Technical ReportPDF Available

EFFECTS OF FUEL REDUCTION TREATMENTS ON WILDFIRE AND CARBON MASS BALANCES IN THE SIERRA NEVADA, CALIFORNIA

Authors:
  • California Department of Forestry and Fire Protection (CAL FIRE)
  • Spatial Informatics Group

Abstract and Figures

We quantified the effects and efficacy of fuel reduction treatments in the Sierra Nevada as measured by expected fire behavior and carbon life cycle pathways. The analysis integrated forecasted forest growth and GHG sequestration, expected changes in wildfire behavior following fuel reduction treatments (efficacy), expected changes in wildfire emissions following fuel reduction treatments, and a life cycle analysis (LCA) of the fate of GHGs in wood removals over a forty year period post‐treatment. The LCA tracked the fate of carbon from wood removals stored in durable wood products, woody material used for bioenergy and biofuels, forest harvest residues and waste, operational emissions. There was a net GHG liability (carbon loss) incurred by the one‐time treatment of the landscape between 2003 and 2008, under a 1% annual probability of fire occurrence. The treatments only remained effective at reducing fire size through 2025 (17‐22 years after treatment) after which simulated fires were actually larger on the project landscape. Benefits that were slowly accumulating from avoided direct stock loss and improved growth rates on the treated landscape (by 2045) were erased by this outcome. Performing two maintenance prescribed fires on the treated landscape resulted in additional carbon deficit of in‐forest C stock, but kept fire sizes smaller. Although under a 1% annual probability of fire a benefit was not realized by 2050, the liability was decreasing from 2025 onward, suggesting that a benefit was forthcoming. With a higher assumed probability of fire (2% annual), a benefit was realized by 2045. A sensitivity analysis of growth rates used in modeling suggests that if rates in the untreated stands are overestimated then recovery of carbon in the treated landscape may occur more rapidly compared to the baseline, which would result in a much quicker achievement of greenhouse gas emissions benefits.
Content may be subject to copyright.
i
MARCH2016
CEC‐600‐10‐006
AlternativeandRenewableFuelandVehicle
TechnologyProgram
FINALPROJECTREPORT
EFFECTSOFFUELREDUCTION
TREATMENTSONWILDFIREAND
CARBONMASSBALANCESINTHE
SIERRANEVADA,CALIFORNIA,USA
Preparedfor:CaliforniaEnergyCommission
Preparedby:SpatialInformaticsGroup,LLC
ii

DISCLAIMER
This report was prepared as the result of work sponsored by the California Energy Commission. It
does not necessarily represent the views of the Energy Commission, its employees or the State of
California. The Energy Commission, the State of California, its employees, contractors and
subcontractors make no warrant, express or implied, and assume no legal liability for the information
in this report; nor does any party represent that the uses of this information will not infringe upon
privately owned rights. This report has not been approved or disapproved by the California Energy
Commission nor has the California Energy Commission passed upon the accuracy or adequacy of
the information in this report.
Prepared by:
Primary Author(s):
Tadashi J. Moody1, Saah, David, Ph.D. 1,Travis Freed1, Roller, Gary1, John
Gunn, Ph.D.2, Paul Lilly, Ph.D.1, and Jason J. Moghaddas1
1Spatial Informatics Group, LLC and Spatial Informatics Group, Natural Assets
Laboratory2
3248 Northampton Ct., Pleasanton, CA 94588
Agreement Number: 600-10-006
Prepared for:
California Energy Commission
William Kinney
Agreement Manager
John P. Butler
Office Manager
Emerging Fuels and Technology Office
John Kato
Deputy Director
Robert P. Oglesby
Executive Director
iii
ACKNOWLEDGEMENTS
TheauthorswouldliketoacknowledgeJonathanLongoftheUSDAForestServicePacific
SouthwestResearchStationforallofhiseffortsmanagingthiscomplexproject.Wewouldalso
liketoacknowledgeDr.ScottStephensoftheUniversityofCaliforniaandDr.BrandonCollins
fortheirinputandexpertise.
iv
PREFACE
ThisreportissubmittedinfulfillmentofworkcontractedbytheUSForestService,Pacific
SouthwestResearchStationandCaliforniaEnergyCommissionunderthe“Assessingthe
SustainabilityofForestBiomassUtilizationinCalifornia”studyasTask11“Quantifythe
EfficacyofFuelReductionTreatments.”
AssemblyBill118(Núñez,Chapter750,Statutesof2007),createdtheAlternativeand
RenewableFuelandVehicleTechnologyProgram(ARFVTProgram).Thestatute,subsequently
amendedbyAB109(Núñez)Chapter313,Statutesof2008),authorizestheCaliforniaEnergy
Commissiontodevelopanddeployalternativeandrenewablefuelsandadvanced
transportationtechnologiestohelpattainthestate’sclimatechangepolicies.TheEnergy
Commissionhasanannualprogrambudgetofabout$100millionandprovidesfinancial
supportforprojectsthat:
Developandimprovealternativeandrenewablelowcarbonfuels.
Enhancealternativeandrenewablefuelsforexistinganddevelopingengine
technologies.
ProducealternativeandrenewablelowcarbonfuelsinCalifornia.
Decrease,onafullfuelcyclebasis,theoverallimpactandcarbonfootprintof
alternativeandrenewablefuelsandincreasesustainability.
Expandfuelinfrastructure,fuelingstations,andequipment.
Improvelight,medium,andheavydutyvehicletechnologies.
Retrofitmedium‐andheavydutyonroadandnonroadvehiclefleets.
Expandinfrastructureconnectedwithexistingfleets,publictransit,and
transportationcorridors.
Establishworkforcetrainingprograms,conductpubliceducationandpromotion,
andcreatetechnologycenters.
ThisreportissubmittedinfulfillmentofworkcontractedbytheUSForestServiceand
CaliforniaEnergyCommissionunderthe“AssessingtheSustainabilityofForestBiomass
UtilizationinCalifornia”studyasTask11underAgreementNumber60010006withthe
SpatialInformaticsGroup,LLC.
v
ABSTRACT
WequantifiedtheeffectsandefficacyoffuelreductiontreatmentsintheSierraNevadaas
measuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Theanalysisintegrated
forecastedforestgrowthandGHGsequestration,expectedchangesinwildfirebehavior
followingfuelreductiontreatments(efficacy),expectedchangesinwildfireemissionsfollowing
fuelreductiontreatments,andalifecycleanalysis(LCA)ofthefateofGHGsinwoodremovals
overafortyyearperiodposttreatment.TheLCAtrackedthefateofcarbonfromwood
removalsstoredindurablewoodproducts,woodymaterialusedforbioenergyandbiofuels,
forestharvestresiduesandwaste,operationalemissions.TherewasanetGHGliability(carbon
loss)incurredbytheonetimetreatmentofthelandscapebetween2003and2008,undera1%
annualprobabilityoffireoccurrence.Thetreatmentsonlyremainedeffectiveatreducingfire
sizethrough2025(1722yearsaftertreatment)afterwhichsimulatedfireswereactuallylarger
ontheprojectlandscape.Benefitsthatwereslowlyaccumulatingfromavoideddirectstockloss
andimprovedgrowthratesonthetreatedlandscape(by2045)wereerasedbythisoutcome.
Performingtwomaintenanceprescribedfiresonthetreatedlandscaperesultedinadditional
carbondeficitofinforestCstock,butkeptfiresizessmaller.Althoughundera1%annual
probabilityoffireabenefitwasnotrealizedby2050,theliabilitywasdecreasingfrom2025
onward,suggestingthatabenefitwasforthcoming.Withahigherassumedprobabilityoffire
(2%annual),abenefitwasrealizedby2045.Asensitivityanalysisofgrowthratesusedin
modelingsuggeststhatifratesintheuntreatedstandsareoverestimatedthenrecoveryof
carboninthetreatedlandscapemayoccurmorerapidlycomparedtothebaseline,whichwould
resultinamuchquickerachievementofgreenhousegasemissionsbenefits.
