Curcuminoid Analogs Differentially Modulate Nuclear Factor Kappa-Light-Chain-Enhancer, P65 Serine276, Mitogen- and Stress-activated Protein Kinase 1 And MicroRNA 148a Status
To read the full-text of this research, you can request a copy directly from the author.
Abstract
Background:. Curcumin has been used successfully to treat inflammatory conditions; however, reliability and repeatability of clinical and bench research results have been a challenge. Curcumin is comprised of 3 curcuminoid analogs that can vary in proportion from one extract to another, even from batch to batch from the same commercial supplier. A better understanding of how each curcuminoid analog comprising the curcumin extract can partake in the overall curcumin pharmacology might give us better insight on the polypharmacology involved.
Methods/Results:. Applied as pretreatment drugs, all 3 curcuminoids, curcumin I (diferuloylmethane), curcumin II (demethoxycurcumin), and curcumin III (bisdemthoxycurcumin), are shown here to modulate 3 key subcellular drug targets differentially. Nucleotranslocation by the curcuminoids is not apparent in the lipopolysaccharide-induced BV2 (immortalised murine microglial cell line) cells. At a nuclear level, multiple compounding findings related to curcumin pharmacology, regulate transactivation of the Nuclear Factor kappa-light-chain-enhancer (NF-kB) heterodimer once it has translocated. Each of the 3 curcuminoid analogs seems to inhibit phosphorylation of p65 (REL-associated protein involved in NF-κB protein formation) at residue serine276 of the transcription factor’s transactivation domain with curcumin I showing a significant hindrance. On the other hand, curcumin III and not curcumins I or II is found to significantly downregulate mitogen- and stress-activated protein kinase 1 status in both the cytosol and the nucleus of these cells. The upstream mechanism repressing mitogen- and stress-activated protein kinase 1 status is also shown to be the upregulation of MIR 148a by curcumin III. Curcumin II shows downregulatory activity of microRNA (MIR) 148a in opposition to curcumin III’s upregulatory activity; whereas curcumin I remains neutral with regards to this target.
Conclusions:. These results demonstrate that although there are some common targets and biochemical activity by the curcuminoid analogs, a differential activity by each can also be observed on other targets. These new findings show us that the common curcumin extract can be utilized with greater selectivity against specific drug targets and the associated disease pathologies. It also demonstrates the importance of establishing a standardization process that takes into account these curcuminoid proportions with the objective of improving reliability of pharmacology and repeatability of research outcomes.
To read the full-text of this research, you can request a copy directly from the author.
... In addition, curcumin attenuated NF-κB activation concomitant with a lower IL-1β protein content in asthma and allergen-induced pro-inflammatory lung tissue [44,45] and lipopolysaccharide-induced pro-inflammatory mastitis [46]. Similar to curcumin, bisdemethoxycurcumin has been shown to reduce pro-inflammatory signaling (i.e., reduce NF-κB expression) in renal and immune cells [47,48]. However, in comparison to curcumin, bisdemethoxycurcumin suppressed NF-κB activity to a lesser extent [49]. ...
... In addition to CUR, we selected to test purified bisdemethoxycurcumin (CMO) to compare it with CUR as CMO has been shown to be more chemically stable [51] and bioavailable [52] than curcumin. In addition, bisdemethoxycurcumin has been shown to reduce pro-inflammatory signaling (i.e., reduce NF-κB expression) in renal and immune cells [47,48]. Bisdemethoxycurcumin's multi-mechanistic mode of action would enable its potential efficacy in treating spinal nerve ligation-induced muscle atrophy. ...
... Similar to curcumin, bisdemethoxycurcumin has been shown to reduce NF-κB expression in renal and immune cells following bisdemethoxycurcumin supplementation [47,48]. Indeed, curcumin and bisdemethoxycurcumin exhibited an anti-inflammatory effect (i.e., attenuated increase in IBA-1, CD11b, and GFAP gene expression) in the spinal cord and amygdala observed in previously published data from the same study [57]. ...
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm²; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm²; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm²). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca²⁺ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation.
... Nevertheless, because these extracts are ultimately concoctions of multiple bioactive phytochemicals even if the extract is purifed, predictability and repeatability can be a problem. An extract of curcumin that is 97% pure curcumin, for instance, will consist of three curcuminoids of homologous structure, nevertheless, bearing diferential molecular features that also aford diferential pharmacology [24]. Terefore, if proportions of these actives change the pharmacology changes, the proportions of these constituents will be diferent from extraction batch to batch based on climate changes, soil type, and agricultural practices that difer in one country or territory over another [25]. ...
... After overnight incubation at 4°C, membranes were probed with goat anti-rabbit secondary antibody (1 :10,000) (Sigma, USA) for 1 h at room temperature and were developed with the chemiluminescent agent western HRP substrate (Millipore, Sigma). Membranes were imaged using Fluor-S ™ MAX MultiImager (Bio-Rad) and quantifed using Quantity One R software [24,35]. ...
Background:
Ashwagandha extracts play a significant role in traditional Indian medicine to help treat a wide range of disorders from amnesia, erectile dysfunction, neurodegenerative and cardiovascular diseases, cancer, stress, anxiety, and many more. Ashwagandha root is enriched with bioactive plant metabolites of which withanolides are the most important ones. The concentration and constitution of withanolides primarily determine ashwagandha's potency and pharmacology. Various factors modulate the withanolide constitution in the plant-derived extracts, rendering inconsistent therapeutic efficacy. Standardisation of the extraction protocol and a better understanding of the pharmacology mechanism of different extracts with varied withanolide constitutions is therefore critical for developing reliable, repeatable, and effective ashwagandha-based treatment.
Objectives:
Here, we work toward defining indication mechanisms for two varieties of ashwagandha extract-ASHWITH (ASH-Ext1) and Regenolide (ASH-Ext2)-with different proprietary withanolide proportions.
Methods:
ASH-Ext1 was studied for antioxidant signaling modulation using HEK293, HeLa, and A549 cells, and ASH-Ext2 was studied for subcellular drug targets associated with the reactivation and longevity of human hair follicles, using primary human hair follicle dermal papilla cells (HFDPCs).
Results:
Study findings support the antioxidant activity and Nrf2 signaling modulation by ASH-Ext1 in various cell models. Of note, ASH-Ext2 was found to increase β-catenin and telomerase reverse transcriptase (TERT) protein expression levels in HFDPCs.
Conclusion:
The results of drug target modulation show us that the withanolide constitution associated with different extraction protocols influences the pharmacological potential of the extract significantly and points to the value of standardisation not only of total withanolide content but also of internal withanolide proportions.
... Thus, the role of miR-148a varies in the progression of different kinds of cancers. Interestingly, just like its role in different kinds of cancer progression, miR-148a expression is differently regulated by various curcuminoids [48]. More specifically, curcumin I (diferuloylmethane) does not affect the miR-148a expression, while curcumin II (desmethoxycurcumin) downregulates, while curcumin III (bisdemethoxycurcumin) upregulates the miR-148a expression [48]. ...
