ArticlePDF Available

Abstract and Figures

At the turn of the 20th and 21st centuries, development of microelectronics and microwave techniques allowed for minimization of electronic devices and systems, and the use of microwave frequency bands for modern radio communication systems. On the other hand, the global navigation satellite system (GNSS) have contributed to the popularization of radio navigation in civilian applications. These factors had a direct impact on the development and dissemination of unmanned aerial vehicles (UAVs). In the initial period, the UAVs were used mainly for the army needs. This results also from the legal aspects of the UAV use in the airspace. Currently, commercial UAVs for civilian applications, such as image recognition, monitoring, transport, etc., are presented increasingly. Generally, the GNSS system accuracy for the UAV positioning during a flight is enough. However, the GNSS use for automatic takeoff and landing may be insufficient. The extensive, ground-based navigation support systems used at airports by manned aircraft testify to these. In the UAV case, such systems are not used due to their complexity and price. For this reason, the novel dedicated take-off and landing systems are developed. The proposal of the autonomous landing system, which is based on the Doppler effect, was presented in 2017. In this case, the square-based beacon configuration was analyzed. This paper shows the influence of various beacon configurations in the Doppler-based landing system on the positioning error during the UAV landing approach.
Content may be subject to copyright.
429
1 INTRODUCTION
Attheendofthe20thcentury,thedynamic
developmentofmicroelectronicscausedthe
popularizationofunmannedaerialvehicles(UAVs),
alsocalleddrones.TheUAVisanaircraftthatdoes
notrequirecrewonboardandisunabletotake
passengers.TheUAVcanberemotecontrolbya
humanoperatororautonomouslybyonboard
computers.Hence,theideaoftheUAVhasitsrootsin
thesecondhalfofthelastcentury,whentheremote
controlledmodelsofaircraft,cars,orshipswere
mainlyofahobbynature.TheV1flyingbombandV
2rocketfromthe2ndWorldWarcanberegardedas
theUAVprototypes.Inthepostwarperiod,research
intothedevelopmentofthistechnologyforthearmy
needswasconductedmainlyintheUSAandUSSR.
Thisdevelopmentwasdirectlyrelatedtotheconquest
ofthecosmosinwhichunmannedspacecrafts,i.a.,
artificialsatellites,wereused.
Initially,duetolegalrestrictions,theUAVswere
usedmainlyinthearmedforces[1–3].Originally,
theirmainareaofapplicationswasimage,optical,
andradarrecognition.Thesearesocalled
surveillanceUAVs,e.g.,theNorthropGrummanRQ
4GlobalHawk.Then,theUAVswerealsousedto
transposingweapons.Thiskindiscalledasa
unmannedcombataerialvehicle(UCAV),e.g.,the
GeneralAtomicsMQ9Reaperalsocalledthe
Errors of UAV Autonomous Landing System for
Different Radio Beacon Configurations
J
.M.Kelner&C.Ziółkowski
M
ilitaryUniversityofTechnology,Warsaw,Poland
ABSTRACT:Attheturnofthe20thand21stcenturies,developmentofmicroelectronicsandmicrowave
techniquesallowedforminimizationofelectronicdevicesandsystems,andtheuseofmicrowavefrequency
bandsformodernradiocommunicationsystems.Ontheotherhand,theglobalnavigationsatellitesystem
(GNSS)havecontributedtothepopularizationofradionavigationincivilianapplications.Thesefactorshada
directimpactonthedevelopmentanddisseminationofunmannedaerialvehicles(UAVs).Intheinitialperiod,
theUAVswereusedmainlyforthearmyneeds.ThisresultsalsofromthelegalaspectsoftheUAVuseinthe
airspace.Currently,commercialUAVsforcivilianapplications,suchasimagerecognition,monitoring,
transport,etc.,arepresentedincreasingly.Generally,theGNSSsystemaccuracyfortheUAVpositioning
duringaflightisenough.However,theGNSSuseforautomatictakeoffandlandingmaybeinsufficient.The
extensive,groundbasednavigationsupportsystemsusedatairportsbymannedaircrafttestifytothese.Inthe
UAVcase,suchsystemsarenotusedduetotheircomplexityandprice.Forthisreason,thenoveldedicated
takeoffandlandingsystemsaredeveloped.Theproposaloftheautonomouslandingsystem,whichisbased
ontheDopplereffect,waspresentedin2017.Inthiscase,thesquarebasedbeaconconfigurationwasanalyzed.
ThispapershowstheinfluenceofvariousbeaconconfigurationsintheDopplerbasedlandingsystemonthe
positioningerrorduringtheUAVlandingapproach.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 13
Number 2
June 2019
DOI:10.12716/1001.13.02.22
430
PredatorB.Currently,theUAVsarewidelyusedon
thecivilianmarket.Manyprivatecompaniesprovide
variousservicesusingtheUAVs,e.g.,inthefieldof
energetics[4–7],agriculture[8,9],forestryandfire
detection[10,11],watermanagement[12]andflood
detection[13],environmentalprotection[14],search
andrescue[15],radiocommunication[16],transport
[17],etc.
ThegrowthoftheUAVmarkethasalso
contributedtothedevelopmentofotherunmanned
platforms,suchasunmannedground(UGVs),surface
(USVs),andunderwatervehicles(UUVs).Themain
recipientsofthismarketsectorarestillthearmed
forcesofvariouscountries.Inareport[18],the
EuropeanCommissionindicatestheimportanceof
thistechnologyintheeconomicandtechnological
developmentofcountries,especiallyinthecivilian
sector[19].Accordingtothepresentedforecasts,the
estimatedvalueoftheUAVmarketin2019willbe
expectedtoreacharound1112billiondollars.In2015
and2016,thedomesticmarketwasestimatedat165
and200millionPolishzlotys,respectively[20].