Keywords:Wildfire,forestcarbon,wildfireemissions,SierraNevada,Plumas,MeadowValley
fire,lifecycleanalysis
Pleaseusethefollowingcitationforthisreport:
Moody,Tadashi,Saah,David,Ph.D.TravisFreed,Roller,Gary,JohnGunn,Ph.D.,PaulLilly,
Ph.D.,Schmidt,David,andJasonJ.Moghaddas.2016.EffectsofFuelReductionTreatmentson
WildfireandCarbonMassBalancesintheSierraNevada,California,USA.Preparedforthe
CaliforniaEnergyCommissionundercontract#60010006.
vi
TABLE OF CONTENTS
ACKNOWLEDGEMENTS....................................................................................................................iii
PREFACE..................................................................................................................................................iv
ABSTRACT................................................................................................................................................v
TABLEOFCONTENTS.........................................................................................................................vi
EXECUTIVESUMMARY........................................................................................................................1
CHAPTER1:Introduction.......................................................................................................................5
1.1BackgroundandPurpose................................................................................................................5
1.2GoalsandObjectives1.2.................................................................................................................7
1.2.1ResearchQuestions...................................................................................................................7
CHAPTER2:Methods..............................................................................................................................8
2.1FireandCarbonAnalysisFramework..........................................................................................8
2.2StudyArea......................................................................................................................................11
2.2.1FireshedDelineation...............................................................................................................12
2.2.2FuelTreatments.......................................................................................................................13
2.3DataCollectionandDevelopment...............................................................................................14
2.4ForestGrowth,TreatmentSimulationandModelCalibration...............................................15
2.5FireBehaviorandEffectsSimulation..........................................................................................18
2.5.1FuelCharacteristics.................................................................................................................19
2.5.2FireSpread...............................................................................................................................21
2.6FireProbabilityEstimation...........................................................................................................25
2.7ForestCarbonStockandFluxEstimation..................................................................................26
2.7.1InForestCarbonStock...........................................................................................................27
2.7.2RemovedCarbonLifeCycleAnalysis.................................................................................27
2.7.3AvoidedStockLossfromFire...............................................................................................28
2.8ForestCarbonAccounting............................................................................................................35
CHAPTER3:Results..............................................................................................................................37
3.1ForestGrowthandTreatment......................................................................................................37
vii
3.2Fuels,FireBehaviorandFireSpread..........................................................................................39
3.3FireProbability...............................................................................................................................47
3.4ForestCarbonEstimationandAccounting................................................................................48
3.5SensitivityAnalysis........................................................................................................................60
3.5.1EffectofTreatmentMaintenance..........................................................................................60
3.5.2EffectofFireProbability.........................................................................................................61
3.5.3EffectofGrowthRates............................................................................................................62
CHAPTER4:DiscussionandRecommendations............................................................................63
4.1QuestionsForFurtherStudyResultingfromCompletionofthisProject..........................65
REFERENCES..........................................................................................................................................67
1
EXECUTIVE SUMMARY
WequantifiedtheeffectsandefficacyoffuelreductiontreatmentsintheSierraNevadaas
measuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Theanalysisintegrated
forecastedforestgrowthandGHGsequestration,expectedchangesinwildfirebehavior
followingfuelreductiontreatments(efficacy),expectedchangesinwildfireemissionsfollowing
fuelreductiontreatments,andalifecycleanalysis(LCA)ofthefateofGHGsinwoodremovals
overafortyyearperiodposttreatment.TheLCAtrackedthefateofcarbonfromwood
removalsstoredindurablewoodproducts,woodymaterialusedforbioenergyandbiofuels,
forestharvestresiduesandwaste,operationalemissions.
Theconditionthatfueltreatmentsareintendedtoaddressisessentiallyoneofinstability.
Whetherconsideringthemarketvalueofwoodproducts,sequestrationofcarbon,orthe
provisionofservicessuchascleanwater,recreation,orwildlifehabitat,forestedecosystems
storeresourcesandprovideservicesthatarevaluedbyhumans,andputatriskbydisturbances
suchasfire,drought,insectsanddisease.Andwhiletheseagentsareknowntobenaturaland
cyclical,thereisageneralconsensusthatthecurrentconditions,bothwithinandexertedupon
westernfireadaptedforestsarenowlargelyoutofarangeofvariabilitywhichwouldallow
themtowithstandperiodicdisturbancewithoutlongtermchange.Buildupofhazardousfuel
conditions,stressfromoverstocking,andchangingclimateplacethematgreaterriskofloss.
Fueltreatmentsareintendednotonlytoprotectresourcesdirectly,butalsotorestoreoverall
healthandresiliencetotheforest,andtherebyenhanceorimprovestabilityoftheresourcesit
provides.Giventheinevitablenatureoffireinthesesystems,thisistheprimarybenefitoffuel
treatmentsintermsofcarbonstorageandgreenhousegassequestration.
Fueltreatmentsbydefinitionremovecarbonfromthesystem,butevaluatingtheirbenefit
requiresnotonlyquantifyingstoredcarbonandreducedemissions,butalsoimprovedsystem
stabilityandresiliencetolossfromdisturbance.Furthermore,treatingtheselandscapesplaces
themonadifferentecologicaltrajectory,andthereforeevaluationoftreatmentsmustconsider
theireffectsoverappropriatelylongtimescales.Theframeworkappliedinthiscasestudytries
tocapturethreeprimaryeffectsoffueltreatmentswithinthestandsthemselves:
1. Changestoinforestcarbonaccumulationovertime,inducedbytreatment
2. Changestostandandlandscapeabilitytowithstandseverefire
3. Modificationofexpectedfirespreadacrossthelandscape.
Additionally,wetrytocapturethetruelossofcarbon,whichismitigatedbyplacing
merchantableremovalsintolonglivedwoodproducts,andbyutilizingwoodybiomassfor
energyproduction.
Overall,theprimaryanalysisinthisstudyindicatedthattherewasanetGHGliability(carbon
loss)incurredbytheonetimetreatmentofthelandscapebetween2003and2008,undera1%
annualprobabilityoffireoccurrence.However,itisimportanttoconsidertheindividual
elementsofthisanalysis,asidentifiedabove.First,thedeficitofinforestforestcarboncreated
bytreatmentgrows(withoutfire)between2010and2045,butappearstobegindecreasingby
2
2050duetoaslightincreaseinaccumulationrateintheprojectscenarioandhigherproportion
ofcarboninlivepools.Ifthedeficitcontinuestodecrease,thenpresumablytheinforestcarbon
onthetreatedlandscapewouldeventuallyovercometheBaselinestocklevels.Asensitivity
analysisofgrowthratesindicatesthatifFVSisindeedoverestimatinggrowthratesinthe
untreatedstands,thiseffectmightactuallybeenhanced,andrecoveryofcarbonoverBaseline
stocksmayoccurmorerapidly.
Intermsofdirectstockloss(theeffectivenessoftreatmentsatreducingseverity),thetreatments
remainedeffectiveforfiressimulatedthrough2050,i.e.asaproportionofstock,lesscarbonwas
lostperacreintheProjectscenariothantheBaselineunderthesamefireconditions.The
benefitsresultingfromthiseffectivenessaregreaterthefartheroutoneevaluates,through2050.
Thisisduenotonlytohigherlikelihoodoffireinalongertimewindow,butalsotolarger
proportionsofdeadbiomassdecayingovertime.
However,thetreatmentsonlyremainedeffectiveatreducingfiresizethrough2025(1722years
aftertreatment)afterwhichsimulatedfireswereactuallylargerontheprojectlandscape.
Benefitsthatwereslowlyaccumulatingfromavoideddirectstocklossandimprovedgrowth
ratesonthetreatedlandscape(by2045)wereerasedbythisoutcome.Performingtwo
maintenanceprescribedfiresonthetreatedlandscaperesultedinadditionalcarbondeficitofin
forestCstock,butkeptfiresizessmaller.Althoughundera1%annualprobabilityoffirea
benefitwasnotrealizedby2050,theliabilitywasdecreasingfrom2025onward,suggestingthat
abenefitwasforthcoming.Withahigherassumedprobabilityoffire(2%annual),abenefitwas
realizedby2045.
Althoughthefirescenariomodeledherewassevere(~98thpercentile),itstillresultedinless
carbonlossonthetreatedlandscape.Treatmentsmayhavebeenmoreeffectiveatreducing
severityandspreadunderlessthanextremeconditions(e.g.90thor95thpercentile),scenarios
whichshouldbeinvestigatedfurther.Furthermore,theprobabilityoffireinthisanalysiswas
characterizedbyanalyzingallfiresinsimilarforesttypes.Theprobabilityoffireoccurring
underanyweatherconditionisnecessarilyhigherthanunderextremeconditions.Although
thisisindirectlycapturedintheareabasedmetricoffirerotation,thesensitivityoftheanalysis
tovaryingprobabilitiesofweatherconditionsthatsupportdifferingseveritiesandextentsof
firesisalsoworthfurtherconsideration.
