Content uploaded by Jan M. Kelner
Author content
All content in this area was uploaded by Jan M. Kelner on Jul 31, 2019
Content may be subject to copyright.
429
1 INTRODUCTION
Attheendofthe20thcentury,thedynamic
developmentofmicroelectronicscausedthe
popularizationofunmannedaerialvehicles(UAVs),
alsocalleddrones.TheUAVisanaircraftthatdoes
notrequirecrewon‐boardandisunabletotake
passengers.TheUAVcanberemotecontrolbya
humanoperatororautonomouslybyon‐board
computers.Hence,theideaoftheUAVhasitsrootsin
thesecondhalfofthelastcentury,whentheremote‐
controlledmodelsofaircraft,cars,orshipswere
mainlyofahobbynature.TheV‐1flyingbombandV‐
2rocketfromthe2ndWorldWarcanberegardedas
theUAVprototypes.Inthepost‐warperiod,research
intothedevelopmentofthistechnologyforthearmy
needswasconductedmainlyintheUSAandUSSR.
Thisdevelopmentwasdirectlyrelatedtotheconquest
ofthecosmosinwhichunmannedspacecrafts,i.a.,
artificialsatellites,wereused.
Initially,duetolegalrestrictions,theUAVswere
usedmainlyinthearmedforces[1–3].Originally,
theirmainareaofapplicationswasimage,optical,
andradarrecognition.Theseareso‐called
surveillanceUAVs,e.g.,theNorthropGrummanRQ‐
4GlobalHawk.Then,theUAVswerealsousedto
transposingweapons.Thiskindiscalledasa
unmannedcombataerialvehicle(UCAV),e.g.,the
GeneralAtomicsMQ‐9Reaperalsocalledthe
Errors of UAV Autonomous Landing System for
Different Radio Beacon Configurations
J
.M.Kelner&C.Ziółkowski
M
ilitaryUniversityofTechnology,Warsaw,Poland
ABSTRACT:Attheturnofthe20thand21stcenturies,developmentofmicroelectronicsandmicrowave
techniquesallowedforminimizationofelectronicdevicesandsystems,andtheuseofmicrowavefrequency
bandsformodernradiocommunicationsystems.Ontheotherhand,theglobalnavigationsatellitesystem
(GNSS)havecontributedtothepopularizationofradionavigationincivilianapplications.Thesefactorshada
directimpactonthedevelopmentanddisseminationofunmannedaerialvehicles(UAVs).Intheinitialperiod,
theUAVswereusedmainlyforthearmyneeds.ThisresultsalsofromthelegalaspectsoftheUAVuseinthe
airspace.Currently,commercialUAVsforcivilianapplications,suchasimagerecognition,monitoring,
transport,etc.,arepresentedincreasingly.Generally,theGNSSsystemaccuracyfortheUAVpositioning
duringaflightisenough.However,theGNSSuseforautomatictakeoffandlandingmaybeinsufficient.The
extensive,ground‐basednavigationsupportsystemsusedatairportsbymannedaircrafttestifytothese.Inthe
UAVcase,suchsystemsarenotusedduetotheircomplexityandprice.Forthisreason,thenoveldedicated
take‐offandlandingsystemsaredeveloped.Theproposaloftheautonomouslandingsystem,whichisbased
ontheDopplereffect,waspresentedin2017.Inthiscase,thesquare‐basedbeaconconfigurationwasanalyzed.
ThispapershowstheinfluenceofvariousbeaconconfigurationsintheDoppler‐basedlandingsystemonthe
positioningerrorduringtheUAVlandingapproach.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 13
Number 2
June 2019
DOI:10.12716/1001.13.02.22
430
PredatorB.Currently,theUAVsarewidelyusedon
thecivilianmarket.Manyprivatecompaniesprovide
variousservicesusingtheUAVs,e.g.,inthefieldof
energetics[4–7],agriculture[8,9],forestryandfire
detection[10,11],watermanagement[12]andflood
detection[13],environmentalprotection[14],search
andrescue[15],radio‐communication[16],transport
[17],etc.