Inliterature,wecanfindsynonymousfortheUAV
suchasunmannedaerialsystem(UAS)orremotely
pilotedaircraftsystems(RPAS).Sometimes,the
differencesbetweentheUAVandUASareindicated.
Then,theUAVisreferredtoitselfaircraftplatform,
whiletheUASincludesalsoothersystem
components,suchasthegroundbasedflightcontrol
system.Inthiscase,theRPASisasynonymofthe
UAS.Currently,theRPASismorewidelyusedin
militaryterminology,especiallyintheNorthAtlantic
TreatyOrganization(NATO)andEuropeanDefense
Agency(EDA).Intheliterature,various
classificationsoftheUAVsarepresented.They
considerdifferenttechnicalaspectsorapplications.
Fromtheviewpointofthispaper,theUAVtermis
referencedtoaverticaltakeoffandlanding(VTOL)
aircraft,unlikeaconventionaltakeoffandlanding
(CTOL)aircraftrequiringarunway.Intheremainder
ofthepaper,theVTOLisconsideredasasynonymof
theVTOLUAV.
Globalnavigationsatellitesystems(GNSSs)[21,22]
arecommonlyusedinUAVnavigation.Inaddition,
remotecontrolandvideotransmissionfromthe
aircrafttotheremoteUAVoperatorallowssafe
displacementofthedrone.However,thissolution
maynotbesufficienttotakeoffandlanding
approach.Thisisasignificantproblem,notablyfor
theautonomousUAVs.Thetakeoffandlandingare
theaircraftflightstagesthatrequirespecialprecision
insteeringandnavigation.Formannedaircraft,the
pilotonboardhasmorecontrolovertheplaneor
helicopter.Ontheotherhand,dedicatedtakeoffand
approachsystemsareusedatlargecivilandmilitary
airports.Theinstrumentlandingsystem(ILS),tactical
airnavigationsystem(TACAN)[23],orEuropean
GeostationaryNavigationOverlayService(EGNOS)
[21,22]areexamplesofradiolocalareaaugmentation
systems(LAASs).Theyareveryimportantinbad
weatherconditionswithlimitedvisibility,e.g.,fog,
snowfall,orrain.Generally,theLAASsarenot
availabletoUAVmajority.Therefore,itisimportant
todevelopsuchsolutions,especiallyforautonomous
drones.
In2016,weproposedalandingsystemonavessel
forthemannedandunmannedVTOL[24].This
systeminvolvestheuseofterrestrialradiobeacons
(RBs)andadedicatednavigationreceiver(NR)placed
onboardaircraft.Inthiscase,thesignalDoppler
frequency(SDF)locationmethod[25–27]isusedto
estimatetheaircraftpositionrelativetoalandingpad
ontheship.Thissolution[24]isbasedontheSDF
applicationsdedicatedtoinflightnavigationand
CTOLlandingapproach,whichareshownin[28]and
[29],respectively.Here,theanalyzedconceptofthe
landingapproachsystemfortheunmannedVTOLis
asystemmodificationshownin[30].Theproposed
solutionhasbeendevelopedforthelandingpadin
hardtoreachplacessuchasoilplatforms,vessels,
islands,orskyscraperroofs.In[30],weassumedthat
RBsarelocatedbasedonasquare.Thepurposeofthis
paperistoassesstheimpactofselected
configurationsoftheRBsontheVTOLpositioning
accuracy.
Theremainderofthepaperisorganizedas
follows.Section2describestheSDFbased
autonomouslandingapproachsystem.Assumptions
andsimulationscenariosarepresentedinSection3.In
Section4,theobtainedsimulationresultsareshown.
Inthiscase,thepositioningaccuracyoftheVTOL
UAVfordifferentRBconfigurationsisanalyzed.The
summaryisinthefinalpartofthepaper.
2 AUTONOMOUSLANDINGAPPROACH
SYSTEMFORVTOLUAV
ThespatialstructureoftheSDFbasedautonomous
landingapproachsystemfortheVTOLisshownin
Figure1.
Figure1.Spatialstructureofautonomouslandingapproach
systemforVTOL[30]
ThegroundpartofthesystemconsistsoffourRBs
andameasuringreceiver(MR).Inthesolution
discussedin[30],weassumedthatfourRBsare
locatedbasedonthesquarearoundthelandingpad.
EachRBisequippedwithasignalgenerator,power
amplifier,andtransmittingantennaplacedatthe
stand.Additionally,theRBcanbeequippedwitha
rubidiumorcesiumfrequencystandardthatwill
increasethefrequencystabilityoftransmittedsignals.
ThisisimportantfromtheviewpointoftheSDFused
[31].ThreeRBs,i.e.,RB1,RB2,andRB3,transmit
harmonicsignalsatdefinedfrequenciesf1,f2,andf3,
respectively.Atfrequencyf4,theRB4transmitsa
431
modulatedsignalusingdifferentialphaseshiftkeying
(DPSK).Ineachtransmittedframe,informationabout
thelocationcoordinatesoftheindividualRBsand
theirfrequencycorrectionsaresent.Thesecorrections
aredeterminedbasedonlocalmeasurementscarried
outbytheMRlocatednearRB4.
TheNRsplacedontheVTOLsarethereceiving
partofthesystem.EachVTOLisequippedwith
typicalelementsofthenavigationsystem,namelya
GNSSreceiverandinertialnavigationsystem(INS).