Puttingremovedcarbonintolonglivedwoodproductsandenergyproductionoffset
approximatelyhalfofthepotentiallossofcarbonfromharvestremovals(deterioratingonly
about11%overthestudyperiod).However,inthistreatmentregime,overhalfofthecarbon
removedintreatmentwasduetoprescribedfires,animmediateemissionorloss.Puttingmore
carboninwoodproductsratherthantreatingwithprescribedfiremayhavereducedthisloss,
butthiswouldhavetobebalancedwiththeconcomitantdeficitofinforestcarboncreatedby
harvest,andchangesinpotentialfireseverityandspreadwouldalsoneedtobeaccountedfor.
Theseresultssupportseveralconclusionsfromthisstudy:
1. TreatmentssuchasthoseperformedinMeadowValleymayenhancetheoverall
sequestrationrateofcarbonacrossthelandscape,thoughrecoveryofCoverbaseline
3
levelsmaynotoccuruntilwellbeyonda40yearwindow.Ifthisenhancementisbeing
underestimatedbythemodel,recoverymayactuallyoccurmorerapidly.
2. Treatmentsthatreducepotentialfireseverityareofgreaterbenefitwhenanalyzed
fartheroutfromtimeoftreatment,sincehigherproportionsofdeadcarboninthe
untreatedlandscapedecayovertime,whilehigherproportionsoflivecarboninthe
treatedlandscapecontinuetoaccruecarbon.
3. Onetimetreatmentsmayreduceexpectedfireextent,butmayalsocausechangesin
fuelsthatresultinunwantedeffectsaftersomeperiodoftime.Theseeffectsmay
swampbenefitsfrom(1)and(2)above.
4. Maintenanceoftreatmentsmayincreasetheinforestcarbondeficitincurred,butcan
alsokeepfiresizessmallerandseveritieslower.Itappearsthismayresultincarbon
benefits,butoverlongertimeperiodsthanthe40yearsanalyzedhere.
5. Thoughtreatmentsareoftenconsideredtohavealimited“lifespan”orperiodof
effectivefirebehaviormodification,thelandscapedoesnotnecessarilyreturntoapre
treatmentstate.Treatmentsputthelandscapeontoadifferenttrajectory,whichmayor
maynotshowacarbonbenefitwithintheirlifespan.Longerevaluationperiods(80or
100years)maybenecessarytotrulyevaluatethebenefitsofatreatmentortreatment
regime.
6. Theprobabilityoffireoccurrenceonthelandscapeisamajorfactorindeterminingthe
netbenefitgainedorliabilityincurredduetreatment,atleastintermsofavoidedcarbon
stockloss.Alandscapeunderanassumed2%probabilityoffire(50yearrotation)will
resultinanetbenefitsoonerthana1%probability(100yearrotation),potentiallywithin
a40yearwindowasanalyzedhere.Assuch,sound,defensiblecharacterizationofthe
probabilityoffireimpactingthelandscapeiscrucialtoquantifyingGHGbenefitsfrom
fueltreatment.Sitespecific,spatiallyexplicitcharacterizationoftheprobabilityoffires
ofvaryingseveritymayaidinmoreaccuratecharacterizationofcarbonoutcomes.
Theseresultsrelyheavilyonmultiplemodels,datasources,andassumptions.Specificallyfuel
characteristicssensitivetogrowthmodelparameterssuchasSDI,regeneration,fuelmodel
selection,mayrequireadditionalfieldbaseddataforvalidationofaccuracyinmodeling.Fire
spreadinparticularsensitivetohowFVSmodelssurfacefuels.Fireintensityandseverityover
timeareafunctionofmultiplefuelcharacteristics,whichareinturnafunctionofmultiple
standcharacteristicsinthemodel.RegenerationinFVSisnonspatialwithinstands,andhigh
spatialvariabilityinregenerationisdifficulttocaptureinFVS.Homogeneityoflandscapeover
timeresultingfromourregenerationparametersmayhavehadaneffectonfuturestand
density,andresultingmodeledbehavior.Thereremainoutstandingquestionstothebroader
FVSmodelofthedecayratesusedfordeadwood,andwhetherornottheyarereflectiveof
localizedconditions.
4
5
CHAPTER 1: Introduction
1.1 Background and Purpose
ThewesternU.S.hasmillionsofacresofoverstockedforestlandsatriskoflarge,
uncharacteristicallysevereorcatastrophicwildfireowingtoavarietyoffactors,including
anthropogenicchangesfromnearlyacenturyoftimberharvest,grazing,andparticularlyfire
suppression(Milleretal.2009).Modificationoffuelstructuresandreductionofunnaturally
highfuelloadsinordertoalterfirepatternsandbehaviorareaprimarycomponentofplanning
effortssuchastheNationalCohesiveWildlandFireManagementStrategy(WildlandFire
LeadershipCouncil2011)andtheSierraNevadaForestPlanAmendment(USDAForestService
2001),andarelikelytocontinueorincreaseintothefutureinresponsetoclimatechangeand
theresultingchangesinfireandfuels.Variousmethodsforfuelmodification,collectively
termed“fueltreatments,”includemasticationorremovalofsubmerchantabletimberand
understorybiomass,precommercialandcommercialtimberharvest,andprescribedfire.Cost
perunitareaforfueltreatmentsvariesbytreatmentmethodandvegetationtype(Hartsoughet
al.2008),butcompletetreatmentofvastareasofatriskwildlandsisneitherfinanciallyfeasible
norlogisticallyrealistic,orevendesirableundercertainlandmanagementobjectives.
Mechanismsforcostrecoveryoffueltreatmentsarenotwellestablished,andreturnon
investmentcomesprimarilyintheformofavoidedwildfire,thoughtheabsoluteprobabilityof
wildfireimpactingfueltreatmentsornearbyareaswithintheireffectivelifespancanbe
relativelylowandvariableacrossthelandscape(Hurteauetal.2009,Ageretal.2010,Syphard
etal.2011).
Variousstrategiesareemergingtodealwithfueltreatmentcost.Givenlimitedresourcesand
theinabilitytotreateveryatriskacre,treatmentscanbestrategicallyarrangedonthelandscape
inordertoincreasetheireffectivenessinprotectingcommunitieswithinthewildlandurban
interface(WUI)andnaturalresources,changingexpectedfireeffects,andaidingfire
suppressionefforts,whichcanreduceoverallfiresizes(Ageretal..2007a,Ageretal..2007b,
Moghaddasetal..2010).Additionally,forestwoodybiomassremovedinfueltreatmentscan
beusedforhighervaluepurposesandproducts,suchaselectricityandheat,transportation
fuels(e.g.,advancedbiofuels),chemicals,andphysicalproductsuseddirectlyinmanyactivities
andindustries(e.g.bioplastics,ash,glassaggregates).ThefederalinteragencyBiomass
ResearchandDevelopmentTechnicalAdvisoryCommittee,createdtosupporttheBiomass
R&Dactof2000,hassetgoalsofincreasingthemarketshareofbiopowerto7.0%(3.8
quadrillionBtu)by2030(BiomassResearchDevelopmentTechnicalAdvisoryCommittee2006).
However,whilethemarketforwoodybiomassmaybeexpanding,itstillfacessignificant
hurdles,suchaslimitedaccesstofunding,distancebetweenforesttreatmentandbiomass
utilizationfacilities,publicperceptionoftheeffectsofbiomassremoval,andscientific
documentationtosupportthesustainabilityoftheseactivities(Evans2008).
Asmarketbasedapproachestoglobalclimatechangearebeingconsideredandimplemented,
oneimportantemergingstrategyforchangingtheeconomicsoffuelstreatmentsistosell
carbonemissionoffsets,tradablecertificatesorpermitsrepresentingtherighttoemita
designatedamountofcarbondioxideorothergreenhousegasses(GHGs).Theseoffsetsare
6
generatedwhenprojectsoractionsreduceGHGemissionsbeyondwhatisrequiredbypermits
andrules,andcanbetraded,leased,bankedforfutureuse,orsoldtootherentitiesthatneedto
provideemissionoffsets(SedjoandMarland2003).Inthecaseoffueltreatments,carbon
emissionoffsetscantheoreticallybegeneratedbyprojectsthatreducepotentialemissionsfrom
wildfire,asbymodifyingtheprobabilityofextremefirebehaviorandresultantemissionsfora
givenportionofland.Carboncreditscanbegeneratedforeithervoluntaryorregulatory
(compliance)markets,andcarbonoffsetprojectsmustmeetthestandardsandprotocolssetby
oneofseveralregistryorganizations,suchastheAmericanCarbonRegistry.Thisis
accomplishedbyusingoneregistryapprovedaccountingmethodologiesfordifferenttypesof
carbonprojects.Forforestryprojects,approvedmethodologiesexistforImprovedForest
Management(IFM)projects,AfforestationReforestation(AR)projects,andReducedEmissions
fromDeforestationandDegradation(REDD)projects.
