Chapter

The CYBATHLON - Bionic Olympics to Benchmark Assistive Technologies

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Assistive robotic technology will only fulfill its potential if devices are accepted and regularly used by people with physical disabilities in their everyday life. The Cybathlon is a unique championship in which people with physical disabilities compete against each other to complete everyday tasks using latest robotic technology. The competition herewith offers a platform to drive forward research and challenge the usability of assistive robots. Furthermore, it helps to promote inclusion by informing about chances and limitations of assistive technology and stimulating dialogue. The first Cybathlon competition organized by the ETH Zurich was successfully launched in 2016. Sixtysix pilots from 25 nations competed in a sold-out stadium (4600 spectators). Six disciplines were part of the competition comprising races with brain-computer interfaces (BCI), functional electrical stimulation driven bikes (FES), powered arm prostheses, powered leg prostheses, powered exoskeletons and powered wheelchairs. The event had an international outreach and promoted new developmental and research work of the participating and even non-participating teams on all continents. As such, the Cybathlon may serve as an example event for other fields targeting inclusive robotics for a better society.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... This includes technologies tested in the intended environment, pre-commercialized or fully commercialized according to the TRL scale issued by the European Commission as part of the Horizon 2020 program (1) ( Table 2). In this paper, with the term "health" we refer to any activities concerned with physiological or cognitive health, including wellness, such as enjoyment from participating in sports (12), educational activities (13), and biomedical perspectives (14). ...
Article
Full-text available
IntroductionSocial robots are accompanied by high expectations of what they can bring to society and in the healthcare sector. So far, promising assumptions have been presented about how and where social robots are most relevant. We know that the industry has used robots for a long time, but what about social uptake outside industry, specifically, in the healthcare sector? This study discusses what trends are discernible, to better understand the gap between technology readiness and adoption of interactive robots in the welfare and health sectors in Europe.Methods An assessment of interactive robot applications at the upper levels of the Technology Readiness Level scale is combined with an assessment of adoption potential based on Rogers' theory of diffusion of innovation. Most robot solutions are dedicated to individual rehabilitation or frailty and stress. Fewer solutions are developed for managing welfare services or public healthcare.ResultsThe results show that while robots are ready from the technological point of view, most of the applications had a low score for demand according to the stakeholders.DiscussionTo enhance social uptake, a more initiated discussion, and more studies on the connections between technology readiness and adoption and use are suggested. Applications being available to users does not mean they have an advantage over previous solutions. Acceptance of robots is also heavily dependent on the impact of regulations as part of the welfare and healthcare sectors in Europe.
... Within this context, the Powered Arm Prosthesis Race is dedicated to people with transradial or more proximal arm amputation, or dysmelia, and equipped with arm prosthesis. Preparing for such a competition requires a careful attention to realistic tasks, increasing the ecological validity of the user performance assessed during the competition-potentially as in technology benchmarking [11]. On the other hand, training a prosthetic user for a Cybathlon challenge means for R&D teams the opportunity of exploit these tasks to explore novel solutions that will be extensively tested according to clinical protocols. ...
Article
Full-text available
Background Cybathlon championship aims at promoting the development of prosthetic and assistive devices capable to meet users’ needs. This paper describes and analyses possible exploitation outcomes of our team’s (REHAB TECH) experience into the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition, with the novel prosthetic system Hannes. In detail, we present our analysis on a concurrent evaluation conducted to verify if the Cybathlon training and competition positively influenced pilot’s performance and human-technology integration with Hannes, with respect to a non-runner Hannes user. Methods Two transradial amputees were recruited as pilots (Pilot 1 and Pilot 2) for the Cybathlon competition and were given the polyarticulated myoelectric prosthetic hand Hannes. Due to COVID-19 emergency, only Pilot 1 was trained for the race. However, both pilots kept Hannes for Home Use for seven weeks. Before this period, they both participated to the evaluation of functionality, embodiment, and user experience (UX) related to Hannes, which they repeated at the end of the Home Use and right after the competition. We analysed Pilot 1’s training and race outcomes, as well as changes in the concurrent evaluation, and compared these results with Pilot 2’s ones. Results The Cybathlon training gradually improved Pilot 1’s performances, leading to the sixth place with a single error in task 5. In the parallel evaluation, both pilots had an overall improvement over time, whereas Pilot 2 experienced a deterioration of embodiment. In detail, Pilot 1, who followed the training and raced the Cybathlon, improved in greater way. Conclusion Hannes demonstrated to be a valuable competitor and to perform grasps with human-like behaviors. The higher improvements of Pilot 1, who actively participated in the Cybathlon, in terms of functionality, embodiment and UX, may depend on his training and engagement in the effort of achieving a successful user-prosthesis interaction during the competition. Tasks based on Cybathlon’s ones could improve the training phase of a prosthetic user, stimulating dexterity, prosthetic integration, and user perception towards the prosthesis. Likewise, timed races or competitions could facilitate and accelerate the learning phase, improving the efficiency and efficacy of the process.
