Article

Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... To meet the needs of a growing population, agricultural intensification is necessary, which involves using fertilizers, pesticides, water, and other resources. However, it leads to environmental pollution and economic losses [6], especially with contamination of drinking water and aquatic ecosystems [7], [8]. Also, spreading pesticide residues in the environment results in mass killings of nonhuman biotas, such as bees, birds, amphibians, fish, and small mammals [9]. ...
... The most widespread method for obtaining information about vegetation is through multispectral (MS) imaging. With MS data, it is possible to calculate several vegetation indices, among which the Normalized Difference Vegetation Index (NDVI) is a standard measure of crop condition and plant health [7]. Usually, these MS images are acquired from aircraft or satellites, but only a portion of available satellite images are distributed free of charge. ...
Article
Full-text available
With the rapid increase of the world population, climate changes, and the slow expansion of cultivated areas, only precision agriculture (PA) can provide enough food or resources. PA requires flexible instruments for measuring the spectral signatures of the crops to understand their conditions. Unfortunately, the high initial costs of multispectral cameras reduce the implementation of PA in small farms, which constitute a large portion of arable land in Europe and contribute with social bonds, local know-how, and cultural legacy. With the objective to speed up the use of multispectral imaging, in this paper, we present a novel low-cost imaging device consisting of a multispectral camera with nine bands and a thermal imager, which price is several times lower than commercially available ones. This paper describes the design and the calibration of the imaging device based on the off-the-shelf components: Raspberry Pi, dedicated quad camera kit, thermal core, and multi-band optical filters. The spectral reconstruction accuracy has a high average R2 score of 0.986. Finally, images from multiple sensors are aligned using phase-only correlation and dense optical flow, providing a method that can be implemented on all platforms. The presented solution is open source, permitting one to modify and expand the capabilities of the described device and adapt to specific needs. Moreover, the device is flexible as the thermal camera can be removed to reduce the total system cost if its usage is not required. Even if its primary application is PA, the proposed solution can be used for other applications.
... Intensification includes higher use of inputs such as fertilizers, pesticides, and water. However, it imposes negative environmental impacts, like contamination of drinking water and aquatic ecosystems [3] and reduces economic gain if used in a suboptimal way. Precision agriculture (PA) is an essential tool of sustainable agriculture in the 21 st century [4] that seeks to address these issues. ...
... Although there are many measurement devices for observing both proximal and remote crop conditions, the vast majority of data is obtained by multispectral (MS) imaging. The crop status is assessed through vegetation indices, and the Normalized Difference Vegetation Index (NDVI) is the most used indicator of plant health condition [3]. There are diffident ways to acquire MS images, from unmanned aerial vehicles (UAV), airplanes, or satellites, but only satellite images can be obtained free of charge, like from Sentinel 2 constellation. ...
Article
There is a constant push on agriculture to produce more food and other inputs for different industries. Precision agriculture is essential to meet these demands. The intake of this modern technology is rapidly increasing among large and medium-sized farms. However, small farms still struggle with their adaptation due to the expensive initial costs. A contribution in handling this challenge, this paper presents data gathering for testing an in-house made, cost-effective, multispectral camera to detect Flavescence dorée (FD). FD is a grapevine disease that, in the last few years, has become a major concern for grapevine producers across Europe. As a quarantine disease, mandatory control procedures, such as uprooting infected plants and removing all vineyard if the infection is higher than 20%, lead to an immense economic loss. Therefore, it is critical to detect each diseased plant promptly, thus reducing the expansion of Flavescence dorée. Data from two vineyards near Riva del Garda, Trentino, Italy, was acquired in 2022 using multispectral and hyperspectral cameras. The initial finding showed that there is a possibility to detect Flavescence dorée using Linear discriminant analysis (LDA) with hyperspectral data, obtaining an accuracy of 96.6 %. This result justifies future investigation on the use of multispectral images for Flavescence dorée detection.
... Recently, the PROSPECT-PRO model was proposed to estimate leaf dry matter as a nitrogen-based protein, and LNC can thus be estimated based on the correlation between protein and LNC (Féret et al., 2021). The physical model is more generic than the empirical model (Wang et al., 2018;Li et al., 2019;Berger et al., 2020;Féret et al., 2021). However, leaf biochemical properties are expressed as content per unit leaf area in RTM. ...
... Recently, the PROSPECT-PRO model opens a new opportunity to predict LNC by inverting the radiative transfer function. However, retrieving LNC using the coupled leaf and canopy models needs biochemical and physical structural parameters to validate this model first (Wang et al., 2018;Li et al., 2019;Berger et al., 2020;Féret et al., 2021). Thus, this method has not been evaluated for a variety of species. ...
Article
Estimating crop leaf nitrogen concentration (LNC, %) with the canopy bidirectional reflectance factor (BRF) is an effective method for detecting the nitrogen (N) deficiency in crops. It is challenging to remotely estimate LNC across growth stages and seasons with a general empirical model, since the complex change in canopy structure under N deficiencies and across growth stages affects the accuracy of the estimations. The canopy scattering coefficient (CSC), the ratio of the BRF to the directional area scattering factor (DASF), has been suggested to reduce the canopy structural effect on BRF. However, the DASF can only be calculated for closed canopies and is not applicable to the early growth stages of crops when the fields are sparsely vegetated. This study proposed a new method for decoupling the canopy structural effect and canopy BRF using the near-infrared reflectance of vegetation (NIRV). NIRV is driven by the change in canopy structure while mitigates the soil contribution. The method was tested through six field experiments on ten farmers' fields of winter oilseed rape (Brassica napus L.) using both in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. The results demonstrated that NIRV was closely related to the leaf area index (LAI) (R² = 0.79) across growth stages and seasons. The CSC was derived with NIRV based on the linear relationship between NIRV and DASF for the closed canopies. The LNC predicted by the NIRV-derived CSC (R² = 0.69, RMSE = 0.51 for in-situ hyperspectral data and R² = 0.65, RMSE = 0.49 for UAV multispectral images) was more accurate than the results derived from the BRF (R² = 0.55, RMSE = 0.62 for in-situ hyperspectral data and R² = 0.59, RMSE = 0.60 for UAV multispectral images) with the independent dataset, suggesting that correcting for the canopy structural effect with NIRV provided a new alternative for suppressing the impact of canopy structure on the canopy BRF. As NIRV is easily calculated with diverse remote sensing data sources, this study proved the potential of applying NIRV to improving the accuracy and transferability of the LNC prediction model at different scales.
... The PROSAIL model was used to generate multiple LUTs (multi-LUTs), which are query tables consisting of multiple model parameter combinations and their corresponding simulated reflectance value. Then, the estimation of Cab and Car content was implemented with the above multi-LUTs [63]. In particular, to maintain consistency between simulated reflectance spectra derived from the PROSAIL model (at 1 nm interval) and the hyperspectral imaging data, the spectral interval for simulated reflectance spectra in the LUTs were resampled to actual wavelengths of hyperspectral imaging data (around 2.3 nm intervals). ...