Currently,nomethodologiesexistthataccountforavoidedwildfireemissions,andfuel
treatmentactivity(primarilymechanicalthinningandprescribedfire)isconsideredasnet
emissions.Demonstratinganetcarbonbenefitfromfueltreatmentthereforerequiresan
integratedapproachthataccountsfornetforestcarbonsequestrationovertime,woodremovals
fromtheforest,thefateofwoodfiber(lifecycleanalysis)inwoodproducts,bioenergy,
transportationfuels,andwaste,andthereductioninGHGemissionsexpectedfromtreatment.
Additionally,becausetheremovalsareinanticipationofafutureevent(wildfire)thistypeof
analysismustaccountforanexpectedprobabilityoffireoccurring,similartoavoided
conversionmethodologies.
Westernforestshavethepotentialtosequesterlargeamountsofcarbonintheformofwoody
biomass,butincreasedforestdensitiesandunderstorygrowthcanalsoincreasefirehazard
(Stephensetal.2009a).Fueltreatmentsintendedtoreducetheriskofseverewildfireand
associatedemissions,bydefinition,removeliveanddeadwoodybiomassavailableforburning,
therebyreducingstoredcarbon.Fueltreatmentoperationsthemselvescanalsoresultindirect
anddelayedatmosphericcarbonemissions,aswithbiomasstransportationandprescribed
broadcastorpileburning(e.g.Jonesetal.2010).Increasedfireresistancecanbeachievedwith
relativelysmallreductionsincurrentcarbonstockswhilegrowingandretaininglargertreescan
reducecarbonlossfromwildfire(Stephensetal.2012b).Inwildfireproneforests,treebased
carbonstocksarebestprotectedbyfueltreatmentsthatproducealowdensitystandstructure
dominatedbylarge,fireresistantpines(HurteauandNorth2009).Ifforestsweremanagedfor
maximumcarbonsequestrationtotalcarbonstockscoulddoubleintheCoastRangeandSierra
Nevada,giventheabsenceofstandreplacingdisturbance.Thepotentialtostoreadditional
carbonintheseforestsishighastheyarelonglivedandmaintainrelativelyhighproductivity
andbiomass(Hudibergetal.2009).Severalrecentstudieshaveinvestigatedtheseemingly
competingvaluesofcarbonsequestrationandfueltreatment,examiningwhetherandtowhat
extentreducedcarbonsequestrationfromtreatmentismitigatedbyavoidedemissions
(HurteauandNorth2009,Northetal..2009,Stephensetal..2009b,Ageretal..2010,Reinhardt
andHolsinger2010,Campbelletal..2011).Improvingtheaccuracyandusefulnessof
assessmentsoffueltreatmentwildfiretradeoffsforCstorage,requiresunderstandingthelong
7
termeffectsofmultiplemanagementanddisturbancescenarios,includingpostwildfire
treatments(salvage,reforestation)overtime(Loehmanetal.2014;RestainoandPeterson2013).
1.2 Goals and Objectives 1.2
Thegoalofthistaskistoquantifytheeffectsandefficacyoffuelreductiontreatmentsinthe
SierraNevadaasmeasuredbyexpectedfirebehaviorandcarbonlifecyclepathways.Takinga
longtermapproach(40yearsposttreatment),theanalysisintegratesforecastedforestgrowth
andGHGsequestration,expectedchangesinwildfirebehaviorfromtreatment(efficacy),
expectedchangesinwildfireemissionsfromtreatment,andalifecycleanalysis(LCA)ofthe
fateofGHGsinwoodremovals.TheLCAincludes,butisnotlimitedto,ananalysisofwood
removalsstoredindurablewoodproducts,woodfibergoingtobioenergyandbiofuels,forest
residuesandwaste,operationalemissions,andmillefficiencies.
1.2.1 Research Questions
Whataretheeffectsovertimeofcomprehensivefueltreatmentplansonexpectedfire
behavior,GHGbalances,andbiomassutilization?
Howeffectivearethefueltreatmentplansatreducingadversefirebehaviorandeffects
overtime?
HoweffectiveisthefueltreatmentplanatreducingGHGemissionsovertime?

8
CHAPTER 2: Methods
ThisprojectleveragespreviousworkdonebySpatialInformaticsGroup(SIG),UCBerkeley
(UCB),andtheUSDAForestServicePacificSouthwestResearchStation(PSW),inorderto
examineastudysitethathashadafullimplementationoffueltreatmentsapplied.Priorwork
atthisnorthernSierraNevadasite(“MeadowValley”)generatedanextensivefielddatasetused
tocharacterizeforeststandcharacteristics,structure,andfirebehavior.Weusethisfielddatain
anintegratedframeworkofacceptedmodelsforforestgrowth,firebehavior,firerisk,and
wildfireemissions,alongwithlocalinformationaboutGHGlifecyclepathwaystoevaluatethe
effectsandeffectivenessoffueltreatments.
2.1 Fire and Carbon Analysis Framework
Theframeworkusedtoevaluateprojecteffectsongreenhousegasesismodifiedfromearlier
workperformedbySIGonsimilarforesttypesinnearbyPlacerCounty,CA(Saahetal.2012,
Figure1).Thisandpriorversionsoftheframeworkareintendedtocaptureandquantifythe
effectofhazardousfuelreductionorotherforesthealthtreatments(hereafterreferredto
collectivelyas“fueltreatments”)ongreenhousegas(GHG)storageandsequestration.GHG’s
arequantifiedintermsofcarbon(C),whichisconvertedtometrictonsofcarbondioxide
equivalent(MTCO2e).
Themodifiedframeworktakesacarbonstockapproach,quantifyingCstoredinforestsor
displaced(asinwithalternativeenergyproduction)overtime,withnetpositivechangesin
carbonstockconsideredassequestration,andnetnegativechangesinstockconsideredaslosses
oremissions.Thisdiffersfrompriorversionsoftheframeworkwhichalsotriedtocapturethe
massofCemittedduringfires.Itconsiderssixprimaryelements,describedinfurtherdetail
belowandinfigure1.Figure1isaconceptualdiagramoftheanalysisframework.The
frameworkincludesthefollowingsteps,describedindetailbelow:
1. Firesheddelineation,selection,andcharacterization:Thefireshedisthebasicunitof
measureusedinthisanalysisframework.Itisanareaoflandlargeenoughtoallowthe
ecologicallyrelevantintegrationofwildfirerisk,wildfirehazard,andforestcarbon
accounting.Afireshedisdelineated,vegetationwithinisquantifiedandclassified,and
theresultsfromeachoftheotherframeworkelementsaregeosummarizedatthe
fireshedscaleintocommonunits.FireshedsforMeadowValleyhadbeendefined
previously,andanextensivefielddatasethasbeendevelopedandintegratedintoan
analysisreadydatabase.
2. ManagementScenarioDevelopmentandFuelTreatmentDesign:Ecological,
operational,andothergoalsandobjectivesunderdifferentmanagementscenariosfora
fireshedorlandscapehelpdeterminethetype,intensity,andgeographicallayoutoffuel
treatments.Comparingdifferentmanagementscenariosoralternativeswithdifferent
treatmentschemesagainstabaselinescenario(e.g.“notreatment”)withinthe
frameworkallowsforcomparisonofeffectsanddifferences.Asfueltreatmentsforthe
9
MeadowValleystudyareahadalreadybeendesignedandimplemented,thisproject
wasintendedtoevaluatetheGHGimplicationsofanalreadycompletedmanagement
scenario,ratherthananalyzingalterativetreatmentschemes.
