Conference PaperPDF Available

The Impact of AI on Employment and Organisation in the Industrial Working Environment of the Future

Authors:

Abstract

AI applications such as robotics, automation or intelligent assistance are becoming drivers of a wide-ranging change process in manufacturing companies, which not only affects the use of algorithms but also affects people and organisation. Automation and algorithmisation will change the working world in a lasting way, whereby all value-adding activities – from operative production work to skilled work and management – will be influenced. It is expected that, due to its learning ability, AI will be able to act autonomously, support people through assistance systems, use resources more effectively, make processes more environmentally friendly and enable new working models with direct participation and greater transparency. It should increase efficiency, enhance customer satisfaction and facilitate and enrich work. Current research confirms that it is less about technology and investment than about the openness of employees and executives combined with a supportive organisational structure and culture that is decisive for the success of digitalisation. The influence of AI on employment is controversial. It should lead to secure and demanding jobs, physical and cognitive relief and an improvement in work-life balance. Yet, there are concerns about job losses, disqualification, growing autonomy of digital systems and increased control potential for employees. However, research demonstrates that in the past one robot has replaced on average two workers in the industry, while two jobs have been created outside. AI will probably demonstrate a similar behaviour. The implementation of AI requires reorganisation of management, cooperation, co-determination, qualification and a high level of knowledge exchange. Digital change requires flexible and agile organisational structures and flatter hierarchies to be able to react to new complexity and dynamics. The participative leadership of the future conducts flexibly within the framework of self-organising networks and interdisciplinary, democratically formed teams. Executives see themselves as coaches and moderators. This paper examines the effects of the introduction of AI in industrial enterprises based on a comprehensive literature review. Particular attention will be paid to effects on employment and organisational structure and culture. Best practice examples for AI applications in industrial companies will also be examined. Finally, a critical discussion examines possibilities and instruments for shaping transformation within companies through AI with the involvement of all relevant actors.
A preview of the PDF is not available
... Despite the fact that there are still discussions if AI management will evolve in artificial management (Franken, and Wattenberg, 2019) or in artificial leadership (Derrick, Elson, 2018), it seems that AI will overwhelm team management in the future (Webber et al., 2019). Even popular science and business journals raise this aspect of team management as the most important challenge in the next few years (Khan, 2020;Dzieza, 2020). ...
Article
Purpose: The purpose of this paper is to present an answer to the research question of what could be the real impact of an artificial manager on the work of a team consisting of humans. Design/methodology/approach: In presenting the arguments for one way of proceeding AI-based management, a review of the recent literature in the field of artificial management and artificial leadership was used. The artificial manager used in the research was the result of a non-participating, long-term observation of a group of students working on an specific task, whose activity was recorded by online management tools called TransistorsHead.com. Findings: The real impact of the artificial manager on the human team members was very weak. Although team members were taking similar managerial actions as they were told by the system of TransistorsHead.com, they mixed the order and decreased or increased a period of the managerial actions. Research limitations/implications: Human members did not feel any emotional pressure on their behaviour from the artificial manager and they do not treat the system too seriously. What is interesting, the most obedient person was the appointed assistant of the artificial manager. The rest two members did not obey the rules. Practical implications: If we manage to create an artificial manager, it will be much harder to make it effective in working with human team members. The research on team management automation will impact upon the business by giving a chance of implementing artificial management. Social implications: even if we manage to create an artificial manager, it will be much harder to make it effective in working with human team members. Originality/value: There is a new research problem of replacing a human manager with an artificial manager which has to be solved in management sciences and managerial practice in the future. This paper contains findings which are the next step in solving a new research problem of replacing a human manager with an artificial manager. Keywords: artificial management, artificial leadership, virtual team, system of organizational terms. Category of the paper: Research paper, case study.
... AI can be used to automate processes and replace human employees in several industry sectors such as logistics, agriculture [2] and medicine [3], but it can also be used to solve complex and otherwise difficult problems. The magnitude of the impact AI is predicted to have, and already has, on society, has been compared to the industrial revolution [4]. One of the concerns is that AI solutions will birth greater inequality as they allow replacing workforce with machines, which will lead to increasing wealth for the bourgeoisie and unemployment to the poor and the middle class. ...
