BecauseFVShasbeen
notedtomisclassifysurfacefuelmodelsandpossiblyover‐estimatefirebehaviorwithinthe
WesternSierravariant,weadoptedamethodology,examinedelsewhereintheCECprojectby
Sharmaandothers(inprep),inwhichwelimitthepooloffuelmodelsfromwhichFVScanpick
initsmatchingroutine.
Fornotreatment,DFPZ,handthinorfire‐onlytreatments,thepick‐listwasasfollows(Table3:Listof
possiblesurfacefuelmodelsforgroups1(notreatmentstands,andstandstreatedwithDFPZ,hand
thin,orfireonlytreatmentprescriptions)and2(groupselectionprescriptions)treatments.
).Forstandsclassifiedasshrub‐type,thepicklistwaslimitedtoGS1,GS2,SH1andSH2.For
standsclassifiedasgrass‐type,possiblefuelmodelswerelimitedtoGR1,GR2,GR4,GS1,and
GS2.
Table3:Listofpossiblesurfacefuelmodelsforgroups1(notreatmentstands,andstandstreated
withDFPZ,handthin,orfireonlytreatmentprescriptions)and2(groupselectionprescriptions)
treatments.
Fuel
Model
Code
FuelModel
Number
FuelModelType TreatmentGroup
GR1 101 Short,sparsedryclimategrass 1
GR2 102 Lowload,dryclimategrass 1
GS1 121 Lowload,dryclimategrass‐shrub 1,2
GS2 122 Moderateload,dryclimategrass‐shrub 1,2
SH1 141 Lowload,dryclimateshrub 1,2
SH2 142 Moderateload,dryclimateshrub 1,2
TU1 161 Lowload,dryclimatetimber‐grass‐shrub 1,2
TU5 165 Veryhighload,dryclimatetimber‐shrub 2
TL1 181 Lowload,compactconiferlitter 1
TL2 182 Lowload,broadleaflitter 1,2
TL3 183 Moderateload,coniferlitter 1,2
TL4 184 Smalldownedlogs 1,2
TL5 185 Highload,coniferlitter 1
TL6 186 Moderateload,broadleaflitter 1,2
TL7 187 Largedownedlogs 1
TL8 188 Long‐Needlelitter 1
TL9 189 Veryhighload,broadleaflitter 1,2
SB1 201 Lowload,activityfuel 1,2
20
SB2 202 Moderateload,activityfuelorlowload,blowdown 1,2
Forgroupselectiontreatments,thepicklistwasasfollows(Table4).
Table4:Listofpossiblesurfacefuelmodelsforstandstreatedwithgroupselectionprescriptions.
FM
Code
FMNumber FMType
GS1 121 Lowload,dryclimategrass‐shrub
GS2 122 Moderateload,dryclimategrass‐shrub
SH1 141 Lowload,dryclimateshrub
SH2 142 Moderateload,dryclimateshrub
TU1 161 Lowload,dryclimatetimber‐grass‐shrub
TU2 162 Moderateload,humidclimatetimber‐shrub
TL1 181 Lowload,compactconiferlitter
TL2 182 Lowload,broadleaflitter
TL3 183 Moderateload,coniferlitter
TL5 185 Highload,coniferlitter
TL8 188 Long‐Needlelitter
TL9 189 Veryhighload,broadleaflitter
SB1 201 Lowload,activityfuel
FVShasthecapabilityofchoosingmultiplefuelmodelsincombinationtorepresentastand
(“dynamic”fuels)whichisintendedtoallowformoreaccuraterepresentationoffuel
successionovertimewithinastand,withlessabruptchanges.However,thiscomplicates
translationofaspatialdatafromFVSintospatiallyexplicitdatathatcanbereadbyfirebehavior
simulationprogramssuchasFlamMap,sincemultiplefuelmodelswouldneedtobeassigned
torastercellsintheproperproportionswithinastand.Weturnedthisfeatureoffusingthe
STATFUELkeyword,choosingonlythesinglebest‐fitfuelmodelfromthepick‐listforastand
inagivenyear.