... Interestingly, just like its role in different kinds of cancer progression, miR-148a expression is differently regulated by various curcuminoids [48]. More specifically, curcumin I (diferuloylmethane) does not affect the miR-148a expression, while curcumin II (desmethoxycurcumin) downregulates, while curcumin III (bisdemethoxycurcumin) upregulates the miR-148a expression [48]. Similarly, another study has unraveled the role of several miRNAs, including miR-19a, miR-27a, and miR-133b, in PC progression in LNCaP cells in response to androgen. ...
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.
... Most of these phytochemicals are ultimately natural pest control designed to regulate transcriptional events in grazers at multiple pathway nodes as defensive strategies. [66][67][68] Could a plant generate metabolites of these chemicals that serve as escalations of protective pharmacology over thousands of years as a natural survival mechanism-natural selection? Many of the ancient regulatory pathways like the NF-kappa-B Signaling, MAPK Signaling, and Nrf2 Signaling are highly conserved and still managing key cellular processes in a wide range of developed species. ...
Ashwagandha (Withania somnifera) has gained worldwide popularity for a multitude of health benefits inclusive of cancer-preventive and curative effects. Despite numerous research data supporting the benefits of this wonder herb, the actual use of ashwagandha for cancer treatment in clinics is limited. The primary reason for this is the inconsistent therapeutic outcome due to highly variable composition and constitution of active ingredients in the plant extract impacting ashwagandha’s pharmacology. We investigate here an engineered yield: an ashwagandha extract (Oncowithanib) that has a unique and fixed portion of active ingredients to achieve consistent and effective therapeutic activity. Using the MCF7 cell line, Oncowithanib was studied for its anti-neoplastic efficacy and drug targets associated with cell cycle regulation, translation machinery, and cell survival and apoptosis. Results demonstrate a dose-dependent decline in Oncowithanib-treated MCF7 cell viability and reduced colony-forming ability. Treated cells showed increased cell death as evidenced by enhancement of Caspase 3 enzyme activity and decreased expressions of cell proliferation markers such as Ki67 and Aurora Kinase A. Oncowithanib treatment was also found to be associated with expressional suppression of key cellular kinases such as RSK1, Akt1, and mTOR in MCF7 cells. Our findings indicate that Oncowithanib decreases MCF7 cell survival and propagation, and sheds light on common drug targets that might be good candidates for the development of cancer therapeutics. Further in-depth investigations are required to fully explore the potency and pharmacology of this novel extract. This study also highlights the importance of the standardization of herbal extracts to get consistent therapeutic activity for the disease indication.
Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by infl ammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and infl ammatory factors is mediated by specifi c signal transduction, in particular the nuclear factor-kappaB (NF-B) and mitogen-activated protein kinase (MAPK)-mediated pathways. NF-B and MAPK have been identifi ed as the master regulators of infl ammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis), and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifi cally target these major infl ammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the infl ammatory and catabolic molecular pathways of intervertebral disc disease (IDD), with a detailed description of NF-B and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.
Peripheral neuropathy is one of the major side effects of cisplatin; however, effective treatments are lacking. Curcumin is a polyphenol found in the root of Curcuma longa and has been shown neuroprotective against several neurological diseases. Nevertheless, its effects on cisplatin neuropathy remain unclear. This study aimed to clarify this issue by inducing neuropathy in the rats with intraperitoneal injection of cisplatin 2 mg/kg twice a week for 5 consecutive weeks. Curcumin 200 mg/kg/day was given by gavage to a group of cisplatin-treated rats during these five weeks. The results showed that cisplatin induced thermal hypoalgesia in the 5(th) week which could be prevented by curcumin. In the 5(th) and 8(th) weeks, sciatic motor nerve conduction velocity was reduced in the cisplatin compared with the control groups. Curcumin significantly attenuated this deficit. Morphometric analysis of L4 dorsal root ganglia from the cisplatin group revealed nuclear and nucleolar atrophy including loss of neurons in the 8(th) week. These alterations were significantly blocked by curcumin. Moreover, curcumin also ameliorated the reduced myelin thickness in the sciatic nerve of cisplatin-treated rats. Taken together, our findings suggest the favorable effects of curcumin on both functional and structural abnormalities in cisplatin neuropathy. Future studies are needed to clarify the exact underlying mechanisms.
Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in 'o-glycan biosynthesis', 'endoplasmatic reticulum protein processing' and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly.
Chemiluminescent western blotting has been in common practice for over three decades, but its use as a quantitative method for measuring the relative expression of the target proteins is still debatable. This is mainly due to the various steps, techniques, reagents, and detection methods that are used to obtain the associated data. In order to have confidence in densitometric data from western blots, researchers should be able to demonstrate statistically significant fold differences in protein expression. This entails a necessary evolution of the procedures, controls, and the analysis methods. We describe a methodology to obtain reliable quantitative data from chemiluminescent western blots using standardization procedures coupled with the updated reagents and detection methods.
In recent years, microRNAs (miRNAs) have been reported to play important roles in a broad range of biologic processes, including oxidative stress-mediated ocular diseases. In addition, the polyphenolic compound curcumin has been shown to possess anti-inflammatory, antioxidant, anticancer, antiproliferative, and proapoptotic activities. The aim of this study was to investigate the impact of curcumin on the expression profiles of miRNAs in ARPE-19 cells exposed to oxidative stress.
MiRNA expression profiles were measured in ARPE-19 cells treated with 20 μΜ curcumin and 200 μΜ H2O2. PCR array analysis was performed using web-based software from SABiosciences. The cytotoxicity of ARPE-19 cells was determined with the CellTiter-Blue cell viability assay. The effects of curcumin on potential miRNA targets were analyzed with quantitative real-time PCR and western blotting.
Curcumin treatment alone for 6 h had no effect on ARPE-19 cell viability. Incubation with H2O2 (200 µM) alone for 18 h decreased cell viability by 12.5%. Curcumin alone downregulated 20 miRNAs and upregulated nine miRNAs compared with controls. H2O2 downregulated 18 miRNAs and upregulated 29 miRNAs. Furthermore, curcumin pretreatment in cells exposed to H2O2 significantly reduced the H2O2-induced expression of 17 miRNAs. As determined with quantitative real-time PCR and western blotting, curcumin increased the expression of antioxidant genes and reduced angiotensin II type 1 receptor, nuclear factor-kappa B, and vascular endothelial growth factor expression at the messenger RNA and protein levels.
The results demonstrated that curcumin alters the expression of H2O2-modulated miRNAs that are putative regulators of antioxidant defense and renin-angiotensin systems, which have been reported to be linked to ocular diseases.
Background:
Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia.
