ArticlePDF Available

Abstract and Figures

An updated checklist of the genus Moltkia is presented and seven taxa (six species and one subspecies) are recognized from the entire world. In this checklist, the effective place of publication of the accepted names, formal taxonomic status, nomenclature, homotypic and non-homotypic synonyms are identified and verified. Lectotypes are here designated for five names. An identification key, illustrations and a distribution map for Moltkia species are provided.
Content may be subject to copyright.
Phytotaxa 408 (3): 143–160
https://www.mapress.com/j/pt/
Copyright © 2019 Magnolia Press Article PHYTOTAXA
ISSN 1179-3155 (print edition)
ISSN 1179-3163 (online edition)
Accepted by Federico Luebert: 11 Jun. 2019; published: 1 Jul. 2019
https://doi.org/10.11646/phytotaxa.408.3.1
143
World checklist of Moltkia (Boraginaceae) with notes on types
MASSOUD RANJBAR* & SINA KHALVATI
Department of Biology, Herbarium Division, Bu-Ali Sina University, P.O. Box 65175/4111, Hamedan, Iran.
*Corresponding author: ranjbar@basu.ac.ir
Abstract
An updated checklist of the genus Moltkia is presented and seven taxa (six species and one subspecies) are recognized
from the entire world. In this checklist, the effective place of publication of the accepted names, formal taxonomic status,
nomenclature, homotypic and non-homotypic synonyms are identified and verified. Lectotypes are here designated for five
names. An identification key, illustrations and a distribution map for Moltkia species are provided.
Keywords: checklist, Moltkia, taxonomy, typification
Introduction
Boraginaceae include ca. 1600 species characterized by a scorpioid cymose inflorescence (Buys & Hilger 2003), a
gynobasic style, and a bicarpellate ovary that breaks into four nutlets (Luebert et al. 2016). This circumscription has
been referred to as Boraginaceae s.s. or Boraginoideae in the past (Small 1913, Gottschling et al. 2001, Diane et al.
2002). Boraginaceae has also been circumscribed in a broader context, which has been referred to as Boraginaceae
s.l. or Boraginales. This broader circumscription has included four taxa treated as either subfamilies (Boraginoideae,
Cordioideae, Ehretioideae, and Heliotropioideae) or families that are characterized by a scorpioid cyme and bicarpellate
gynoecium (style position and fruit type vary) (Lawrence 1937, Cronquist 1981, Al-Shehbaz 1991, Takhtajan 1997).
Here, the former circumscription is treated as Boraginaceae, while the latter is treated as Boraginales, which currently
includes Boraginaceae s.str., Codonaceae, Coldeniaceae, Cordiaceae, Ehretiaceae, Heliotropiaceae, Hoplestigmataceae,
Hydrophyllaceae, Lennoaceae, Namaceae, and Wellstediaceae (Gottschling et al. 2001, Soltis et al. 2011, Luebert et
al. 2016).
In Boraginaceae, tribes have frequently been recognized based on a combination of style division, stigma number,
position of nutlet attachment, and nutlet ornamentation (e.g. Al-Shehbaz 1991). Recent phylogenetic analyses (e.g.,
Langstrom & Chase 2002, Hilger et al. 2004, Mansion et al. 2009, Nazaire & Hufford 2012, Weigend et al. 2013) have
led to the identification of three subfamilies and eleven tribes in Boraginaceae (Chacón et al. 2016).
The genus Moltkia Lehmann (1817: 6) is included in the tribe Lithospermeae according to the tribal classification
of the subfamily Boraginoideae (Candolle 1846, Baillon 1888, Riedl 1997, Weigend et al. 2009, Chacón et al. 2016).
Moltkia is closely related to the genera Echium Linnaeus (1753: 139), Onosma Linnaeus (1762: 196), Podonosma
Boissier (1849: 113), Alkanna Tausch (1824: 234) Arnebia Forsskål (1775: 62), Lithospermum Linnaeus (1753: 132),
Buglossoides Moench (1794: 418) (Chacón et al. 2016). The genus and its species were differently reported in the
literature (Lehmann 1817, De Candolle 1846, Boissier 1875, Johnston 1953). Lehmann (1817) cited the genus with
one species (M. caerulea (Willdenow) Lehmann (1817: 6)) for the first time. De Candolle (1846) cited the genus with
five species and classified it in two distinguished groups: (1) Flores caerulei with blue corolla including M. punctata
Lehmann (1817: 5), M. caerulea, M. angustifolia De Candolle (1846: 72), M. libanotica Zuccarini (1843: 246) (2)
Flores lutei with yellow corolla including M. aurea Boissier (1844: 49). Boissier (1875) cited the genus with four
species in Flora Orientalis and placed M. petraea (Trattinnick) Grisebach (1846: 515) in the section Lithospermoideae
Boiss. (nutlets with a smooth surface) and M. caerulea, M. angustifolia and M. aurea in the section Eumoltkiae
Boiss. (nutlets with scrobiculate-rugose surface). Johnston (1953) considered the genus as composed of six species
and placed M. caerulea, M. longiflora (Bertoloni) Wettstein (1918: 368) and M. aurea in the section Eumoltkiae
(=Moltkia) and M. petraea, M. suffruticosa (Linnaeus) Brand (1902: 1999) and M. doerfleri Wettstein (1918: 361) in
RANJBAR & KHALVATI
144 Phytotaxa 408 (3) © 2019 Magnolia Press
the section Echianthus (Vis.) Johnst. (smooth, lustrous and more or less pointed nutlets). He also segregated M. ciliata
(Forsskål) Maire (1941: 1102) from Moltkia into Moltkiopsis Johnston (1953: 273). Halacsya Dörfler (1901: 103),
and Paramoltkia Greuter & Burdet in Greuter (1981: 39) also were segregated from Moltkia. All of the segregated
genera are monotypic. Results from recent molecular analysis supported Johnston’s sectional treatment (Cecchi &
Selvi 2009). Accordingly, Moltkia is a monophyletic genus and strongly separated from the other closely related
genera. The phylogram resulted from chloroplast matK region shows a basal split between Moltkia and the other
genera (Cecchi & Selvi 2009). Moltkia with five species comprised two sister clades, the first including the European
species M. petraea and M. suffruticosa, and the second one comprises three west Asiatic taxa M. aurea, M. angustifolia
and M. caerulea. In addition, the phylogram obtained from nuclear ITS-5.8S region shows a monophyletic Moltkia
with five species strongly separated from the other studied genera with the same sister clades as in the matK analysis
(Cecchi & Selvi 2009). The split between sect. Moltkia in Anatolia and Irano-Turanian highlands and sect. Echianthus
in the central-eastern Mediterranean appears to be one of the most important events in the evolution of this group. The
striking differences in flower, fruit and pollen structures (Cecchi & Selvi 2009, Cohen & Davis 2012) and also the
support from molecular analyses on both sections suggests that this divergence is due to ancient vicariance associated
with paleogeographical events. Section Moltkia is characterised by urceolate corolla throat, curved anthers and rugose
ovoid nutlets. In section Echianthus the corolla limb is not distinct from the tube, the anthers are straight and the nutlets
have a hood-like shape with smooth and shiny surfaces.