3. InForestCarbon(ForestGrowthandSequestration):Forestgrowthandnetcarbon
balancesunderBaseline(e.g.untreated)andProject(e.g.treated)scenariosaremodeled
usingtheUSForestServicemodelForestVegetationSimulator(FVS).FVSisinitialized
withthefieldderiveddatabaseforpretreatmentforestconditionstoprojectforest
growthanddevelopmentunderBaselineandProjectscenariosoutatleast40years,
quantifiedin5yeartimesteps.Weexaminethenetdifferencesincarbonstored
betweentheBaselineandProjectlandscapes,wherewoodisremovedfromthestand.
FVSsimulatesindividualtreegrowthanddevelopment,regeneration,backgroundand
densityinducedmortality,andchangesinstandcharacteristicssuchasfirefuels.
4. ForestRemovalsLifeCycleAnalysis(Bioenergy,WoodProducts):Understandingthe
fateofbiomassremovedfromthefireshed,andultimatelyhowmuchwindsupas
carbonsourcesvs.sinksisanimportantcomponentofthisframework.Merchantable
andnonmerchantablewoodremovalsareconsideredinseparateLCAs.Theduration
ofCstoredinwoodproducts,quantitiesofslashandwastefromharvestoperations,
biomassutilizationandefficiency,millefficiencyandwaste,andtransportation
emissionsareconsidered.
5. PotentialCarbonStockLossfromWildfire:Inadditiontoimprovingthehealthand
vigorofpreviouslyoverstockedstands,fueltreatmentsintheirvariousformsare
intendedtomodifypotentialwildfirebehaviorintwoways.Firsttheycanreducefire
severity,ortheamountofvegetationkilledbyfire,byreducingfireintensityand
potentialforfiretoenterintoforestcanopy.Secondtheycanslow,stoporotherwise
modifythelateralspreadoffire,providingbetteropportunitiesforsuppressionand
ultimatelyresultinginsmallerfires.Treatmentsthushavea“shadoweffect”,changing
theoutcomesoffireonthelandscapebeyondjusttheirboundaries.Thisframework
termsthesetwoprimaryeffectsasDirectStockLossandExtentStockLoss,and
quantifiesthemasdescribedbelow.
a. DirectStockLoss:Directstocklossisdefinedasthelossinstoredcarbon
observedorexpectedforeachunitofareaonthelandscape,ifthatunitburned
instantaneouslyandindependently.Reductions(benefits)indirectemissions
fromtreatmentareadirectresultoffuelloadreductionandrearrangements
(andlessintenseresultantfirebehavior)withinthosetreatmentareas.Potential
directstocklossisestimatedusingtheFireandFuelsExtensiontoFVS,and
summarizedatthefireshedscale(perunitarea).Itisindependentofanyeffect
oftreatmentonlateralwildfirespread.DirectstocklossexpectedunderBaseline
andProjectscenariosarecompared.Changesinefficacyoffueltreatmentsover
timeiscapturedbyestimatingpotentialdirectstocklossunderchangingforest
conditionsateach5yeartimestep.Additionally,onlyaportionofthestockloss
isincurredinthefireitselfincombustion.Firekilledvegetationcontinuesto
emitcarbonasitdecaysforyearsafterfire.Thisframeworkattemptstocapture
10
andquantifythesedelayedemissionsbysimulatingfireatvarioustimespriorto
anevaluationpoint.
b. ExtentStockLoss:Extentstocklossisdefinedastheobservedorexpectedlossof
carbononthelandscaperelativetotheexpectedsizeofwildfire.Inthis
framework,thepotentialsizeoffiresburningforagivendurationundera
specifiedweatherscenarioisestimatedfortheBaselineandProjectscenarios,
andcompared.Weuseinformationfromforestgrowthanddevelopment
simulations(FVS)tocharacterizesurfaceandcanopyfuelsforeachstandonthe
landscape,andsimulatefirespreadintheFlamMapprogram.Changesinfuel
treatmentefficacyovertimearecapturedbysimulatingfireunderchangingfuel
conditionsateach5yeartimestep.
6. FireProbability:Weanalyzetheprobabilityoffireactuallyimpactinganygivenacre
onthefireshedbyexaminingprehistoricfirefrequency(e.g.fromtreeringstudies)for
thestudyareaandsimilarvegetationtypes,historicandcontemporaryrecordsoffire,
andfuturefiremanagementexpectations.Weadjustourexpecteddirectandextent
stocklossfromfirerelativetotheprobabilityoffireactuallyoccurring.
7. EmissionsAccounting:AllGHGlossesorsavingsaresummarizedfortheentire
fireshedonaperunitareabasis.Foreachtreatmentscenario(vs.baseline)ateachtime
step,weexaminenetGHGstoragelossfromtreatment,offsetbyGHGbenefitsrealized
frommerchantableandnonmerchantablewoodremovallifecycles.Weexaminethe
benefitsexpectedfrombothavoideddirectandavoidedextentstocklossfromfire,and
modifythesebenefitsbytheprobabilityoffireactuallyoccurringonthelandscape.We
sumtheselossesandsavingstodeterminetheeffectoffueltreatmentonthecarbon
balanceateachtimestep.
11
Figure1:Conceptualframeworkforcarbonaccountingusedinthisproject.
2.2 Study Area
ThestudyareausedinthistaskislocatednearthecommunityofMeadowValley,California,
andincludesthesurroundinglandwhichislargelymanagedbythePlumasNationalForest
(Figure2)(Collinsetal.2013).Thestudyarea(hereafterreferredtoasMeadowValley)has
beenthefocusofalargefueltreatmenteffort,aspartoftheHergerFeinsteinQuincyLibrary
GroupAct(USDA2004,HFQLG1998).Anetworkoffueltreatmentswasimplementedin
MeadowValley,mostlybetween2003and2008.
Thestudyareaincludesthefireshed(describedbelow)aswellasa2kilometerbuffer.
Elevationswithinthestudyarearangefrom850to2100m(Collinsetal.2013).Vegetationon
thislandscapeisprimarilySierranmixedconiferforest(Schoenherr,1992),includingprimarily
whitefir(Abiesconcolor),Douglasfir(Pseudotsugamenzesii),sugarpine(Pinuslambertiana),
ponderosapine(Pinusponderosa),Jeffreypine(Pinusjeffreyi),incensecedar(Calocedrus
decurrens),andCaliforniablackoak(Quercuskellogii),withredfir(Abiesmagnifica)occurringat
higherelevations.Additional,lesscommonhardwoodandsoftwoodspecies,aswellas
montanechaparralandsomemeadowsareinterspersedinthelandscape.Treedensityvariesas
12
aresultofrecentfireandtimbermanagementhistory,elevation,slope,aspect,andedaphic
conditions.Historicalfireoccurrence,inferredfromfirescarsrecordedintreerings,suggestsa
historicalfireregimewithpredominantlyfrequent,low‐tomoderateseverityfiresoccurringat
intervalsrangingfrom7to19years(Moodyetal.2006).
Figure2:MeadowValleyStudyArea(fromCollinsetal.2013)
2.2.1 Fireshed Delineation
Thefireshed,delineatedforapriorstudy,wasdefinedgenerallyasfourHUC12watersheds,
withafurthermodificationtoincludeareatothesouth.Thisistheareauponwhichvaluesin
thisstudyaregeosummarized,andwasconsideredappropriateforanalysisinthepresent
study.Thesefourwatershedscombinetocreateabasinencompassingthecommunityof
MeadowValley,andformalogicalforestmanagementandplanningunit.Firehaslargelybeen
13
excludedfromthisbasininthecontemporaryera,andrecentnearbylargefiressuchasthe2007
Moonlightfirehighlighttheneedforalargeareaforfiremanagementplanning.Mostofthe
fueltreatmentsimplementedintheMeadowValleyareaareincludedinthefireshed.Thefull
studyareaincludes2kmbufferofthefireshed.Totalfireshedareais47,533acres(19,236
hectares).Thefullstudyarea(bufferedfireshed)is84,842acres(34,334hectares).Thetotalarea
treatedcomprised19.2%ofthefireshed(FigureXX).