ThegrowthoftheUAVmarkethasalso
contributedtothedevelopmentofotherunmanned
platforms,suchasunmannedground(UGVs),surface
(USVs),andunderwatervehicles(UUVs).Themain
recipientsofthismarketsectorarestillthearmed
forcesofvariouscountries.Inareport[18],the
EuropeanCommissionindicatestheimportanceof
thistechnologyintheeconomicandtechnological
developmentofcountries,especiallyinthecivilian
sector[19].Accordingtothepresentedforecasts,the
estimatedvalueoftheUAVmarketin2019willbe
expectedtoreacharound11‐12billiondollars.In2015
and2016,thedomesticmarketwasestimatedat165
and200millionPolishzlotys,respectively[20].
Inliterature,wecanfindsynonymousfortheUAV
suchasunmannedaerialsystem(UAS)orremotely
pilotedaircraftsystems(RPAS).Sometimes,the
differencesbetweentheUAVandUASareindicated.
Then,theUAVisreferredtoitselfaircraftplatform,
whiletheUASincludesalsoothersystem
components,suchastheground‐basedflightcontrol
system.Inthiscase,theRPASisasynonymofthe
UAS.Currently,theRPASismorewidelyusedin
militaryterminology,especiallyintheNorthAtlantic
TreatyOrganization(NATO)andEuropeanDefense
Agency(EDA).Intheliterature,various
classificationsoftheUAVsarepresented.They
considerdifferenttechnicalaspectsorapplications.
Fromtheviewpointofthispaper,theUAVtermis
referencedtoaverticaltake‐offandlanding(VTOL)
aircraft,unlikeaconventionaltake‐offandlanding
(CTOL)aircraftrequiringarunway.Intheremainder
ofthepaper,theVTOLisconsideredasasynonymof
theVTOLUAV.
Globalnavigationsatellitesystems(GNSSs)[21,22]
arecommonlyusedinUAVnavigation.Inaddition,
remotecontrolandvideotransmissionfromthe
aircrafttotheremoteUAVoperatorallowssafe
displacementofthedrone.However,thissolution
maynotbesufficienttotake‐offandlanding
approach.Thisisasignificantproblem,notablyfor
theautonomousUAVs.Thetake‐offandlandingare
theaircraftflightstagesthatrequirespecialprecision
insteeringandnavigation.Formannedaircraft,the
piloton‐boardhasmorecontrolovertheplaneor
helicopter.Ontheotherhand,dedicatedtake‐offand
approachsystemsareusedatlargecivilandmilitary
airports.Theinstrumentlandingsystem(ILS),tactical
airnavigationsystem(TACAN)[23],orEuropean
GeostationaryNavigationOverlayService(EGNOS)
[21,22]areexamplesofradiolocal‐areaaugmentation
systems(LAASs).Theyareveryimportantinbad
weatherconditionswithlimitedvisibility,e.g.,fog,
snowfall,orrain.Generally,theLAASsarenot
availabletoUAVmajority.Therefore,itisimportant
todevelopsuchsolutions,especiallyforautonomous
drones.
In2016,weproposedalandingsystemonavessel
forthemannedandunmannedVTOL[24].This
systeminvolvestheuseofterrestrialradio‐beacons
(RBs)andadedicatednavigationreceiver(NR)placed
onboardaircraft.Inthiscase,thesignalDoppler
frequency(SDF)locationmethod[25–27]isusedto
estimatetheaircraftpositionrelativetoalandingpad
ontheship.Thissolution[24]isbasedontheSDF
applicationsdedicatedtoin‐flightnavigationand
CTOLlandingapproach,whichareshownin[28]and
[29],respectively.Here,theanalyzedconceptofthe
landingapproachsystemfortheunmannedVTOLis
asystemmodificationshownin[30].Theproposed
solutionhasbeendevelopedforthelandingpadin
hard‐to‐reachplacessuchasoilplatforms,vessels,
islands,orskyscraperroofs.In[30],weassumedthat
RBsarelocatedbasedonasquare.Thepurposeofthis
paperistoassesstheimpactofselected
configurationsoftheRBsontheVTOLpositioning
accuracy.