Thisallowstocarryoutacontrolledorautonomous
UAVflightphase.Whereas,theNRprovides
positioningtheVTOLnearthelandingpadandits
landingapproach.TheNRistunedtothefrequency
bandonwhichoperatetheRBs.Thismeansthatthe
NRoperationbandincludesthecarrierfrequenciesf1,
f2,f3,andthemodulatedsignalbandatthefrequency
f4.TheNRismadeinsoftwaredefinedradio(SDR)
technology[32,33].ThismeansthattheNRprovides
signalprocessinganddeterminingtheestimated
positionsoftheUAVrelativetothelandingpad.For
eachRB,theDopplerfrequencyshift(DFS)is
determinedeveryspecifiedtimeperiodΔTbasedon
thereceivedsignalwiththedurationofTS.Then,the
UAVcoordinatesaredeterminedbasedondiscrete
instantaneousDFSsaggregatedinatimewindowTA.
ThemethodoftheDFSdeterminationforthe
harmonicsignalispresentedin[25–27].Inthecaseof
themodulatedsignalfromRB4,aftersubband
filtering,informationframesaredemodulatedandthe
instantaneousDFSsareestimatedbasedona
methodologyshownin[34].Adetaileddescriptionof
theautonomouslandingapproachsystemand
estimatingtheVTOLcoordinatesbasedontheSDFis
containedin[30].
Thepresentedsystemcanbeclassifiedasprecise
shortrangeradionavigationsystems.Itcanbeused
duringtheUAVlandingapproach,aswellasitstake
offfromthelandingfieldandinflightinanarea,
whereisaradiorangebetweentheNRandRBs.A
keyadvantageoftheproposedsolutionisitsnarrow
bandwithrelativelyhighpositioningprecision.Inthe
caseofsystemsbasedontimemeasurement,e.g.,
[35,36],obtainingcomparableaccuracywouldrequire
theuseofamuchwiderband.Wepointoutthatthe
frequencyallocationforthistypeofdedicatedsystem
isaseriousproblem.Forthedevelopedsystem,
unlicensedfrequencybands,e.g.,dedicatedtotheWi
Fiincludedinindustrial,scientificandmedical(ISM)
bands,canbeusedforthispurpose.Inthiscase,the
emissionoftheharmonicsignalswithmorepower
thantheemissionaverageinthebanddoesnot
constituteasignificantinterferencetoothersystems.
3 SCENARIOANDASSUMPTIONSFOR
SIMULATIONSTUDIES
Inascenarioshownin[30],weassumedthattheRBs
areplacedonthebasisofthesquarewithaside
lengthequalr(seeFigure1).Inthispaper,weanalyze
threeconfigurationsoftheRBpositionsbasedon
otherregularpolygons,i.e.atriangle,pentagon,and
hexagon.Acommonfeatureofallconfigurationsis
theradiusRofacircumscribedcircle.Figure2
presentstheanalyzedRBconfigurationstogetherwith
areferenceconfigurationbasedonthesquare(see
Figure2(b)).
Figure2.AnalyzedspatialconfigurationsofRBsbasedon
regularpolygons:a)triangle,b)rectangle,c)pentagon,d)
hexagon
Inaddition,insimulationstudies,weassume
similarassumptionsasin[30],i.e.,
landingpointatOistheoriginofthelocal
coordinatesystem;
thesystemconfigurationbasedontheregular
polygonconsistsofKRBs,whereK=3,4,5,6,for
theregulartriangle,rectangle(i.e.,square),
pentagon,andhexagon,respectively(seeFigure
2);
assumingthedistancer=40m[30]between
neighboringRBsinthesquareconfiguration,the
radiusR28.3misabasefordeterminingtheRB
coordinateswithrespecttothepointOineach
configuration;thelocationcoordinatesofthe
individualRBsfortheanalyzedconfigurationsare
containedinTable1;theheightoftheRB
transmittingantennasishT=zk=2mfork=1,..,K;
thesystemoperatesintheISMbandusedbythe
WiFi,i.e.,2.4GHz;ineachconfiguration,thekth
RBtransmitstheharmonicsignalatfk,where
k=1,..,K–1;while,theKthRBemitstheDPSK
signalatfK;thesefrequenciesaredeterminedas
follows:fK(kHz)=2399800+50K+100and
fk(kHz)=2399800+50(k–1)fork=1,..,K–1;the
bandwidthoftheDPSKsignalisequalto
BT=80kHz;
theNRoperatesatthefrequencyfR=2.4GHzwith
thereceptionbandBR=500kHz;
foraDopplercurve(DFSsversustime)analysis,
thetimewindowTA=5.0sisused;
inanelectromagneticenvironment,anadditive
whiteGaussiannoise(AWGN)isoccurred,anda
leveloftheemittedsignalsatthefarthestpoint(L)
ofananalyzedtrajectoryisensuredbyasignalto
noiseratioequaltoSNR=8dB;
theVTOLflightbetweentheLandPpointsis
carriedoutataconstantaltitudehL=50mwitha
velocityv=72km/h=20m/s(seeFigure3);then,
theflightceilingislowered;
thelengthoftheanalyzedVTOLflightroute,i.e.,
thedistancebetweentheLandPpoints,isequalto
d=400m.