... Multi-LUTs were constructed according to different calibrated parameters set at different ages. Following the procedure for establishing multi-LUTs by Li et al. (2019) [63], multi-LUTs were constructed from two aspects: (1) to determine the suitable LUT entries of pigments for two ages using LUT-database-1; and (2) to find the optimal LUT of pigments for two ages using LUT-database-2. ...
Article
Full-text available
Pigments are the biochemical material basis for energy and material exchange between vegetation and the external environment, therefore quantitative determination of pigment content is crucial. Unmanned Aerial Vehicle (UAV)-borne remote sensing data coupled with radiative transfer models (RTM) provide marked strengths for three-dimensional (3D) visualization, as well as accurate determination of the distributions of pigment content in forest canopies. In this study, Light Detection and Ranging (LiDAR) and hyperspectral images acquired by a multi-rotor UAV were assessed with the PROSAIL model (i.e., PROSPECT model coupled with 4SAIL model) and were synthetically implemented to estimate the horizontal and vertical distribution of pigments in canopies of Ginkgo plantations in a study site within coastal southeast China. Firstly, the fusion of LiDAR point cloud and hyperspectral images was carried out in the frame of voxels to obtain fused hyperspectral point clouds. Secondly, the PROSAIL model was calibrated using specific model parameters of Ginkgo trees and the corresponding look-up tables (LUTs) of leaf pigment content were constructed and optimally selected. Finally, based on the optimal LUTs and combined with the hyperspectral point clouds, the horizontal and vertical distributions of pigments in different ages of ginkgo trees were mapped to explore their distribution characteristics. The results showed that 22-year-old ginkgo trees had higher biochemical pigment content (increase 3.37–55.67%) than 13-year-old ginkgo trees. Pigment content decreased with the increase of height, whereas pigment content from the outer part of tree canopies showed a rising tendency as compared to the inner part of canopies. Compared with the traditional vegetation index models (R2 = 0.25–0.46, rRMSE = 16.25–19.37%), the new approach developed in this study exhibited significant higher accuracies (R2 = 0.36–0.60, rRMSE = 13.53%–16.86%). The results of this study confirmed the effectiveness of coupling the UAV-borne LiDAR and hyperspectral image with the PROSAIL model for accurately assessing pigment content in ginkgo canopies, and the developed estimation methods can also be adopted to other regions under different conditions, providing technical support for sustainable forest management and precision silvicuture for plantations.
Chapter
This chapter examines how these disciplines are transforming agriculture through the implementation of advanced techniques that enable farmers to address complex challenges and improve their operations. Artificial Intelligence offers solutions that automate and optimise agricultural processes, from planting to harvesting, facilitating data-driven decision-making and improving accuracy in crop management. On the other hand, Data Science provides advanced analytical tools that allow the extraction of valuable insights from large volumes of agricultural data. By analysing data from various sources, such as in-field sensors and monitoring systems, farmers can gain a deeper understanding of their operations and make informed decisions that optimise resource use and mitigate climatic and operational risks. By reducing excessive use of water, fertilisers and pesticides, and minimising waste, these advanced technologies play a crucial role in protecting ecosystems and mitigating climate change.
Article
Full-text available
The integration of the Crop Growth Model (CGM), Radiative Transfer Model (RTM), and Machine Learning Algorithm (MLA) for estimating crop traits represents a cutting-edge area of research. This integration requires in-depth study to address RTM limitations, particularly of similar spectral responses from multiple input combinations. This study proposes the integration of CGM and RTM for crop trait retrieval and evaluates the performance of CGM output-based RTM spectra generation for multiple crop traits estimation without biased sampling using machine learning models. Moreover, PROSAIL spectra as training against Harmonized Landsat Sentinel-2 (HLS) as testing was also compared with HLS data only as an alternative. It was found that satellite data (HLS, 80:20) not only consistently performed better, but PROSAIL (train) and HLS (test) also had satisfactory results for multiple crop traits from uniform training samples in spite of differences in simulated and real data. PROSAIL-HLS has an RMSE of 0.67 for leaf area index (LAI), 5.66 µg/cm² for chlorophyll ab (Cab), 0.0003 g/cm² for dry matter content (Cm), and 0.002 g/cm² for leaf water content (Cw) against the HLS only, with an RMSE of 0.40 for LAI, 3.28 µg/cm² for Cab, 0.0002 g/cm² for Cm, and 0.001 g/cm² for Cw. Optimized machine learning models, namely Extreme Gradient Boost (XGBoost) for LAI, Support Vector Machine (SVM) for Cab, and Random Forest (RF) for Cm and Cw, were deployed for temporal mapping of traits to be used for wheat productivity enhancement.
Article
Full-text available
The accurate estimation of soil plant analytical development (SPAD) values in cotton under various intercropping patterns with soybean is crucial for monitoring cotton growth and determining a suitable intercropping pattern. In this study, we utilized an unmanned aerial vehicle (UAV) to capture visible (RGB) and multispectral (MS) data of cotton at the bud stage, early flowering stage, and full flowering stage in a cotton–soybean intercropping pattern in the Yellow River Delta region of China, and we used SPAD502 Plus and tapeline to collect SPAD and cotton plant height (CH) data of the cotton canopy, respectively. We analyzed the differences in cotton SPAD and CH under different intercropping ratio patterns. It was conducted using Pearson correlation analysis between the RGB features, MS features, and cotton SPAD, then the recursive feature elimination (RFE) method was employed to select image features. Seven feature sets including MS features (five vegetation indices + five texture features), RGB features (five vegetation indices + cotton cover), and CH, as well as combinations of these three types of features with each other, were established. Voting regression (VR) ensemble learning was proposed for estimating cotton SPAD and compared with the performances of three models: random forest regression (RFR), gradient boosting regression (GBR), and support vector regression (SVR). The optimal model was then used to estimate and visualize cotton SPAD under different intercropping patterns. The results were as follows: (1) There was little difference in the mean value of SPAD or CH under different intercropping patterns; a significant positive correlation existed between CH and SPAD throughout the entire growth period. (2) All VR models were optimal when each of the seven feature sets were used as input. When the features set was MS + RGB, the determination coefficient (R2) of the validation set of the VR model was 0.902, the root mean square error (RMSE) was 1.599, and the relative prediction deviation (RPD) was 3.24. (3) When the features set was CH + MS + RGB, the accuracy of the VR model was further improved, compared with the feature set MS + RGB, the R2 and RPD were increased by 1.55% and 8.95%, respectively, and the RMSE was decreased by 7.38%. (4) In the intercropping of cotton and soybean, cotton growing under 4:6 planting patterns was better. The results can provide a reference for the selection of intercropping patterns and the estimation of cotton SPAD.