Methods:
We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice.
Results:
We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease.
Conclusions:
Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.).
When activated, NF-κB, a ubiquitous transcription factor, binds DNA as a heterodimeric complex composed of members of the
Rel/NF-κB family of polypeptides. Because of its intimate involvement in host defense against disease, this transcription
factor is an important target for therapeutic intervention. In the present report we demonstrate that curcumin (diferuloylmethane),
a known anti-inflammatory and anticarcinogenic agent, is a potent inhibitor of NF-κB activation. Treatment of human myeloid
ML-1a cells with tumor necrosis factor (TNF) rapidly activated NF-κB, which consists of p50 and p65 subunits, and this activation
was inhibited by curcumin. AP-1 binding factors were also found to be down-modulated by curcumin, whereas the Sp1 binding
factor was unaffected.
Besides TNF, curcumin also blocked phorbol ester- and hydrogen peroxide-mediated activation of NF-κB. The TNF-dependent phosphorylation
and degradation of IκBα was not observed in curcumin-treated cells; the translocation of p65 subunit to the nucleus was inhibited
at the same time. The mechanism of action of curcumin was found to be different from that of protein tyrosine phosphatase
inhibitors. Our results indicate that curcumin inhibits NF-κB activation pathway at a step before IκBα phosphorylation but
after the convergence of various stimuli.
Dysregulation of microRNAs is a common feature in human cancers, including breast cancer (BC). Here we describe the epigenetic regulation of miR-148a and miR-152 and their impact on BC cells. Due to the hypermethylation of CpG island, the expression levels of both miR-148a and miR-152 (miR-148a/152) are decreased in BC tissues and cells. DNMT1, the DNA methyltransferase 1 for the maintenance methylation, is aberrantly up-regulated in BC and its overexpression is responsible for hypermethylation of miR-148a and miR-152 promoters. Intriguingly, we found that DNMT1 expression, which is one of the targets of miR-148a/152, is inversely correlated with the expression levels of miR-148a/152 in BC tissues. Those results lead us to propose a negative feedback regulatory loop between miR-148a/152 and DNMT1 in BC. More importantly, we demonstrate that IGF-IR and IRS1, often overexpressed in BC, are two novel targets of miR-148a/152. Overexpression of miR-148a or miR-152 significantly inhibits BC cell proliferation, colony formation, and tumor angiogenesis via targeting IGF-IR and IRS1 and suppressing their downstream AKT and MAPK/ERK signaling pathways. Our results suggest a novel miR-148a/152-DNMT1 regulatory circuit and reveal that miR-148a and miR-152 act as tumor suppressors by targeting IGF-IR and IRS1, and that restoration of miR-148a/152 expression may provide a strategy for therapeutic application to treat BC patients.
Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB) and mitogen-activated protein kinase (MAPK)-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis), and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD), with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.
Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression data of GBM patients (n=222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated the patients into high and low risk groups with significantly different survival times (hazard ratio [HR]=2.4; 95% CI=1.4-3.8; p<0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was independently validated in the testing set (HR=1.7; 95% CI=1.1-2.8; p=0.002). GBM patients with high risk scores had overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0% at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0% respectively in the high risk group (HR=2.0; 95% CI=1.4-2.8; p<0.0001). Cox multivariate analysis with patient age as a covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent predictor of patient survival (HR=1.120; 95% CI=1.04-1.20; p=0.003). Thus we have identified a miRNA expression signature that can predict GBM patient survival. These findings may have implications in the understanding of gliomagenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy.
Systemic lupus erythematosus is a complex autoimmune disease caused by genetic and epigenetic alterations. DNA methylation abnormalities play an important role in systemic lupus erythematosus disease processes. MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including human lupus. Whereas previous studies have shown miRNAs can regulate DNA methylation by targeting the DNA methylation machinery, the role of miRNAs in aberrant CD4+ T cell DNA hypomethylation of lupus is unclear. In this study, by using high-throughput microRNA profiling, we identified that two miRNAs (miR-21 and miR-148a) overexpressed in CD4+ T cells from both patients with lupus and lupus-prone MRL/lpr mice, which promote cell hypomethylation by repressing DNA methyltransferase 1 (DNMT1) expression. This in turn leads to the overexpression of autoimmune-associated methylation-sensitive genes, such as CD70 and LFA-1, via promoter demethylation. Further experiments revealed that miR-21 indirectly downregulated DNMT1 expression by targeting an important autoimmune gene, RASGRP1, which mediated the Ras-MAPK pathway upstream of DNMT1; miR-148a directly downregulated DNMT1 expression by targeting the protein coding region of its transcript. Additionally, inhibition of miR-21 and miR-148a expression in CD4+ T cells from patients with lupus could increase DNMT1 expression and attenuate DNA hypomethylation. Together, our data demonstrated a critical functional link between miRNAs and the aberrant DNA hypomethylation in lupus CD4+ T cells and could help to develop new therapeutic approaches.
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is accounted for by the absence of early diagnostic markers and effective treatments. MicroRNAs inhibit the translation of their target mRNAs. The production of microRNAs is strongly altered in cancers, but the causes of these alterations are only partially known. DNA hypermethylation is a major cause of gene inactivation in cancer. Our aims were to identify microRNAs whose gene expression is inactivated by hypermethylation in PDAC and to determine whether this hypermethylation-mediated repression is an early event during pancreatic carcinogenesis. We also sought to investigate whether these differentially methylated regions can serve as a diagnostic marker for PDAC.
MicroRNA production was measured by microarray hybridization and reverse-transcription quantitative PCR. The level of DNA methylation was measured by bisulfite mapping and semiquantitative methylation-specific PCR.
We identified 29 microRNAs encoded by genes whose expression is potentially inactivated by DNA hypermethylation. We focused our study on microRNA 148a (miR-148a) and found its production to be repressed, not only in PDAC samples but also in preneoplastic pancreatic intraepithelial neoplasia (PanIN) lesions. More importantly, we found that hypermethylation of the DNA region encoding miR-148a is responsible for its repression, which occurs in PanIN preneoplastic lesions. Finally, we show that the hypermethylated DNA region encoding miR-148a can serve as an ancillary marker for the differential diagnosis of PDAC and chronic pancreatitis (CP).
We show that the hypermethylation of the DNA region encoding miR-148a is responsible for its repression in PDAC precursor lesions and can be a useful tool for the differential diagnosis of PDAC and CP.
MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen- and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3'-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR-148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer.