IthasalsobeennotedthatinFVSsimulations,canopybaseheightcanrisemorerapidlythan
couldbeexpectedrealisticallyovertime.Inoursimulations,wemodulatedcanopybaseheight
estimationusingFVSkeywordswhichcontroltherateatwhichcrownratiochangeson
individualtreesovertime,andthebreakpointintree‐heightswhichdeterminesthetreesare
usedforCBHcalculations.
Wealsomodulatedcanopybulkdensitybyadjustingdensitydependentmortalityparameters.
Thetheoreticalandactualmaximumsofstanddensityindexwereleftatdefaultforallspecies,
butthedensityatwhichmortalitybeginswasraisedfrom55%to70%oftheoreticalmaxSDI.
Asnotedinsection2.4,thishadverylittleeffectonoverallcarbonvaluesorratesof
accumulation.
21
PotentialfirebehaviorwasestimatedinFFE‐FVSbasedonthesefuelsandaseverefireweather
scenario,listedinTable5.ThisscenariowaschosentocloselymatchconditionsusedinCollins
etal.(2013),whichwasderivedfromhistoricalanalysisoflocalRAWSweatherstationdata.It
isalsoconsistentwithsevereweatherscenarioderivedandusedformodelinginSharmaetal.
(inprep).
Table5:WeatherparametersusedinFVSfiresimulationmodeling.
Parameter Value
20FootWindSpeed 20mph
Temperature 90deg
Season Fall
1hr.FuelMoisture 2%
10hr.FuelMoisture 3%
100hr.FuelMoisture 5%
1000hr.FuelMoisture 8%
DuffFuelMoisture 25%
LiveHerbacousFuelMoisture 35%
LiveWoodyFuelMoisture 70%
ProportionofStandBurned 95%
2.5.2 Fire Spread
Fuelcharacteristicsundereachscenario(BaselineandProject)werecalculatedforeachstandat
eachtimestep(2010‐2050)byFFE‐FVSandwrittentoanoutputdatabase.Thisdatabasewas
usedwiththestandmaptogeneratethespatiallyexplicitlandscapedatafiles(.LCP’s)required
asinputstotheFlamMapfiresimulationprogram(Finney,2006).Fuelcharacteristicsforeach
scenario‐yearsimulatedinFVS(canopycover,fuelmodel,canopyheight,canopybulkdensity,
canopybaseheight,elevation,slopeandaspect)wereusedtocreatethe18fuellandscapesupon
whichfirewouldbesimulated.WeusedArcFuels,anextensionfortheArcGISsoftware,to
createthe18landscapefiles(Table2)(Vaillantetal.2013).
FirespreadsimulationswereperformedinFlamMap5x64,usingtheMinimumTravelTime
(MTT)algorithm(Finney2016).5000randomlylocatedignitionpointsweredistributedacross
thelandscapewithinthefireshed.Foreachscenario‐yearlandscape,firewasignitedateachof
the5000pointsandallowedtospreadfor240minutesundersevereweatherconditions,
identicaltothoseusedinFVS,butaddingspatialcomponentsandrequiredparameters(Table
6).
22
Table6:WeatherparametersusedinFlamMapfirespreadmodeling.
Parameter Value
Domain20FootWindSpeed 20mph
DomainWindAzimuth 225
Windmodification WindNinja(Gridded)
FuelMoistureType Fixed(noconditioning)
1hr.FuelMoisture 2%
10hr.FuelMoisture 3%
100hr.FuelMoisture 5%
LiveHerbacousFuelMoisture 35%
LiveWoodyFuelMoisture 70%
FoliarMoistureContent 100%
CrownFireEstimationMethod ScottandReinhardt(2001)
SimulatedIgnitions 5000randomlylocated
Simulationtime 240minutes
CalculationResolution 60m
MinTravelPathsInterval 500m
SpotFires(Probability/Delay) 0.02/0
SearchDepth(Lat/Vert) 6/4
Thesame5000ignitionpointswereusedforeverysimulation(Figure6).Outputsfromfire
simulationsincludedindividualfireperimeters(e.g.Figure7,Figure8)andfiresizelist,aswell
asconditionalrasteroutputsforburnprobability,rateofspread,flamelengthandcrownfire
activity.Aftereachscenario‐yearsimulationcompleted,eachofthe5000fireperimeterswere
dissolvedsothateachfireconsistedofonlyonedatabaserecord.Thesizeofeachfirewas
calculatedinArcGISandoutputtoexaminechangesinfiresize.Meanfiresizewascalculated
foreachscenario‐year.