Article
Alfalfa, a high-quality forage, has good palatability and nutritional value. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) are both key indicators of alfalfa quality. However, the uncertainties in existing studies regarding the sensitive bands and inversion mechanism for NDF and ADF contents estimations have limited the application of high-precision remote sensing-based inversion. In this study, using hyperspectral and Sentinel-2 (S2) multispectral data of cultivated alfalfa in the Hexi Corridor region from 2020 to 2022, we analyze the characteristic spectral band and vegetation indices (VIs) required to estimate the NDF and ADF contents of alfalfa. The key conclusions are as follows. (1) The sensitive bands selected using ASD hyperspectral data are mainly in the blue, green, red-edge, and short-wave infrared (SWIR) regions, while the sensitive bands based on S2 data cover a broader range between the blue and SWIR regions. (2) Among the 21 NDF and 21 ADF models based on ASD data in this study, the optimal models are both artificial neural network (ANN) models constructed by VIs (R2 of 0.80 for both, RMSEs of 2.27% and 1.75% and mean absolute errors (MAEs) of 1.77% and 1.38% for NDF and ADF, respectively). For the S2 data, the optimal models are also ANN-based and constructed using VIs (with R2 values of 0.66 and 0.72, RMSEs of 3.06% and 2.24%, and MAEs of 2.50% and 1.79% for NDF and ADF, respectively. (3) The inversion results using the optimal model indicate that the proportion of alfalfa area in the typical study area with NDF and ADF contents characterized by a supreme grade is greater than 60%. Overall, both the ASD hyperspectral and S2 multispectral data can accurately predict alfalfa NDF and ADF contents. This approach provides an effective technical means by which the management of local alfalfa production may be guided.
Article
Full-text available
Radiative transfer models (RTMs) provide reliable information about crop yield and traits with high resource efficiency. In this study, we have conducted a systematic literature review (SLR) to fill the gaps in the overall insight of RTM-based crop yield prediction (CYP) and crop traits retrieval. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 76 articles were found to be relevant to crop traits retrieval and 15 for CYP. China had the highest number of RTM applications (33), followed by the USA (13). Crop-wise, cereals, and traits-wise, leaf area index (LAI) and chlorophyll, had a high number of research studies. Among RTMs, the PROSAIL model had the highest number of articles (62), followed by SCOPE (6) with PROSAIL accuracy for CYP (median R 2 = 0.62) and crop traits (median R 2 = 0.80). The same was true for crop traits retrieval with LAI (CYP median R 2 = 0.62 and traits median R 2 = 0.85), followed by chlorophyll (crop traits median R 2 = 0.70). Document co-citation analysis also found the relevancy of selected articles within the theme of this SLR. This SLR not only focuses on information about the accuracy and reliability of RTMs but also provides comprehensive insight towards understanding RTM applications for crop yield and traits, further exploring possibilities of new endeavors in agriculture, particularly crop yield modeling.
Article
Full-text available
The timely and precise prediction of winter wheat yield plays a critical role in understanding food supply dynamics and ensuring global food security. In recent years, the application of unmanned aerial remote sensing has significantly advanced agricultural yield prediction research. This has led to the emergence of numerous vegetation indices that are sensitive to yield variations. However, not all of these vegetation indices are universally suitable for predicting yields across different environments and crop types. Consequently, the process of feature selection for vegetation index sets becomes essential to enhance the performance of yield prediction models. This study aims to develop an integrated feature selection method known as PCRF-RFE, with a focus on vegetation index feature selection. Initially, building upon prior research, we acquired multispectral images during the flowering and grain filling stages and identified 35 yield-sensitive multispectral indices. We then applied the Pearson correlation coefficient (PC) and random forest importance (RF) methods to select relevant features for the vegetation index set. Feature filtering thresholds were set at 0.53 and 1.9 for the respective methods. The union set of features selected by both methods was used for recursive feature elimination (RFE), ultimately yielding the optimal subset of features for constructing Cubist and Recurrent Neural Network (RNN) yield prediction models. The results of this study demonstrate that the Cubist model, constructed using the optimal subset of features obtained through the integrated feature selection method (PCRF-RFE), consistently outperformed the RNN model. It exhibited the highest accuracy during both the flowering and grain filling stages, surpassing models constructed using all features or subsets derived from a single feature selection method. This confirms the efficacy of the PCRF-RFE method and offers valuable insights and references for future research in the realms of feature selection and yield prediction studies.
Article
Full-text available
Open access article available at https://www.sciencedirect.com/science/article/pii/S2214514123001435
Article
Leaf area index (LAI) is an important phenotypic trait closely related to photosynthesis, respiration, and water utilization. In recent years, unmanned aerial vehicles (UAVs) multispectral capabilities enable the acquisition of spectral information from visible light to near infrared, facilitating vegetation growth monitoring. This study aims to explore the methodology of combining vegetation indices, color indices, texture information, and ecological factors based on UAV multispectral images to enhance the accuracy of the sown mixture pasture LAI estimation. A field experiment involving 13 mixed sowing combinations of alfalfa (Medicago sativa L.), tall fescue (Festuca elata Keng ex E. Alexeev) and plantain (Plantaga lanceolata L.) was conducted out. Multiple linear regression, Bagging algorithm, support vector machine (SVM), random forest algorithm (RF), KNN algorithm, and back propagation neural network (BP) were used to construct the LAI prediction model. The results showed that combining vegetation index (VI) + color index (CI) + normalized difference texture index (NDTI), and ecological factors (EF) could enhance the accuracy of LAI estimation. The sensitive characteristic combinations for alfalfa, tall fescue, and plantain were found to be NDRE (Normalized difference red-edge index) + NGBDI (Normalized green-blue difference index) + (B) MEA-(G) HOM (Blue band Mean-Green band Homogeneity) + DTR (Daily temperature difference), MSR (Modified simple ratio) + NGRDI (Normalized green-red difference index) + (G) COR-(R) VAR (Green band Correlation-Red band Variance) + DTR (Daily temperature difference)), and MSR (Modified simple ratio) + ExG (Excess green) + (G) SEM-(G) MEA (Green band Second-order moment-Green band Mean) + DTR (Daily temperature difference), respectively. RF exhibited superior prediction capability, further enhancing the accuracy of forage LAI prediction. The alfalfa, tall fescue, and plantain obtained coefficient of determination (R 2) of 0.83, 0.79 and 0.79, root mean squared error (RMSE) of 0.50, 0.58 and 0.70, and mean absolute error (MAE) of 0.36, 0.45 and 0.55, respectively. These findings provide valuable insights for the estimation of leaf area index of the sown mixture pasture through UAV multispectral images and texture characteristics.