This checklist provides following data for each species: (1) Latin name with a reference to the ptotologue; (2) the
most important synonyms; (3) reference to the type specimen; (4) pictures in their natural habitat; (5) taxonomic and
nomenclatural notes. In addition, available information on distribution, ecology and chromosome numbers have been
added to the checklist.
Materials and methods
In the first step, the scientific literature was searched for the effective publication (Turland et al. 2018, hereafter
ICN, Hodkinson & Lendemer 2014) of accepted names, basionyms and homotypic synonyms. In the second step, we
compared the type specimens of the different species of Moltkia with their relevant taxonomic literature and other
available herbarium material. In this checklist, many of types have been investigated in more than 23 herbaria that
include BASU, TARI, B, B-W, BM, C, E, FI, G, G-BOIS, G-DC, GOET, H, HAL, JE, K, L, LD, LE, LINN, OXF, W,
and WU (acronyms according to Thiers 2016). Names still lacking a type were lectotypified. The checklist consists of
seven currently accepted names arranged alphabetically.
Taxonomic treatment
Moltkia Lehmann (1817: 6).
Type:—Moltkia caerulea (Willdenow) Lehmann (1817: 6).
Perennial herbs or small shrubs, indumentum of appressed scabrid trichome, sometimes hispid; massive taproot
present. Leaves alternate, veinless, basal and cauline or all cauline, basal leaves spatulate to narrowly obovate to
linear, sometimes shortly petiolate, cauline leaves linear to narrowly obovate, sessile. Inflorescences leafy or bracteate
cymes of 1–2, monochasial or with additional paraclades distally. Flowers deflexed, pendulous or ascending, shortly
pedicellate; calyx deeply 5–lobed, lobes linear, equal or nearly so, weakly accrescent in fruit; corolla narrowly funnel
shaped, lobes porrect, ovate, blue, purple or rarely yellow, faucal scales and annulus absent. Stamens projecting from
or included in throat of the corolla; anthers included or more or less exserted, apex obtuse or emarginate or sometimes
apiculate but without a projecting connective at the apex and not sagitate or apiculate at the base, style exserted; very
slender, filiform, stigma small, entire or weakly lobed. Nutlets usually 1–2, incurved, ovoid, smooth or ornamented,
tuberculate or papillate, ventrally keeled, usually prominent, dorsally convex.
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 145
Key to sections and species of Moltkia
1 Corolla limb erect, obtuse, nutlets with smooth surface...(Moltkia sect. Echinathus) .......................................................................2
- Corolla limb curved, acute, nutlets with rough opaque surface...(Moltkia sect. Moltkia) .................................................................4
2 Leaves up to 2 cm long, oblong to elliptic .........................................................................................................................M. petraea
- Leaves up to 5 cm long, linear ............................................................................................................................................................3
3 Corolla ca. 13 mm long, anthers purple to dark .......................................................................................................... M. suffruticosa
- Corolla minor, ca. 10 mm long, anthers yellow .............................................................................M. suffruticosa subsp. bigazziana
4 Flowers blue to purple ........................................................................................................................................................................5
- Flowers bright yellow ........................................................................................................................................................... .M. aurea
5 Plant up to 15 cm high, corolla lobes wide and rounded, inflorescence dense ..............................................................M. gypsaceae
- Plant up to 30 cm high, corolla lobes slender and acute, inflorescence not dense .............................................................................6
6 Nutlets pyramidal, ca. 1.5 mm height, corolla 12–20 mm long ....................................................................................... M. caerulea
- Nutlets with deep grooves, approximately 1 mm height, corolla 10–12 mm long ..................................................... M. angustifolia
1. Moltkia angustifolia De Candolle (1846: 72). Fig. 1.
Type (lectotype designated by Selvi & Cecchi 2009: 623):—Probably SYRIA, s.d., C. Chesney 188 (lectotype K! [K000449418]). Fig.
2.
Echium longiflorum Bertoloni (1842: 15) nom. illeg.
Moltkia longiflora Wettstein (1918: 368).
= Heliotropium persicum Aucher ex De Candolle (1846: 72).
Type: (lectotype designated here):—IRAQ [Mesopotamia, Persia], 1836, Aucher-Eloy, s.n. (lectotype G-DC! [G00148022]).
Distribution:—Moltkia angustifolia is distributed in southeastern Europe, south and eastern parts of Anatolia and
western Iran, especially in the Hamedan and Kurdestan Provinces (Fig. 3).
Ecology:—The species usually grows on stony slopes in desert and semi-desert areas, rarely in steppes at 1700–
1900 m.
Nomenclatural notes:—Echium longiflorum Bertol. is an illegitimate later homonym, because it was published
before for a different species by Dumont de Courset in 1814 (1814: 147). Therefore, Bertoloni’s E. longiflorum cannot
be the basionym of Moltkia longiflora, as only legitimate names can serve as basionyms (Art. 6.10 of ICN). The name
is therefore to be cited as Moltkia longiflora Wettstein.
Additional specimens examined:—IRAN. Prov. Hamedan, 34º 47’ 55/887’ N, 48º 30’ 54/08’ E, Ranjbar 20648
(BASU).
2. Moltkia aurea Boissier (1844: 49). Fig. 4.
Type:—TURKEY [Hab. in Caria], [in Cariâ interiori], 1843, C. Pinard s.n. (holotype: G-BOIS! [G00148021]; isotype: K!
[K000958636]).
Distribution:—M. aurea is endemic to Turkey, reported only from western and central Anatolia (Johnston 1953) (Fig.
3).
Ecology:—Calcareous steppes and screes, tufa hills, 300–1300 m (Riedl 1978).
Taxonomic notes:—It is most similar to M. caerulea, especially in growth-habit, leaf-shape and indumentum,
but it differs from the latter in its yellow corolla, shorter tube and nutlets punctate-rugose, acute, without a beak (Riedl
1978).
Additional specimens examined:—TURKEY. Prov. Yozgat, Galatia, 1892, Bornmüller 3075 (K).
3. Moltkia caerulea (Willdenow) Lehmann (1817: 6). Fig. 5.
Basionym:—Onosma caerulea Willdenow (1798: 775).
