First, a generalization of Chevalley's classical theorem from 1936 on polynomial equations f(x1,…, xN) = 0 over a finite field K is given, where the variables xi are restricted to arbitrary subsets Ai ⊆ K. The proof uses Alon's Nullstellensatz. Next, a theorem on integer polynomial congruences f(x1,…, xN) ≡ 0 (mod pν) with restricted variables is proved, which generalizes a more recent result of
... [Show full abstract] Schanuel. Finally, an extension of Olson's theorem on zero-sum sequences in finite Abelian p-groups is derived as a corollary.