... Therefore, it is expected that the CYBATHLON actively encourages UCD to promote device usability and technology acceptance [13,14]. Moreover, the CYBATH-LON transitioned from being a sheer competition, to become a platform that may contribute to AAT evaluation and development benchmarking [15][16][17][18]. The influence and effects of the CYBATHLON on the AAT field and specific technologies have so far only been shown in discipline-specific summaries or individual success stories [20][21][22][23][24][25][26][27]. ...
Article
Full-text available
Abstract Background Advanced assistive technologies (AAT) aim to exploit the vast potential of technological developments made in the past decades to improve the quality of life of people with disabilities. Combining complex robotic technologies with the unique needs of people with disabilities requires a strong focus on user-centered design to ensure that the AAT appropriately addresses the daily life struggles of target users. The CYBATHLON aims to promote this mindset by empowering the AAT target users (“pilots”) to compete on race tracks that represent approximations of daily life obstacles. The objective of this work was to investigate the AAT technology development, usability, and user involvement (i.e., application of user-centered design) in the context of the CYBATHLON. Methods With an online survey targeting the pilots and technical leads of teams preparing for the CYBATHLON 2020 Global Edition, we investigated to what extent the pilots were involved in device development and how this influences the perceived usability of the showcased AAT. Furthermore, the effects of user-centered design variables on the individual race performances were analyzed. Results A total of 81 responses from 35 pilots and 46 technical leads were collected in the two weeks prior to the event. Of all teams partaking in the included disciplines of the CYBATHLON 2020 Global Edition, 81.8% (36 of 44) were included in the study. User-centered design appeared to be a prevalent practice among the teams, as 85.7% of all pilots reported a certain level of involvement. However, only 25.5% of the pilots reported daily life usage, despite QUEST usability scores of both respondent groups showing moderate to high satisfaction with the respected AAT across all investigated disciplines. An explorative linear mixed model indicated that daily life usage (p
... Other than promoting the development of assistive technologies, CYBATHLON has raised public awareness and generated public interest in this eld [34] by showcasing the devices and their use. Also, it has encouraged scienti c exchange [34] and has provided some standardized metrics for comparison and benchmarking of the technologies and devices in terms of performance [35], [36]. One of its disciplines is the powered exoskeletons race [37] which consists in a set of tasks representative of the ADLs. ...
Preprint
Full-text available
Background Spinal cord injury leading to paraplegia affects the mobility and physiological well-being of nearly one in a thousand people. Powered exoskeletons can temporarily restore the ability to walk. Their relevance in daily life is still limited because of low performance beyond even ground. Cybathlon is an international competition promoting improvements in assistive technology. In this article we present the latest design and results of testing of TWIICE One 2018, one of the competing devices in the 2020 race. Methods A person with a motor-complete spinal cord injury at thoracic level T10 participated as race pilot. Training ahead of the race took place over one week at a rate of 2-5 hours per week. Time to perform each of the 7 tasks of the competition was recorded together with the number of repetitions. Performance is compared over training time and against 2016 race results. Results Progression was observed in all tasks and accounted for by both user training and technology improvements. Final competition rank was second out of 7 participating teams, with a record time of 4'40" min. This represents an average of 40 % improvement with respect to comparable obstacles of the 2016 race, explaining the two ranks of improvement since then. Conclusion These results help understand which features had a positive impact on real life performance of the device. Understanding how design affects performance is a key information to create devices that really improve the life of people living with paraplegia.
Article
Full-text available
Background Spinal cord injury leading to paraplegia affects the mobility and physiological well-being of one in a thousand people. Powered exoskeletons can temporarily restore the ability to walk. Their relevance in daily life is still limited because of low performance beyond ground that is even. CYBATHLON is an international competition promoting improvements in assistive technology. In this article, we present the latest design and results of testing of TWIICE One version 2018, one of the competing devices in the 2020 race. Methods A person with a motor-complete spinal cord injury at thoracic level T10 participated as race pilot. Training ahead of the race took place over one week at a rate of 2 h per day. The time to perform each of the seven tasks of the competition was recorded together with the number of repetitions. Performance is compared over the training period and against the 2016 race results. Results Progression was observed in all tasks and accounted for by both user training and technology improvements. Final competition rank was second out of seven participating teams, with a record time of 4′40". This represents an average improvement of 40% with respect to comparable obstacles of the 2016 race, explaining the two ranks of improvement since then. Conclusion These results help understand which features had a positive impact on the real-life performance of the device. Understanding how design affects performance is key information to create devices that really improve the life of people living with paraplegia.