23
Figure6:Ignitionlocationsfor5000firespreadsimulations.
24
Figure7:Examplefirespreadsimulation‐Ignitionpoint98,burningontheBaseline(blueperimeter)
andProject(redperimeter)landscapes.
25
Figure8:Examplefirespreadsimulation–outcomesfor5000randomignitionsatyear2015forthe
Baselinescenario
2.6 Fire Probability Estimation
Weestimatedtheprobabilityoffireoccurringbyexamininghistoricalratesofburningin
relevantforesttypeswithintheprojectareabioregion.Wefirstidentifiedalltheconiferous
foresttypeswithintheSierranSteppe‐MixedForest‐ConiferousForest‐AlpineMeadow
vegetationprovince,andcalculatedtheirarea(Table7).Wethenidentifiedallfiresthathad
burnedwithinthisareabetween1960and2014usingCalFire’s2014fireperimeterdatabase.
Wecalculatedtheareaofeachofthesefires.Thesetwoareainputsallowedustocalculatethe
firerotationforthosetypes.Firerotationisanarea‐basedmeasureoffirefrequency,which
givesthetimeitwouldtakefortheentireareatoburnatanobservedrate(Agee1992).Wethen
calculatedthe10‐yearrunningfirerotationforeachyearbetween1960and2014.
26
Table7:Areaofexistingforestvegetationtypesconsideredforfirerotationcalculations.
ExistingVegetationType AreainEco‐Province(acres)
DouglasFir 2,555,536
EastsidePine 1,191,236
JeffreyPine 366,017
KlamathMixedConifer 1,333,587
MontaneHardwood‐Conifer 1,448,534
PonderosaPine 1,132,303
RedFir 1,167,948
SierranMixedConifer 4,353,630
WhiteFir 975,664
GrandTotal 14,524,456
Annualprobabilityoffirewascalculatedastheinverseoffirerotation,e.g.a100yearfire
rotationresultsina1/100annualprobabilityoffire,or1%.Theannualprobabilityoffirewas
modifiedtorepresentamulti‐yearprobabilityoffire(e.g.5years)basedonthefollowing
formulafortheprobabilityofaneventhappeningatleastonceinagivenperiodoftime.
q=1‐(1‐p)^nwhere:
qistheprobabilityofaneventhappeningatleastonceinnunitsoftime
pistheprobabilityoftheeventhappeninginoneunitoftime
2.7 Forest Carbon Stock and Flux Estimation
Carbonstoredbothwithinandremovedfromthebaselineandprojectscenariostandswas
estimatedinFVSforeach5‐yearmodelcycleusingtheCarbonsub‐modeloftheFireandFuels
Extension(Rebain2015).CarbonwasestimatedbyFVSinmetrictonsperacre(MTC/ac)and
summarizedforrelevantpools(Table8).Wherepossible,estimatesweremadeusingFVS‐FFE
equationsandmethodology,asrecommendedbyHooverandRebain(2010),sincethese
methodsaretheoreticallymoreregionspecificthanthenationalscaleequationsofJenkinsetal.
(2003).Carbonmassvalueswereconvertedpost‐hoctometrictonsofCO2equivalentperacre
(MTCO2e/ac)forreportinginthepresentdocumentusingthefollowingconversionfactor,to
accountforthemolecularweightofCvs.CO2:
MTCO2e=MTC*(44/12)
27
Table8:Carbonpoolsconsideredforthisstudy.