Chapter
Full-text available
Information about the nitrogen dynamic in wheat is important for improving in-season crop precision nutrient management and cultivated land sustainability. To develop unmanned aerial vehicle (UAV)-based spectral models for an accurate and effective assessment of the plant nitrogen content in the key stages (jointing, booting, and filling) of wheat growth, winter wheat experiment plots in Henan Province, China, were used in this study. Based on the K6 multichannel imager, 5-band (Red, Green, Blue, Red edge, and Near-infrared (Nir)) multispectral images were obtained from a UAV system and used to calculate 20 vegetation indices and 40 texture features from different band combinations. Combining the sensitive spectral features and texture features of the nitrogen content of winter wheat plants, BP neural network (BP), random forest (RF), Adaboost, and support vector machine (SVR) machine learning methods were used to construct plant nitrogen content models, and compared for the model performance and transferability. The results showed that the characteristics of different spectral features were different, but most of them had a partial normal distribution. Compared with spectral features, the distribution of texture features was more discrete. Based on Pearson’s correlation analysis, 51 spectral and texture features were selected to build four machine learning models. The estimates of plant nitrogen by the RF and Adaboost methods were relatively concentrated, mostly close to the 1:1 line; while the estimates of plant nitrogen from the BP and SVR methods were relatively scattered. The RF method was the best, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) of 0.811, 4.163, and 2.947 g/m2, respectively; the SVR method was the worst, with R2, RMSE, and MAE of 0.663, 5.348, and 3.956 g/m2, respectively. All models showed strong transferability, especially the RF and Adaboost methods, in predicting winter wheat nitrogen content under rainfed and irrigation water management.
Article
Biochemical components of Moso bamboo (Phyllostachys pubescens) are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem. The coupled PROSPECT with SAIL (PROSAIL) radiative transfer model is widely used for vegetation biochemical component content inversion. However, the presence of leaf-eating pests, such as Pantana phyllostachysae Chao (PPC), weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered. Therefore, this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables (LUTs) based on the PROSAIL framework by setting different parameter ranges according to infestation levels. Quantitative inversions of leaf area index (LAI), leaf chlorophyll content (LCC), and leaf equivalent water thickness (LEWT) were derived. The scale conversions from LCC to canopy chlorophyll content (CCC) and LEWT to canopy equivalent water thickness (CEWT) were calculated. The results showed that LAI, CCC, and CEWT were inversely related with PPC-induced stress. When applying multiple LUTs, the p-values were
Article
Full-text available
Tobacco is an important economic crop and the main raw material of cigarette products. Nowadays, with the increasing consumer demand for high-quality cigarettes, the requirements for their main raw materials are also varying. In general, tobacco quality is primarily determined by the exterior quality, inherent quality, chemical compositions, and physical properties. All these aspects are formed during the growing season and are vulnerable to many environmental factors, such as climate, geography, irrigation, fertilization, diseases and pests, etc. Therefore, there is a great demand for tobacco growth monitoring and near real-time quality evaluation. Herein, hyperspectral remote sensing (HRS) is increasingly being considered as a cost-effective alternative to traditional destructive field sampling methods and laboratory trials to determine various agronomic parameters of tobacco with the assistance of diverse hyperspectral vegetation indices and machine learning algorithms. In light of this, we conduct a comprehensive review of the HRS applications in tobacco production management. In this review, we briefly sketch the principles of HRS and commonly used data acquisition system platforms. We detail the specific applications and methodologies for tobacco quality estimation, yield prediction, and stress detection. Finally, we discuss the major challenges and future opportunities for potential application prospects. We hope that this review could provide interested researchers, practitioners, or readers with a basic understanding of current HRS applications in tobacco production management, and give some guidelines for practical works.
Article
Full-text available
The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67–0.89, RMSE=13.63–23.71 mg g–1, MAE=10.75–17.59 mg g–1) performed better than the direct inversion models (R2=0.61–0.80, RMSE=18.01–25.12 mg g–1, MAE=12.96–18.88 mg g–1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g–1, MAE=10.75 mg g–1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.
Article
Lodging is a common agricultural disaster in the maize growing period that damages photosynthesis and even affects yield, quality and mechanical harvesting. The purpose of this study was to assess maize lodging severity using the changes in variables extracted from unmanned aerial vehicle (UAV) orthophoto images before and after maize lodging. Maize lodging severity included non-lodging, mild lodging, moderate lodging and severe lodging. We extracted the red, green, blue bands, hue, saturation and value (HSV) colour and texture information before and after maize lodging. Variables sensitive to maize lodging severity were selected using correlation analysis and the Boruta algorithm. Two linear regression and three machine learning methods were used to classify maize lodging severity. From the results of the correlation analysis, 27 variables were significantly related to maize lodging severity at the 0.01 level. Saturation and value were highly correlated with maize lodging severity, with r values of − 0.92 and 0.81, respectively. In addition, 22 variables sensitive to maize lodging severity were selected by the Boruta algorithm. Among the five estimation models built by using sensitive variables, each estimation model performed well, with R 2 higher than 0.6. For the linear regression models, the estimation accuracy of the multiple linear regression (MLR) model (R 2 = 0.89 and RMSE = 0.84 for the training set; R 2 = 0.9 and RMSE = 0.35 for the testing set) was higher than that of the partial least squares regression (PLSR) model. For nonlinear regression models, both the R 2 of the training set and testing set for each model were above 0.8. The random forest (RF) estimation model had the highest accuracy among the five models, with an overall accuracy of 89.47% and Kappa coefficient of 0.84. This study indicated that UAV digital images could be used to obtain lodging information over a large number of maize breeding plots, which may be helpful to assist breeders in quickly picking out lodging-resistant maize varieties.
Article
Full-text available
LNC (leaf nitrogen content) in crops is significant for diagnosing the crop growth status and guiding fertilization decisions. Currently, UAV (unmanned aerial vehicles) remote sensing has played an important role in estimating the nitrogen nutrition of crops at the field scale. However, many existing methods of evaluating crop nitrogen based on UAV imaging techniques usually have used a single type of imagery such as RGB or multispectral images, seldom considering the usage of information fusion from different types of UAV imagery for assessing the crop nitrogen status. In this study, GS (Gram–Schmidt Pan Sharpening) was utilized to fuse images from two sensors of digital RGB and multispectral cameras mounted on UAV, and the specific bands of the multispectral cameras are blue, green, red, rededge and NIR. The color space transformation method, HSV (Hue-Saturation-Value), was used to separate soil background noise from crops due to the high spatial resolution of UAV images. Two methods of optimizing feature variables, the Successive Projection Algorithm (SPA) and the Competitive Adaptive Reweighted Sampling method (CARS), combined with two regularization regression algorithms, LASSO and RIDGE, were adopted to estimate the LNC, compared to the commonly used Random Forest algorithm. The results showed that: (1) the accuracy of LNC estimation using the fusion image is improved distinctly by a comparison to the original multispectral image; (2) the denoised images performed better than the original multispectral images in evaluating LNC in rice; (3) the RIDGE-SPA combined method, using SPA to select the MCARI, SAVI and OSAVI, had the best performance for LNC in rice, with an R2 of 0.76 and an RMSE of 10.33%. It can be demonstrated that the information fusion of multiple-sensor imagery from UAV coupling with the methods of optimizing feature variables can estimate the rice LNC more effectively, which can also provide a reference for guiding the decision making of fertilization in rice fields.
