Content uploaded by Triloki Nath
Author content
All content in this area was uploaded by Triloki Nath on Mar 02, 2020
Content may be subject to copyright.
Available via license: CC BY-NC-SA
Content may be subject to copyright.
minx∈Rnf(x)
s.t. gi(x)60∀i= 1,2, ..., m,
hj(x)=0∀j= 1,2, ..., l,
Hi(x)>0∀i= 1,2, ..., q,
Gi(x)Hi(x)60∀i= 1,2, ..., q.
f:Rn→R, gi:Rn→R, hi:Rn→R, Gi:Rn→
R, Hi:Rn→R
Gi(x)60
Hi(x)=0 C
Pα(x) = f(x)+α[
m
X
i=1
max{0, gi(x)}+
l
X
j=1
|hj(x)|+
q
X
i=1
max{0,−Hi(x),min{Gi(x), Hi(x)}}]
l1−g h
P1
α(x) = f(x) + α
q
X
i=1
max{−Hi(x),0}+α
q
X
i=1
max{Gi(x)Hi(x),0}.
l1
l1
I00
l1
Pα(x)
x∗
Ig:= {i|gi(x∗)=0},
I+:= {i|Hi(x∗)>0}, I0:= {i|Hi(x∗)=0},
I+0 := {i|Hi(x∗)>0, Gi(x∗)=0}, I+−:= {i|Hi(x∗)>0Gi(x∗)<0},
I0+ := {i|Hi(x∗)=0, Gi(x∗)>0}, I0−:= {i|Hi(x∗)=0, Gi(x∗)<0},
I00 := {i|Hi(x∗) = 0 , Gi(x∗)=0}.
C⊂Rnx∗∈C
C x∗
TC(x∗) := {d∈Rn| ∃{xk} →Cx∗,{tk} ↓ 0 : xk−x∗
tk
→d}
:= {d∈Rn| ∃{dk} → d, {tk} ↓ 0 : x∗+tkdk∈C∀k∈N},
{xk} →Cx∗{xk}x∗
xk∈C∀k∈N
d∈TC(x∗)C x∗
C⊂Rnx∗∈C
C x∗
NF
C(x∗) := TC(x∗)◦.
C⊂Rnx∗∈C
C x∗
NC(x∗) := {d∈Rn| ∃{xk} →Cx∗, dk∈NF
C(xk) : dk→d}.
Φ : Rn⇒RmgphΦ := {(x, y)|y∈
Φ(x)}x∈Rnδ > 0B(x, δ) := {y∈Rn| ky−xk< δ}
k.kl1
x∗∈ C
{∇gi(x∗)|i∈Ig} ∪ {∇hi(x∗)|i= 1, ..., p} ∪ {∇Gi(x∗)|i∈I+0 ∪I00}
∪ {∇Hi(x∗)|i∈I0}
x∗∈ C
∇hi(x∗) (i= 1, ..., p),∇Hi(x∗) (i∈I0+ ∪I00)
d∈Rn
∇hi(x∗)d= 0 (i= 1, ..., p),∇Hi(x∗)Td= 0 (i∈I0+ ∪I00),
∇gi(x∗)Td < 0 (i∈Ig),∇Hi(x∗)Td > 0 (i∈I0−),
∇Gi(x∗)Td < 0 (i∈I+0 ∪I00).
x∗∈ C
(λ, µ, ηH, ηG)6= 0
(i) Pm
i=1 λi∇gi(x∗)+Pl
i=1 µi∇hi(x∗)+Pq
i=1 ηG
i∇Gi(x∗)−Pq
i=1 ηH
i∇Hi(x∗)=0
(ii) λi>0∀i∈Ig, λi= 0 ∀i /∈Ig
and ηG
i= 0 ∀i∈I+−∪I0−∪I0+, ηG
i>0∀i∈I+0 ∪I00,
ηH
i= 0 ∀i∈I+, ηH
i>0∀i∈I0−and ηH
iis free ∀i∈I0+,
ηH
iηG
i= 0 ∀i∈I00.
x∗∈ C
TC(x∗) = LMP V C (x∗)
LMP V C (x∗)
LMP V C (x∗) = {d∈Rn| ∇gi(x∗)Td≤0∀i∈Ig,
∇hi(x∗)Td= 0 ∀i= 1, ..., p,
∇Hi(x∗)Td= 0 ∀i∈I0+,
∇Hi(x∗)Td≥0∀i∈I00 ∪I0−,
∇Gi(x∗)Td≤0∀i∈I+0}.
x∗∈ C
(λ, µ, ηH, ηG)6= 0
(i) Pm
i=1 λi∇gi(x∗)+Pl
i=1 µi∇hi(x∗)+Pq
i=1 ηG
i∇Gi(x∗)−Pq
i=1 ηH
i∇Hi(x∗)=0
(ii) λi>0∀i∈Ig, λi= 0 ∀i /∈Ig
and ηG
i= 0 ∀i∈I+−∪I0−∪I0+, ηG
i>0∀i∈I+0 ∪I00,
ηH
i= 0 ∀i∈I+, ηH
i>0∀i∈I0−and ηH
iis free ∀i∈I0+,
ηH
iηG
i= 0 ∀i∈I00.