Type (lectotype designated here):—ARMENIA [Habitat in Armenia], s.d., P. de Tournefort s.n. (lectotype: B! [B -W 03371 -01 0]). Fig.
6.
= Moltkia punctata Lehmann (1817: 5).
Type (lectotype designated here):—TURKEY: Ankara [In Galatia], s.d., s.c. s.n. (lectotype: MEL! [MEL2429699]).
= Moltkia anatolica Boissier (1849: 114).
Type (lectotype designated here):—SYRIA [Habitat in collibus Caribe propè Jenidjè (Boiss. Pinard), in Syrià propè Antiochiam], s.d.,
Aucher-Eloy 2403 (lectotype: G-BOIS! [G00330760]; isolectotype: G! [G00418181], G-DC! [G00148082, G00148083]).
RANJBAR & KHALVATI
146 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 1. Moltkia angustifolia DC. A. habit. B. inflorescence. Photographed by: Andrea Coppi from Syria, Deir ez-Zor.
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 147
FIGURE 2. Moltkia longiflora Wettst. (C. Chesney 188, K) (reproduced with permission).
RANJBAR & KHALVATI
148 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 3. Distribution map of the checklist taxa. The numbers shown in circles indicate the location of the type, the other numbers
correspond to the taxa as follows: (1): Moltkia aurea (2): M. caerulea (3): M. gypsacea (4): M. angustifolia (5): M. petraea (6): M.
suffruticosa (7): M. suffruticosa subsp. bigazziana.
Distribution:—Moltkia caerulea is known to be widespread in SE Europe and SW Asia, ranging from western
Anatolia into Transcaucasia and northwestern Iran (Johnston 1956). M. caerulea is particularly frequent distributed
more in the west of Iran, especially in the western and the center-provinces of the country such as Hamadan, Markazi
and Kermanshah (Fig. 3).
Ecology:—The species usually grows on stony clay slopes in semi-desert and semi-steppe belts, rarely in steppes
at 650–2000 m.
Chromosome numbers:—Moltkia caerulea is a diploid species with the base chromosome number of n = x = 14
(Ghaffari 1996).
Additional specimens examined:—ARMENIA. Prov. Ararat valley 12 km NW Ararat town, 7 km NW of Vedi,
Erah range, semidesert with Artemisia fragrans, 39° 56’ N, 44° 42’ E, 1030 m, 18 June 2002, Tamanyan 1019 (B).
TURKEY. 1890 Sintenis 2158 (P); 1855 De Challye s.n. (P!); 1862 Bouzgeaw 197 (P); IRAN. Prov. Azerbaijan-e
Sharghi, 37° 54’ 12.864’ N, 46° 16’ 15.559’’ E, 1800 m, 8 June 2010, Ranjbar 20934 (BASU). IRAQ. (Mesopotamia),
1888, Sintenis 369 (P). GEORGIA, In the dry mountain regions of Georgia: Caucasus, 4 May 1831, Hohenacker
s.n. (G); Prov. Calcareis in the mountains near the village Chanachlaer, s.d., Hohenacker 20 (P); 1838, Wilmsen s.n.
(G); 1841, Bunge s.n. (G); 4 May 1831, Hohenacker s.n. (G). SYRIA. Prov. Alep, 1836, Aucher-Eloy 1837 (G); s.d.,
Aucher-Eloy 4986 (P); Prov. Sivas, April 1893, Bornmüller 3453 (P).
4. Moltkia gypsacea Rechinger & Aellen (1950: 89).
Type (lectotype designated here):—IRAN. Prov. Semnan: Sorkheh [in deserto gyps. ad Sorkheh], 1600 m, 15 April 1948, K. H. Rechinger
2795 (lectotype W! [W 1956-0003231], isolectotypes BM! [BM001014485], C! [C10008753], E! [E00284779], K! [K000958635],
MO! [MO-503897], S-G! [S-G-4166], US! [US00118631], B! [B100365398]). Fig. 7.
Distribution:—Moltkia gypsacea is endemic to Iran (Riedl1967). It has been reported from the heartland and the south
of Iran, Alborz, Kerman and Semnan. This study extends the distribution of M. gypsacea to the west of the country.
Phytogeographically it is an Irano-Turanian element and grows on dry clay slopes (Fig. 3).
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 149
FIGURE 4. Moltkia aurea Boiss. A. habit. B & C. inflorescence. Photographed by: Jiří Ohryzek from Turkey, Kütahya.
RANJBAR & KHALVATI
150 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 5. Moltkia caerulea (Willd.) Lehm. A. habit. B & C. inflorescence. Photographed by: Mário Duchoň from Turkey, Konya.
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 151
FIGURE 6. Moltkia caerulea (Willd.) Lehm. (Tournefort s.n., B) (reproduced with permission).
RANJBAR & KHALVATI
152 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 7. Moltkia gypsacea Rech.f. & Aellen (Rechinger 2795, W) (reproduced with permission).
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 153
Ecology:—The species usually grows in deserts and semi-deserts, rarely in steppes between 1200 and 1800 m.
Nomenclatural notes:—There are some isotypes held at BM, C, E, K, MO, S-G, US and B. We have selected the
W specimen [W1956-0003231] as the lectotype, because it was the most morphologically complete specimen and its
locality description was most closely matched to the text of the original publication.
Taxonomic notes:—At first glance, in the field and herbarium specimens, M. gypsacea and M. caerulea cannot
be easily distinguished. However, the most important diagnostic characters are the dimension of cauline leaves 15–20
× 3–5 mm (vs. 7–25 × 1–6 mm). Inflorescence has also been compacted significantly in M. gypsacea. It differs from M.
caerulea by having dense and leafy inflorescence, 5–20 mm long (vs. loose, leafless inflorescence, 20–50 mm long).
Figs. 6 & 7.
Chromosome number:—The chromosome count of n = 20 has been reported for M. gypsacea from Iran (Ghaffari
et al. 2005). This is the only chromosome report for this taxon.
Additional specimens examined:—IRAN. Prov. Semnan, 35º 34’ 43/669’ N, 53º 22’ 47/318’’ E, 1550 m, 13
May 2009, Ranjbar 18925 (BASU); Prov. Kurdestan, 35º 57’ 19/288’’ N, 47º 8’ 10/365’’ E, 1782 m, 7 May 2008,
Ranjbar 16041 (BASU).
5. Moltkia petraea (Trattinnick) Grisebach (1846: 515). Fig. 8.
Basionym:—Echium petraeum Trattinnick (1819: 8).