Article
Full-text available
Predicting leaf nitrogen content (LNC) using unmanned aerial vehicle (UAV) images is of great significance. Traditional LNC prediction methods based on empirical and mechanistic models have limitations. This study aimed to propose a new LNC prediction method based on combining deep learning methods and mechanistic models. Wheat field experiments were conducted to make plants with different LNC values. The LNC and UAV hyperspectral images were collected during the critical growth stages of wheat. Based on these data, a method combining the deep multitask learning method and the N-based PROSAIL model was proposed and compared with traditional LNC prediction methods, including spectral index (SI), partial least squares regression (PLSR) and artificial neural network (ANN) methods. The results show that the new proposed method obtained the best LNC prediction results, with R2, RMSE and RMSE% values of 0.79, 20.86 μg/cm2 and 18.63%, respectively, during calibration and 0.82, 18.40 μg/cm2 and 16.92%, respectively, during validation. The other methods obtained R2, RMSE and RMSE% values between 0.29 and 0.68, 25.71 and 38.52 μg/cm2 and 22.95 and 34.39%, respectively, during calibration and between 0.43 and 0.74, 22.79 and 33.55 μg/cm2 and 20.96 and 30.86%, respectively, during validation. Thus, this study provides an accurate LNC prediction tool for precise nitrogen (N) management in the field.
Article
Recent attempts, advances and challenges, as well as future perspectives regarding the application of proximal hyperspectral sensing (where sensors are placed within 10 m above plants, either on land-based platforms or in controlled environments) to assess plant abiotic stresses have been critically reviewed. Abiotic stresses, caused by either physical or chemical reasons such as nutrient deficiency, drought, salinity, heavy metals, herbicides, extreme temperatures, and so on, may be more damaging than biotic stresses (affected by infectious agents such as bacteria, fungi, insects, etc.) on crop yields. The proximal hyperspectral sensing provides images at a sub-millimeter spatial resolution for doing an in-depth study of plant physiology and thus offers a global view of the plant's status and allows for monitoring spatio-temporal variations from large geographical areas reliably and economically. The literature update has been based on 362 research papers in this field, published from 2010, most of which are from four years ago and, in our knowledge, it is the first paper that provides a comprehensive review of the applications of the technique for the detection of various types of abiotic stresses in plants.
Article
Full-text available
Nitrogen(N) is one of the most important elements for crop growth and yield formation. Insufficient or excessive application of N fertilizers can limit crop yield and quality, especially as excessive N fertilizers can damage the environment and proper fertilizer application is essential for agricultural production. Efficient monitoring of crop N content is the basis of precise fertilizer management, and therefore to increase crop yields and improve crop quality. Remote sensing has gradually replaced traditional destructive methods such as field surveys and laboratory testing for crop N diagnosis. With the rapid advancement of remote sensing, a review on crop N monitoring is badly in need of better summary and discussion. The purpose of this study was to identify current research trends and key issues related to N monitoring. It begins with a comprehensive statistical analysis of the literature on remote sensing monitoring of N in rice and wheat over the past 20 years. The study then elucidates the physiological mechanisms and spectral response characteristics of remote sensing monitoring of canopy N. The following section summarizes the techniques and methods applied in remote sensing monitoring of canopy N from three aspects: remote sensing platforms for N monitoring; correlation between remotely sensed data and N status; and the retrieval methods of N status. The influential factors of N retrieval were then discussed with detailed classification. However, there remain challenges and problems that need to be addressed in the future studies, including the fusion of multisource data from different platforms, and the uncertainty of canopy N inversion in the presence of background factors. The newly developed hybrid model integrates the flexibility of machine learning with the mechanism of physical models. It could be problem solving, which has the advantages of processing multi-source data and reducing the interference of confounding factors. It could be the future development direction of crop N inversion with both high precision and universality.
Article
Full-text available
UAV imaging provides an efficient and non-destructive tool for characterizing farm information, but the quality of the UAV model is often affected by the image’s spatial resolution. In this paper, the predictability of models established using UAV multispectral images with different spatial resolutions for nitrogen content of winter wheat was evaluated during the critical growth stages of winter wheat over the period 2021–2022. Feature selection based on UAV image reflectance, vegetation indices, and texture was conducted using the competitive adaptive reweighted sampling, and the random forest machine learning method was used to construct the prediction model with the optimized features. Results showed that model performance increased with decreasing image spatial resolution with a R2, a RMSE, a MAE and a RPD of 0.84, 4.57 g m−2, 2.50 g m−2 and 2.34 (0.01 m spatial resolution image), 0.86, 4.15 g m−2, 2.82 g m−2 and 2.65 (0.02 m), and 0.92, 3.17 g m−2, 2.45 g m−2 and 2.86 (0.05 m), respectively. Further, the transferability of models differed when applied to images with coarser (upscaling) or finer (downscaling) resolutions. For upscaling, the model established with the 0.01 m images had a R2 of 0.84 and 0.89 when applied to images with 0.02 m and 0.05 m resolutions, respectively. For downscaling, the model established with the 0.05 m image features had a R2 of 0.86 and 0.83 when applied to images of 0.01 m and 0.02 m resolutions. Though the image spatial resolution affects image texture features more than the spectral features and the effects of image spatial resolution on model performance and transferability decrease with increasing plant wetness under irrigation treatment, it can be concluded that all the UAV images acquired in this study with different resolutions could achieve good predictions and transferability of the nitrogen content of winter wheat plants.
Article
Full-text available
Leaf spot (LS) caused by Cercosporidium personatum is one of the most harmful peanut diseases in the late growth stage and severely affects the yield of peanuts. Hyperspectral disease detection technology is efficient, objective, and accurate and is suitable for large-scale crop management practices. To establish a multi-scale spectral index (SI) with high accuracy and stability for the detection of peanut LS disease, the spectral reflectance of different disease severity levels at leaf, plant, and field scales was collected, and the difference in wavelength caused by disease severity was analyzed using the mean, variance, and dispersion matrix of hyperspectral reflectance. Meanwhile, the feature weights at different scales were obtained using Relief-F, and the average feature weights identified 540, 660, and 770 nm as multi-scale sensitive wavelengths. Three new SIs were constructed by combining single, ratiometric, and normalized wavelengths. The new SIs were compared and analyzed with 35 commonly used SIs by correlation analysis and M-statistic values, and 6 SIs were significantly correlated with disease severity levels and had good separability. Finally, k-nearest neighbor (KNN) and multinomial logistic regression (MLR) were used to evaluate the ability of the above SIs to detect LS severity. The results showed that the leaf spot multi-scale spectral index (LS-MSSI) constructed in this study was superior to the other SIs and obtained high accuracy at different scales simultaneously. At the leaf and plant scales, the MLR obtained high accuracy, with the overall accuracy (OA) reaching 93.77% and 92.50% and Kappa reaching 91.59% and 89.97%, respectively. At the field scale, the KNN obtained high accuracy, with the OA and Kappa reaching 90.29% and 87.04%, respectively. The LS-MSSI proposed in this study has high accuracy, stability, and robustness in the detection of LS severity at multiple scales, providing a technical basis and scientific guidance for the detection and precise management of peanuts.