Transcription of the mast cell growth factor SCF (stem cell factor) is upregulated in inflammatory conditions, and this is dependent upon NF-kappaB, as well as the MAP kinases p38 and ERK activation. We show here that the MAPK downstream nuclear kinase MSK1 induces NF-kappaB p65 Ser276 phosphorylation upon IL-1beta treatment, which was inhibited in cells transfected with a MSK1 kinase-dead (KD) mutant compared to the WT control. In addition, we show by ChIP experiments that MSK1 as well as MAPK inhibition abolishes binding of p65, of its coactivator CBP, and of MSK1 itself to the kappaB intronic enhancer site of the SCF gene. We show that interaction between NF-kappaB and CBP is prevented in cells transfected by a p65 S276C mutant. Finally, we demonstrate that both transfections of MSK1-KD and MSK1 siRNA -- but not the WT MSK1 or control siRNA -- downregulate the expression of SCF induced by IL-1ss. Our study provides therefore a direct link between MSK1-mediated phosphorylation of Ser276 p65 of NF-kappaB, allowing its binding to the SCF intronic enhancer, and pathophysiological SCF expression in inflammation.
The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS.
NF-kappa B plays a critical role in the transcriptional regulation of proinflammatory gene expression in various cells. Cytokine-mediated activation of NF-kappa B requires activation of various kinases, which ultimately leads to the phosphorylation and degradation of I kappa B, the NF-kappa B cytoplasmic inhibitor. The food derivative curcumin has been shown to inhibit NF-kappa B activity in some cell types. In this report we investigate the mechanism of action of curcumin on cytokine-induced proinflammatory gene expression using intestinal epithelial cells (IEC). Curcumin inhibited IL-1 beta-mediated ICAM-1 and IL-8 gene expression in IEC-6, HT-29, and Caco-2 cells. Cytokine-induced NF-kappa B DNA binding activity, RelA nuclear translocation, I kappa B alpha degradation, I kappa B serine 32 phosphorylation, and I kappa B kinase (IKK) activity were blocked by curcumin treatment. Wound-induced p38 phosphorylation was not inhibited by curcumin treatment. In addition, mitogen-activated protein kinase/ERK kinase kinase-1-induced IL-8 gene expression and 12-O-tetraphorbol 12-myristate 13-acetate-responsive element-driven luciferase expression were inhibited by curcumin. However, I kappa B alpha degradation induced by ectopically expressed NF-kappa B-inducing kinase or IKK was not inhibited by curcumin treatment. Therefore, curcumin blocks a signal upstream of NF-kappa B-inducing kinase and IKK. We conclude that curcumin potently inhibits cytokine-mediated NF-kappa B activation by blocking a signal leading to IKK activity.
Colorectal cancer is a major cause of cancer deaths in Western countries, but epidemiological data suggest that dietary modification might reduce these by as much as 90%. Cyclo-oxygenase 2 (COX2), an inducible isoform of prostaglandin H synthase, which mediates prostaglandin synthesis during inflammation, and which is selectively overexpressed in colon tumours, is thought to play an important role in colon carcinogenesis. Curcumin, a constituent of turmeric, possesses potent anti-inflammatory activity and prevents colon cancer in animal models. However, its mechanism of action is not fully understood. We found that in human colon epithelial cells, curcumin inhibits COX2 induction by the colon tumour promoters, tumour necrosis factor alpha or fecapentaene-12. Induction of COX2 by inflammatory cytokines or hypoxia-induced oxidative stress can be mediated by nuclear factor kappa B (NF-kappaB). Since curcumin inhibits NF-kappaB activation, we examined whether its chemopreventive activity is related to modulation of the signalling pathway which regulates the stability of the NF-kappaB-sequestering protein, IkappaB. Recently components of this pathway, NF-kappaB-inducing kinase and IkappaB kinases, IKKalpha and beta, which phosphorylate IkappaB to release NF-kappaB, have been characterised. Curcumin prevents phosphorylation of IkappaB by inhibiting the activity of the IKKs. This property, together with a long history of consumption without adverse health effects, makes curcumin an important candidate for consideration in colon cancer prevention.
Curcumin is a small-molecular-weight compound that is isolated from the commonly used spice turmeric. In animal models, curcumin and its derivatives have been shown to inhibit the progression of chemically induced colon and skin cancers. The genetic changes in carcinogenesis in these organs involve different genes, but curcumin is effective in preventing carcinogenesis in both organs. A possible explanation for this finding is that curcumin may inhibit angiogenesis.
Curcumin was tested for its ability to inhibit the proliferation of primary endothelial cells in the presence and absence of basic fibroblast growth factor (bFGF), as well as its ability to inhibit proliferation of an immortalized endothelial cell line. Curcumin and its derivatives were subsequently tested for their ability to inhibit bFGF-induced corneal neovascularization in the mouse cornea. Finally, curcumin was tested for its ability to inhibit phorbol ester-stimulated vascular endothelial growth factor (VEGF) mRNA production.
Curcumin effectively inhibited endothelial cell proliferation in a dose-dependent manner. Curcumin and its derivatives demonstrated significant inhibition of bFGF-mediated corneal neovascularization in the mouse. Curcumin had no effect on phorbol ester-stimulated VEGF production.
These results indicate that curcumin has direct antiangiogenic activity in vitro and in vivo. The activity of curcumin in inhibiting carcinogenesis in diverse organs such as the skin and colon may be mediated in part through angiogenesis inhibition.
Stimulation of the Ras-mitogen-activated protein kinase (MAPK) pathway by growth factors, phorbol esters, and oncoproteins results in the phosphorylation of histone H3. Rsk-2 and MSK1 have been reported to be H3 kinases activated by the Ras-MAPK signal transduction pathway. In this study, we used inhibitors of Rsk-2 and MSK1 to decide which of these kinases was responsible for the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of H3 in 10T(1/2) and Ciras-3 (H-ras-transformed 10T(1/2)) mouse fibroblasts. These studies demonstrated that MSK1, but not Rsk-2, was the H3 kinase activated in these cells. Furthermore, assays with Rsk-2 showed that this kinase phosphorylates H2B but not H3 in vitro. H89, a potent MSK1 inhibitor, prevented TPA induction of H3 phosphorylation and diminished the TPA-induced expression of the c-fos and urokinase plasminogen activator genes. We propose that persistent activation of the Ras-MAPK pathway and MSK1 resulting in the elevation of phosphorylated H3 levels may contribute to the aberrant gene expression observed in the oncogene-transformed cells.
The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.
A battery of proinflammatory agents triggers the activation of NF-kappaB. This inducible transcription factor participates in the expression of an exceptionally large number of target genes, many of them contributing to the regulation of innate and adaptive immunity. Since some target genes also function as NF-kappaB activators, activation of this transcription factor allows the establishment of a signal amplification loop. Dysregulation of the NF-kappaB system and hyperactivated expression of inflammatory mediators are often found in association with some autoimmune diseases, which occur upon mounting of the adaptive immune response against self-antigens. In this review we summarize the relevance of aberrant NF-kappaB signaling for the development and perpetuation of some autoimmune diseases such as rheumatoid arthritis, diabetes mellitus type 1 and Crohn's disease. The assets and drawbacks of systemic or cell-type specific NF-kappaB inhibitors and their potential use in therapy of autoimmune diseases are critically discussed.