Theremainderofthepaperisorganizedas
follows.Section2describestheSDF‐based
autonomouslandingapproachsystem.Assumptions
andsimulationscenariosarepresentedinSection3.In
Section4,theobtainedsimulationresultsareshown.
Inthiscase,thepositioningaccuracyoftheVTOL
UAVfordifferentRBconfigurationsisanalyzed.The
summaryisinthefinalpartofthepaper.
2 AUTONOMOUSLANDINGAPPROACH
SYSTEMFORVTOLUAV
ThespatialstructureoftheSDF‐basedautonomous
landingapproachsystemfortheVTOLisshownin
Figure1.
Figure1.Spatialstructureofautonomouslandingapproach
systemforVTOL[30]
ThegroundpartofthesystemconsistsoffourRBs
andameasuringreceiver(MR).Inthesolution
discussedin[30],weassumedthatfourRBsare
locatedbasedonthesquarearoundthelandingpad.
EachRBisequippedwithasignalgenerator,power
amplifier,andtransmittingantennaplacedatthe
stand.Additionally,theRBcanbeequippedwitha
rubidiumorcesiumfrequencystandardthatwill
increasethefrequencystabilityoftransmittedsignals.
ThisisimportantfromtheviewpointoftheSDFused
[31].ThreeRBs,i.e.,RB‐1,RB‐2,andRB‐3,transmit
harmonicsignalsatdefinedfrequenciesf1,f2,andf3,
respectively.Atfrequencyf4,theRB‐4transmitsa
431
modulatedsignalusingdifferentialphaseshiftkeying
(DPSK).Ineachtransmittedframe,informationabout
thelocationcoordinatesoftheindividualRBsand
theirfrequencycorrectionsaresent.Thesecorrections
aredeterminedbasedonlocalmeasurementscarried
outbytheMRlocatednearRB‐4.
TheNRsplacedontheVTOLsarethereceiving
partofthesystem.EachVTOLisequippedwith
typicalelementsofthenavigationsystem,namelya
GNSSreceiverandinertialnavigationsystem(INS).
Thisallowstocarryoutacontrolledorautonomous
UAVflightphase.Whereas,theNRprovides
positioningtheVTOLnearthelandingpadandits
landingapproach.TheNRistunedtothefrequency
bandonwhichoperatetheRBs.Thismeansthatthe
NRoperationbandincludesthecarrierfrequenciesf1,
f2,f3,andthemodulated‐signalbandatthefrequency
f4.TheNRismadeinsoftware‐definedradio(SDR)
technology[32,33].ThismeansthattheNRprovides
signalprocessinganddeterminingtheestimated
positionsoftheUAVrelativetothelandingpad.For
eachRB,theDopplerfrequencyshift(DFS)is
determinedeveryspecifiedtime‐periodΔTbasedon
thereceivedsignalwiththedurationofTS.Then,the
UAVcoordinatesaredeterminedbasedondiscrete
instantaneousDFSsaggregatedinatimewindowTA.
ThemethodoftheDFSdeterminationforthe
harmonicsignalispresentedin[25–27].Inthecaseof
themodulatedsignalfromRB‐4,aftersub‐band
filtering,informationframesaredemodulatedandthe
instantaneousDFSsareestimatedbasedona
methodologyshownin[34].Adetaileddescriptionof
theautonomouslandingapproachsystemand
estimatingtheVTOLcoordinatesbasedontheSDFis
containedin[30].