432
Table1.CoordinatesofRBpositionsonOXYplanefordifferentconfigurations
__________________________________________________________________________________________________
RBk ConfigurationofRBs
__________________________________________________________________________________________________
RegularTriangleSquareRegularpentagon Regularhexagon
K=3K=4K=5K=6
r=49.0mr=40.0mr=33.3mr=28.3m
__________________________________________________________________________________________________
k xk(m)yk(m)xk(m)yk(m)xk(m)yk(m)xk(m)yk(m)
1 14.124.520.020.022.916.624.514.1
2 14.1–24.520.0–20.022.9–16.624.5–14.1
3 28.30.0–20.0–20.0–8.7–26.90.0–28.3
4 –––––––20.020.0–28.30–24.5–14.1
5 –––––––––––––8.726.9–24.514.1
6 –––––––––  –––––––––0.028.3
__________________________________________________________________________________________________
Figure3.SpatialscenarioofVTOLlandingapproachon
exampleofRBreferenceconfigurationprojectedinplane:
a)OXZandb)OXY[30]
SimulationstudiesarecarriedoutfortheUAV
movementtrajectorydepictedinFigure3.Inthis
case,twoscenariosareconsidered.Inthefirst
scenario,Sc.1,weevaluatetheVTOLpositionerror
alongtheLPtrajectoryfordifferentRBconfigurations
andtheapproachdirectionα=0.Inthesecond
scenario,Sc.2,theVTOLpositioningerrorisanalyzed
atthepointPforthevariousαdirections.
4 RESULTSOFSIMULATIONSTUDIES
FortheassumptionspresentedinSection3,we
conductedsimulationstudies.Inouranalysis,the
VTOLpositioningerrorisabasicmeasureofthe
accuracyassessmentofthedevelopednavigation
system.Thismeasureisdefinedasfollows

222
000
Δ
R
xx yy zz (1)
where(x0,y0,z0)and(x,y,z)=therealandestimated
coordinatesoftheUAVposition,respectively.
ThesimulationresultsobtainedforSc.1are
illustratedinFigure4.Inthiscase,graphsofthe
instantaneouspositioningerrorfortheVTOLlanding
approacharepresentedforfouranalyzedRB
configurations.Additionally,theaverageerrors
shownbydashedlines.
Figure4.InstantaneousandaverageVTOLpositioning
errorsversusdistancedtopointPforvariousRBs
configurations:a)K=3,b)K=4,c)K=5,andd)K=6
Theobtainedresultsshowthehighprecisionof
theVTOLpositioningbasedontheproposedsystem
andSDFmethod.Ford<100m,theinstantaneous
erroroftheUAVpositionforeachconfigurationis
lessthan1.0m.Inthelastsecondofapproachingthe
pointP,theerrorislessthan0.5m.
433
Figure5.VTOLpositioningerroratpointPversus
approachdirectionαfordifferentRBconfigurations:
a)K=3,b)K=4,c)K=5,andd)K=6
InSc.1,wemayusetheaverageerrorobtainedon
theentireanalyzedroutewiththelengthof400mas
acomparativemeasure.Inthiscase,theaverage
errorsareequalto2.4m,3.8m,3.4m,and3.8mfor
configurationsbasedontheregulartriangle,
rectangle,pentagon,andhexagon,respectively.
Therefore,wemayconcludethatthebestresultsare
obtainedforK=3.Thisresultmayberelatedtothe
approachdirectionα=0assumedinSc.1.Thus,for
oddvaluesofK,oneofRBisinthedirectionofthe
UAVmovement.
TheimpactoftheVTOLapproachdirection
relativetotheadoptedcoordinatesystemisanalyzed
inSc.2.Theobtainedsimulationresultsareillustrated
inFigure5.
TheobtainedgraphshapesoftheUAVposition
errorarecloselyrelatedtotheRBconfigurations
depictedinFigure2.Inthiscase,thelargesterrors
occurwhentheapproachdirectionαcoincideswith
thedirectiondeterminedbythepointOandthe
locationofatleastoneRB.Inthesignalreceivedfrom
suchRB,theestimatedDFSstakemaximumvalues
andthesedataarenotusedintheSDF.Thisis
particularlyvisibleforK=4andK=6,whenaRBpair
isalwayslocatedintheanalyzeddirections.
TheanalysisoftheresultsinFigure5showsthat
decreasingthenumberofRBsinthesystemdoesnot
necessarilyleadtohighersystemaccuracy.For
comparisonoftheindividualconfigurations,the
errorsatpointPaveragedovertheapproach
directionare0.76m,0.17m,0.55m,and0.16mfor
K=3,4,5,6,respectively.Therefore,thisisthe
oppositecasetothatpresentedinFigure4.
Generally,foreachoftheanalyzedRB
configurations,theVTOLpositioningerroratpointP
isalwayslessthan2mregardlessofthedirectionα.
Formostapproachdirections,theUAVpositionerror
islessthan0.5m.Thesevaluesareverysmallin
relationtotheassumedradiusofthelandingpad
equaltoR28.3m.Hence,wemayconcludethatthe
developedsystemallowsthesafeandautonomous
landingapproachevenwithsizabledimensionsof
theVTOL.
5 CONCLUSION
Inthispaper,weevaluatetheinfluenceoftheRB
configurationinthelandingapproachsystemforthe
VTOLUAVonitspositioningerror.Thedeveloped
systemisbasedontheDFSmeasurementinthe
signalsreceivedfromtheterrestrialRBsaroundthe
landingpad.TheDFSsaremeasuredinthededicated
NR,whichisplacedonboardaircraft.TheSDF
methodisusedtoestimatetheVTOLposition
relativetothelandingsite.Ouranalysisisbasedon
simulationstudies.Inthiscase,weconsidertwo
scenariosandfourRBconfigurationsbasedonthe
regularpolygons.Theobtainedresultshowsthehigh
accuracyoftheUAVpositioningforallanalyzed
configurations.Thebestresultsatthepointlocated
abovethelandingcenterareobtainedforthe
configurationconsistingofsixRBs.Atthispointand
forthisconfiguration,themeanerrorregardlessof
theapproachdirectionwaslessthan20cm.The
proposedsolutionseemsidealforuseinstandalone
autonomouslandingapproachsystemsfortheUAV.