Type:—CROATIA [in adscensu montis Biokovo], 1818, Portenschlag s.n. (holotype MPU! [MPU019922]).
Moltkia petraea (Trattinnick) Boissier (1875: 221), isonym
Nomenclatural notes:—According to Art. 6.3 of ICN, Moltkia petraea Boiss. should be considerd as an isonym,
because of an overlooked earlier homotypic homonym.
Distribution:—Moltkia petraea is considered as an endemic Balkan species distributed in the western part of the
Balkan Peninsula. This species is spread from former Yugoslavia to Albania. In addition, this species is observed in
part of Greece (Georgiou et al. 2000) (Fig. 3).
Additional specimens examined:—CROATIA. Dalmatia, [Ragusa [Dubrovnik], ad fontem Obla.], 24 May 1905,
Lindberg s.n. (H). MONTENEGRO. Prov. Cattaro, Kotor, 24 May 1905, Lindberg s.n. (H).
6. Moltkia suffruticosa (Linnaeus) Brand (1902: 1999). Fig. 9.
Basionym:—Pulmonaria suffruticosa Linnaeus (1763: 1667).
Type (lectotype designated by Bechi et al. 1992: 208):—ITALY. Séguier s.n., Herb. Linn. No. 184.3 (lectotype: LINN! [LINN-HL184-
3]).
Lithospermum suffruticosum (Linnaeus) Kerner (1881: 52).
Moltkia suffruticosa (Linnaeus) Hegi (1927: 2153). nom. illeg.
= Moltkia graminifolia (Viviani) Nyman (1881: 581).
Type (lectotype designated by Selvi & Cecchi 2009: 623):—ITALY. [Tuscany (Carrara) and Venetia (Colli Euganei)], s.d., Viviani 2541
(lectotype: FI-W!)
Chromosome numbers:—Moltkia suffruticosa is a diploid species with chromosome number 2n = 16 (D’Amato &
Pavesi 1990).
Distribution:—Moltkia suffruticosa is endemic to Italy (Peruzzi et al. 2015) (Fig. 3).
6.1. Moltkia suffruticosa subsp. bigazziana Peruzzi & Soldano (2010: 385). Fig. 10.
Type:—ITALY. Tuscany: [Stazzema (Prov. Lucca, Alpes Apuanes), sentier n°5, entre le refuge Alpe della Grotta et la Cintura du Mont
Procinto, paroi ouest Mont Nona], 1000 m, 3 July 1991, G. Aldobrandi, C. Nepi & G. Padovani 15413 (holotype: Fl! [Fl002368],
isotype: M! [M0188233]; MSB! [MSB002909]). Fig. 3.
Taxonomic notes:—This subspecies differs in having shorter corolla and dehiscent yellow anthers (Peruzzi & Soldano
2010).
RANJBAR & KHALVATI
154 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 8. Moltkia petraea (Tratt.) Griseb. A. habit. B. leaves. C. & D. inflorescence. Photographed by: Semir Maslo from Croatia,
Biokovo.
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 155
FIGURE 9. Moltkia suffruticosa (L.) Brand. A. habit. B. & C. inflorescence. Photographed by: Giuliano Gnata from Italy, Veneto.
RANJBAR & KHALVATI
156 Phytotaxa 408 (3) © 2019 Magnolia Press
FIGURE 10. Moltkia suffruticosa (L.) Brand subsp. bigazziana Peruzzi & Soldano. A. habit. B. & C. inflorescence. Photographed by:
Melania Marchi from Italy, Tuscany, Monte Sagro.
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 157
Excluded names
Listed here are names once treated as species of Moltkia but currently in different genera. Currently accepted names
in bold.
1- Moltkia callosa (Vahl) Wettstein (1918: 368) Lithospermum callosum Vahl (1790: 14). = Moltkiopsis ciliata (Forsskål) Johnston
(1953: 3).
2- Moltkia ciliata (Forsskål) Maire (1941: 1102) ≡ Lithospermum ciliatum Forsskål (1775: 39). ≡ Moltkiopsis ciliata (Forsskål) Johnston
(1953:3). = Lithospermum angustifolium Forsskål (1775: 39). = Lithospermum callosum Vahl var. asperrimum Bornmüller (1894:
58).
3- Moltkia cyrenaica Sprengel (1825: 548). = Nonea calycina (Roemer & Schultes) Selvi, Bigazzi, Hilger & Papini (2006: 915). ≡
Lycopsis calycina Roemer & Schultes (1819: 74). ≡ Elizaldia calycina (Roemer & Schultes) Maire subsp. calycina (1929: 192). =
Nonea multicolor Kunze (1846: 691). = Nonea phaneranthera Viviani (1824: 9).
4- Moltkia doerfleri Wettstein (1918: 361). ≡ Paramoltkia doerfleri (Wettstein) Greuter & Burdet in Greuter (1981: 39).
5- Moltkia libanotica Zuccarini (1843: 246). = Solenanthus stamineus (Desfontaines) Wettstein (1885: 88). Cynoglossum stamineum
Desfontaines (1807: 431).
6- Moltkia neubaueri Rechinger (1951: 57). ≡ Rindera neubaueri (Rechinger) Rechinger & Riedl in Riedl (1963a: 216).
7- Moltkia parviflora (Decaisne) Clarke (1883: 171). Mertensia exserta Johnston (1956: 305) [non Mertensia parviflora Don (1837:
320)]. ≡ Craniospermum parviflorum Decaisne in Jacquemont (1844: 126).
8- Moltkia sendtneri Boissier (1856: 138). ≡ Halacsya sendtneri (Boissier) Dörfler in Dörfler et al. (1901: 103).
9- Moltkia trollii Melchior (1940: 115) Decalepidanthus trollii (Melchior) Dickoré & Hilger (2015: 139). Pseudomertensia trollii
(Melchior) R.R. Stewart & Kazmi in Kazmi (1970: 369). = Mertensia coventryana Clay (1937: 379), nom. nud. = Pseudomertensia
trollii var. edelbergii (Rech.f. & Riedl) Kazmi (1970: 370). Mertensia edelbergii Rechinger & Riedl in Riedl (1963a: 230).
Pseudomertensia edelbergii (Rechinger & Riedl) Riedl (1967: 60). = Pseudomertensia trollii var. harrissii Kazmi (1970: 370)
Acknowledgments
We are grateful to Federico Luebert, Rheinische Friedrich Wilhelms Universität Bonn, for helpful discussions, extensive
comments, and substantial improvement to the manuscript. We also would like to thank the anonymous reviewers for
their critical reading of the manuscript. The fieldwork in Iran was supported by grants from Bu-Ali Sina University.