2.2.2 Fuel Treatments
Treatmentswereimplementedbetween2003and2008,creatinganetworkofDefensibleFuel
ProfileZones(DFPZ’s),withthebulkofthetreatmentsoccurringin2007and2008.Treatments
canbeclassifiedintofivegroups(Collinsetal..2013)asfollows:(1)Handthinandpileburn:
treesupto12”werecutandburnedinpiles;(2)Mastication:primarilyshrubsandsmalltrees
wereshreddedandchippedinplace,withmaterialleftonsite;(3)Prescribedfireonly:stand
burnedundermoderaterelativehumidityandfuelmoistureconditions;(4)Mechanicalthinand
prescribedburn:Treesupto20”or30”DBH(dependingonwhetherornotstandswere
consideredinthewildlandurbaninterface)werethinnedfrombelow,usingawholetree
harvestsystem,toaresidualcanopycoverofapproximately40%,andthenunderburned;and
(5)Groupselectionharvest:removalofallconifersupto30inchesDBH,followedbyslash
removal,theneithernaturalregenerationorreplantingtoadensityofapproximately100trees
peracrewithamixofsugarpine,ponderosapine,andDouglasfir.Treatmenttypesandthe
areacoveredareshowninFigure3andTable1.
Table1:AreaandproportionoffireshedbytreatmenttypeimplementedinMeadowValley.
TreatmentType Area(ac) ProportionofFireshed
DFPZharvestfollowedbyprescribedfire 3,915.04 8.24%
Prescribedfireonly 2,661.23 5.60%
Handthinfollowedbypileandburn 1,191.85 2.51%
Understorymastication 765.98 1.61%
Groupselectionfollowedbyslashremoval 591.23 1.24%
Subtotal 9,125.34 19.20%

NoTreatment 38,407.17 80.80%
GrandTotal 47,532.50 100.00%
14
Figure3:Studyarea,includingfireshed,modelingbuffer,andtreatments.
2.3 Data Collection and Development
Datatocharacterizeforestandfuelcharacteristicswascollectedinfieldplotspriortotreatment,
aswellasposttreatment.Plotleveldatawasassignedtoeachstandintheforeststandmap,
(roughlyequivalenttoFSexistingvegetationpolygons).Standdatawasusedtocreatepre
treatmentandposttreatmentFVSinputdatabases.Pre‐andPosttreatmentdatabaseswere
providedforthisprojectbyBrandonCollins(USFS)andJasonMoghaddas(SIG).
Thepretreatmentdatabaseformedthefoundationofthedataforthisproject.Treatmentswere
simulatedinFVS,andcalibratedtomatchtheposttreatmentdatabaseascloselyaspossible.In
thisway,themodelingofforestgrowthanddevelopmentrepresentstheimplementationofa
fulltreatmentprograminarealisticmanner.Treatmentsweresimulatedoverthecourseof8
years.VariabilityinthefinaloutcomesofplannedtreatmentswererepresentedinFVSthrough
thecalibrationprocess,describedinmoredetailbelow.
15
2.4 Forest Growth, Treatment Simulation and Model Calibration
Thepre‐andpost‐treatmentdatabasesofstandsandtreeswereusedforforestgrowthand
developmentmodelingintheForestVegetationSimulator(FVS)program.FVSisamodelfor
predictingforestgrowthandstanddynamicsdevelopedandmaintainedbytheUSForest
Service.AtitscoreFVSinanintegratedsetofmodelsforestimatingindividualtreegrowth
andmortality,standdevelopment,wildfirepotentialandotherstandcharacteristics.Specific
variantsofFVSareusedfordifferentgeographicregionsoftheUnitedStates,andFVS
capabilitiesareextendedbyuseofmodulesforfireandfuels,economics,climate,water,and
more.FVSusesasystemof“keywords”tosendcommandstotheprogram.Additional
informationcanbefoundinthedocument“EssentialFVS:AUser’sGuidetotheForest
VegetationSimulator”(Dixon2015).
ForestgrowthsimulationwasperformedfortheBaseline(notreatment)andProject(treatment)
scenariosintheWesternSierravariantofFVS(KeyserandDixon2013)fromthestand
inventoryyear(e.g.pretreatmentmeasurementdate)through2050.Siteindexforallstands
wasadjustedtomatchtheaverageofFIAsiteindexforthearea,asrecordedinthe2003
vegetationdataforthePlumasNF(PonderosaPineSI50=65).Densityinducedmortalitywas
settobeginat70%oftheoreticalmaximumSDI,insteadofthedefault55%,inordertoslow
whatappearedoveralltobetoorapidoverstorymortalityandunusualcanopyfuel
development.Thischangeresultedinonlyslightincreases(0.0‐0.2%)intotalnonsoilforest
carbonateachtimestep,andveryslightdifferencesincarbonaccumulationrates(0.00‐0.01%).
TreatmentsweresimulatedinFVSaccordingtotheirparticularprescriptionandyearof
implementation.Itwasassumedthatforaparticularstand,theyearrecordedinthepost
treatmentdatabasewasoneyearposttreatment,andthatthepretreatmentdatawasmeasured
oneyearpriortotreatment.Treatmentparameterswerecalibratedsuchthatthesimulatedpost
treatmentlandscape(Projectscenario)matchedtheactualposttreatmentlandscapeascloselyas
possiblefortheyear2010.Becausetreatmentsareimperfectintheiractualexecution,this
methodologywasintendedtosimulatearealworldoutcomeascloselyaspossible,ratherthan
atheoreticalbestcasescenario.
ExampletreatmentsimulationsforaDFPZtreatmentandaprescribedfireonlytreatmentare
showninFigure4.
16
Stand3712–DFPZharvestfollowedby
underburn
Stand3717–Prescribedfireonly
(a) Stand3712–Atinventory (d)Stand3717‐Atinventory
(b) Stand3712‐Duringharvest (e)Stand3717‐Duringfire
(c) Stand3712‐Post‐treatment(2010) (f) Stand3717‐Post‐treatment(2010)
Figure4:ExampletreatmentsimulationsinaDFPZtreatmentandaprescribedfireonlytreatment
17
SimulatedharvesttreatmentswerecalibratedbythinningthroughouteachofseveralDBH
ranges(>1in)toachievesimilarresidualstandstructureasrealworldstands,asmeasuredby
treesperacre(TPA),basalareaperacre(BA),quadraticmeandiameter(QMD),andStand
DensityIndex(SDI)aggregatedoverallstandsforaparticulartreatmenttype.Handlingof
slash,submerchantable,andmasticatedmaterialsinsimulationswashandledinasimilar
fashiontothegeneralmethodemployedontheground.Simulatedprescribedfireswere
performedundermoderateconditions,withmodificationstoflamelengthmadetoachievea
posttreatmentstandstructureassimilartorealworldstandconditionsaspossible.Keywords
andparametersusedcanbefoundinthereportappendix.Treeslessthan1”DBHwerenot
calibrated,duetodifferencesinmeasurementmethodologybetweenthepre‐andpost
treatmentdatabase.Calibrationmetricsfortrees>1”DBHforsimulationyear2010areshown
inFigure5.

(a)TPA (b)BA

(c)QMD (d)SDI
Figure5:Calibrationmetricsfortrees>1”DBHforsimulationyear2010.“BASE”istheuntreated
stands,“FVS”isthetreatmentssimulatedinFVS,and“POST”isthereal‐world‐posttreatment
landscape(grownto2010).
Inoursimulationdatabase,thenumberoftrees<1”DBHineachstandattimeofinventorywas
highlyvariableandrangedfrom0togreaterthan2000treesperacre.Insimulatingingrowth
fromnaturalregeneration,wewerenotabletoreplicatethishighspatialvariability,butrather
18
followedtheseedlingdensitiessuggestedas“moderate”byCollinsetal.(2013).Seedlings
wereestablishedafterdisturbance(treatment),andthenevery5yearsfrom20102050.Exact
numberofseedlingswasrandomizedwithinasomewhatnarrowrange,withseedlingdensities
from2010onwardaveragingapproximately70TPA.
Oncetreatmentswerecalibrated,twoscenariosweremodelledinFVS:
1. BaselinescenarioAllstandsweregrownfrominventoryyearto2050,withcommon
cycleboundaries(outputs)at2010andeach5yearsafter.Notreatmentswereapplied.
2. ProjectscenarioAllstandsweregrownfrominventoryyearto2050,withcommon
cycleboundaries(outputs)at2010andeach5yearsafter.Calibratedtreatmentswere
applied1yearafterinventory.
2.5 Fire Behavior and Effects Simulation
FirebehaviorandeffectsweresimulatedusingacombinationofFVSandFlamMap.FVSwas
usedtoestimatesurfaceandcanopyfuelcharacteristicsacrossthelandscapeandtheir
developmentthroughtimeat5yeartimesteps(20102050),aswellaspotentialwithinstand
firebehaviorcharacteristicsandvegetationmortality.Additionally,expectedfirebehavior(rate
ofspread,flamelength,firelineintensity)wasestimatedinFVSforeachstandateachtime
step.Dataforeachstandateachtimestepundereachscenariowereusedtogeneratethe
following18spatialfuellandscapes,basedonthestudyareastandmap.