Conference Paper
Full-text available
The ongoing AI revolution has disrupted several industry sectors and will keep having an unprecedented impact on all areas of society. This is predicted to force a major proportion of the workforce to re-educate itself during the next few decades. Consequently, this has led to a growing demand for multidisciplinary AI education also for students outside computer science. Therefore, a 25 credit (ECTS) cross-disciplinary study module on AI, targeting students in all faculties, was designed. We present findings from the design and implementation of the study module as well as students' initial perceptions towards AI at the beginning of the study module. Enrollment for the first implementation of the study module began in autumn 2019. The student distribution (N=144) between faculties was the following: natural sciences (n=37), social sciences (n=23), law (n=17), education (n=17), economics (n=16), medicine (n=10), humanities (n=10) and open university (n=14). Based on a survey distributed to students (N=34), the primary reason for enrolling to study AI was interest towards the subject, followed by the need of AI skills at work and relevance of AI in society.
... • the gap between different classes of society is widening [Greenwood, Hinings, 1993;Hanushek et al., 2019] • climate change will exacerbate various stresses among the inhabitants, nations, and companies [Staffell, Pfenninger, 2018;Curtis et al., 2017] • new menaces, among them cyber risks, terrorism, plagues, and influence [Duarte, 2020] • technological changes impact the general profiles of employment [Franken, Wattenberg, 2019] • new ways of life more or less linked to ecology begin to appear [Loiseau et al., 2016] • confidence in political decision makers decreases [LeVeck, Narang, 2017] • co-construction of local projects are increasingly necessary [Froese, Mevissen, 2020] • a new form of competition develops between regions (even in the same state) and even city centers are opposed to the peripheries [Hauswedell et al., 2019;Hassink et al., 2019]. In this context, we believe that Competitive and Strategic Intelligence cannot be absent from this environment and if we want to enlarge its impact upon society, new forms of action are necessary. ...
Chapter
Dieser Fachbeitrag präsentiert und diskutiert die Ergebnisse einer aktuellen Interviewstudie zu den Zukunftsaussichten von Künstlicher Intelligenz (KI) im Berufsalltag von Ärzten, Anwälten und Politikern. Hierbei werden Anwendungsmöglichkeiten sowie Chancen und Risiken thematisiert.
Chapter
When stress is improperly managed over time, it may lead to various medical, psychological, and behavioral problems. This chapter proposes applying artificial intelligence models in the workplace to control and manage workers’ stress through the heart rate. However, many of the devices used in the research literature to measure heart rate are too invasive, uncomfortable, or expensive. Therefore, we reviewed the state-of-the-art to find non-invasive wearables to measure the heart rate and the potential architectures to send the data to a server for stress detection in a workplace environment. This search identified a direct Wi-Fi connection as the most recommendable architecture and Samsung Galaxy Watch 3, Active 2, and Mobvoi TicWatch Pro 3 are the recommended wearables that allow this architecture. Moreover, we presented a methodology to configure, train, and evaluate different artificial intelligence models. We applied this methodology in the research dataset Smart Reasoning Systems for Well-being at Work and at Home-Knowledge Work (25 subjects) after performing a search of the literature of open biometrics dataset for stress detection. AdaBoost and Random Forest stand out with higher performances, with a macro F1 of 72.78% and 74.54% and balanced accuracy of 79.31% and 78.31%, respectively employing a leave-one-subject-out evaluation. We believe that this stress detection approach can be applied in the workplace in the future, helping to improve the overall employee well-being and their self-regulation capabilities in the future.KeywordsStressWearablesArtificial intelligenceMachine learningWorkplace
Chapter