However,empiricalresearchisstillrequired,which
isplannedinthefuture.
ThepresentedideaoftheSDFbasednavigation
forUAVscanalsobeusedfortheneedsofother
typesofautonomousvehicles.Inthefuture,we
considerusingthisconcepttonavigateautonomous
USVsormannedvesselsenteringaport.Inthiscase,
theRBswillbelocatedinthecoastalzonearoundthe
port.
434
ACKNOWLEDGMENTS
Thisworkwasdevelopedwithinaframeworkofthe
ResearchGrant“Basicresearchinsensortechnologyfield
usinginnovativedataprocessingmethods”no.
GBMON/13996/2018/WATsponsoredbythePolish
MinistryofDefense.
REFERENCES
[1]Groves,P.D.2013.PrinciplesofGNSS,inertial,and
multisensorintegratednavigationsystems,2nded.
Boston,MA,USA:ArtechHouse.
[1]Tortonesi,M.,Stefanelli,C.,Benvegnu,E.,Ford,K.,
Suri,N.&Linderman,M.2012.MultipleUAV
coordinationandcommunicationsintacticaledge
networks.IEEECommunicationsMagazine50(10):48–55.
[2]Orfanus,D.deFreitas,E.P.&Eliassen,F.2016.Self
organizationasasupportingparadigmformilitary
UAVrelaynetworks.IEEECommunicationsLetters
20(4):804–807.
[3]Ma’sum,M.A.,Arrofi,M.K.,Jati,G.,Arifin,F.,
Kurniawan,M.N.,Mursanto,P.&Jatmiko,W.2013.
Simulationofintelligentunmannedaerialvehicle
(UAV)formilitarysurveillance.2013International
ConferenceonAdvancedComputerScienceandInformation
Systems(ICACSIS),Bali,Indonesia,28–29September2013:
161–166.
[4]Babak,S.,Myslovych,M.&Sysak,R.2016.Module
structureofUAVbasedcomputerizedsystemsfor
remoteenvironmentmonitoringofenergyfacilities.
201617thInternationalConferenceComputationalProblems
ofElectricalEngineering(CPEE),Sandomierz,Poland,14–
17September2016:1–3.
[5]Daliento,S.,Chouder,A.,Guerriero,P.,Pavan,A.M.,
Mellit,A.,Moeini,R.&Tricoli,P.2017.Monitoring,
diagnosis,andpowerforecastingforphotovoltaicfields:
Areview.InternationalJournalofPhotoenergy
2017(e1356851):1–13.
[6]Quater,P.B.,Grimaccia,F.,Leva,S.Mussetta,M.&
Aghaei,M.2014.Lightunmannedaerialvehicles
(UAVs)forcooperativeinspectionofPVplants.IEEE
JournalofPhotovoltaics4(4):1107–1113.
[7]Grimaccia,F.,Aghaei,M.,Mussetta,M.,Leva,S.&
Quater,P.B.2015.PlanningforPVplantperformance
monitoringbymeansofunmannedaerialsystems
(UAS).InternationalJournalofEnergyandEnvironmental
Engineering6(1):47–54.
[8]Berni,J.A.J.,ZarcoTejada,P.J.,Suarez,L.&Fereres,E.
2009.Thermalandnarrowbandmultispectralremote
sensingforvegetationmonitoringfromanunmanned
aerialvehicle.IEEETransactionsonGeoscienceandRemote
Sensing47(3):722–738.
[9]Wijitdechakul,J.,Sasaki,S.,Kiyoki,Y.&Koopipat,C.
2016.UAVbasedmultispectralimageanalysissystem
withsemanticcomputingforagriculturalhealth
conditionsmonitoringandrealtimemanagement.2016
InternationalElectronicsSymposium(IES),Denpasar,
Indonesia,29–30September2016:459–464.
[10]Yuan,C.,Liu,Z.,&Zhang,Y.2016.Visionbasedforest
firedetectioninaerialimagesforfirefightingusing
UAVs.2016InternationalConferenceonUnmanned
AircraftSystems(ICUAS),Arlington,VA,USA,7–10June
2016:1200–1205.
[11]Ghamry,K.A.,Kamel,M.A.&Zhang,Y.2016.
Cooperativeforestmonitoringandfiredetectionusinga
teamofUAVsUGVs.2016InternationalConferenceon
UnmannedAircraftSystems(ICUAS),Arlington,VA,USA,
7–10June2016:1206–1211.
[12]Rathinam,S.,Almeida,P.,Kim,Z.,Jackson,S.,
Tinka,A.,Grossman,W.&Sengupta,R.2007.
Autonomoussearchingandtrackingofariverusingan
UAV.2007AmericanControlConference(ACC),NewYork,
NY,USA,9–13July2007:359–364.
[13]Popescu,D.,Ichim,L.&Caramihale,T.2015.Flood
areasdetectionbasedonUAVsurveillancesystem.2015
19thInternationalConferenceonSystemTheory,
ControlandComputing(ICSTCC),CheileGradistei,
Romania,14–16October2015:753–758.
[14]Lu,Y.Macias,D.Dean,Z.S.,Kreger,N.R.&
Wong,P.K.2015.AUAVmountedwholecellbiosensor
systemforenvironmentalmonitoringapplications.IEEE
TransactionsonNanoBioscience14(8):811–817.