Table2:Inputlandscapes(fuelsandtopography)generatedforuseinfirespreadsimulations.
BaselineScenario ProjectScenario
Baseline2010 Project2010
Baseline2015 Project2015
Baseline2020 Project2020
Baseline2025 Project2025
Baseline2030 Project2030
Baseline2035 Project2035
Baseline2040 Project2040
Baseline2045 Project2045
Baseline2050 Project2050
19
2.5.1 Fuel Characteristics
SurfaceandcanopyfuelcharacteristicsforeachstandateachtimestepwereestimatedinFVS.
Surfacefuels(dead/downwoodymaterial)areestimatedinFVSasmassperunitareain
differentsizeclasses,thenmatchedtotheclosestofthe53stylizedfuelmodelscommonlyused
infirebehaviorsimulation(Anderson’s13orScottandBurgan’s40).BecauseFVShasbeen
notedtomisclassifysurfacefuelmodelsandpossiblyoverestimatefirebehaviorwithinthe
WesternSierravariant,weadoptedamethodology,examinedelsewhereintheCECprojectby
Sharmaandothers(inprep),inwhichwelimitthepooloffuelmodelsfromwhichFVScanpick
initsmatchingroutine.
Fornotreatment,DFPZ,handthinorfire‐onlytreatments,thepick‐listwasasfollows(Table3:Listof
possiblesurfacefuelmodelsforgroups1(notreatmentstands,andstandstreatedwithDFPZ,hand
thin,orfireonlytreatmentprescriptions)and2(groupselectionprescriptions)treatments.
).Forstandsclassifiedasshrubtype,thepicklistwaslimitedtoGS1,GS2,SH1andSH2.For
standsclassifiedasgrasstype,possiblefuelmodelswerelimitedtoGR1,GR2,GR4,GS1,and
GS2.
Table3:Listofpossiblesurfacefuelmodelsforgroups1(notreatmentstands,andstandstreated
withDFPZ,handthin,orfireonlytreatmentprescriptions)and2(groupselectionprescriptions)
treatments.
Fuel
Model
Code
FuelModel
Number
FuelModelType TreatmentGroup
GR1 101 Short,sparsedryclimategrass 1
GR2 102 Lowload,dryclimategrass 1
GS1 121 Lowload,dryclimategrass‐shrub 1,2
GS2 122 Moderateload,dryclimategrass‐shrub 1,2
SH1 141 Lowload,dryclimateshrub 1,2
SH2 142 Moderateload,dryclimateshrub 1,2
TU1 161 Lowload,dryclimatetimber‐grass‐shrub 1,2
TU5 165 Veryhighload,dryclimatetimber‐shrub 2
TL1 181 Lowload,compactconiferlitter 1
TL2 182 Lowload,broadleaflitter 1,2
TL3 183 Moderateload,coniferlitter 1,2
TL4 184 Smalldownedlogs 1,2
TL5 185 Highload,coniferlitter 1
TL6 186 Moderateload,broadleaflitter 1,2
TL7 187 Largedownedlogs 1
TL8 188 Long‐Needlelitter 1
TL9 189 Veryhighload,broadleaflitter 1,2
SB1 201 Lowload,activityfuel 1,2
20
SB2 202 Moderateload,activityfuelorlowload,blowdown 1,2
Forgroupselectiontreatments,thepicklistwasasfollows(Table4).
Table4:Listofpossiblesurfacefuelmodelsforstandstreatedwithgroupselectionprescriptions.
FM
Code
FMNumber FMType
GS1 121 Lowload,dryclimategrass‐shrub
GS2 122 Moderateload,dryclimategrass‐shrub
SH1 141 Lowload,dryclimateshrub
SH2 142 Moderateload,dryclimateshrub
TU1 161 Lowload,dryclimatetimber‐grass‐shrub
TU2 162 Moderateload,humidclimatetimber‐shrub
TL1 181 Lowload,compactconiferlitter
TL2 182 Lowload,broadleaflitter
TL3 183 Moderateload,coniferlitter
TL5 185 Highload,coniferlitter
TL8 188 Long‐Needlelitter
TL9 189 Veryhighload,broadleaflitter
SB1 201 Lowload,activityfuel
FVShasthecapabilityofchoosingmultiplefuelmodelsincombinationtorepresentastand
(“dynamic”fuels)whichisintendedtoallowformoreaccuraterepresentationoffuel
successionovertimewithinastand,withlessabruptchanges.However,thiscomplicates
translationofaspatialdatafromFVSintospatiallyexplicitdatathatcanbereadbyfirebehavior
simulationprogramssuchasFlamMap,sincemultiplefuelmodelswouldneedtobeassigned
torastercellsintheproperproportionswithinastand.Weturnedthisfeatureoffusingthe
STATFUELkeyword,choosingonlythesinglebestfitfuelmodelfromthepicklistforastand
inagivenyear.
IthasalsobeennotedthatinFVSsimulations,canopybaseheightcanrisemorerapidlythan
couldbeexpectedrealisticallyovertime.Inoursimulations,wemodulatedcanopybaseheight
estimationusingFVSkeywordswhichcontroltherateatwhichcrownratiochangeson
individualtreesovertime,andthebreakpointintreeheightswhichdeterminesthetreesare
usedforCBHcalculations.
Wealsomodulatedcanopybulkdensitybyadjustingdensitydependentmortalityparameters.
Thetheoreticalandactualmaximumsofstanddensityindexwereleftatdefaultforallspecies,
butthedensityatwhichmortalitybeginswasraisedfrom55%to70%oftheoreticalmaxSDI.
Asnotedinsection2.4,thishadverylittleeffectonoverallcarbonvaluesorratesof
accumulation.
21
PotentialfirebehaviorwasestimatedinFFEFVSbasedonthesefuelsandaseverefireweather
scenario,listedinTable5.ThisscenariowaschosentocloselymatchconditionsusedinCollins
etal.(2013),whichwasderivedfromhistoricalanalysisoflocalRAWSweatherstationdata.It
isalsoconsistentwithsevereweatherscenarioderivedandusedformodelinginSharmaetal.
(inprep).
Table5:WeatherparametersusedinFVSfiresimulationmodeling.
Parameter Value
20FootWindSpeed 20mph
Temperature 90deg
Season Fall
1hr.FuelMoisture 2%
10hr.FuelMoisture 3%
100hr.FuelMoisture 5%
1000hr.FuelMoisture 8%
DuffFuelMoisture 25%
LiveHerbacousFuelMoisture 35%
LiveWoodyFuelMoisture 70%
ProportionofStandBurned 95%
2.5.2 Fire Spread
Fuelcharacteristicsundereachscenario(BaselineandProject)werecalculatedforeachstandat
eachtimestep(20102050)byFFEFVSandwrittentoanoutputdatabase.Thisdatabasewas
usedwiththestandmaptogeneratethespatiallyexplicitlandscapedatafiles(.LCP’s)required
asinputstotheFlamMapfiresimulationprogram(Finney,2006).Fuelcharacteristicsforeach
scenarioyearsimulatedinFVS(canopycover,fuelmodel,canopyheight,canopybulkdensity,
canopybaseheight,elevation,slopeandaspect)wereusedtocreatethe18fuellandscapesupon
whichfirewouldbesimulated.WeusedArcFuels,anextensionfortheArcGISsoftware,to
createthe18landscapefiles(Table2)(Vaillantetal.2013).
FirespreadsimulationswereperformedinFlamMap5x64,usingtheMinimumTravelTime
(MTT)algorithm(Finney2016).5000randomlylocatedignitionpointsweredistributedacross
thelandscapewithinthefireshed.Foreachscenarioyearlandscape,firewasignitedateachof
the5000pointsandallowedtospreadfor240minutesundersevereweatherconditions,
identicaltothoseusedinFVS,butaddingspatialcomponentsandrequiredparameters(Table
6).
22
Table6:WeatherparametersusedinFlamMapfirespreadmodeling.