(iii) {xk} → x∗k∈N
m
X
i=1
λigi(xk) +
p
X
i=1
µihi(xk) +
q
X
i=1
ηG
iGi(xk)−
q
X
i=1
ηH
iHi(xk)>0.
x∗∈ C
(λ, µ, ηH, ηG)6= 0
(i) Pm
i=1 λi∇gi(x∗)+Pl
i=1 µi∇hi(x∗)+Pq
i=1 ηG
i∇Gi(x∗)−Pq
i=1 ηH
i∇Hi(x∗)=0
(ii) λi>0∀i∈Ig, λi= 0 ∀i /∈Ig
and ηG
i= 0 ∀i∈I+−∪I0−∪I0+, ηG
i>0∀i∈I+0 ∪I00,
ηH
i= 0 ∀i∈I+, ηH
i>0∀i∈I0−and ηH
iis free ∀i∈I0+,
ηH
iηG
i= 0 ∀i∈I00.
(iii) {xk} → x∗∀k∈N
λi>0⇒λigi(xk)>0{i= 1, ..., m},
µi6= 0 ⇒µihi(xk)>0{i= 1, ..., p},
ηH
i6= 0 ⇒ηH
iHi(xk)<0{i= 1, ..., q},
ηG
i>0⇒ηG
iGi(xk)>0{i= 1, ..., q}.
⇒ ⇒
⇒ ⇒
min f(x)
g(x) = x1−x260,
H(x) = x1>0,
G(x)H(x) = x1x260,
x∗= (0,0) (0,0)
x∗= (0,0) ∇H(x∗) = 1
0
d= (d1, d2)T∈R2
∇g(x∗)Td=1−1d1
d2<0,
∇H(x∗)Td=1 0 d1
d2= 0,
∇G(x∗)Td=0 1 d1
d2<0.
d2>0d2<0
λ1
−1+ηG0
1−ηH1
0=0
0,
λ>0, ηG>0ηHηG= 0 λ=ηG=ηH= 0
R2
min x2
1+x2
2
g(x) = x1≤0,
H(x) = x2≥0,
G(x)H(x) = −x1x2≤0.
x∗= (0,0) x∗
x∗(λ, ηG, ηH)6= 0
λ1
0+ηG−1
0−ηH0
1=0
0,
λ>0, ηG>0ηHηG= 0
(λ, ηG, ηH) = c(1,1,0) c > 0
x∗
λxk
1+ηG(−xk
1)−ηHxk
2=cxk
1−cxk
1−0=0,
{xk} → x∗
min f(x) s.t. F(x)∈∆,
F(x) :=
gi(x)i=1,...,m
hi(x)i=1,...,l
Gi(x)
Hi(x)i=1,...,q
∆ :=
(−∞,0]m
{0}l
Ωq
Ω := {(a, b)∈R2|b≥0, ab ≤0}.
Pα(x) := f(x) + αdist∆(F(x))
Pα(x) := f(x)+α
m
X
i=1
dist(−∞,0](gi(x)) +
l
X
j=1
dist{0}(hj(x)) +
q
X
i=1
distΩ(Gl(x), Hl(x))
,
Pα(x) := f(x) + α ||g+(x)||1+||h(x)||1+
q
X
i=1
distΩ(Gl(x), Hl(x))!,
distS(x)l1x S g+(x) = max{0, g(x)}
g+
Pα(x) = f(x)+α
m
X
i=1
|g+
i(x)|+
l
X
j=1
|hj(x)|+
q
X
i=1
max{0,−Hi(x),min{Gi(x), Hi(x)}}
.
x∗∈ C
x∗δ, c > 0
distC(x)6c ||h(x)||1+||g+(x)||1+
q
X
i=1
distΩ(Gl(x), Hl(x))!