Article
Full-text available
Background Due to its clinically proven safety and health benefits, functional electrical stimulation (FES) cycling has become a popular exercise modality for individuals with spinal cord injury (SCI). Since its inception in 2013, the Cybathlon championship has been a platform for publicizing the potential of FES cycling in rehabilitation and exercise for individuals with SCI. This study aimed to evaluate the contribution of the Cybathlon championship to the literature on FES cycling for individuals with SCI 3 years pre and post the staging of the Cybathlon championship in 2016. Methods Web of Science, Scopus, ScienceDirect, IEEE Xplore, and Google Scholar databases were searched for relevant studies published between January 2013 and July 2019. The quality of the included studies was objectively evaluated using the Downs and Black checklist. Results A total of 129 articles on FES cycling were retained for analysis. A total of 51 articles related to Cybathlon were reviewed, and 14 articles were ultimately evaluated for the quality. In 2017, the year following the Cybathlon championship, Web of Science cited 23 published studies on the championship, which was almost 5-fold more than were published in 2016 (n = 5). Training was most often reported as a topic of interest in these studies, which mostly (76.7%) highlighted the training parameters of interest to participating teams in their effort to maximize their FES cycling performance during the Cybathlon championship. Conclusion The present study indicates that the Cybathlon championship in 2016 contributed to the number of literature published in 2017 on FES cycling for individuals with SCI. This finding may contribute to the lessons that can be learned from participation in the Cybathlon and potentially provide additional insights into research in the field of race-based FES cycling.
Article
Full-text available
Background: Powered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life. Methods: VariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness. Results: Test bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition. Conclusion: Demonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.
Article
Full-text available
This paper presents a new approach to benchmarking brain-computer interfaces (BCIs) outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance), it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others). Furthermore, the Cybathlon has the potential to showcase such devices to the general public.
Article
Full-text available
Background: Here we present how the CYBERLEGs Beta-Prosthesis was modified with a new control system to participate in the Powered Leg Prosthesis event, and to report on our experience at the CYBATHLON 2016 which was held in Zurich, Switzerland in October 2016. The prosthesis has two active degrees of freedom which assist the user with extra joint power at the knee and ankle to complete tasks. The CYBATHLON is a championship for people with disabilities competing in six disciplines, using advanced assistive devices. Tasks for CYBATHLON 2016 were chosen to reflect everyday normal task such as sitting and standing from a chair, obstacle avoidance, stepping stones, slope walking and descent, and stair climbing and descent. Methods: The control schemata were presented along with the description of each of the six tasks. The participant of the competition, the pilot, ran through each of the trials under lab conditions and representative behaviors were recorded. Results: The VUB CYBERLEGs prosthesis was able to accomplish, to some degree, five of the six tasks and here the torque and angle behaviors of the device while accomplishing these tasks are presented. The relatively simple control methods were able to provide assistive torque during many of the events, particularly sit to stand and stair climbing. For example, the prosthesis was able to consistently provide over 30 Nm in arresting knee torque in the sitting task, and over 20 Nm while standing. Peak torque of the device was not sufficient for unassisted stair climbing, but was able to provide around 60 Nm of assistance in both ascent and descent. Use of the passive behaviors of the device were shown to be able to trigger state machine events reliably for certain tasks. Conclusions: Although the performance of the CYBERLEGs prosthesis during CYBATHLON 2016 did not compare to the other top of the market designs with regards to speed, the device performed all of the tasks that were deemed possible by the start of the competition. Moreover, the Pilot was able to accomplish tasks in ways the Pilot's personal microcontrolled prosthesis could not, with limited powered prosthesis training. Future studies will focus on decreasing weight, increasing reliability, incorporating better control, and increasing the velocity of the device. This is only a case study and actual benefits to clinical outcomes are not yet understood and need to be further investigated. This competition was a unique experience to illuminate problems that future versions of the device will be able to solve.
Article
Full-text available
Functional Electrical Stimulation (FES) can elicit muscular contraction and restore motor function in paralyzed limbs. FES is a rehabilitation technique applied to various sensorimotor deficiencies and in different functional situations, e.g. grasping, walking, standing, transfer, cycling and rowing. FES can be combined with mechanical devices. FES-assisted cycling is mainly used in clinical environments for training sessions on cycle ergometers, but it has also been adapted for mobile devices, usually tricycles. In October 2016, twelve teams participated in the CYBATHLON competition in the FES-cycling discipline for persons with motor-complete spinal cord injury. It was the first event of this kind and a wide variety of strategies, techniques and designs were employed by the different teams in the competition. The approaches of the teams are detailed in this special issue. We hope that the knowledge contained herein, together with recent positive results of FES for denervated degenerating muscles, will provide a solid basis to encourage improvements in FES equipment and open new opportunities for many patients in need of safe and effective FES management. We hope to see further developments and/or the benefit of new training strategies at future FES competitions, e.g. at the Cybathlon 2020 (www.cybathlon.ethz.ch).