Article
Full-text available
Estimation of the amino acid content in maize leaves is helpful for improving maize yield estimation and nitrogen use efficiency. Hyperspectral imaging can be used to obtain the physiological and biochemical parameters of maize leaves with the advantages of being rapid, non-destructive, and high throughput. This study aims to estimate the multiple amino acid contents in maize leaves using hyperspectral imaging data. Two nitrogen (N) fertilizer experiments were carried out to obtain the hyperspectral images of fresh maize leaves. The partial least squares regression (PLSR) method was used to build the estimation models of various amino acid contents by using the reflectance of all bands, sensitive band range, and sensitive bands. The models were then validated with the independent dataset. The results showed that (1) the spectral reflectance of most amino acids was more sensitive in the range of 400–717.08 nm than other bands. The estimation accuracy was better by using the reflectance of the sensitive band range than that of all bands; (2) the sensitive bands of most amino acids were in the ranges of 505.39–605 nm and 651–714 nm; and (3) among the 24 amino acids, the estimation models of the β-aminobutyric acid, ornithine, citrulline, methionine, and histidine achieved higher accuracy than those of other amino acids, with the R², relative root mean square error (RE), and relative percent deviation (RPD) of the measured and estimated value of testing samples in the range of 0.84–0.96, 8.79%–19.77%, and 2.58–5.18, respectively. This study can provide a non-destructive and rapid diagnostic method for genetic sensitive analysis and variety improvement of maize.
Article
Full-text available
High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation, which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest regression (RFR) models with synthetic datasets generated by a radiative transfer model to estimate LAI from UAV-based multispectral images. The RFR models were evaluated on both (i) subsets from the synthetic datasets and (ii) observed data from two field experiments (i.e., Exp16, Exp19). Given the parameter ranges and soil reflectance are well calibrated in synthetic training data, RFR models can accurately predict LAI from canopy reflectance captured in field conditions, with systematic overestimation for LAI<2 due to background effect, which can be addressed by applying background correction on original reflectance map based on vegetation-background classification. Overall, RFR models achieved accurate LAI prediction from background-corrected reflectance for Exp16 (correlation coefficient ( r ) of 0.95, determination coefficient ( R 2 ) of 0.90~0.91, root mean squared error (RMSE) of 0.36~0.40 m ² m ⁻² , relative root mean squared error (RRMSE) of 25~28%) and less accurate for Exp19 ( r =0.80~0.83, R 2 = 0.63~0.69, RMSE of 0.84~0.86 m ² m ⁻² , RRMSE of 30~31%). Additionally, RFR models correctly captured spatiotemporal variation of observed LAI as well as identified variations for different growing stages and treatments in terms of genotypes and management practices (i.e., planting density, irrigation, and fertilization) for two experiments. The developed hybrid method allows rapid, accurate, nondestructive phenotyping of the dynamics of LAI during vegetative growth to facilitate assessments of growth rate including in breeding program assessments.
Article
Full-text available
A major challenge for the estimation of crop traits (biophysical variables) from canopy reflectance is the creation of a high-quality training dataset. To address this problem, this research investigated a conceptual framework by integrating a crop growth model with a radiative transfer model to introduce biological constraints in synthetic training dataset. In addition to the comparison of two datasets without and with biological constraints, we also investigated the effects of observation geometry, retrieval method, and wavelength range on estimation accuracy of four crop traits (leaf area index, leaf chlorophyll content, leaf dry matter, and leaf water content) of wheat. The theoretical analysis demonstrated potential advantages of adding biological constraints in synthetic training datasets as well as the capability of deep learning. Additionally, the predictive models were validated on real unmanned aerial vehicle-based multi-spectral images collected from wheat plots contrasting in canopy structure. The predictive model trained over a synthetic dataset with biological constraints enabled the prediction of leaf water content from visible to near infrared range based on the correlations between crop traits. Our findings presented the potential of proposed conceptual framework in simultaneously retrieving multiple crop traits from canopy reflectance for applications in precision agriculture and plant breeding.
Article
Full-text available
Crop nitrogen is an efficient index for estimating crop yield. Using hyperspectral information to monitor nitrogen in cotton information in real time can help guide cotton cultivation. In this study, we used drip-irrigation cotton in Xinjiang as the research object and employed various nitrogen treatments to explore the correlation between hyperspectral vegetation indexes and leaf nitrogen concentration (LNC) and the canopy nitrogen density (CND) of cotton in different growth periods and interannual. We employed 30 published hyperspectral vegetation indexes obtained through spectral monitoring in 2019 and 2020 to screen for hyperspectral vegetation indexes highly correlated with the nitrogen in cotton indexes. Based on the same group of hyperspectral vegetation indexes, interannual and multi-temporal nitrogen estimation models of cotton were established using three modeling methods: simple multiple linear regression (MLR), partial least-squares regression (PLSR), and support vector regression (SVR). The results showed the following: (1) The correlations between LNC and CND and vegetation index in individual growth periods of cotton were lower than those for the entire growth period. The correlations between hyperspectral vegetation indexes and cotton LNC, CND, leaf area index (LAI), and aboveground biomass (AGB), were significantly different between years and varieties. The relatively stable indexes between vegetation and LNC were TCARI, PRI, CCRI, and SRI-2, and the absolute values of correlation were 0.251~0.387, 0.239~0.422, 0.245~0.387, and 0.357~0.533. In addition, the correlation between CIred-edge and REIlinear and group indicators (CND, AGB, and LAI) was more stable. (2) In the models established by MLR, PLSR, and SVR, the R2 value from the SVR method was higher in the estimation model based on the entire growth period data and LNC and CND. (3) Using the same group of selected hyperspectral vegetation indexes to estimate nitrogen in cotton in different growth stages, the accuracy of the estimation model of canopy nitrogen density (CND) was higher than that of the estimation model for leaf nitrogen concentration. The canopy nitrogen density most stable model was established by MLR at the flowering and boll stages and the full-boll stage with R2 = 0.532~0.665. This study explored the application potential of hyperspectral vegetation indexes to the nitrogen of drip-irrigated cotton, and the results provide a theoretical basis for hyperspectral monitoring for crop nutrients and canopy structure.