Parameter Value
Domain20FootWindSpeed 20mph
DomainWindAzimuth 225
Windmodification WindNinja(Gridded)
FuelMoistureType Fixed(noconditioning)
1hr.FuelMoisture 2%
10hr.FuelMoisture 3%
100hr.FuelMoisture 5%
LiveHerbacousFuelMoisture 35%
LiveWoodyFuelMoisture 70%
FoliarMoistureContent 100%
CrownFireEstimationMethod ScottandReinhardt(2001)
SimulatedIgnitions 5000randomlylocated
Simulationtime 240minutes
CalculationResolution 60m
MinTravelPathsInterval 500m
SpotFires(Probability/Delay) 0.02/0
SearchDepth(Lat/Vert) 6/4
Thesame5000ignitionpointswereusedforeverysimulation(Figure6).Outputsfromfire
simulationsincludedindividualfireperimeters(e.g.Figure7,Figure8)andfiresizelist,aswell
asconditionalrasteroutputsforburnprobability,rateofspread,flamelengthandcrownfire
activity.Aftereachscenarioyearsimulationcompleted,eachofthe5000fireperimeterswere
dissolvedsothateachfireconsistedofonlyonedatabaserecord.Thesizeofeachfirewas
calculatedinArcGISandoutputtoexaminechangesinfiresize.Meanfiresizewascalculated
foreachscenarioyear.
23
Figure6:Ignitionlocationsfor5000firespreadsimulations.
24
Figure7:Examplefirespreadsimulation‐Ignitionpoint98,burningontheBaseline(blueperimeter)
andProject(redperimeter)landscapes.
25
Figure8:Examplefirespreadsimulation–outcomesfor5000randomignitionsatyear2015forthe
Baselinescenario
2.6 Fire Probability Estimation
Weestimatedtheprobabilityoffireoccurringbyexamininghistoricalratesofburningin
relevantforesttypeswithintheprojectareabioregion.Wefirstidentifiedalltheconiferous
foresttypeswithintheSierranSteppe‐MixedForest‐ConiferousForest‐AlpineMeadow
vegetationprovince,andcalculatedtheirarea(Table7).Wethenidentifiedallfiresthathad
burnedwithinthisareabetween1960and2014usingCalFire’s2014fireperimeterdatabase.
Wecalculatedtheareaofeachofthesefires.Thesetwoareainputsallowedustocalculatethe
firerotationforthosetypes.Firerotationisanareabasedmeasureoffirefrequency,which
givesthetimeitwouldtakefortheentireareatoburnatanobservedrate(Agee1992).Wethen
calculatedthe10yearrunningfirerotationforeachyearbetween1960and2014.
26
Table7:Areaofexistingforestvegetationtypesconsideredforfirerotationcalculations.
ExistingVegetationType AreainEco‐Province(acres)
DouglasFir 2,555,536
EastsidePine 1,191,236
JeffreyPine 366,017
KlamathMixedConifer 1,333,587
MontaneHardwood‐Conifer 1,448,534
PonderosaPine 1,132,303
RedFir 1,167,948
SierranMixedConifer 4,353,630
WhiteFir 975,664
GrandTotal 14,524,456
Annualprobabilityoffirewascalculatedastheinverseoffirerotation,e.g.a100yearfire
rotationresultsina1/100annualprobabilityoffire,or1%.Theannualprobabilityoffirewas
modifiedtorepresentamultiyearprobabilityoffire(e.g.5years)basedonthefollowing
formulafortheprobabilityofaneventhappeningatleastonceinagivenperiodoftime.
q=1(1p)^nwhere:
qistheprobabilityofaneventhappeningatleastonceinnunitsoftime
pistheprobabilityoftheeventhappeninginoneunitoftime
2.7 Forest Carbon Stock and Flux Estimation
Carbonstoredbothwithinandremovedfromthebaselineandprojectscenariostandswas
estimatedinFVSforeach5yearmodelcycleusingtheCarbonsubmodeloftheFireandFuels
Extension(Rebain2015).CarbonwasestimatedbyFVSinmetrictonsperacre(MTC/ac)and
summarizedforrelevantpools(Table8).Wherepossible,estimatesweremadeusingFVSFFE
equationsandmethodology,asrecommendedbyHooverandRebain(2010),sincethese
methodsaretheoreticallymoreregionspecificthanthenationalscaleequationsofJenkinsetal.
(2003).CarbonmassvalueswereconvertedposthoctometrictonsofCO2equivalentperacre
(MTCO2e/ac)forreportinginthepresentdocumentusingthefollowingconversionfactor,to
accountforthemolecularweightofCvs.CO2:
MTCO2e=MTC*(44/12)
27
Table8:Carbonpoolsconsideredforthisstudy.
CarbonPool Description Method
1. AbovegroundTotal
Live
Livetrees,includingstems,branches,andfoliage,
butnotincludingroots
FFE‐FVSEquations
2. BelowgroundLive Rootsoflivetrees Jenkinsetal.2003
3. StandingDead Deadtrees,includingstemsandanybranches
andfoliagestillpresent,butnotincludingroots
FFE‐FVSEquations
4. BelowgroundDead Rootsofdeadandcuttrees Jenkinsetal.2003
5. DeadandDown
Wood
Allwoodysurfacefuel,regardlessofsize FFE‐FVSEquations
6. ForestFloor LitterandDuff FFE‐FVSEquations
7. HerbsandShrubs Liveherbaceousandshrubvegetation FFE‐FVSEquations
8. RemovedCarbon Carboninremovedlivetrees,deadtrees,and
woodydebris
FFE‐FVSEquations,
Merchantabilitylimits.
2.7.1 In-Forest Carbon Stock
Carbonstoredwithineachforeststand(Table8,Pools17,summed)wasestimatedusingFFE
FVSfortheBaselineandProjectScenarios.PeracrestandvaluesfromFFEwereweightedby
standsizeandaveragedacrossthefireshedtogetmeaninforestcarbonstockfortheBaseline
scenario(BFCS)andtheProjectscenario(PFCS)ateachtimestepe.
Thenetinforestcarbonstock(NFCSe)foragivenevaluationyeareiscalculatedasthe
differencebetweentheProjectstock(PFCSe)andtheBaselinestock(BFCSe).Thisrepresentsthe
neteffectofthefueltreatmentsoncarbonstockacrossthefireshed
𝑁𝐹𝐶𝑆𝑃𝐹𝐶𝑆
𝐵𝐹𝐶𝑆
Immediatelyaftertreatment,PFCSwillbesmallerthanBFCSduetoremovalsandtreatment
emissions,thusthenetinforestcarbonstockwillberepresentedasanegativevalue(stock
deficit).
2.7.2 Removed Carbon Life Cycle Analysis
Estimatesoftheproportionofcarboninsawlogs(merchantablewoodbothstoredand
removed)weremadebasedonboardfootspecificationsusedinFVSforUSForestService
Region5(KeyserandDixon2013)asfollows:
28
DBH: 10.0inches
TopDiameter: 4.5inches
StumpHeight: 1.0feet
Toaccountforthedispositionofcarbonremovedfromstandsasaresultoftreatment,wemade
thefollowingassumptions.
67%ofmerchantablecarbonremovedwasassumedtogointodurablewoodproducts(DWP
e.g.paperandstructuralwood).ValuesateachtimestepforcarbonremaininginDWP,and
DWPthathavegonetoandremaininwaste(landfill)weremadeinFVS,followingthedecay
faterelationshipsdescribedinSmithetal.(2006).Foragiventimestep,carbonfromthis
lineagenotstoredinwoodproductsorlandfillisassumedtohavebeenemittedthroughdecay
orcombustion.
Oftheremaining33%ofmerchantablecarbonthatdoesn’twindupasDWP,weassumed75%
isdivertedforbiomassenergyproduction.Thisenergyproductionwasassumedtoresultina
25%additionalityoverequivalentfossilfuelproduction.
Allsubmerchantableharvestedmaterialsremovedfromthefireshedareassumedtogoto
biomassenergyproduction.95%ofthesematerialsareassumedtomakeittotheenergy
productionfacility,andenergyproductionisassumedtoresultina25%additionalityover
equivalentfossilfuelproduction.
Wasteremainingafterbiomassutilizationwasassumedtobeimmediatelyemitted.Carbon
emittedintransportationofmaterialsfromthefireshedtowoodproductorbiomassenergy
facilitieswasnotexplicitlyaccountedforbeyondtheadditionalitycoefficientsusedabove.
Foragivenevaluationyeare,wecalculatetotalremovedcarbonthatcontinuestobestored,or<