[15]Erdos,D.,Erdos,A.&Watkins,S.E.2013.An
experimentalUAVsystemforsearchandrescue
challenge.IEEEAerospaceandElectronicSystems
Magazine28(5):32–37.
[16]Mozaffari,M.,Saad,W.Bennis,M.&Debbah,M.2017.
OptimaltransporttheoryforcellassociationinUAV
enabledcellularnetworks.IEEECommunicationsLetters
21(9):2053–2056.
[17]Hoareau,G.,Liebenberg,J.J.,Musial,J.G.&
Whitman,T.R.2016.Packagetransportbyunmannedaerial
vehicles.PatentUS20160068265A1.
[18]TowardsaEuropeanstrategyforthedevelopmentof
civilapplicationsofRemotelyPilotedAircraftSystems
(RPAS).2012.Brussels,Belgium:Councilofthe
EuropeanUnion.
[19]vanBlyenburgh,P.2012.TowardsaEuropeanstrategy
forthedevelopmentofcivilapplicationsofRPAS.UAS
Vision.Available:
https://www.uasvision.com/2012/09/07/towardsa
europeanstrategyforthedevelopmentofcivil
applicationsofrpas/
[20]Duszczyk,M.2017.Forecastsforthedronemarketare
promising(inPolish).Rzeczpospolita,Available:
https://www.rp.pl/Sylwetki/303209855Prognozydla
rynkudronowsaobiecujace.html.
[21]Kaplan,E.D.&Hegarty,C.(eds).2005.Understanding
GPS:Principlesandapplications,2nded.Boston,MA,
USA:ArtechHouse,2005.
[22]vanDiggelen,F.2009.AGPS:AssistedGPS,GNSS,and
SBAS.Boston,MA,USA:ArtechHouse,2009.
[23]Kayton,M.&Fried,W.R.1997.Avionicsnavigation
systems,2nded.NewYork,NY,USA:Wiley
Interscience.
[24]Kelner,J.M.,Ziółkowski,C.&Nowosielski,L.2016.
LocalnavigationsystemforVTOLsusedonthevessels.
2016IEEE/IONPosition,LocationandNavigation
Symposium(PLANS),Savannah,GA,USA11–14April
2016:415–421.
[25]Kelner,J.M.,Ziółkowski,C.&Kachel,L.2008.The
empiricalverificationofthelocationmethodbasedon
thedopplereffect.200817thInternationalConferenceon
Microwaves,RadarandWirelessCommunications
(MIKON),Wrocław,Poland,19–21May2008.vol.3:755–
758.
[26]Kelner,J.M.2010.AnalysisoftheDopplerlocation
methodoftheradiowavesemissionsources,Ph.D.
Thesis(inPolish).Warsaw,Poland:MilitaryUniversity
ofTechnology.
[27]Gajewski,P.,Ziółkowski,C.&Kelner,J.M.2012.Using
SDFmethodforsimultaneouslocationofmultipleradio
transmitters.201219thInternationalConferenceon
MicrowaveRadarandWirelessCommunications(MIKON),
Warsaw,Poland,21–23May2012.vol.2:634–637.
[28]Kelner,J.M.2011.Positioninganaircraftusingthe
TDSDFmethod.PolishJournalofEnvironmentalStudies
20(5A):80–84.
[29]Kelner,J.M.&Ziółkowski,C.2011.Theconceptof
DopplerLandingApproachPrecisionSystem
(DOLAPS)PolishJournalofEnvironmentalStudies
20(5A):85–90.
[30]Kelner,J.M.&Ziółkowski,C.2017.Dopplereffect
basedautomaticlandingprocedureforUAVindifficult
accessenvironments.JournalofAdvancedTransportation
2017(e8092718):1–9.
435
[31]Kelner,J.M.,Ziółkowski,C.&Marszałek,P.2016.
Influenceofthefrequencystabilityontheemitter
positioninSDFmethod.201617thInternational
ConferenceonMilitaryCommunicationsandInformation
Systems(ICMCIS),Brussels,Belgium,2324May2016:1–
6.
[32]Grayver,E.2012.Implementingsoftwaredefinedradio.
NewYork,NY,USA:Springer.
[33]Mitola,J.2000.Softwareradioarchitecture:object
orientedapproachestowirelesssystemsengineering.
NewYork,NY,USA:Wiley.
[34]Kelner,J.M.&Ziółkowski,C.2015.TheuseofSDF
technologytoBPSKandQPSKemissionsources’
location(inPolish).PrzeglądElektrotechniczny91(3):61–
65.
[35]Stefański,J.2015.Asynchronoustimedifferenceof
arrival(ATDOA)method.PervasiveandMobile
Computing23:80–88.
[36]Sadowski,J.&Stefański,J.2017.Asynchronousphase
locationsystem.JournalofMarineEngineering&
Technology16(4):400–408.
... The market of unmanned platforms, in particular unmanned aerial vehicles (UAVs), is one of the fastest growing in the last decade (Laghari et al., 2023;Kelner and Ziółkowski, 2019a). This is due to the versatile possibilities of utilizing UAVs for various tasks, e.g., agriculture, archaeology, crisis management, energetics, environmental protection, fire or flood detection, forestry, military, photogrammetry, radiocommunications, search and rescue (SAR), traffic monitoring, transport and cargo, water management, etc. Kelner and Ziółkowski (2019a), Specht et al. (2023). ...