Thepresentedsystemcanbeclassifiedasprecise
short‐rangeradionavigationsystems.Itcanbeused
duringtheUAVlandingapproach,aswellasitstake‐
offfromthelandingfieldandin‐flightinanarea,
whereisaradio‐rangebetweentheNRandRBs.A
keyadvantageoftheproposedsolutionisitsnarrow
bandwithrelativelyhighpositioningprecision.Inthe
caseofsystemsbasedontimemeasurement,e.g.,
[35,36],obtainingcomparableaccuracywouldrequire
theuseofamuchwiderband.Wepointoutthatthe
frequencyallocationforthistypeofdedicatedsystem
isaseriousproblem.Forthedevelopedsystem,
unlicensedfrequencybands,e.g.,dedicatedtotheWi‐
Fiincludedinindustrial,scientificandmedical(ISM)
bands,canbeusedforthispurpose.Inthiscase,the
emissionoftheharmonicsignalswithmorepower
thantheemissionaverageinthebanddoesnot
constituteasignificantinterferencetoothersystems.
3 SCENARIOANDASSUMPTIONSFOR
SIMULATIONSTUDIES
Inascenarioshownin[30],weassumedthattheRBs
areplacedonthebasisofthesquarewithaside
lengthequalr(seeFigure1).Inthispaper,weanalyze
threeconfigurationsoftheRBpositionsbasedon
otherregularpolygons,i.e.atriangle,pentagon,and
hexagon.Acommonfeatureofallconfigurationsis
theradiusRofacircumscribedcircle.Figure2
presentstheanalyzedRBconfigurationstogetherwith
areferenceconfigurationbasedonthesquare(see
Figure2(b)).
Figure2.AnalyzedspatialconfigurationsofRBsbasedon
regularpolygons:a)triangle,b)rectangle,c)pentagon,d)
hexagon
Inaddition,insimulationstudies,weassume
similarassumptionsasin[30],i.e.,
landingpointatOistheoriginofthelocal
coordinatesystem;
thesystemconfigurationbasedontheregular
polygonconsistsofKRBs,whereK=3,4,5,6,for
theregulartriangle,rectangle(i.e.,square),
pentagon,andhexagon,respectively(seeFigure
2);
assumingthedistancer=40m[30]between
neighboringRBsinthesquareconfiguration,the
radiusR≈28.3misabasefordeterminingtheRB
coordinateswithrespecttothepointOineach
configuration;thelocationcoordinatesofthe
individualRBsfortheanalyzedconfigurationsare
containedinTable1;theheightoftheRB
transmittingantennasishT=zk=2mfork=1,..,K;
thesystemoperatesintheISMbandusedbythe
Wi‐Fi,i.e.,2.4GHz;ineachconfiguration,thek‐th
RBtransmitstheharmonicsignalatfk,where
k=1,..,K–1;while,theK‐thRBemitstheDPSK
signalatfK;thesefrequenciesaredeterminedas
follows:fK(kHz)=2399800+50∙K+100and
fk(kHz)=2399800+50∙(k–1)fork=1,..,K–1;the
bandwidthoftheDPSKsignalisequalto
BT=80kHz;
theNRoperatesatthefrequencyfR=2.4GHzwith
thereceptionbandBR=500kHz;
foraDopplercurve(DFSsversustime)analysis,
thetimewindowTA=5.0sisused;
inanelectromagneticenvironment,anadditive
whiteGaussiannoise(AWGN)isoccurred,anda
leveloftheemittedsignalsatthefarthestpoint(L)
ofananalyzedtrajectoryisensuredbyasignal‐to‐
noiseratioequaltoSNR=8dB;
theVTOLflightbetweentheLandPpointsis
carriedoutataconstantaltitudehL=50mwitha
velocityv=72km/h=20m/s(seeFigure3);then,
theflightceilingislowered;
thelengthoftheanalyzedVTOLflightroute,i.e.,
thedistancebetweentheLandPpoints,isequalto
d=400m.