Acetylation of histones and non-histone proteins is an important post-translational modification involved in the regulation of gene expression in eukaryotes and all viral DNA that integrates into the human genome (e.g. the human immunodeficiency virus). Dysfunction of histone acetyltransferases (HATs) is often associated with the manifestation of several diseases. In this respect, HATs are the new potential targets for the design of therapeutics. In this study, we report that curcumin (diferuloylmethane), a major curcumanoid in the spice turmeric, is a specific inhibitor of the p300/CREB-binding protein (CBP) HAT activity but not of p300/CBP-associated factor, in vitro and in vivo. Furthermore, curcumin could also inhibit the p300-mediated acetylation of p53 in vivo. It specifically represses the p300/CBP HAT activity-dependent transcriptional activation from chromatin but not a DNA template. It is significant that curcumin could inhibit the acetylation of HIV-Tat protein in vitro by p300 as well as proliferation of the virus, as revealed by the repression in syncytia formation upon curcumin treatment in SupT1 cells. Thus, non-toxic curcumin, which targets p300/CBP, may serve as a lead compound in combinatorial HIV therapeutics.
Phosphorylation of NF-kappaB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IkappaB kinase (IKK)-alpha/beta (the best characterized Ser-536 kinases so far) or the IKKbeta inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKalpha/beta-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKalpha, IKKbeta, IKKepsilon, and TBK1. Overexpressed IKKepsilon and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.
The transcription factor NF kappa B (NF-κB) mediates the expression of numerous genes involved in diverse functions such as inflammation, immune response, apoptosis, and cell proliferation. We recently identified constitutive activation of NF-κB (p50/p65) as a common feature of Hodgkin/Reed-Sternberg (HRS) cells preventing these cells from undergoing apoptosis and triggering proliferation. To examine possible alterations in the NF-κB/IκB system, which might be responsible for constitutive NF-κB activity, we have analyzed the inhibitor I kappa B alpha (IκB) in primary and cultured HRS cells on protein, mRNA, and genomic levels. In lymph node biopsy samples from Hodgkin’s disease patients, IκB mRNA proved to be strongly overexpressed in the HRS cells. In 2 cell lines (L428 and KM-H2), we detected mutations in the IκB gene, resulting in C-terminally truncated proteins, which are presumably not able to inhibit NF-κB–DNA binding activity. Furthermore, an analysis of the IκB gene in single HRS cells micromanipulated from frozen tissue sections showed a monoallelic mutation in 1 of 10 patients coding for a comparable C-terminally truncated IκB protein. We suggest that the observed IκB mutations contribute to constitutive NF-κB activity in cultured and primary HRS cells and are therefore involved in the pathogenesis of these Hodgkin’s disease (HD) patients. The demonstrated constitutive overexpression of IκB in HRS cells evidences a deregulation of the NF-κB/IκB system also in the remaining cases, probably due to defects in other members of the IκB family.
The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Summary The role of microglia in neurodegeneration, toxicology and immunity is an expanding area of biomedical research requiring large numbers of animals. Use of a microglia-like cell line would accelerate many research programmes and reduce the necessity of continuous cell preparations and animal experimentation, provided that the cell line reproduces the in vivo situation or primary microglia (PM) with high fidelity. The immortalised murine microglial cell line BV-2 has been used frequently as a substitute for PM, but recently doubts were raised as to their suitability. Here, we re-evaluated strengths and potential shortcomings of BV-2 cells. Their response to lipopolysaccharide was compared with the response of microglia in vitro and in vivo. Transcriptome (480 genes) and proteome analyses after stimulation with lipopolysaccharide indicated a reaction pattern of BV-2 with many similarities to that of PM, although the average upregulation of genes was less pronounced. The cells showed a normal regulation of NO production and a functional response to IFN-γ, important parameters for appropriate interaction with T cells and neurons. BV-2 were also able to stimulate other glial cells. They triggered the translocation of NF-κB, and a subsequent production of IL-6 in astrocytes. Thus, BV-2 cells appear to be a valid substitute for PM in many experimental settings, including complex cell-cell interaction studies.
Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that, by regulating the expression of multiple inflammatory and immune genes, plays a critical role in host defence and in chronic inflammatory diseases. It is a heterodimer, present in the cytoplasm in an inactive form complexed to an inhibitory protein, IκB. Many extracellular stimuli, including viruses, oxidants, inflammatory cytokines and immune stimuli, activate NF-κB. Once activated, it binds to recognition elements in the promoter regions of inflammatory and immune genes, such as proinflammatory cytokines, chemokines, inflammatory enzymes and adhesion molecules. Glucocorticoids inhibit activated NF-κB and this is likely to be important in the anti-inflammatory action of steroids. Novel inhibitors of NF-κB are now under development for treatment of inflammatory diseases such as asthma, rheumatoid arthritis and inflammatory bowel disease.
Curcumin induces cancer cell growth arrest and apoptosis in vitro, but its poor bioavailability in vivo limits its antitumor efficacy. We have previously evaluated the bioavailability of novel analogues of curcumin compared with curcumin, and we found that the analogue CDF exhibited greater systemic and pancreatic tissue bioavailability. In this study, we evaluated the effects of CDF or curcumin alone or in combination with gemcitabine on cell viability and apoptosis in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer (PC) cell lines. Mechanistic investigations revealed a significant reduction in cell viability in CDF-treated cells compared with curcumin-treated cells, which were also associated with the induction of apoptosis, and these results were consistent with the downregulation of Akt, cyclooxygenase-2, prostaglandin E(2), vascular endothelial growth factor, and NF-kappaB DNA binding activity. We have also documented attenuated expression of miR-200 and increased expression of miR-21 (a signature of tumor aggressiveness) in gemcitabine-resistant cells relative to gemcitabine-sensitive cells. Interestingly, CDF treatment upregulated miR-200 expression and downregulated the expression of miR-21, and the downregulation of miR-21 resulted in the induction of PTEN. These results prompt further interest in CDF as a drug modality to improve treatment outcome of patients diagnosed with PC as a result of its greater bioavailability in pancreatic tissue.
