ChapterPDF Available

Chapter 3 A Unified Approach to Represent Network Adaptation Principles by Network Reification

Authors:

Abstract

In this chapter, the notion of network reification is introduced: a construction by which a given (base) network is extended by adding explicit states representing the characteristics defining the base network’s structure. This is explained for temporal-causal networks where connection weights, combination functions, and speed factors are the characteristics for Connectivity, Aggregation, and Timing describing the network structure. Having the network structure represented in an explicit manner within the extended network enables to model the adaptation of the base network by dynamics within the reified network: an adaptive network is represented by a non-adaptive network. It is shown how the approach provides a unified modeling perspective on representing network adaptation principles across different domains. This is illustrated for a number of well-known network adaptation principles such as for Hebbian learning in Mental Networks and for network evolution based on homophily in Social Networks. This is Chapter 3 of the book https://www.researchgate.net/publication/334576216
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
In recent literature from Neuroscience the adaptive role of the effects of stress on decision making is highlighted. The problem addressed in this paper is how that can be modelled computationally. The presented adaptive temporal-causal network model addresses the suppression of the existing network connections in a first phase as a result of the acute stress, and then as a second phase relaxing the suppression after some time and give room to start new learning of the decision making in the context of the stress again.
Conference Paper
Full-text available
Network reification occurs when a base network is extended by adding explicit states representing the characteristics defining the structure of the base network. This can be used to explitly represent network adaptation principles within a network. The adaptation principles may change as well, based on second-order adaptation principles of the network. By reification of the reified network, also such second-order adaptation principles can be explicitly represented. This multilevel network reification construction is introduced and illustrated in the current paper. The illustration focuses on an adaptive adaptation principle from Social Science for bonding based on homophily; here connections are changing by a first-order adaptation principle which itself changes over time by a second-order adaptation principle.
Conference Paper
Full-text available
In this paper the notion of network reification is introduced: a construction by which a given (base) network is extended by adding explicit states representing the characteristics defining the base network's structure. Having the network structure represented in an explicit manner within the extended network enhances expressiveness and enables to model adaptation of the base network by dynamics within the reified network. It is shown how the approach provides a unified modeling perspective on representing network adaptation principles across different domains. This is illustrated by a number of known network adaptation principles such as for Hebbian learning in Mental Networks and for network evolution based on homophily in Social Networks.
Conference Paper
Full-text available
In recent literature from Neuroscience the adaptive role of the effects of stress on decision making is highlighted. The problem addressed in this paper is how that can be modelled computationally. The adaptive effect of acute severe stress on decision making is addressed based on a Network-Oriented Modeling approach. The presented adaptive temporal-causal network model addresses the suppression of the existing network connections in a first phase as a result of the acute stress, and then as a second phase relaxing the suppression after some time and give room to start new learning of the decision making in the context of the stress again.
Article
Full-text available
Network-Oriented Modeling has successfully been applied to obtain network models for a wide range of phenomena, including Biological Networks, Mental Networks, and Social Networks. In this paper it is discussed how the interpretation of a network as a causal network and taking into account dynamics in the form of temporal-causal networks, brings more depth. The basics and the scope of applicability of such a Network-Oriented Modelling approach are discussed and illustrated. This covers, for example, Social Network models for social contagion or information diffusion, adaptive Mental Network models for Hebbian learning and adaptive Social Network models for evolving relationships. From the more fundamental side, it will be discussed how emerging network behavior can be related to network structure. This paper describes the content of my Keynote lecture at the 10th International Conference on Computational Collective Intelligence, ICCCI'18.
Article
Full-text available
In this paper for a Network-Oriented Modelling perspective based on temporal-causal networks it is analysed how generic and applicable it is as a general modelling approach and as a computational paradigm. It is shown that network models do not just model networks. In : Journal of Information and Telecommunication 1(1), 2017, 23-40.
Conference Paper
Full-text available
This paper introduces an integrated adaptive temporal-causal network model for dynamics in networks of social interactions addressing contagion between states, and changing connections within these social networks by two principles: the homophily principle and the more-becomes-more principle. The model has been evaluated in three different manners: by simulation experiments, by verification based on mathematical analysis, and by validation against an empirical data set.
Book
Full-text available
This book has been written with a multidisciplinary audience in mind without assuming much prior knowledge. In principle, the detailed presentation in the book makes that it can be used as an introduction in Network-Oriented Modelling for multidisciplinary Master and Ph.D. students. In particular, this implies that, although also some more technical mathematical and formal logical aspects have been addressed within the book, they have been kept minimal, and are presented in a concentrated and easily avoidable manner in Part IV. Much of the material in this book has been and is being used in teaching multidisciplinary undergraduate and graduate students, and based on these experiences the presentation has been improved much. Sometimes some overlap between chapters can be found in order to make it easier to read each chapter separately. Lecturers can contact me for additional material such as slides, assignments, and software Springer full-text download: http://link.springer.com/book/10.1007/978-3-319-45213-5
Article
Training rats in a particularly difficult olfactory discrimination task initiates a period of accelerated learning of other odors, manifested as a dramatic increase in the rats' capacity to acquire memories for new odors once they have learned the first discrimination task, implying that rule learning has taken place. At the cellular level, pyramidal neurons in the piriform cortex, hippocampus and bsolateral amygdala of olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after rule learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing, and is maintained by persistent activation of key second messenger systems. Much like late-LTP, the induction of long-term modulation of intrinsic excitability is protein synthesis dependent. Learning-induced modulation of intrinsic excitability can be bi-directional, pending of the valance of the outcome of the learned task. In this review we describe the physiological and molecular mechanisms underlying the rule learning-induced long-term enhancement in neuronal excitability and discuss the functional significance of such a wide spread modulation of the neurons' ability to sustain repetitive spike generation.
Chapter
This chapter discusses Hilbert's program, Gödel's theorems, and formalized completeness theorem. It also discusses the encoding and some related topics followed by some generalizations of the Incompleteness Theorems. The concern is regarding metamathematical properties other than consistency. Further, two applications of the notions and results are presented in the chapter. The Incompleteness Theorems are obtained by formalizing Syntax. The chapter also discusses what happens when one formalizes Semantics. The chapter discusses the First Incompleteness Theorem and the Second Incompleteness Theorem and presents proof of the Incompleteness Theorems.