x∈B(x∗, δ/2)
x∗
f x∗L > 0
x∗Pα
x∗
δand c
distC(x)≤cdist∆(F(x)),
x∈B(x∗, δ) > 0 2 < δ f
x∗B(x∗,2)∩ C f x∗
L f B(x∗,2)
xB(x∗, )
xπ∈ΠC(x) = {z∈ C | distC(x) = ||z−c||1}ΠC(x)
xC
||xπ−x||1≤ ||x∗−x||1≤⇒ ||xπ−x∗||1≤ ||xπ−x||1+||x−x∗||1≤2,
f(x∗)≤f(xπ)≤f(x) + L||xπ−x||1
=f(x) + LdistC(x)
=f(x) + cL dist∆F(x)
Pα¯α=cL
min x2
1+x2
2
g(x) = x1≤0,
H(x) = x2≥0,
G(x)H(x) = −x1x2≤0.
x∗= (0,0) x∗
Pα(x) = x2
1+x2
2+α[max{0, g(x)}+ max{0,−H(x),min{G(x), H (x)}}]
x∗= (0,0) α>0Pα(x)
x∗
min f(x) s.t. F (x)∈∆
f F
min f(x) s.t. F (x) + p∈∆
p∈Rt, t =m+l+q
M(p) := {x∈Rn|F(x) + p∈∆}
C=F−1(∆) = M(0).
Φ : Rp⇒
Rq(u, v)∈gphΦ
Φ (u, v)U u V v
L≥0
Φ(u0)∩V⊆Φ(u) + L||u−u0||B∀u0∈U
B:= B(0,1)
x∗∈M(0)
M(0, x∗)∈gphM.
δ > 0c > 0
distF−1(∆)(x)6cdist∆(F(x))
x∈B(x∗, δ)
x∗
x∗
F0(x∗)Tλ= 0 λ∈N∆(F(x∗))⇒λ= 0.
NΩ(a, b) =
ξ
ζ
ξ=0=ζ;if a > 0, b < 0
ξ= 0, ζ >0 ; if a > 0, b = 0
ζ>0, ξ ·ζ= 0 ; if a =0=b
ξ60, ζ = 0 ; if a = 0, b < 0
ξ∈R, ζ = 0 ; if a = 0, b > 0
,
N(−∞,0](a) =
{0};a < 0
[0,∞) ; a= 0
φ;a > 0
,
N{0}(0) = R.
N∆(F(x∗))
N∆(F(x∗)) =
m
Y
i=1
N(−∞,0](gi(x∗)) ×
p
Y
i=1
N{0}(hi(x∗)) ×
q
Y
i=1
NΩ(Gi(x∗, Hi(x∗)).
m
X
i=1
λi∇gi(x∗) +
p
X
i=1
µi∇hi(x∗) +
q
X
i=1
ηG
i∇Gi(x∗)−
q
X
i=1
ηH
i∇Hi(x∗)=0,
λi∈N(−∞,0](gi(x∗)) ∀i= 1, ..., m,
µi∈N{0}(hi(x∗)) ∀i= 1, ..., p,
(ηG
i,−ηH
i)∈ −NΩ(Gi(x∗), Hi(x∗)) ∀i= 1, ..., q,
=⇒(λ, µ, ηG, ηH) = 0,
M(0, x∗)∈gphM
x∗∈M(0)
∆
x∗
T∆(F(x∗)) =
m
Y
i=1
T(−∞,0](gi(x∗)) ×
p
Y
i=1
T{0}(hi(x∗)) ×
q
Y
i=1
TΩ(Gi(x∗), Hi(x∗)).
⊇ ⊆
dgi∈T(−∞,0](gi(x∗)), dhi∈T{0}(hi(x∗))
(dGi, dHi)∈TΩ(Gi(x∗), Hi(x∗))
d:= (dgi, i=1,...,m, dhi, i=1,...,p ,(dGi, dHi)i=1,...,q).
dk
gi→dgi, tk
gi↓0 with gi(x∗) + tk
gidk
gi≤0,
dk
hi→dhi, tk
hi↓0 with hi(x∗) + tk
hidk
gi= 0,
(dk
Gi, dk
Hi)→(dGi, dHi), tk
GiHi↓0 with (Hi(x∗) + tk
GiHidk
Hi)≥0
and (Gi(x∗) + tk
GiHidk
Gi)(Hi(x∗) + tk
GiHidk
Hi)≤0,
∀k∈N
dk:= dk
gi, i=1,...,m, dk
hi, i=1,...,p,(dk
Gi, dk
Hi)i=1,...,q→d.
d∈T∆(F(x∗))
tk↓0F(x∗) + tkdk∈∆,∀k∈N
tk:= min{tk
gi,i=1,...,m, tk
GiHi,1,...,q},
∀k∈Ntk↓0F(x∗) + tkdk∈∆,∀k∈N
k∈Nx∗
i= 1, ..., m dk
gi<0dk
gi≥0
dk
gi<0
gi(x∗) + tkdk
gi< gi(x∗)≤0,
dk
gi≥0
gi(x∗) + tkdk
gi≤gi(x∗) + tk
gidk
gi≤0.
hi(x∗) = 0 tk
hi>0,∀i= 1, ..., p dk
hi= 0
hi(x∗) + tkdk
hi= 0.