References
Al-Shehbaz, I.A. (1991) The genera of Boraginaceae, the southeastern United States. Journal of the Arnold Arboretum 1: 1–69.
Baillon, H. (1888) Bignoniacées. Histoire des Plantes 10: 1–58.
Bechi, N., Miceli, P. & Garbari, F. (1992) Indagini biosistematiche sulla flora apuana. III Contributo. [serie B] Atti della Società Toscana
di Scienze Naturali, Memorie 108 (1991): 171–237.
Bertoloni, A. (1842) Miscellanea botanica. I. Novi Commentarii Academiae Scientarum Bononiensis 5: 10–15.
Boissier, P.E. (1844) Diagnoses Plantarum Orientalium Novarum 1 (4). Apud B. Herman., Lipsiae, 86 pp.
Boissier, P.E. (1849) Diagnoses Plantarum Orientalium Novarum, vol. 11. B. Herrmann, Lipsia [Leipzig], 136 pp.
Boissier, P.E. (1856) Diagnoses Plantarum Novarum praesertim orientalium nonnullis europaeis boreali-africanisque additis. Series
secunda., vol. 3. B. Herrmann, Lipsia [Leipzig], 177 pp.
Boissier, P.E. (1875) Flora orientalis, sive enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum,
vol. 4 (1). H. Georg, Geneva [Genéve], Basilea [Basel] & Lugdunum [Leiden], 280 pp.
https://doi.org/10.5962/bhl.title.20323
Bornmüller, J.F.N. (1894) Novitiae florae orientalis: Series I (1–53). Mitteilungen des Thüringischen Botanischen Vereins 20: 1–51.
Brand, A. (1902) Moltkia. In: Wohlfarth, R. & Koch, W.D.J. (Eds.) Synopsis der Deutschen und Schweizer Flora 2. 3rd Edition. O.R.
Reisland, Leipzig, 1999 pp.
Buys, M.H. & Hilger, H.H. (2003) Boraginaceae cymes are exclusively scorpioid and not helicoid. Taxon 52: 719–724.
Cecchi, L. & Selvi, F. (2009) Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine
adaptation in circum-mediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58 (3):
700–714.
RANJBAR & KHALVATI
158 Phytotaxa 408 (3) © 2019 Magnolia Press
https://doi.org/10.1002/tax.583002
Chacón, J., Luebert, F., Hilger, H.H., Ovchinnikova, S., Selvi, F., Cecchi, L., Guilliam, C.M., Hasenstab-Lehman, K., Sutorý, K., Simpson,
M.G. & Weigend, M. (2016) The borage family (Boraginaceae s.s.): a revised infrafamilial classification based on new phylogenetic
evidence, with emphasis on the placement of some enigmatic genera. Taxon 65: 523–546.
https://doi.org/10.12705/653.6
Clarke, C.B. (1883) Boragineae. In: Hooker, J.D. (Ed.) The flora of British India 4. Reeve & Co., London, pp. 134–179.
Clay, S. (1937) The Present-Day Rock Garden. Being a complementary volume to Farrer’s “English Rock Garden”. Jack, London, 681
pp.
Cohen, J.I. & Davis, J.I. (2012) Molecular phylogenetics, molecular evolution, and patterns of clade support in Lithospermum
(Boraginaceae) and related taxa. Systematic Botany 37 (2): 490–506.
https://doi.org/10.1600/03634412X635539
Cronquist, A. (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, 1262 pp.
D’Amato, G. & Pavesi, A. (1990) Numeri cromosomici per la flora Italiana: 1247–1250. Informatore Botanico Italiano 22: 244–246.
De Candolle, A.P. & De Candolle, A.L.P. (1846) Echieae. In: De Candolle, A.L.P. (Ed.) Prodromus Systematis Naturalis Regni Vegetablis,
vol. 10. Treuttel & Würtz, Paris, pp. 1–178.
Desfontaines, RL (1807) Tome Dixième. Annales du Muséum National d’Histoire Naturelle 10: 430–431.
Diane, N., Hilger, H.H. & Gottschling, M. (2002) Transfer cells in the seeds of Boraginales. Botanical Journal of the Linnean Society 140:
155–164.
https://doi.org/10.1046/j.1095-8339.2002.00085.x
Dickoré, W.B. & Hilger, H.H. (2015). Decalepidanthus (Boraginaceae) includes and antedates Pseudomertensia; a synopsis of the genus.
Phytotaxa 226 (2): 131–143.
https://doi.org/10.11646/phytotaxa.226.2.3
Dörfler, I., Keck, K. & Schultz, F.W. (1901) Herbarium Normale, Schedae ad Centuriam 41. O. Hensel, Wien, 323 pp.
Dumont de Courset, G.L.M. (1814) Le Botaniste Cultivateur, ou Descrption, Culture et Usages de la plus grande partie des plantes
étrangères, ed. 2, vol. 7. Dèterville Goujon, Paris, 536 pp.
Emberger, L. & Maire, R. (1941) Catalogue des plantes du Maroc 4. Imprimerie Minerva, Algiers, LXXV, 1181 pp.
Forsskål, P. & Nierbur, C. (1775) Flora Aegyptiaco-Arabica. Mö̈ller, Copenhagen, 219 pp.
Forsskål, P. (1775) Flora Aegyptiaco-Arabica. Ex officina Mölleri, Hauniae, 32, cxxvi, 220 pp.
https://doi.org/10.5962/bhl.title.41
Georgiou, O., Dimitrellos, G. & Georgiadis, T. (2000) Moltkia petraea (Boraginaceae) in Greece. Phyton 40: 57–69.
Ghaffari, S.M. (1996) Chromosome studies in some species of Boraginaceae from Iran. Iranian Journal of Botany 7 (1): 81–93.
Ghaffari, S.M., Hejazi, A. & Pourahmad, A. (2005) New chromosome counts in nine endemic species from Iran. Folia Geobotanica 40
(4): 435–440.
https://doi.org/10.1007/BF02804290
Gottschling, M., Hilger, H.H., Wolf, M. & Diane, N. (2001) Secondary structure of the ITS1 transcript and its application in a reconstruction
of the phylogeny of Boraginales. Plant Biology 3: 629–636.
https://doi.org/10.1055/s-2001-19371
Greuter, W. (1981) Med-Checklist Notulae, 3. Willdenowia 11 (1): 23–43. Available from: http://www.jstor.org/stable/3995788 (accessed
1 July 2019)
Grisebach, A.H.R. (1846) Spicilegium florae rumelicae et bithynicae exhibens synopsin plantarum quas in aest. 1839 legit auctor A.
Grisebach 2. Friedrich Vieweg und Sohn, Braunschweig, pp. 161–548.