432
Table1.CoordinatesofRBpositionsonOXYplanefordifferentconfigurations
__________________________________________________________________________________________________
RB‐k ConfigurationofRBs
__________________________________________________________________________________________________
RegularTriangleSquareRegularpentagon Regularhexagon
K=3K=4K=5K=6
r=49.0mr=40.0mr=33.3mr=28.3m
__________________________________________________________________________________________________
k xk(m)yk(m)xk(m)yk(m)xk(m)yk(m)xk(m)yk(m)
1 14.124.520.020.022.916.624.514.1
2 14.1–24.520.0–20.022.9–16.624.5–14.1
3 28.30.0–20.0–20.0–8.7–26.90.0–28.3
4 –––––––20.020.0–28.30–24.5–14.1
5 –––––––––––––8.726.9–24.514.1
6 ––––––––– –––––––––0.028.3
__________________________________________________________________________________________________
Figure3.SpatialscenarioofVTOLlandingapproachon
exampleofRBreferenceconfigurationprojectedinplane:
a)OXZandb)OXY[30]
SimulationstudiesarecarriedoutfortheUAV
movementtrajectorydepictedinFigure3.Inthis
case,twoscenariosareconsidered.Inthefirst
scenario,Sc.1,weevaluatetheVTOLpositionerror
alongtheLPtrajectoryfordifferentRBconfigurations
andtheapproachdirectionα=0.Inthesecond
scenario,Sc.2,theVTOLpositioningerrorisanalyzed
atthepointPforthevariousαdirections.
4 RESULTSOFSIMULATIONSTUDIES
FortheassumptionspresentedinSection3,we
conductedsimulationstudies.Inouranalysis,the
VTOLpositioningerrorisabasicmeasureofthe
accuracyassessmentofthedevelopednavigation
system.Thismeasureisdefinedasfollows
222
000
Δ
R
xx yy zz (1)
where(x0,y0,z0)and(x,y,z)=therealandestimated
coordinatesoftheUAVposition,respectively.
ThesimulationresultsobtainedforSc.1are
illustratedinFigure4.Inthiscase,graphsofthe
instantaneouspositioningerrorfortheVTOLlanding
approacharepresentedforfouranalyzedRB
configurations.Additionally,theaverageerrors
shownbydashedlines.
Figure4.InstantaneousandaverageVTOLpositioning
errorsversusdistancedtopointPforvariousRBs
configurations:a)K=3,b)K=4,c)K=5,andd)K=6
Theobtainedresultsshowthehighprecisionof
theVTOLpositioningbasedontheproposedsystem
andSDFmethod.Ford<100m,theinstantaneous
erroroftheUAVpositionforeachconfigurationis
lessthan1.0m.Inthelastsecondofapproachingthe
pointP,theerrorislessthan0.5m.
433
Figure5.VTOLpositioningerroratpointPversus
approachdirectionαfordifferentRBconfigurations:
a)K=3,b)K=4,c)K=5,andd)K=6
InSc.1,wemayusetheaverageerrorobtainedon
theentireanalyzedroutewiththelengthof400mas
acomparativemeasure.Inthiscase,theaverage
errorsareequalto2.4m,3.8m,3.4m,and3.8mfor
configurationsbasedontheregulartriangle,
rectangle,pentagon,andhexagon,respectively.
Therefore,wemayconcludethatthebestresultsare
obtainedforK=3.Thisresultmayberelatedtothe
approachdirectionα=0assumedinSc.1.Thus,for
oddvaluesofK,oneofRBisinthedirectionofthe
UAVmovement.
TheimpactoftheVTOLapproachdirection
relativetotheadoptedcoordinatesystemisanalyzed
inSc.2.Theobtainedsimulationresultsareillustrated
inFigure5.
TheobtainedgraphshapesoftheUAVposition
errorarecloselyrelatedtotheRBconfigurations
depictedinFigure2.Inthiscase,thelargesterrors
occurwhentheapproachdirectionαcoincideswith
thedirectiondeterminedbythepointOandthe
locationofatleastoneRB.Inthesignalreceivedfrom
suchRB,theestimatedDFSstakemaximumvalues
andthesedataarenotusedintheSDF.Thisis
particularlyvisibleforK=4andK=6,whenaRBpair
isalwayslocatedintheanalyzeddirections.
TheanalysisoftheresultsinFigure5showsthat
decreasingthenumberofRBsinthesystemdoesnot
necessarilyleadtohighersystemaccuracy.For
comparisonoftheindividualconfigurations,the
errorsatpointPaveragedovertheapproach
directionare0.76m,0.17m,0.55m,and0.16mfor
K=3,4,5,6,respectively.Therefore,thisisthe
oppositecasetothatpresentedinFigure4.