Article
Full-text available
Rapid and large-scale estimation of soil salt content (SSC) and organic matter (SOM) using multi-source remote sensing is of great significance for the real-time monitoring of arable land quality. In this study, we simultaneously predicted SSC and SOM on arable land in the Yellow River Delta (YRD), based on ground measurement data, unmanned aerial vehicle (UAV) hyperspectral imagery, and Landsat-8 multispectral imagery. The reflectance averaging method was used to resample UAV hyperspectra to simulate the Landsat-8 OLI data (referred to as fitted multispectra). Correlation analyses and the multiple regression method were used to construct SSC and SOM hyperspectral/fitted multispectral estimation models. Then, the best SSC and SOM fitted multispectral estimation models based on UAV images were applied to a reflectance-corrected Landsat-8 image, and SSC and SOM distributions were obtained for the YRD. The estimation results revealed that moderately salinized arable land accounted for the largest proportion of area in the YRD (48.44%), with the SOM of most arable land (60.31%) at medium or lower levels. A significant negative spatial correlation was detected between SSC and SOM in most regions. This study integrates the advantages of UAV hyperspectral and satellite multispectral data, thereby realizing rapid and accurate estimation of SSC and SOM for a large-scale area, which is of great significance for the targeted improvement of arable land in the YRD.
Article
Background effect is a crucial limitation for the monitoring of leaf nitrogen concentration (LNC) in crops with unmanned aerial vehicle (UAV) multispectral imagery. Some background removal approaches have been developed for improve the estimation of LNC, but their performances are not compared in one study and it is unclear whether they are sensitive to the observation time of UAV imagery. This study evaluated three background removal approaches, i.e., the soil-adjusted vegetation index (SAVI) approach, the green pixel vegetation index approach (GPVI) and abundance adjusted vegetation index (AAVI), for estimating rice LNC from UAV-based multispectral imagery at individual and across growth stages as well as different observation times of the day. The red edge chlorophyll index (CIre) was chosen as the common basis for the last two approaches. In particular, the AAVI approach was refined with a higher number of endmembers and automated endmember extraction, and further evaluated for assessing the effect of separating sunlit components from shaded components of the canopy. Our results demonstrated that the vegetation indices (VIs) for off-noon observation times showed better relationships with LNC than those for noon at individual and across growth stages. Compared to both SAVI and CIre-green, the AACIre for all pixels (AACIre-all) exhibited the weakest sensitivity to observation time and yielded the best relationships for single-stage (jointing: r²=0.70, booting: r²=0.76, heading: r²=0.70) and across-stage (r²=0.66) models. Among the AAVIs derived from three categories of pixels, the AACIre-sunlit (R² =0.90, RMSE=0.17%, Bias=0.03%) outperformed AACIre-all (R² =0.85, RMSE=0.23%, Bias=0.08%) and then AACIre-shaded (R² =0.38, RMSE=0.49%, Bias=0.40%) remarkably for the estimation accuracy of LNC. This study suggests that the refined AAVI approach has great value in reducing the background effect for more accurate monitoring of growth parameters and could be extended to other crops and regions for improved precision crop management and field-based high-throughput phenotyping.
Article
The estimation of water status of maize is important for evaluating crop growth and conducting precision irrigation. The development of unmanned aerial vehicles (UAVs) equipped with sensor technologies provides high-quality data for estimating maize water status. Only a few studies have been conducted on the estimation of maize equivalent water thickness (EWT) and fuel moisture content (FMC) using UAV hyperspectral images. This study aimed to estimate the leaf and canopy water status of maize inbred lines using UAV digital and hyperspectral data. Leaf area index (LAI) is required to obtain canopy water indicators, canopy equivalent water thickness (EWTc), and canopy fuel moisture content (FMCc). However, obtaining the LAI from remote sensing images requires the support of samples or prior knowledge. The LAI is positively correlated with canopy coverage (CC), which can be extracted accurately from UAV images. Therefore, for EWTc and FMCc, this study aimed to use the CC instead of the LAI to construct and test new canopy water indicators in order to improve the convenience of UAV imaging technology in monitoring maize water status. The results showed that, after the introduction of CC, two indicators, revised canopy equivalent water thickness (r-EWTc) and revised canopy fuel moisture content (r-FMCc), were both sensitive to the difference vegetation index (DVI) derived from UAV hyperspectral images. The r-FMCc was the most effective of the six water indicators used in this study, and the Pearson’s correlation coefficient (r) with DVI was 0.93. The results indicate that the CC extracted directly from UAV digital images is suitable to replace LAI, and helps improve the data availability for estimating canopy water status. The UAV hyperspectrum can accurately estimate the water status in maize inbred lines, which is helpful for further application of UAV data in breeding.
Article
Full-text available
Recent research advances in wheat have focused not only on increasing grain yields, but also on establishing higher grain quality. Wheat quality is primarily determined by the grain protein content (GPC) and composition, and both of these are affected by nitrogen (N) levels in the plant as it develops during the growing season. Hyperspectral remote sensing is gradually becoming recognized as an economical alternative to traditional destructive field sampling methods and laboratory testing as a means of determining the N status within wheat. Currently, hyperspectral vegetation indices (VIs) and linear nonparametric regression are the primary tools for monitoring the N status of wheat. Machine learning algorithms have been increasingly applied to model the nonlinear relationship between spectral data and wheat N status. This study is a comprehensive review of available N-related hyperspectral VIs and aims to inform the selection of VIs under field conditions. The combination of feature mining and machine learning algorithms is discussed as an application of hyperspectral imaging systems. We discuss the major challenges and future directions for evaluating and assessing wheat N status. Finally, we suggest that the underlying mechanism of protein formation in wheat grains as determined by using hyperspectral imaging systems needs to be further investigated. This overview provides theoretical and technical support to promote applications of hyperspectral imaging systems in wheat N status assessments; in addition, it can be applied to help monitor and evaluate food and nutrition security.