CarbonPool Description Method
1. AbovegroundTotal
Live
Livetrees,includingstems,branches,andfoliage,
butnotincludingroots
FFE‐FVSEquations
2. BelowgroundLive Rootsoflivetrees Jenkinsetal.2003
3. StandingDead Deadtrees,includingstemsandanybranches
andfoliagestillpresent,butnotincludingroots
FFE‐FVSEquations
4. BelowgroundDead Rootsofdeadandcuttrees Jenkinsetal.2003
5. DeadandDown
Wood
Allwoodysurfacefuel,regardlessofsize FFE‐FVSEquations
6. ForestFloor LitterandDuff FFE‐FVSEquations
7. HerbsandShrubs Liveherbaceousandshrubvegetation FFE‐FVSEquations
8. RemovedCarbon Carboninremovedlivetrees,deadtrees,and
woodydebris
FFE‐FVSEquations,
Merchantabilitylimits.
2.7.1 In-Forest Carbon Stock
Carbonstoredwithineachforeststand(Table8,Pools1‐7,summed)wasestimatedusingFFE‐
FVSfortheBaselineandProjectScenarios.Per‐acrestandvaluesfromFFEwereweightedby
standsizeandaveragedacrossthefireshedtogetmeanin‐forestcarbonstockfortheBaseline
scenario(BFCS)andtheProjectscenario(PFCS)ateachtimestepe.
Thenetin‐forestcarbonstock(NFCSe)foragivenevaluationyeareiscalculatedasthe
differencebetweentheProjectstock(PFCSe)andtheBaselinestock(BFCSe).Thisrepresentsthe
neteffectofthefueltreatmentsoncarbonstockacrossthefireshed
𝑁𝐹𝐶𝑆𝑃𝐹𝐶𝑆
𝐵𝐹𝐶𝑆
Immediatelyaftertreatment,PFCSwillbesmallerthanBFCSduetoremovalsandtreatment
emissions,thusthenetin‐forestcarbonstockwillberepresentedasanegativevalue(stock
deficit).
2.7.2 Removed Carbon Life Cycle Analysis
Estimatesoftheproportionofcarboninsawlogs(merchantablewoodbothstoredand
removed)weremadebasedonboardfootspecificationsusedinFVSforUSForestService
Region5(KeyserandDixon2013)asfollows:
28
DBH: 10.0inches
TopDiameter: 4.5inches
StumpHeight: 1.0feet
Toaccountforthedispositionofcarbonremovedfromstandsasaresultoftreatment,wemade
thefollowingassumptions.
67%ofmerchantablecarbonremovedwasassumedtogointodurablewoodproducts(DWP–
e.g.paperandstructuralwood).ValuesateachtimestepforcarbonremaininginDWP,and
DWPthathavegonetoandremaininwaste(landfill)weremadeinFVS,followingthedecay‐
faterelationshipsdescribedinSmithetal.(2006).Foragiventimestep,carbonfromthis
lineagenotstoredinwoodproductsorlandfillisassumedtohavebeenemittedthroughdecay
orcombustion.
Oftheremaining33%ofmerchantablecarbonthatdoesn’twindupasDWP,weassumed75%
isdivertedforbiomassenergyproduction.Thisenergyproductionwasassumedtoresultina
25%additionalityoverequivalentfossilfuelproduction.
Allsub‐merchantableharvestedmaterialsremovedfromthefireshedareassumedtogoto
biomassenergyproduction.95%ofthesematerialsareassumedtomakeittotheenergy
productionfacility,andenergyproductionisassumedtoresultina25%additionalityover
equivalentfossilfuelproduction.
Wasteremainingafterbiomassutilizationwasassumedtobeimmediatelyemitted.Carbon
emittedintransportationofmaterialsfromthefireshedtowoodproductorbiomassenergy
facilitieswasnotexplicitlyaccountedforbeyondtheadditionalitycoefficientsusedabove.
Foragivenevaluationyeare,wecalculatetotalremovedcarbonthatcontinuestobestored,or<