Generally,foreachoftheanalyzedRB
configurations,theVTOLpositioningerroratpointP
isalwayslessthan2mregardlessofthedirectionα.
Formostapproachdirections,theUAVpositionerror
islessthan0.5m.Thesevaluesareverysmallin
relationtotheassumedradiusofthelandingpad
equaltoR≈28.3m.Hence,wemayconcludethatthe
developedsystemallowsthesafeandautonomous
landingapproachevenwithsizabledimensionsof
theVTOL.
5 CONCLUSION
Inthispaper,weevaluatetheinfluenceoftheRB
configurationinthelandingapproachsystemforthe
VTOLUAVonitspositioningerror.Thedeveloped
systemisbasedontheDFSmeasurementinthe
signalsreceivedfromtheterrestrialRBsaroundthe
landingpad.TheDFSsaremeasuredinthededicated
NR,whichisplacedonboardaircraft.TheSDF
methodisusedtoestimatetheVTOLposition
relativetothelandingsite.Ouranalysisisbasedon
simulationstudies.Inthiscase,weconsidertwo
scenariosandfourRBconfigurationsbasedonthe
regularpolygons.Theobtainedresultshowsthehigh
accuracyoftheUAVpositioningforallanalyzed
configurations.Thebestresultsatthepointlocated
abovethelandingcenterareobtainedforthe
configurationconsistingofsixRBs.Atthispointand
forthisconfiguration,themeanerrorregardlessof
theapproachdirectionwaslessthan20cm.The
proposedsolutionseemsidealforuseinstand‐alone
autonomouslandingapproachsystemsfortheUAV.
However,empiricalresearchisstillrequired,which
isplannedinthefuture.
ThepresentedideaoftheSDF‐basednavigation
forUAVscanalsobeusedfortheneedsofother
typesofautonomousvehicles.Inthefuture,we
considerusingthisconcepttonavigateautonomous
USVsormannedvesselsenteringaport.Inthiscase,
theRBswillbelocatedinthecoastalzonearoundthe
port.
434
ACKNOWLEDGMENTS
Thisworkwasdevelopedwithinaframeworkofthe
ResearchGrant“Basicresearchinsensortechnologyfield
usinginnovativedataprocessingmethods”no.
GBMON/13‐996/2018/WATsponsoredbythePolish
MinistryofDefense.
REFERENCES
[1]Groves,P.D.2013.PrinciplesofGNSS,inertial,and
multisensorintegratednavigationsystems,2nded.
Boston,MA,USA:ArtechHouse.
[1]Tortonesi,M.,Stefanelli,C.,Benvegnu,E.,Ford,K.,
Suri,N.&Linderman,M.2012.Multiple‐UAV
coordinationandcommunicationsintacticaledge
networks.IEEECommunicationsMagazine50(10):48–55.
[2]Orfanus,D.deFreitas,E.P.&Eliassen,F.2016.Self‐
organizationasasupportingparadigmformilitary
UAVrelaynetworks.IEEECommunicationsLetters
20(4):804–807.
[3]Ma’sum,M.A.,Arrofi,M.K.,Jati,G.,Arifin,F.,
Kurniawan,M.N.,Mursanto,P.&Jatmiko,W.2013.
Simulationofintelligentunmannedaerialvehicle
(UAV)formilitarysurveillance.2013International
ConferenceonAdvancedComputerScienceandInformation
Systems(ICACSIS),Bali,Indonesia,28–29September2013:
161–166.
[4]Babak,S.,Myslovych,M.&Sysak,R.2016.Module
structureofUAV‐basedcomputerizedsystemsfor
remoteenvironmentmonitoringofenergyfacilities.
201617thInternationalConferenceComputationalProblems
ofElectricalEngineering(CPEE),Sandomierz,Poland,14–
17September2016:1–3.