Hall, J.E., Kriby, K.J. & Whitbread, A.M. (2001) National Vegetation Classification: field guide to woodland. Classic Printers, UK.
Hegi, G. (1927) Illustrierte Flora von Mittel-Europa, vol. 5 (3). Carl Hanser, München, pp. 2153–2155.
Hilger, H.H., Selvi, F., Papini, A. & Bigazzi, M. (2004) Molecular systematics of Boraginaceae tribe Boragineae based on ITS1 and trnL
sequences, with special reference to Anchusa s.l. Annals of Botany 94: 201–212.
https://doi.org/10.1093/aob/mch132
Hodkinson, B.P. & Lendemer, J.C. (2014) A clarification of effective electronic publication. Taxon 63: 911–913.
https://doi.org/10.12705/634.17
Jacquemont, V. (1844) Voyage dans l’Inde par Victor Jacquemont, pendant les anneìes 1828 aÌ 1832. Description des collections botanique.
Diderot Frères, Paris, 183 pp.
Johnston, I.M. (1953) Studies in the Boraginaceae, XXXIV. A revaluation of some genera of the Lithospermeae. Journal of the Arnold
Arboretum 34: 2–4.
https://doi.org/10.5962/bhl.part.27153
Johnston, I.M. (1956) Studies in the Boraginaceae. XXXVII. New or otherwise interesting species from America and Asia. Journal of the
WORLD CHECKLIST OF MOLTKIA (BORAGINACEAE) Phytotaxa 408 (3) © 2019 Magnolia Press 159
Arnold Arboretum 37: 288–306.
Kazmi, S.M.A. (1970) A revision of the Boraginaceae of West Pakistan and Kashmir. Journal of the Arnold Arboretum 51: 133–184,
367–402, 499–520.
Kerner, A. (1881) Schedae ad floram exsiccatam Austro-Hungaricam. 1. A. Eurich, Vindobonae, 138 pp.
Kunze, G. (1846) Flora oder Allgemeine botanische Zeitung 29. Regensburg, Jena. 691 pp.
Långström, E. & Chase, M.W. (2002) Tribes of Boraginoideae (Boraginaceae) and placement of Antiphytum, Echiochilon, Ogastemma and
Sericostoma: A phylogenetic analysis based on atpB plastid DNA sequence data. Plant Systematics and Evolution 234: 137–153.
https://doi.org/10.1007/s00606-002-0195-z
Lawrence, J.R. (1937) A correlation of the taxonomy and the floral anatomy of certain of the Boraginaceae. American Journal of Botany
24: 433–444.
https://doi.org/10.1002/j.1537-2197.1937.tb09125.x
Leadlay, E. & Jury, S. (2006) Taxonomy and plant conservation. Cambridge University Press, Cambridge.
Lehmann, J.G.C. (1817) Beschreibung einiger neuer und wenig bekannten Pflanzen. Neue Schriften der Naturforschenden Gesellschaft
Halle 3: 1–26.
Lehmann, J.G.C. (1830) Plantas Quasdam Novas in Horto Hamburgensium Botanico Cultas. Linnaea 5: 371–387.
Linnaeus, C. (1753) Species Plantarum. L. Salvius, Stockholm, 1200 pp.
Linnaeus, C. (1762) Species plantarum, ed. 2, vol. 1. Laurentii Salvii, Holmiae, 784 pp.
Linnaeus, C. (1763) Species Plantarum, Editio Secunda 2. Laurentii Salvii, Stockholm, 900 pp.
Luebert, F., Cecchi, L., Frohlich, M.W., Gottschling, M., Guilliams, C.M., Hilger, H.H., Hasenstab-Lehman, K.E., Miller, J.S., Mittelbach,
M., Nazaire, M., Nepi, M., Nocentini, D., Ober, D., Olmstead, R.G., Selvi, F., Simpson, M.G., Sutorý, K., Valdés, B., Walden, G.K.,
& Weigend, M. (2016) Familial classification of the Boraginales. Taxon 65: 502‒522.
https://doi.org/10.12705/653.5
Mansion, G., Selvi, F., Guggisberg, A. & Conti, E. (2009) Origin of Mediterranean insular endemics in the Boraginales: integrative
evidence from molecular dating and ancestral area reconstruction. Journal of Biogeography 36: 1282–1296.
https://doi.org/10.1111/j.1365-2699.2009.02082.x
Maire, R. (1929) Contributions à l’étude de la flore de l’Afrique du Nord. Bulletin de la Société d’histoire naturelle d’Afrique du Nord
20: 192.
Melchior, H. (1940) Neue Arten vom Nanga Parbat leg. C. Troll (II. Teil). Notizblatt des Botanischen Gartens und Museums zu Berlin-
Dahlem 15: 111–119.
https://doi.org/10.2307/3995098
Moench, C. (1794) A staminum situ describendi. Methodus Plantas Horti Botanici et Agri Marburgensis 2: 369–780.
https://doi.org/10.5962/bhl.title.304
Nazaire, M. & Hufford, L. (2012) A broad phylogenetic analysis of Boraginaceae: Implications for the Relationships of Mertensia.
Systematic Botany 37 (3): 758–783.
https://doi.org/10.1600/036364412X648715
Nyman, C.F. (1881) Conspectus florae europaeae 3. Örebro Suecicae, typis Officinae Bohlinianae, 858 pp.
https://doi.org/10.5962/bhl.title.10533
Peruzzi, L & Soldano, A. (2010) Notula: 1681. In: Notulae alla checklist della Flora vascolare Italiana. Informatore Botanico Italiano 42
(1): 385.
Peruzzi, L., Domina, G., Bartolucci, F., Galasso, G., Peccenini, S., Raimondo, F.M., Albano, A., Alessandrini, A., Banfi, E., Barberis, G.,
Bernardo, L., Bovio, M., Brullo, S., Brundu, G., Brunu, A., Camarda, I., Carta, L., Conti, F., Croce, A., Iamonico, D., Iberite, M.,
Iiriti, G., Longo, D., Marsili, S., Medagli, P., Pistarino, A., Salmeri, C., Santangelo, A., Scassellati, E., Selvi, F., Soldano, A., Stinca,
A., Villani, M., Wagensommer, R.P. & Passalacqua, N.G. (2015) An inventory of the names of vascular plants endemic to Italy, their
loci classici and types. Phytotaxa 196 (1): 1–217.
https://doi.org/10.11646/phytotaxa.196.1.1
Rechinger, K.H. (1950) Saxifragaceae, Plantaginaceae, Borraginaceae et Scrophulariaceae novae iranicae. Anzeiger der Österreichische
Akademie der Wissenschaften, Mathematisch-Naturwissenschatliche Klasse. 87: 87–187.