This is evident that covid-19 has a devastating effect on businesses and employees worldwide. As we are slowly moving toward retrieval, it is very clear that the business and the way of doing work will change forever in the new normal phase. The experience of Covid-19 has drastically fastened the organization’s digital transformation. Thus, the purpose of our study is to explore the impact of AI-enabled work culture on employees’ satisfaction level post-pandemic. Companies now focus more on data-driven strategies and decision-making, which seems critical today for their business survival and success tomorrow. Few people may argue that technology has always been a part of an organization’s work culture then; what is new? Moreover, the answer will be the overnight shift of work on-site to work from home, leading to a drastic change in the work culture. The situation caused due to covid-19 has forced the employees and organizations to rely fully on technology, which had made the organizations adopt the use of technology as it was never. Organizations today are investing more in digitalization and automation to secure their business ventures in these shifting dynamics. However, how will AI change the dynamics of future work? As the digitalization and use of technology have evolved, AI development has increased the fear of losing their jobs in people’s minds influencing their work satisfaction. Therefore, our paper aims to study the impact of artificial intelligence on the work culture and its effect on employees’ work satisfaction. Moreover, the paper also discusses the related gap found in the skillset of employees and managers to work on AI and other related technologies during the pandemic and the probable solutions. The responses of 150 employees were collected, and the results have concluded that AI-enabled work culture will significantly impact the employees’ work satisfaction post-covid-19.KeywordsArtificial intelligence (AI)AutomationWork cultureWork satisfactionCovid-19Work from homeInformation technology (IT)
Chapter
Human-technology combination is normally conceptualized on a bi-polar dimension from no technical autonomy to full technical autonomy, and consequently from full human control to no human control. This paper presents an alternative scale for describing levels of human-technology teaming. It assumes complementarity of humans and technology. Humans and technology are considered to remain qualitatively different in spite of new technical capabilities. When combined smartly, they are able to mutually compensate for weaknesses and to mutually reinforce strengths. On the proposed scale, both full human control as well as full technical autonomy are on the lowest level, as there is no teaming at all. Higher levels represent an increasing intensity of teaming ranging from (i) technology informs the human, via (ii) human and technology influence each other to (iii) true human-technology collaboration that allows for shared control. These levels are described and substantiated in the paper.
Book
Full-text available
Für den Erfolg der digitalen Transformation in Unternehmen, sind neben den technischen Lösungen und Organisation, die Kompetenzen und Motivation der Beschäftigten entscheidend. Industrie 4.0 und Digitalisierung können nur gemeinsam, unter Beteiligung verschiedener Belegschaftsgruppen im Interesse der Unternehmen und der Menschen gestaltet werden. Allerdings werden zurzeit die Entscheidungen über die Gestaltung der Digitalisierung überwiegend von Männern getroffen, die im Top-Management der Industrie 4.0-Branchen einen Anteil von über 90 Prozent ausmachen. Die Potenziale und spezifischen Kompetenzen von qualifizierten Frauen werden kaum erschlossen. In dem Forschungsprojekt „Women Ressource 4.0 – Potenziale von qualifizierten Frauen, darunter auch mit Zuwanderungsgeschichte, für die Industrie 4.0“, das von der Denkfabrik Digitalisierte Arbeitswelt der FH Bielefeld im Rahmen der BMBF-Förderung zum Thema ''Erfolg mit MINT –Neue Chancen für Frauen'' im Förderbereich ''Strategien zur Durchsetzung von Chancengleichheit für Frauen in Bildung und Forschung'' in den Jahren 2016 bis 2020 durchgeführt wurde, wurden die quantitativen und qualitativen Potenziale von Frauen für die Gestaltung der Digitalisierung untersucht sowie Kompetenzen und Erfolgsfaktoren für erfolgreiche Frauenkarrieren in Tech-Unternehmen identifiziert. Darüber hinaus wurden Weiterbildungsformate für eine gezielte Sensibilisierung und Vorbereitung von Hochschulabsolventinnen für die Gestaltung der digitalen Transformation entwickelt, pilothaft durchgeführt und evaluiert. Die Ergebnisse aus dem Forschungsprojekt, untermauert durch aktuelle Statistiken, Studien und Best Practices, werden in diesem Buch dargestellt. Das Fachbuch richtet sich an Führungskräfte und Personalverantwortliche in Unternehmen und Organisationen, die sich mit der Gestaltung der digitalen Transformation und Arbeitswelt 4.0 beschäftigen, an Diversity und Gleichstellungsbeauftragte, karriereorientierte Frauen, Studierende sowie an die Politik und breite Öffentlichkeit.
Chapter
Full-text available
Intelligente Planungssysteme und smarte Roboter: In Zukunft werden Autonome Systeme, die auf den Prinzipien der Künstlichen Intelligenz basieren, Einzug auch in die Arbeitswelt halten. Dies wirft nicht nur erneut Fragen nach den Konsequenzen für Jobs und Qualifikationen auf - ungeklärt sind weiterhin die tatsächlichen Anwendungsmöglichkeiten dieser Systeme sowie die daraus folgenden arbeitspolitischen und ethischen Probleme. Dieser Band leistet einen interdisziplinären Beitrag zum laufenden Diskurs.