[5]Daliento,S.,Chouder,A.,Guerriero,P.,Pavan,A.M.,
Mellit,A.,Moeini,R.&Tricoli,P.2017.Monitoring,
diagnosis,andpowerforecastingforphotovoltaicfields:
Areview.InternationalJournalofPhotoenergy
2017(e1356851):1–13.
[6]Quater,P.B.,Grimaccia,F.,Leva,S.Mussetta,M.&
Aghaei,M.2014.Lightunmannedaerialvehicles
(UAVs)forcooperativeinspectionofPVplants.IEEE
JournalofPhotovoltaics4(4):1107–1113.
[7]Grimaccia,F.,Aghaei,M.,Mussetta,M.,Leva,S.&
Quater,P.B.2015.PlanningforPVplantperformance
monitoringbymeansofunmannedaerialsystems
(UAS).InternationalJournalofEnergyandEnvironmental
Engineering6(1):47–54.
[8]Berni,J.A.J.,Zarco‐Tejada,P.J.,Suarez,L.&Fereres,E.
2009.Thermalandnarrowbandmultispectralremote
sensingforvegetationmonitoringfromanunmanned
aerialvehicle.IEEETransactionsonGeoscienceandRemote
Sensing47(3):722–738.
[9]Wijitdechakul,J.,Sasaki,S.,Kiyoki,Y.&Koopipat,C.
2016.UAV‐basedmultispectralimageanalysissystem
withsemanticcomputingforagriculturalhealth
conditionsmonitoringandreal‐timemanagement.2016
InternationalElectronicsSymposium(IES),Denpasar,
Indonesia,29–30September2016:459–464.
[10]Yuan,C.,Liu,Z.,&Zhang,Y.2016.Vision‐basedforest
firedetectioninaerialimagesforfirefightingusing
UAVs.2016InternationalConferenceonUnmanned
AircraftSystems(ICUAS),Arlington,VA,USA,7–10June
2016:1200–1205.
[11]Ghamry,K.A.,Kamel,M.A.&Zhang,Y.2016.
Cooperativeforestmonitoringandfiredetectionusinga
teamofUAVs‐UGVs.2016InternationalConferenceon
UnmannedAircraftSystems(ICUAS),Arlington,VA,USA,
7–10June2016:1206–1211.
[12]Rathinam,S.,Almeida,P.,Kim,Z.,Jackson,S.,
Tinka,A.,Grossman,W.&Sengupta,R.2007.
Autonomoussearchingandtrackingofariverusingan
UAV.2007AmericanControlConference(ACC),NewYork,
NY,USA,9–13July2007:359–364.
[13]Popescu,D.,Ichim,L.&Caramihale,T.2015.Flood
areasdetectionbasedonUAVsurveillancesystem.2015
19thInternationalConferenceonSystemTheory,
ControlandComputing(ICSTCC),CheileGradistei,
Romania,14–16October2015:753–758.
[14]Lu,Y.Macias,D.Dean,Z.S.,Kreger,N.R.&
Wong,P.K.2015.AUAV‐mountedwholecellbiosensor
systemforenvironmentalmonitoringapplications.IEEE
TransactionsonNanoBioscience14(8):811–817.
[15]Erdos,D.,Erdos,A.&Watkins,S.E.2013.An
experimentalUAVsystemforsearchandrescue
challenge.IEEEAerospaceandElectronicSystems
Magazine28(5):32–37.
[16]Mozaffari,M.,Saad,W.Bennis,M.&Debbah,M.2017.
OptimaltransporttheoryforcellassociationinUAV‐
enabledcellularnetworks.IEEECommunicationsLetters
21(9):2053–2056.
[17]Hoareau,G.,Liebenberg,J.J.,Musial,J.G.&
Whitman,T.R.2016.Packagetransportbyunmannedaerial
vehicles.PatentUS20160068265A1.
[18]TowardsaEuropeanstrategyforthedevelopmentof
civilapplicationsofRemotelyPilotedAircraftSystems
(RPAS).2012.Brussels,Belgium:Councilofthe
EuropeanUnion.