MicroRNAs (miRNAs) play an essential role in regulating gene expression in normal and malignant cells. Expression of the microRNA-200 (miR-200) family has been correlated with malignancy in cancers. However, whether miR-200a/b plays a role in curcumin-mediated treatment of hepatocellular carcinoma (HCC) is unknown. We performed miRNA array analyses in two different HCC cell lines (HepG2 and HepJ5). The expression patterns of miR-200 family members were assessed with real-time PCR. We overexpressed miR-200 family members using a lentiviral system and selected stably transduced clones with antibiotics. The anticancer effects of curcumin on J5-200a, J5-200b, and J5-control cells were assessed by MTT assay, flow cytometry cell cycle analysis, and TUNEL assay. We found that HepG2 cells, which were more resistant to curcumin treatment than HepJ5 cells, expressed higher levels of miR-200a/b. The MTT assay revealed that the overexpression of miR-200a/b in HepJ5 cells conferred enhanced resistance to curcumin treatment compared with the control cells. By cell cycle analysis and TUNEL assay, we found that apoptosis was increased dramatically in J5-control cells compared with J5-200a and J5-200b cells after curcumin treatment. Finally, we evaluated the levels of Bcl-2, Bax, and Bad, and found a decrease of Bcl-2 levels and increase of Bad levels in the J5-control cells treated with curcumin. The expression levels of miR-200a/b might determine the therapeutic efficacy of curcumin on HCC cells.
Recent studies have implied that miRNAs act as crucial modulators for epithelial-to-mesenchymal transition (EMT). We found that miR-148a is significantly downregulated in non-small cell lung cancer (NSCLC) compared to adjacent non-cancerous lung tissues, and the downregulated miR-148a was significantly associated with lymph-node metastasis. Functional assays demonstrated that miR-148a inhibited EMT in NSCLC cells. Moreover, miR-148a decreased 3'-untranslated region luciferase activity of ROCK1 and ROCK1 protein expression. Knockdown of ROCK1 reversed EMT resembling that of miR-148a overexpression. Furthermore, ROCK1 was widely upregulated in NSCLC, and its mRNA levels were inversely correlated with miR-148a expression. These findings suggest that miR-148a acts as a novel EMT suppressor in NSCLC cells, at least in part by modulation of ROCK1.
MicroRNAs (miRNAs) have been shown to be dysregulated in virus-related cancers; however, miRNA regulation of virus-related cancer development and progression remains poorly understood. Here, we report that miR-148a is repressed by hepatitis B virus (HBV) X protein (HBx) to promote cancer growth and metastasis in a mouse model of hepatocellular carcinoma (HCC). Hematopoietic pre-B cell leukemia transcription factor-interacting protein (HPIP) is an important regulator of cancer cell growth. We used miRNA target prediction programs to identify miR-148a as a regulator of HPIP. Expression of miR-148a in hepatoma cells reduced HPIP expression, leading to repression of AKT and ERK and subsequent inhibition of mTOR through the AKT/ERK/FOXO4/ATF5 pathway. HBx has been shown to play a critical role in the molecular pathogenesis of HBV-related HCC. We found that HBx suppressed p53-mediated activation of miR-148a. Moreover, expression of miR-148a was downregulated in patients with HBV-related liver cancer and negatively correlated with HPIP, which was upregulated in patients with liver cancer. In cultured cells and a mouse xenograft model, miR-148a reduced the growth, epithelial-to-mesenchymal transition, invasion, and metastasis of HBx-expressing hepatocarcinoma cells through inhibition of HPIP-mediated mTOR signaling. Thus, miR-148a activation or HPIP inhibition may be a useful strategy for cancer treatment.
Nitric oxide (NO) plays an important role in inflammation and in the multiple stages of carcinogenesis. In this study, we investigated the inhibitory effects of curcumin and its metabolites, tetrahydrocurcumin, hexahydrocurcumin, and octahydrocurcumin, on the induction of NO synthase (NOS) in RAW 264.7 cells activated with lipopolysaccharide (LPS). Western blotting and northern blotting analyses demonstrated that curcumin strongly reduced 130-kDa protein and 4.5-kb mRNA levels of iNOS in LPS-activated macrophages compared with its metabolites, tetrahydrocurcumin, hexahydrocurcumin, and octahydrocurcumin. Moreover, electrophoretic mobility shift assay (EMSA) experiments indicated that curcumin blocked the LPS-induced binding of nuclear factor-κB (NFκB), a transcription factor necessary for iNOS induction to its 32P-labeled double-stranded oligonucleotide probe. The inhibition of NFκB activation occurred through the prevention of inhibitor κB (IκB) degradation. Transient transfection experiments also showed that curcumin inhibited NFκB-dependent transcriptional activity. Curcumin blocked the disappearance of inhibitory κBα (IκBα) and p65 from the cytosolic fraction, and inhibited the phosphorylation of IκBα. Furthermore, we showed that curcumin could inhibit the IκB kinase 1 (IKK1) and IκB kinase 2 (IKK2) activities induced by LPS, but tetrahydrocurcumin, hexahydrocurcumin, and octahydrocurcumin were less active. These results suggest that curcumin may exert its anti-inflammatory and anti-carcinogenic properties by suppressing the activation of NFκB through inhibition of IKK activity.
Studies have shown that microRNA-148a (miR-148a) was proved to be silenced while DNA methyltransferase 1 (DNMT1) was over-expressed in gastric cancer. But the mechanism of aberrant expression of miR-148a and DNMT1 and their relationships in gastric cancer are still unknown. The aims of this study were to investigate the expression profile of miR-148a and DNMT1 and reveal whether they have any relationships. We used reverse-transcriptase quantitative real-time PCR, methylation-specific PCR and Western blot to measure the level of miR-148a expression, DNA methylation level and DNMT1 expression, respectively. Gastric cancer cells were transfected with plasmid or siRNA or treated with 5-aza-2'-deoxycytidine. Cell proliferation and apoptosis were detected by cell counting and flow cytometric analysis. In this study, we demonstrated that gastric cancer tissues and cell lines displayed a consistent down-regulation of miR-148a and hypermethylation of promoter region. DNMT1 was over-expressed in primary tumors and cell lines, while knockdown of DNMT1 using siRNA could decrease methylation level of miR-148a promoter and restore its expression. Furthermore, ectopic over-expression of miR-148a in cancer cell lines caused reduction in DNMT1 expression and inhibited cell proliferation, but no obvious change was found in apoptosis rate. These results suggest that miR-148a is inactivated by DNA hypermethylation of promoter region in gastric cancer, which is mediated through DNMT1 over-expression. Additionally, the silence of miR-148a reduces its suppression to DNMT1 in gastric cancer, and this may in turn result in over-expression of DNMT1 and promote DNA hypermethylation.
Response to chemotherapy varies widely in patients with advanced oesophageal cancer. We investigated the impact of manipulating certain microRNAs on response to cisplatin and 5-fluorouracil (5-FU) in oesophageal cancer cells.
Cisplatin-/5-fluorouracil-resistant oesophageal squamous cell carcinoma (SCC) and adenocarcinoma (EAC) cell lines were established, and the impact of ectopic upregulation of miR-106a and miR-148a on response to both drugs was assessed.