... The market of unmanned platforms, in particular unmanned aerial vehicles (UAVs), is one of the fastest growing in the last decade (Laghari et al., 2023;Kelner and Ziółkowski, 2019a). This is due to the versatile possibilities of utilizing UAVs for various tasks, e.g., agriculture, archaeology, crisis management, energetics, environmental protection, fire or flood detection, forestry, military, photogrammetry, radiocommunications, search and rescue (SAR), traffic monitoring, transport and cargo, water management, etc. Kelner and Ziółkowski (2019a), Specht et al. (2023). One of the many tasks currently realized by UAVs is determining land coverage using as many observation platforms as considering the data transmission link capabilities. ...
Article
Full-text available
The paper presents the concept of determining the flight trajectory of an unmanned aerial vehicle (UAV) swarm that forms a flying ad-hoc network (FANET) for communication with each other. The FANET allows the swarm to follow a predetermined route between the starting and ending areas performing the reconnaissance task of the most significant area during the flight. The primary limitations of the FANET, which is used by the UAV swarm, are discussed. The radio link range between FANET nodes is based on a power budget and various propagation models. Whereas, for determining the UAV flight trajectories, we propose to use a heuristic algorithm based on the modified Rapidly-exploring Random Tree (RRT). This modification of the base RRT algorithm allows for planning the flight of several UAVs with meeting indicated restrictions, e.g., the minimum distance between individual UAVs ensuring communication between them at any time of the flight. Simulation tests are carried out for a swarm composed of several UAVs in environments with a random number of obstacles, corresponding to a real scenario for search and rescue operations.
... Существуют различные подходы к решению задачи посадки МБПЛА на подвижное основание. Подходы на основе данных бесплатформенных инерциальных навигационных систем (БИНС) и глобальных спутниковых навигационных систем (ГНСС) отличаются недостаточной точностью на финальном этапе наведения [2][3][4]. Подходы на основе технического зрения достаточно сильно зависят от условий съемки, а также требуют наличие достаточно мощного вычислителя [5][6][7]. В некоторых задачах целесообразно добавлять лидары [8]. ...
Article
Full-text available
В работе рассматривается задача построения перспективного навигационного комплекса многороторного беспилотного летательного аппарата (МБПЛА), способного обеспечивать систему управления МБПЛА достаточно достоверной и точной информацией для режима посадки на подвижное основание. Навигационный комплекс использует в своем составе БИНС+ГНСС на подвижном основании и на борту МБПЛА, открытый радиоканал между подвижным основанием и МБПЛА для передачи навигационных определений, а также системы радиомаяков ближнего действия, установленных на подвижном основании и радиоприемник на борту МБПЛА. Коррекция БИНС+ГНСС осуществляется по данным от системы радиомаяков ближнего действия. Алгоритмическое обеспечение навигационного комплекса включает в себя адаптивный фильтр Калмана и идею федеративного фильтра Калмана. Проведенные вычислительные эксперименты по оценке точности работы навигационного комплекса показали принципиальную применимость алгоритмических решений для обеспечения навигации МБПЛА в режиме захода на посадку и посадки МБПЛА на подвижное основание.
... e communication failure issue has been studied in detail, as this is the only bridge between UAVs and GCR. Researchers proposed multiple channels and nodes to establish a stable communication [92]. In establishing such techniques, many of the parameters have been dictated such that quality of service for bandwidth, time delay in communication, and data transfer rate. ...
Article
Full-text available
Today people are witnessing the rapid evolvement in every area. This is because of the emerging trends in communication technology and autonomous unmanned vehicles. These trends have led us towards the high standards of health, energy, transportation, monitoring, and surveillance of huge domestic and industrial projects. Thus, this review paper presents the integration of the latest trend in communication technology, i.e., Internet of things (IoT) with unmanned aerial vehicles (UAVs). This manuscript not only reviews the use of IoT-enabled unmanned aerial vehicles for inspecting the several construction sites but also emphasizes the utilization of such IoT-enabled autonomous aerial vehicles for ensuring the health and safety measures at the site. It discusses the major limitations and shortcomings of state-of-the-art techniques for the same purpose, i.e., optimization issues in path planning, lightweight artificial intelligence (AI) and computer vision algorithms, coordination in communication using IoT, and scalability of IoT network. Thus, this paper shall help the reader to explore different open research problems in-depth.
Conference Paper
The use of satellite navigation may be insufficient to conduct search and rescue operations in mountain terrains using a helicopter. Variable weather conditions and poor visibility in fog or low clouds can prevent landing the helicopter in a place, wherefrom injured or missing people can take out. This paper presents the idea of an emergency mountain landing pad based on a portable beacon system. The developed concept uses the signal Doppler frequency (SDF) location method. We show the simulation analysis of the helicopter positioning accuracy during its landing at the emergency pad.
Article
Full-text available
Currently, almost unrestricted access to low-lying areas of airspace creates an opportunity to use unmanned aerial vehicles (UAVs), especially those capable of vertical take-off and landing (VTOL), in transport services. UAVs become increasingly popular for transporting postal items over small, medium, and large distances. It is forecasted that, in the near future, VTOL UAVs with a high take-off weight will also deliver goods to very distant and hard-to-reach locations. Therefore, UAV navigation plays a very important role in the process of carrying out transport services. At present, during the flight phase, drones make use of the integrated global navigation satellite system (GNSS) and the inertial navigation system (INS). However, the inaccuracy of GNSS + INS makes it unsuitable for landing and take-off, necessitating the guidance of a human UAV operator during those phases. Available navigation systems do not provide sufficiently high positioning accuracy for an UAV. For this reason, full automation of the landing approach is not possible. This paper puts forward a proposal to solve this problem. The authors show the structure of an autonomous system and a Doppler-based navigation procedure that allows for automatic landing approaches. An accuracy evaluation of the developed solution for VTOL is made on the basis of simulation studies.