Hi(x∗)>0Gi(x∗)=0 Gi(x∗)<0
Gi(x∗)=0 i∈I+0 dk
Hi→dHitk
GiHi↓0
Hi(x∗) + tk
GiHidk
Hi>0 ; ∀k∈Nsufficiently large.
Hi(x∗) + tkdk
Hi>0k∈N
Gi(x∗) + tk
GiHidk
Gi≤0 ; ∀k∈N,
dk
Gi≤0
Gi(x∗) + tkdk
Gi≤0 ; ∀k∈Nsufficiently large,
⇒Hi(x∗) + tkdk
HiGi(x∗) + tkdk
Gi≤0,
F(x∗) + tkdk∈∆k∈N
Gi(x∗)<0i∈I+−Hi(x∗) + tkdk
Hi>0k
Hi(x∗) + tk
GiHidk
Hi>0
(Gi(x∗) + tk
GiHidk
Hi)≤0,by eq (11),
(Gi(x∗) + tkdk
Hi)≤0 ; for all sufficiently large k.
Hi(x∗) + tkdk
HiGi(x∗) + tkdk
Gi≤0 ; for all sufficiently large k,
i∈I+−F(x∗) + tkdk∈∆k∈N
Hi(x∗) = 0 dk
Hi≥0Hi(x∗) +
tkdk
Hi≥0k∈NGi(x∗)
dk
Hi
dk
Hi>0
Gi(x∗) + tk
GiHidk
Gi≤0 ; ∀i∈I0+ ∪I0−∪I00 ,
Gi(x∗) + tkdk
Gi≤0 ; for sufficiently large k∈N,
Hi(x∗) + tkdk
HiGi(x∗) + tkdk
Gi≤0,
i∈I0+ ∪I0−∪I00
dk
Hi= 0 Hi(x∗) + tkdk
Hi= 0
Hi(x∗) + tkdk
HiGi(x∗) + tkdk
Gi= 0,
i∈I0+ ∪I0−∪I00 F(x∗)+ tkdk∈∆
k∈N
x∗
x∗
x∗
M(p) (0, x∗)F
TC(x∗) = LC(x∗),
LC(x∗)Cx∗
LC(x∗) = {d∈Rn| ∇F(x∗)Td∈T∆(F(x∗))}.
T∆(F(x∗)) =
m
Y
i=1
T(−∞,0](gi(x∗)) ×
p
Y
i=1
T{0}(hi(x∗)) ×
q
Y
i=1
TΩ(Gi(x∗, Hi(x∗)).
LC(x∗)
LC(x∗) = {d∈Rn| ∇gi(x∗)Td∈T(−∞,0](gi(x∗)) ∀i= 1, ..., m,
∇hi(x∗)Td∈T{0}(hi(x∗)) ∀i= 1, ..., p,
(∇Gi(x∗)Td, ∇Hi(x∗)Td)∈TΩ(Gi(x∗), Hi(x∗)) ∀i= 1, ..., q}
={d∈Rn| ∇gi(x∗)Td≤0∀i∈Ig,
∇hi(x∗)Td= 0 ∀i= 1, ..., p,
∇Hi(x∗)Td= 0 ∀i∈I0+,
∇Hi(x∗)Td≥0∀i∈I00 ∪I0−,
∇Gi(x∗)Td≤0∀i∈I+0}
=LMP V C (x∗).
LMP V C
TC(x∗) = LC(x∗) = LMP V C (x∗)
x∗
min f(x) = |x1|+|x2|
g(x) = x1+x2≤0,
H(x) = x1≥0,
G(x)H(x) = x1(x2
1−x2
2)≤0.
x∗= (0,0) x∗
x∗TC(x∗) = C=LMP V C (x∗)C
Pα(x)x∗= (0,0)
x∗
x∗
M P V C −MF C Q
⇓
M P V C −GMF C Q
⇓
M P V C −generalized pseudonormality
⇓
M P V C −generalized quasinormality
⇓
M P V C −ACQ ⇐=Calmness of M (p)at (0, x∗) =⇒exactness of Pα.
Pα
l1
l1