The impact of miR-106a-upregulation was inconsistent. Upregulation was followed by reduced sensitivity to cisplatin in chemotherapy-sensitive EAC cells (cell survival, +8.7 ± 0.8%; p = 0.003) and an improved response to 5-FU in cisplatin-resistant EAC cells (cell survival, -6.4 ± 2.5%; p = 0.011). MiR-148a upregulation significantly increased sensitivity to chemotherapy in seven out of ten cell lines, represented by a decrease in cell viability of 22.6 ± 7.9% to 50.5 ± 10.6% after cisplatin (p ≤ 0.014) and 6.0 ± 0.8% to 15.0 ± 4.1% after 5-FU treatment (p ≤ 0.012). The only cell lines in which miR-148a upregulation had no effect were cisplatin-resistant EAC exposed to cisplatin and 5-FU-sensitive and 5-FU-resistant SCC cells exposed to 5-FU.
MiR-148a sensitized chemotherapy-sensitive oesophageal cancer cell lines to cisplatin and, to a lesser extent, to 5-flurouracil and attenuated resistance in chemotherapy-resistant variants. Further experimental and clinical studies to investigate the exact mechanisms involved are warranted.
The clinical benefits of curcumin as a single agent were demonstrated in patients with advanced pancreatic cancer in a phase 2 study despite pharmacokinetic analysis showing a much lower plasma concentration of curcumin in humans than in vitro. The diverse and broad biological activities of curcumin are mediated through direct interaction of curcumin with target proteins as well as epigenetic modulation of target genes, supported by evidence that curcumin modulates gene expression in a time- and concentration-dependent manner in human cancer cells. This review delineates the novel mechanisms of curcumin as an epigenetic agent through its interaction with histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and microRNAs. Accumulating data support curcumin's functionality in modulating multiple biological processes at low concentrations through its activity as an epigenetic agent. The development of curcumin as an epigenetic agent warrants further preclinical and clinical studies to explore its diversity and efficacy in cancer treatment and in combination with other anticancer agents.
MicroRNAs are endogenous small noncoding RNAs that aberrantly expressed in various carcinomas. MiR-148a and miR-152, which have the same "seed region", have not been comprehensively investigated in gastrointestinal cancers.
Total RNA was extracted from the tissues of 101 patients with gastric cancer and 101 patients with colorectal cancer as well as their matched nontumor adjacent tissues. After polyadenylation and reverse transcription, the expression of miR-148a and miR-152 was determined using quantitative real-time polymerase chain reaction. The protein level of cholecystokinin B receptor, which might be the target gene of miR-148a and miR-152, was analyzed by Western blot in 40 patients with gastric cancer.
Expression levels of miR-148a and miR-152 in human gastric (p < 0.001 and p = 0.038, respectively, t-test) and colorectal (all p < 0.001) cancers were significantly lower than that in their matched nontumor adjacent tissues. Moreover, their low expression was also found in several gastrointestinal cancer cell lines compared with normal gastric epithelial cell line and normal colorectal tissue, respectively. A strong correlation was found between the expression of miR-148a and miR-152 (all p < 0.001, Pearson's correlation). Furthermore, low expression of miR-152 was correlated with increased tumor size (p = 0.023 and 0.004, respectively, Mann-Whitney U test) and advanced pT stage (p = 0.018 and 0.002, respectively) in gastrointestinal cancers. Low expression of miR-148a was also correlated with increased tumor size (p = 0.045 and 0.018, respectively) in gastrointestinal cancers, but only correlated with advanced pT stage (p = 0.023) in colorectal cancer. We also found the expression of miR-148a (p < 0.001, chi-square test) and miR-152 (p = 0.002) inversely correlated with cholecystokinin B receptor protein in gastric cancer.
MiR-148a and miR-152 may be involved in the carcinogenesis of gastrointestinal cancers and might be potential biomarkers in these cancers.
Curcumin (diferuloylmethane), a yellow pigment in the spice turmeric (also called curry powder), has been used for centuries as a treatment for inflammatory diseases. Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor kappaB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6). Because of the crucial role of inflammation in most chronic diseases, the potential of curcumin has been examined in neoplastic, neurological, cardiovascular, pulmonary and metabolic diseases. The pharmacodynamics and pharmacokinetics of curcumin have been examined in animals and in humans. Various pharmacological aspects of curcumin in vitro and in vivo are discussed in detail here.
Curcumin, a yellow pigment present in the Indian spice turmeric (associated with curry powder), has been linked with suppression of inflammation; angiogenesis; tumorigenesis; diabetes; diseases of the cardiovascular, pulmonary, and neurological systems, of skin, and of liver; loss of bone and muscle; depression; chronic fatigue; and neuropathic pain. The utility of curcumin is limited by its color, lack of water solubility, and relatively low in vivo bioavailability. Because of the multiple therapeutic activities attributed to curcumin, however, there is an intense search for a "super curcumin" without these problems. Multiple approaches are being sought to overcome these limitations. These include discovery of natural curcumin analogues from turmeric; discovery of natural curcumin analogues made by Mother Nature; synthesis of "man-made" curcumin analogues; reformulation of curcumin with various oils and with inhibitors of metabolism (e.g., piperine); development of liposomal and nanoparticle formulations of curcumin; conjugation of curcumin prodrugs; and linking curcumin with polyethylene glycol. Curcumin is a homodimer of feruloylmethane containing a methoxy group and a hydroxyl group, a heptadiene with two Michael acceptors, and an alpha,beta-diketone. Structural homologues involving modification of all these groups are being considered. This review focuses on the status of all these approaches in generating a "super curcumin.".
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
We have previously demonstrated that anti-inflammatory and antioxidant compound curcumin (diferuloyl-methane) inhibits the expression of monocyte chemoattractant protein-1 (MCP-1/JE) in bone marrow stromal cells by suppressing the transcriptional activity of the MCP-1/JE gene. Since both AP-1 (TRE) and NF-kB (kB) binding motifs are present in the promoter of MCP-1/JE gene, we examined the effect of curcumin on IL1 alpha- and TNF-alpha-induced activation of ubiquitous transcription factors AP-1 and NF-kB by electrophoretic mobility shift assay and Western blotting. IL1 alpha and TNF-alpha rapidly induced both AP-1 and NF-kB DNA binding activities in +/+(-)1.LDA11 stromal cells. However, treatment of these cells with curcumin blocked the activation of AP-1 and NF-kB by both cytokines. These data suggest that inhibition of MCP-1/JE transcription by curcumin involves blocking of AP-1 and NF-kB activation by IL1 alpha or TNF-alpha.