[19]vanBlyenburgh,P.2012.TowardsaEuropeanstrategy
forthedevelopmentofcivilapplicationsofRPAS.UAS
Vision.Available:
https://www.uasvision.com/2012/09/07/towards‐a‐
european‐strategy‐for‐the‐development‐of‐civil‐
applications‐of‐rpas/
[20]Duszczyk,M.2017.Forecastsforthedronemarketare
promising(inPolish).Rzeczpospolita,Available:
https://www.rp.pl/Sylwetki/303209855‐Prognozy‐dla‐
rynku‐dronow‐sa‐obiecujace.html.
[21]Kaplan,E.D.&Hegarty,C.(eds).2005.Understanding
GPS:Principlesandapplications,2nded.Boston,MA,
USA:ArtechHouse,2005.
[22]vanDiggelen,F.2009.A‐GPS:AssistedGPS,GNSS,and
SBAS.Boston,MA,USA:ArtechHouse,2009.
[23]Kayton,M.&Fried,W.R.1997.Avionicsnavigation
systems,2nded.NewYork,NY,USA:Wiley‐
Interscience.
[24]Kelner,J.M.,Ziółkowski,C.&Nowosielski,L.2016.
LocalnavigationsystemforVTOLsusedonthevessels.
2016IEEE/IONPosition,LocationandNavigation
Symposium(PLANS),Savannah,GA,USA11–14April
2016:415–421.
[25]Kelner,J.M.,Ziółkowski,C.&Kachel,L.2008.The
empiricalverificationofthelocationmethodbasedon
thedopplereffect.200817thInternationalConferenceon
Microwaves,RadarandWirelessCommunications
(MIKON),Wrocław,Poland,19–21May2008.vol.3:755–
758.
[26]Kelner,J.M.2010.AnalysisoftheDopplerlocation
methodoftheradiowavesemissionsources,Ph.D.
Thesis(inPolish).Warsaw,Poland:MilitaryUniversity
ofTechnology.
[27]Gajewski,P.,Ziółkowski,C.&Kelner,J.M.2012.Using
SDFmethodforsimultaneouslocationofmultipleradio
transmitters.201219thInternationalConferenceon
MicrowaveRadarandWirelessCommunications(MIKON),
Warsaw,Poland,21–23May2012.vol.2:634–637.
[28]Kelner,J.M.2011.Positioninganaircraftusingthe
TDSDFmethod.PolishJournalofEnvironmentalStudies
20(5A):80–84.
[29]Kelner,J.M.&Ziółkowski,C.2011.Theconceptof
DopplerLandingApproachPrecisionSystem
(DOLAPS)PolishJournalofEnvironmentalStudies
20(5A):85–90.
[30]Kelner,J.M.&Ziółkowski,C.2017.Dopplereffect‐
basedautomaticlandingprocedureforUAVindifficult
accessenvironments.JournalofAdvancedTransportation
2017(e8092718):1–9.
435
[31]Kelner,J.M.,Ziółkowski,C.&Marszałek,P.2016.
Influenceofthefrequencystabilityontheemitter
positioninSDFmethod.201617thInternational
ConferenceonMilitaryCommunicationsandInformation
Systems(ICMCIS),Brussels,Belgium,23‐24May2016:1–
6.
[32]Grayver,E.2012.Implementingsoftwaredefinedradio.
NewYork,NY,USA:Springer.
[33]Mitola,J.2000.Softwareradioarchitecture:object‐
orientedapproachestowirelesssystemsengineering.
NewYork,NY,USA:Wiley.
[34]Kelner,J.M.&Ziółkowski,C.2015.TheuseofSDF
technologytoBPSKandQPSKemissionsources’
location(inPolish).PrzeglądElektrotechniczny91(3):61–
65.
[35]Stefański,J.2015.Asynchronoustimedifferenceof
arrival(ATDOA)method.PervasiveandMobile
Computing23:80–88.
[36]Sadowski,J.&Stefański,J.2017.Asynchronousphase‐
locationsystem.JournalofMarineEngineering&
Technology16(4):400–408.