Rechinger, K.H. (1951) Boraginaceae novae orientales (Rechingeri iter iranicum secundum No. 24). Annalen des Naturhistorischen
Museums in Wien 58: 44–61.
Riedl, H. (1963a) Borraginaceae. Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 13 [Symbolae Afghanicae 5]: 183–
252.
Riedl, H. (1963b) Decalepidanthus, eine neue Borraginaceen-Gattung aus NW-Pakistan. Österreichische Botanische Zeitschrift 110:
608–612.
https://doi.org/10.1007/BF01441479
RANJBAR & KHALVATI
160 Phytotaxa 408 (3) © 2019 Magnolia Press
Riedl, H. (1967) Boraginaceae. In: Rechinger, K.H. (Ed.) Flora Iranica 48. Akademische Druck- und Verlagsanstalt, Graz, pp. 1–281.
Riedl, H. (1978) Moltkia Lehm. In: Davis, P.H. (Ed.) Flora of Turkey and the East Aegean Islands, vol. 6. Edinburgh University Press,
Edinburgh, pp. 324–326.
Riedl, H. (1997) Boraginaceae. In: Kalkman, C., Kirkup, D.W., Nooteboom, H.P., Stevens, P.F. & de Wilde, W.J.J.O. (Eds.) Flora
Malesiana, 13, Series I—Seed Plants. Rijksherbarium/Hortus Botanicus, Leiden, pp. 43–144.
Roemer, J.J. & Schultes, J.A. (1819) Caroli a Linné equitis Systema Vegetabilium secundum classes, ordines, genera, species, cum
characteribus, differentiis et synonymiis. Editio nova, speciebus inde ab editione XV detectis aucta et locupletata. Volumen quintum
inceptum a Joanne Jacobo Roemer post ejus obitum continuatum a Jos. Augusto Schultes. Stuttgart, Sumtibus J.G.Cottae, 632pp.
Roth, A.W. (1797) Catalecta Botanica 1. Müller, Leipzig, Freyburg, 244 pp.
Selvi, F. & Cecchi, L. (2009) Typification of Names of Euro-Mediterranean Taxa of Boraginaceae Described by Italian Botanists. Taxon
58 (2): 621–626.
https://doi.org/10.1002/tax.582025
Selvi, F., Bigazzi, M., Hilger, H. & Papini, A. (2006). Molecular Phylogeny, Morphology and taxonomic re-circumscription of the generic
complex Nonea/Elizaldia/Pulmonaria/Paraskevia (Boraginaceae-Boragineae). Taxon 55 (4): 907–918.
https://doi.org/10.2307/25065685
Small, J.K. (1913) Flora of the southeastern United States. Published by the author, New York, 1394 pp.
Soltis, D.E., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C., Brockington, S.F., Refulio-Rodriguez, N.F., Walker, J.B., Moore, M.J.,
Carlsward, B.S., Bell, C.D., Latvis, M., Crawley, S., Black, C., Diouf, D., Xi, Z., Rushworth, C.A., Gitzendanner, M.A., Sytsma,
K.J., Qiu, Y.L., Hilu, K.W., Davis, C.C., Sanderson, M.J., Beaman, R.S., Olmstead, R.G., Judd, W.S., Donoghue, M.J. & Soltis, P.S.
(2011) Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704–730.
https://doi.org/10.3732/ajb.1000404
Sprengel, K.P.J. (1825) Systema Vegetabilium. Editio decima sexta, curante curtio sprengel, vol I, J.C. Dietrich, Göttingen, 992 pp.
Takhtajan, A.L. (1997) Diversity and classification of flowering plants. Columbia University Press, New York, 643 pp.
Tausch, I.F. (1824) Alkanna Tausch. Flora oder Allgemeine Botanische Zeitung 7 (1): 234–235.
Thiers, B. (2016) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual
Herbarium. The New York Botanical Garden. Available from: http://sweetgum.nybg.org/ih/ (accessed 2 February 2016)
Trattinnick, L. (1819) Thesaurus botanicus. Antonii Strauss, Vienna, 13 pp.
Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold,
K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (Eds.) (2018) International Code of Nomenclature for
algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017.
Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten, i–xxxviii, pp. 1–254.
https://doi.org/10.12705/Code.2018
Vahl, M. (1790) Symbolae batanicae. Copenaghen, 470 pp.
Viviani, D. (1824) Florae libycae specimen, sive plantarum enumeratio Cyrenaicam, Pentapolim, magnae syrteos desertum et regionem
Tripolitanam incolentium: Pagano.
https://doi.org/10.5962/bhl.title.156796
Weigend, M., Gottschling, M., Selvi, F. & Hilger, H.H. (2009) Marbleseeds are gromwells -systematics and evolution of Lithospermum
and allies (Boraginaceae tribe Lithospermeae) based on molecular and morphological data. Molecular Phylogenetics and Evolution
52: 755–768.
https://doi.org/10.1016/j.ympev.2009.05.013
Weigend, M., Luebert, F., Selvi, F., Brokamp, G. & Hilger, H.H. (2013) Multiple origins for Hound’s tongues (Cynoglossum L.) and Navel
seeds (Omphalodes Mill.)—The phylogeny of the borage family (Boraginaceae s. str.) Molecular Phylogenetics and Evolution 68
(3): 604–618.
https://doi.org/10.1016/j.ympev.2013.04.009
Wettstein, R. (1918) Botanische Notizen. Österreichische botanische Zeitschrift 67: 361–369.
https://doi.org/10.1007/BF02126086
Willdenow, C.L. (1798) Species plantarum, ed. 4. 1 (2). G.C. Nauk, Berlin, Germany, 1071 pp.
Zuccarini, J.G. (1843) Plantarum novarum vel minus cognitarum quae in horto botanico herbario que regio monascensi servantur, fasciculus
primus descripsit. Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften
3: 219–254.
... Moltkia ciliata (Forsk) of the family Boraginaceae is the most abundant of the nine known Moltkia species. This family consists of about 131 genera and 2500 species [13]. Moltkia ciliata is a small, long-stemmed shrub that is wrapped with hard bristles, no longer than 30 cm long [14]. ...