Interleukin-1 (IL-1) is a central regulator of the immune and inflammatory responses. Recently, significant advances have been made in the area of IL-1 receptors and IL-1 signal transduction. A family of proteins has been described that share significant homology in their signaling domains with the Type I IL-1 receptor (IL-1RI). These include the IL-1 receptor accessory protein (IL-1AcP), which does not bind IL-1 but is essential for IL-1 signaling; a Drosophila protein Toll; a number of human Toll-like receptors (hTLRs); the putative IL-18/IL-1-gamma receptor IL-1Rrp (IL-1 receptor-related protein); and a number of plant proteins. All appear to be involved in host responses to injury and infection. These homologies also extend to novel signaling proteins implicated in IL-1 action. Two IL-1 receptor-associated kinases, IRAK-1 and IRAK-2, which have homologs in Drosophila (Pelle) and plants (Pto), have been implicated in the activation of the transcription factor, nuclear factor kappaB (NF-kappaB). IRAK-1 has also been implicated in AP1 induction, Jun amino-terminal kinase (JNK) activation, and IL-2 induction. It recruits the adapter protein TRAF6 to the IL-1 receptor complex via an interaction with IL-1AcP. TRAF6 then relays the signal via NF-kappaB-inducing kinase (NIK) to two I-kappaB kinases (IKK-1 and -2), leading to NF-kappaB activation. Progress has also been made on other IL-1-responsive kinases, including JNK and p38 MAP kinase, with the latter having a role in multiple responses to IL-1. The remarkable conservation between diverse species indicates that the IL-1 system represents an ancient signaling machine critical for responses to environmental stresses and attack by pathogens.
Activation of the NF-κB/Rel transcription family, by nuclear translocation of cytoplasmic complexes, plays a central role in inflammation through its ability to induce transcription of proinflammatory genes (1). This pathway is activated upon appropriate cellular stimulation, most often by signals related to pathogens or stress. Here we will discuss the specificity of various NF-κB proteins, their role in inflammatory disease, the regulation of NF-κB activity by IκB proteins and IκB kinase (IKK), and the development of therapeutic strategies aimed at inhibition of NF-κB.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Cyclooxygenase (COX)-2 plays an important role in colon carcinogenesis. To investigate the effect of curcumin on COX-2 expression, we treated HT-29 human colon cancer cells with various concentrations of curcumin. Curcumin inhibited the cell growth of HT-29 cells in a concentration- and time-dependent manner. Curcumin markedly inhibited the mRNA and protein expression of COX-2, but not COX-1. These data suggest that a non-toxic concentration of curcumin has a significant effect on the in vitro growth of HT-29 cells, specifically inhibits COX-2 expression, and may have value as a safe chemopreventive agent for colon cancer.
Description of the involvement of the transcription factor NF-kB in inflammatory, autoimmune and neoplastic processes. Clinical implications from basic research.
Review of the most significant data reported in the literature and personal publications.
NF-kB is an ubiquitous transcription factor member of the proto-oncogene family rel. NF-kB regulates the expression of several genes involved in inflammatory and immune responses. The classical activated form of NF-kB consists of the p50/p65 heterodimer, different dimers may be formed with members of rel, AP1, steroid hormones receptors family. Many studies suggest that NF-kB should be considered as an important mechanisms of inflammatory processes and autoimmune diseases. Many important anti-inflammatory drugs and immunosuppressants inhibit NF-kB. Several observations have suggested a role of the inappropriate activation of NF-kB in cell proliferation, transformation, and tumor development, mainly lymphomas. Conversely, it has been proposed that the activation of NF-kB in immune cells may contribute to anti-tumor immunity.
NF-kB is an optimal target of anti-inflammatory and immunosuppresant therapies. Molecular studies on NF-kB are very important to understand the pathogenesis of inflammatory, autoimmune and neoplastic diseases, and to identify new drugs that inhibit NF-kB activation.
Pharmacologically safe compounds that can inhibit the proliferation of tumor cells have potential as anticancer agents. Curcumin, a diferuloylmethane, is a major active component of the food flavor turmeric (Curcuma longa) that has been shown to inhibit the proliferation of a wide variety of tumor cells. The apoptotic intermediates through which curcumin exhibits its cytotoxic effects against tumor cells are not known, and the participation of antiapoptotic proteins Bcl-2 or Bcl-xl in the curcumin-induced apoptosis pathway is not established. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human acute myelogenous leukemia HL-60 cells and in established stable cell lines expressing Bcl-2 and Bcl-xl. Curcumin inhibited the growth of HL-60 cells (neo) in a dose- and time-dependent manner, whereas Bcl-2 and Bcl-xl-transfected cells were relatively resistant. Curcumin activated caspase-8 and caspase-3 in HL-60 neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Similarly, time-dependent poly(ADP)ribose polymerase (PARP) cleavage by curcumin was observed in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. Curcumin treatment also induced BID cleavage and mitochondrial cytochrome c release in neo cells but not in Bcl-2 and Bcl-xl-transfected cells. In neo HL-60 cells, curcumin also downregulated the expression of cyclooxygenase-2. Because DN-FLICE blocked curcumin-induced apoptosis, caspase-8 must play a critical role. Overall, our results indicate that curcumin induces apoptosis through mitochondrial pathway involving caspase-8, BID cleavage, cytochrome c release, and caspase-3 activation. Our results also suggest that Bcl-2 and Bcl-xl are critical negative regulators of curcumin-induced apoptosis.
The nuclear factor-kappaB (NF-kappaB)/REL family of transcription factors has a central role in coordinating the expression of a wide variety of genes that control immune responses. There has been intense scientific activity in the NF-kappaB field owing to the involvement of these factors in the activation and regulation of key molecules that are associated with diseases ranging from inflammation to cancer. In this review, we focus on our current understanding of NF-kappaB regulation and its role in the immune system and inflammatory diseases. We also discuss the role of NF-kappaB proteins as potential therapeutic targets in clinical applications.
While oxidative stress is a feature of non-alcoholic steatohepatitis, the causal link between oxidative stress and inflammatory recruitment has yet to be demonstrated. We analysed the role of NF-kappaB redox-sensitive signalling pathway of inflammatory recruitment in experimental steatohepatitis.
Mice were fed the methionine and choline deficient (MCD) or the control diet, with or without curcumin, an NF-kappaB inhibitor, for up to 4 weeks. Histopathology, lipoperoxides, NF-kappaB/DNA binding and expression of NF-kappaB-regulated genes were assessed.
MCD-fed mice developed steatohepatitis accompanied by dramatic accumulation of hepatic lipoperoxides, activation of NF-kappaB and induction of pro-inflammatory ICAM-1, COX-2, MCP-1 and CINC mRNA. Curcumin significantly reduced MCD-induced inflammation but had no effect on steatosis or on the level of hepatic lipid peroxides. Curcumin prevented the MCD-induced activation of NF-kappaB and decreased downstream induction of ICAM-1, COX-2 and MCP-1. However, it failed to reduce activation of AP-1, MAPK pathways or CINC expression.
Curcumin alleviates the severity of hepatic inflammation in experimental steatohepatitis induced by the MCD diet, an effect likely to be mediated via inhibition of NF-kB activation and dependent pro-inflammatory genes. The NF-kappaB pathway is one among several possible signalling pathways by which inflammation is recruited in experimental steatohepatitis.