Article
Full-text available
In this paper, a novel framework for delay-optimal cell association in unmanned aerial vehicle (UAV)-enabled cellular networks is proposed. In particular, to minimize the average network delay under any arbitrary spatial distribution of the ground users, the optimal cell partitions of UAVs and terrestrial base stations (BSs) are determined. To this end, using the powerful mathematical tools of optimal transport theory, the existence of the solution to the optimal cell association problem is proved and the solution space is completely characterized. The analytical and simulation results show that the proposed approach yields substantial improvements of the average network delay.
Article
Full-text available
A wide literature review of recent advance on monitoring, diagnosis, and power forecasting for photovoltaic systems is presented in this paper. Research contributions are classified into the following five macroareas: (i) electrical methods, covering monitoring/diagnosis techniques based on the direct measurement of electrical parameters, carried out, respectively, at array level, single string level, and single panel level with special consideration to data transmission methods; (ii) data analysis based on artificial intelligence; (iii) power forecasting, intended as the ability to evaluate the producible power of solar systems, with emphasis on temporal horizons of specific applications; (iv) thermal analysis, mostly with reference to thermal images captured by means of unmanned aerial vehicles; (v) power converter reliability especially focused on residual lifetime estimation. The literature surveyhas been limited, with some exceptions, to papers published during the last five years to focus mainly on recent developments
Conference Paper
Full-text available
This paper investigates forest monitoring and fire detection strategies using a team of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). UAVs have great advantages in forest fire detection and fighting. However they have limited running time and payload capabilities, therefore UGVs are paired with UAVs to avoid their demerits. First, UGVs are used to transport the UAVs to the nearest location to their assigned search area. The UAVs will takeoff and start the monitoring and search mission. When one of the UAVs detects the fire, it sends the fire spot coordinates to the leader UGV and ground fire management personnel. Then, the leader UGV that has a powerful computing and image processing capabilities will generate the reference trajectory for UAVs to follow in order to detect and continuously monitor the fire spread. Simulation results are presented in order to demonstrate the effectiveness of the proposed algorithm.
Article
Full-text available
The modern battlefield scenario presents a number of challenges that highlights the importance of data gathering and information flow as crucial to the success of a military operation. In this context, network-centric warfare systems play an important role to bridge the gap between data and information sources and consumers. These systems are generally composed of different types of networks both deployed on the field and on back-end facilities. A paramount problem faced when conceiving the interconnection between the networked devices is how to provide robust and dependable connections to the devices on the field. This work tackles this issue proposing the use of the self-organizing paradigm to design efficient UAV relay networks to support military operations. As a proof of concept, realistic simulation experiments are performed providing clear indications of the claimed benefits of the self-organizing paradigm applied to these military systems.
Conference Paper
Nowadays, UAV is widely used in several research and industrial fields. One of the highly beneficial features is that it is able to be utilized to capture aerial images in high-resolution for environmental study or detecting disaster phenomena quickly. This paper presents a multispectral image analysis system for aerial images that captured by multispectral camera, which are mounted on an unmanned autonomous vehicle (UAV) or Drone, and discusses an application of semantic computing system for agricultural health condition monitoring and analysis. In our experiments, we analyze multispectral images to detect healthy and unhealthy conditions of agricultural area and interpret the keyword of plant health conditions for user. We also propose the SPA process for real-time farming area management. As a case study, we conducted an experiment on rye fields in Latvia.
Conference Paper
Article considers modular construction principle of computerized information-measurement systems (CIMS) based on unmanned aerial complexes (UAC) for remote control of energy objects environment. Application examples of different types of variable sensors for environment characteristics remote control are presented. Experimental researches of simultaneous use of different sensor types in CIMS based on UAC with simultaneous data transmission in real time and recording by onboard CIMS subsystem module were conducted.
Conference Paper
Due to their rapid maneuverability and improved personnel safety, unmanned aerial vehicles (UAVs) with vision-based systems have great potential for monitoring and detecting forest fires. In this paper, a novel forest fire detection method utilizing both color and motion features is described for UAV-based forest firefighting applications. First, a color decision rule is designed to extract fire-colored pixels as fire candidate regions by making use of chromatic feature of fire. Then, the Horn and Schunck optical flow algorithm is employed to compute motion vectors of the candidate regions. The motion feature is also estimated from the optical flow results to distinguish fire from other fire analogues. Through thresholding and performing morphological operations on the motion vectors, binary images are then obtained. Finally, fires are located in each binary image using the blob counter method. Experiments are conducted, and the experimental results validate that the proposed method can effectively extract and track fire pixels in aerial video sequences. Good performance is expected to significantly improve the accuracy of fire detection and reduce false alarm rates.
Conference Paper
In this paper we propose a methodology for detection, localization, segmentation and size evaluation of flood areas from aerial images which are taken with drones. The approach is based on sliding box method and texture features analyses. The process of feature selection takes into account a performance degree obtained from false positive and false negative cases. We combined different properties of the images like color, texture and fractal types. A class of flood and one of non-flood were established based on clustering properties of some features and a criterion of similarity is used to segment the flood zones. Finally, the evaluation of the flood size is proposed. The method was tested on 10 images of flood zones and a rate of accuracy of 98.87% was obtained.
Conference Paper
An accuracy of each location method depends primarily on an accuracy of a parameter measurements that is the basis of the method. In the case of frequency methods, a frequency stability of a localized emitter is the main factor influencing on the location error. In this paper, the impact of the frequency stability on accuracy of the emitter position in signal Doppler frequency method is analyzed. The presented analysis is based on simulation tests. Empirical results of the frequency stability achieved for the selected signal generators are used in these simulations.