Article
Full-text available
In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in 0.1N HCl using the aqueous extract of Moltkia ciliata. The inhibitory potency was determined by weight loss and the Potentiodynamic Polarization method. The results indicated that the inhibition efficiency increases with increasing extract concentration. A maximum inhibition rate of 76.26% in HCl was recorded at 8% (v/v) of inhibitor concentration according to Potentiodynamic measurements. We also studied the impact of temperature on the corrosion with non-attendance and attendance of the optimum concentration in temperature range from 298K to 363K and computed the activation energy, enthalpy, entropy, free energy and the heats of adsorption .The plant seems to be a good corrosion inhibitor of mixed mode of inhibition in the medium based on the ob- tained results. The adsorption on the metal surface was found to obey to Langmuir isotherm. The adsorption can be attributed to the presence of O-atoms, π-electrons and aromatic rings found in natural compounds of the aqueous extract of Moltkia ciliata such as flavonoids, alkaloids, Sterols, Volatile oils, saponins and tannins.
Article
Full-text available
In the present study, we reported the evaluation of antioxidant properties using electrochemical and spectrophotometric assays and determination of total bioactive compounds content of the ethyl acetate (EtOAc) and n-butanol (n-BuOH) extracts of Moltkia ciliata growing in Algeria. The results obtained showed that the EtOAc extract was rich in bioactive compounds, which showed the most effective antioxidant capacity in all tests compared to the n-BuOH extract. This was confirmed by the chromatographic analysis and HPLC of the extract of many compounds in different quantities. The difference in antioxidant activity can be explained by differences in the levels of polyphenols and flavonoids. The study concludes this plant is a rich source of phenols and flavonoids, and also showed good in-vitro antioxidant activity by all methods. Thus, the plant M. ciliata can be explored as a potential source of natural antioxidant.
Article
A complete nomenclatural synopsis is provided for Onosma (Boraginaceae) and the allied genera Maharanga and Podonosma, covering each name of new taxa, each new combination and each replacement name communicated since 1753 till October 2021. All the 749 validly published names are listed together with an account of the formal reasons why 136 additional names must be regarded as invalid. Type species are indicated or newly designated for all the infrageneric names. Information is assembled on the types of the 466 names of specific and infraspecific taxa retrieved from a comprehensive survey of the scientific literature and from public databases, with 126 names (27%) lectotypified here. Finally, 42 new combinations are proposed to solve as yet unresolved nomenclatural issues.
Article
Full-text available
Boraginaceae s.str. is a subcosmopolitan family of 1600 to 1700 species in around 90 genera, and recent phylogenetic studies indicate that the infrafamilial classification as currently used is highly obsolete. The present study addresses the relationships of the major clades in Boraginaceae s.str. with an emphasis on monophyly of, and relationships between previously recognized clades and the position of various unplaced genera such as Afrotysonia, Anoplocaryum, Brachybotrys, Chionocharis, Craniospermum, Thyrocarpus, and Trigonocaryum using three plastid markers and a taxon sampling with four outgroup and 170 ingroup species from 73 genera. The phylogeny shows high statistical support for most nodes on the backbone and within individual clades. Echiochileae are confirmed as sister to the remainder of Boraginaceae s.str., which, in turn, fall into two well-supported clades, the Boragineae + Lithospermeae and the Cynoglosseae s.l. The latter is highly resolved and includes the Lasiocaryum-clade (Chionocharis, Lasiocaryum, Microcaryum) and the Trichodesmeae (Caccinia, Trichodesma) as sister to the remainder of the group. Rochelieae (formerly the Eritrichieae s.str., also including Eritrichium, Hackelia, and Lappula) form a poorly supported polytomy together with the Mertensia-clade (also including Anoplocaryum, Asperugo, and Memoremea) and the Omphalodes-clade. The enigmatic genus Craniospermum (Craniospermeae) is sister to an expanded Myosotideae (also including Brachybotrys, Decalepidanthus, Trigonocaryum, and Trigonotis) and these two clades are in turn sister to the Core-Cynoglosseae, in which Afrotysonia glochidiata and Thyrocarpus sampsonii are included. Core-Cynoglosseae again fall into two pairs of well-supported subclades. The majority of generic placements are now resolved satisfactorily and the remaining phylogenetic questions can be clearly delimited. Based on the extensive phylogenetic data now available we propose a new infrafamilial classification into three subfamilies and 11 tribes, representing a consensus among the participating authors, according to which major clades are renamed.
Article
The Boraginales are now universally accepted as monophyletic and firmly placed in Lamiidae. However, a consensus about familial classification has remained elusive, with some advocating recognition of a single, widely variable family, and others proposing recognition of several distinct families. A consensus classification is proposed here, based on recent molecular phylogenetic studies, morphological characters, and taking nomenclatural stability into consideration. We suggest the recognition of eleven, morphologically well-defined and clearly monophyletic families, namely the Boraginaceae s.str., Codonaceae, Coldeniaceae fam. nov., Cordiaceae, Ehretiaceae, Heliotropiaceae, Hoplestigmataceae, Hydrophyllaceae, Lennoaceae, Namaceae, and Wellstediaceae. Descriptions, synonomy, a taxonomic key, and a list of genera for these eleven families are provided, including the new family Coldeniaceae (monogeneric) and Namaceae (segregated from Hydrophyllaceae and comprising Nama, Eriodictyon, Turricula, and Wigandia), the latter necessitating a revised circumscription of a more morphologically coherent Hydrophyllaceae.
Article
The small West Himalayan genus Decalepidanthus (Boraginaceae) is reviewed. Decalepidanthus was erroneously transferred to Pseudomertensia, although the former name antedates the latter by four years. Seven species of Decalepidanthus are accepted in this paper, D. echioides, D. elongatus, D. moltkioides, D. parviflorus, D. primuloides, D. racemosus and D. trollii. Two additional entities, D. flavescens and D. rosulatus are considered unresolved. A synopsis of the genus is provided, the necessary new combinations are made, and a dichotomous key and distribution maps to the accepted species are given. Lectotypes are designated for Lithospermum echioides, L. secundiflorum, Mertensia tibetica and M. nuristanica, and a neotype for Moltkia trollii. Mertensia lindelofioides and Pseudomertensia drummondii are excluded from Decalepidanthus and referred to the genus Lindelofia.
Article
The Balkan endemic Moltkia petraea (TRATT.) GRISEB. is a rare species in Greece, which has been found by the authors from only three localities in Epirus. Two of these localities are new records for the taxon, while the third is a rediscovery 100 years after its first report by HALACSY. A fourth locality near Thermopyles (Mt Iti) reported by BOISSIER has not yet been confirmed. The chromosome number 2n = 16, and the karyotype from Greek populations of M. petraea are presented for the first time. Ecological requirements of the species and phytosociological data from Greek biotopes are given and compared with corresponding data from the former Yugoslavia and Albania. Phytosociological relevees with M. petraea in Greece are also given for the first time; in Greece it is a part of chasmophytic communities with Asperula chlorantha (Onosmetalia frutescentis QUEZEL).