Book
Full-text available
Unter dem Titel »#Zukunftsarbeit« beschreibt die Fraunhofer- Gesellschaft in dieser Studie eine Vision für die Zukunft der Arbeit. Anlässlich des Wissenschaftsjahres 2018 »Arbeitswelten der Zukunft« des Bundesforschungsministeriums integriert die Studie Beiträge von 20 Fraunhofer-Instituten. Diese umfassen sowohl neue Technologien als auch Lösungsansätze aus der Arbeitswissenschaft und der sozioökonomischen Innovationsforschung.
Article
Full-text available
Zusammenfassung Industrie 4.0 wird in der öffentlichen Diskussion meist im Sinne einer disruptiven Veranderung thematisiert. Unsere Fallstudie bei einem Montagewerk der Automobilindustrie, in dem wir Elemente der Industrie 4.0 verwirklicht sehen, offenbart hingegen starke Kontinuitäten zu vorangegangenen Paradigmen industrieller Organisation wie dem Lean-Production-Prinzip bzw. seiner Fortführung zu so genannten Build-to-order-Konzepten (BTO), die auf eine intelligente Verknüpfung von Kunden, Unternehmen und Zulieferern abstellen. Im untersuchten Werk impliziert das einen deutlichen Bedeutungszuwachs der Intralogistik, verbunden mit einem entsprechenden Beschäftigungsaufbau. Mit diesen Verschiebungen verändert sich auch der Charakter industrieller Arbeit. Neben der Montagetätigkeit und Maschinenführung entstehen neue Anforderungsprofile, die auf niedrigen Qualifikationen und schneller Einarbeitung beruhen. Das Szenario eines Nexus von individualisierter Produktion, Ablaufdeterminismus und einem Beschäftigungszuwachs in eher gering-qualifizierten Tätigkeiten der Intralogistik bezeichnen wir aufgrund struktureller Ähnlichkeiten zur Branche des Online-Handels als „Amazonisierung der Industriearbeit“.
Book
Full-text available
Management von innovativen Ideen Das erfolgreiche Management von innovativen Ideen ist für Unternehmen ein ebenso klassisches wie hoch aktuelles Thema. In der fünften Auflage: Vollständig aktualisierte und neu strukturierte Inhalte Erfolgsfaktoren von Innovationen Innovationsstrategien Innovationskultur Organisatorische Integration der Innovationsfunktion Phasen von Innovationsprozessen Innovationscontrolling Internes und externes Marketing von Innovationen Innovationsschutz Pressestimmen: Neben der Beschreibung der Innovationsprozesse befasst sich das Buch auch recht umfassend mit der organisatorischen Einbindung von Innovationsprozessen in das Unternehmen und der Bedeutung der Innovationskultur. Die Inhalte sind systematisch aufgebaut und dank vieler Fallbeispiele, Abbildungen und kleinerer Checklisten auch angenehm zu lesen. Durch das umfangreiche Literatur- und Stichwortverzeichnis kann das Buch auch gut als Nachschlagewerk genutzt werden. futuretrendinstitute.com In der Praxis machen oft weniger die Ideen als vielmehr die treffsichere Bewertung der Innovationen Schwierigkeiten. Hier gibt das Buch den Überblick über die Möglichkeiten der praktischen Ideenbewertung und - wahl. antriebsPraxis
Article
We analyze for the first time the economic contributions of modern industrial robots, which are flexible, versatile, and autonomous machines. We use novel panel data on robot adoption within industries in 17 countries from 1993-2007, and new instrumental variables that rely on robots’ comparative advantage in specific tasks. Our findings suggest that increased robot use contributed approximately 0.37 percentage points to annual labor productivity growth, while at the same time raising total factor productivity and lowering output prices. Our estimates also suggest that robots did not significantly reduce total employment, although they did reduce low-skilled workers’ employment share
Article
We examine how susceptible jobs are to computerisation. To assess this, we begin by implementing a novel methodology to estimate the probability of computerisation for 702 detailed occupations, using a Gaussian process classifier. Based on these estimates, we examine expected impacts of future computerisation on US labour market outcomes, with the primary objective of analysing the number of jobs at risk and the relationship between an occupations probability of computerisation, wages and educational attainment.