Article
Full-text available
Background Roughly one-quarter of upper limb prosthesis users reject their prosthesis. Reasons for rejection range from comfort, to cost, aesthetics, function, and more. This paper follows a single user from training with and testing of a novel upper-limb myoelectric prosthesis (the SoftHand Pro) for participation in the CYBATHLON rehearsal to training for and competing in the CYBATHLON 2016 with a figure-of-nine harness controlled powered prosthesis (SoftHand Pro-H) to explore the feasibility and usability of a flexible anthropomorphic prosthetic hand. Methods The CYBATHLON pilot took part in multiple in-lab training sessions with the SoftHand Pro and SoftHand Pro-H; these sessions focused on basic control and use of the prosthetic devices and direct training of the tasks in the CYBATHLON. He used these devices in competition in the Powered Arm Prosthesis Race in the CYBATHLON rehearsal and 2016 events. Results In training for the CYBATHLON rehearsal, the subject was able to quickly improve performance with the myoelectric SHP despite typically using a body-powered prosthetic hook. The subject improved further with additional training using the figure-of-nine harness-controlled SHPH in preparation for the CYBATHLON. The Pilot placed 3rd (out of 4) in the rehearsal. In the CYBATHLON, he placed 5th (out of 12) and was one of only two pilots who successfully completed all tasks in the competition, having the second-highest score overall. Conclusions Results with the SoftHand Pro and Pro-H suggest it to be a viable alternative to existing anthropomorphic hands and show that the unique flexibility of the hand is easily learned and exploited.
Article
Full-text available
Background The Cybathlon is a new kind of championship, where people with physical disabilities compete against each other at tasks of daily life, with the aid of advanced assistive devices including robotic technologies. The first championship will take place at the Swiss Arena Kloten, Zurich, on 8 October 2016. The idea Six disciplines are part of the competition comprising races with powered leg prostheses, powered arm prostheses, functional electrical stimulation driven bikes, powered wheelchairs, powered exoskeletons and brain-computer interfaces. This commentary describes the six disciplines and explains the current technological deficiencies that have to be addressed by the competing teams. These deficiencies at present often lead to disappointment or even rejection of some of the related technologies in daily applications. Conclusion The Cybathlon aims to promote the development of useful technologies that facilitate the lives of people with disabilities. In the long run, the developed devices should become affordable and functional for all relevant activities in daily life.
Article
The articles in this special section present the major events, showcases, and activities that were part of the Cybathlon 2016 event.
Article
We introduced a new vehicle that is the latest version of the rough terrain (RT)-Mover series to participate in the 2016 Cybathlon. The vehicle completed all required tasks at the competition and won fourth place in the powered wheelchair category.
Article
Patterns of use of contemporary prostheses by 135 patients with major upper extremity amputations were evaluated by questionnaire. Eighty-four percent of the patients were male and 16% were female. Amputation levels represented were below elbow, 44%; above elbow, 40%; and shoulder disarticulations or forequarter amputations, 16%. The follow-up interval averaged 12 years (range, 1-67 years). One hundred and thirteen patients were fitted with either a myoelectric or body-powered prosthesis. The overall rejection rate was 38%. Thirty-nine of 42 in the below-elbow amputation group used the prosthesis and appeared to benefit the most. Eight of 141 in the wrist disarticulation group used the prosthesis: as did 9 of 21 in the above-elbow amputation group. In contrast, all bilateral amputees used their prostheses. Stiff shoulders and brachial plexus injury were both predictors for poor prosthetic usage.
Article
Upper limb amputations cause severe functional disability and lower the patient's self body image, with severe psychological implications. Many parameters are involved in the successful rehabilitation of upper limb amputations. The aim of this study was to investigate whether there are any parameters that might predict the successful prosthetic rehabilitation of upper limb amputees. The records of 45 patients who had undergone an upper limb amputation were traced. The patients were evaluated according to four parameters: (1) Modified upper extremities amputees' questionnaire; (2) Pain level according to Visual Analog Scale (VAS), range from 1 (lowest) up to 10 (highest); (3) Pain type - phantom or pain in the stump; (4) Functional assessment of prosthetic usage. Thirty (71.43%) of the patients reported difficulties with prosthesis usage. Twenty-three patients (54.76%) were satisfied with their prosthesis - 19 had cosmetic prosthesis and four had body-powered prosthesis. No significant affect of the amputation level except for trans-wrist amputation with 100% prosthesis use. No significant difference was found between prosthesis type and the correlation to stump problems. The above-elbow amputees, with dominant hand amputation, who used functional prosthesis (body-powered), achieved the best functional outcome and result.