Article
Timely monitoring of above-ground biomass (AGB) is essential for indicating the crop growth status and predicting grain yield and carbon dynamics. Non-destructive remote sensing techniques with a large spatial coverage have become a promising method for crop biomass monitoring. However, most existing crop biomass models have only been tested at a single growth stage or only at a small number of growth stages at a single location. This has limited the ability of these AGB models to be transferred spatially, to other fields or regions, to predict AGB at any growth stage during the season, or to be potentially used with data from other sensing systems. Here, a new crop biomass algorithm (CBA-Wheat) was developed to estimate AGB over the entire growing season. It uses information on the crop growth stage, based on phenological scale observations (Zadoks scale or ZS), the day of the year or thermal indices (growing degree days), to correct AGB estimations from remotely sensed vegetation indices. The model transferability was evaluated across multiple regional test sites and different data sources (UAV and hand-held spectroscopic data). Results showed that the coefficient values [slope (k) and intercept (b)] of ordinary least squares regression (OLSR) of AGB with vegetation indices had a strong relationship with ZS. These k and b relationships were used to correct the OLSR model parameters based on the observed phenological stage (ZS value). The two-band enhanced vegetation index (EVI2) was the best vegetation index for predicting AGB with the new CBA-Wheat ZS model, with R 2 and RMSE values of 0.83 and 2.07 t/ha for an experimental trial site, 0.78 and 2.05 t/ha for multiple independent regional test sites, and 0.69 and 1.87 t/ha when transferred to EVI2 derived from UAV. Model performance was lower with the day of the year and thermal index corrections; however, the use of relative growing degree-days (RGS; CBA-Wheat RGS), instead of ZS information, to adjust the model parameters showed a high consistency with the CBA-Wheat ZS model, and a good potential for estimation of AGB at regional scales without the need for local phenological observations. The CBA-Wheat RGS had validated R 2 and RMSE values of 0.82 and 2.01 t/ha for the experimental trial site, 0.76 and 2.39 t/ha for multiple independent regional test sites, and 0.66 and 2.14 t/ha for UAV * Corresponding authors at 2 hyperspectral imagery. These results demonstrated a good potential to estimate biomass from remotely sensed imagery at varying spatio-temporal scales in winter wheat.
Article
Full-text available
The accurate retrieval of nitrogen content based on Unmanned Aerial Vehicle (UAV) hyperspectral images is limited due to uncertainties in determining the locations of nitrogen-sensitive wavelengths. This study developed a Modified Correlation Coefficient Method (MCCM) to select wavelengths sensitive to nitrogen content. The Normalized Difference Canopy Shadow Index (NDCSI) was applied to remove the shadows from UAV hyperspectral images, thus yielding the canopy spectral information. The MCCM was then used to screen the bands sensitive to nitrogen content and to construct spectral characteristic parameters. Finally, the optimal model for nitrogen content retrieval was established and selected. As a result, the screened sensitive wavelengths for nitrogen content selected were 470, 474, 490, 514, 582, 634, and 682 nm, respectively. Among the nitrogen content retrieval models, the best model was the Support Vector Machine (SVM) model. In the training set, this model outperformed the other models with an R2 of 0.733, RMSE of 6.00%, an nRMSE of 12.76%, and a MAE of 4.49%. Validated by the ground-measured nitrogen content, this model yielded good performance with an R2 of 0.671, an RMSE of 4.73%, an nRMSE of 14.83%, and a MAE of 3.98%. This study can provide a new method for vegetation nutrient content retrieval based on UAV hyperspectral data.
Article
Full-text available
Plant nitrogen (N) information has widely been estimated through empirical techniques using hyperspectral data. However, the physical model inversion approach on N spectral response has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on the N-based PROSPECT model and the SAIL model canopy model was constructed and used for retrieving crop N status both at leaf and canopy scales. The results show that the third parameter (3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the highest accuracy for LAI and LND estimation, which resulted in R 2 and RMSE values of 0.80 and 0.69, and 0.46 and 21.18 µg·cm −2 , respectively. It also showed good results with R 2 and RMSE values of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g·m −2 for canopy N density (CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation index regression model (LNC: RMSE = 0.48 − 0.64%; CND: RMSE = 1.26 − 1.78 g·m −2). This study indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales in wheat.
Article
Full-text available
Leaf area index (LAI) is a significant biophysical variable in the models of hydrology, climatology and crop growth. Rapid monitoring of LAI is critical in modern precision agriculture. Remote sensing (RS) on satellite, aerial and unmanned aerial vehicles (UAVs) has become a popular technique in monitoring crop LAI. Among them, UAVs are highly attractive to researchers and agriculturists. However, some of the UAVs vegetation index (VI)—derived LAI models have relatively low accuracy because of the limited number of multispectral bands, especially as they tend to saturate at the middle to high LAI levels, which are the LAI levels of high-yielding wheat crops in China. This study aims to effectively estimate wheat LAI with UAVs narrowband multispectral image (400–800 nm spectral regions, 10 cm resolution) under varying growth conditions during five critical growth stages, and to provide the potential technical support for optimizing the nitrogen fertilization. Results demonstrated that the newly developed LAI model with modified triangular vegetation index (MTVI2) has better accuracy with higher coefficient of determination (Rc2 = 0.79, Rv2 = 0.80) and lower relative root mean squared error (RRMSE = 24%), and higher sensitivity under various LAI values (from 2 to 7), which will broaden the applied range of the new LAI model. Furthermore, this LAI model displayed stable performance under different sub-categories of growth stages, varieties, and eco-sites. In conclusion, this study could provide effective technical support to precisely monitor the crop growth with UAVs in various crop yield levels, which should prove helpful in family farm for the modern agriculture.
Article
Full-text available
Nitrogen (N) is one of the most limiting factors for maize (Zea mays L.) production worldwide. Over-fertilization of N may decrease yields and increase NO3− contamination of water. However, low N fertilization will decrease yields. The objective is to optimize the use of N fertilizers, to excel in yields and preserve the environment. The knowledge of factors affecting the mobility of N in the soil is crucial to determine ways to manage N in the field. Researchers developed several methods to use N efficiently relying on agronomic practices, the use of sensors and the analysis of digital images. These imaging sensors determine N requirements in plants based on changes in Leaf chlorophyll and polyphenolics contents, the Normalized Difference Vegetation Index (NDVI), and the Dark Green Color index (DGCI). Each method revealed limitations and the scope of future research is to draw N recommendations from the Dark Green Color Index (DGCI) technology. Results showed that more effort is needed to develop tools to benefit from DGCI.
Article
Full-text available
The present work assessed the usefulness of a set of spectral indices obtained from an unmanned aerial system (UAS) for tracking spatial and temporal variability of nitrogen (N) status as well as for predicting lint yield in a commercial cotton (Gossypium hirsutum L.) farm. Organic, inorganic and a combination of both types of fertilizers were used to provide a range of eight N rates from 0 to 340 kg N ha−1. Multi-spectral images (reflectance in the blue, green, red, red edge and near infrared bands) were acquired on seven days throughout the season, from 62 to 169 days after sowing (DAS), and data were used to compute structure- and chlorophyll-sensitive vegetation indices (VIs). Above-ground plant biomass was sampled at first flower, first cracked boll and maturity and total plant N concentration (N%) and N uptake determined. Lint yield was determined at harvest and the relationships with the VIs explored. Results showed that differences in plant N% and N uptake between treatments increased as the season progressed. Early in the season, when fertilizer applications can still have an effect on lint yield, the simplified canopy chlorophyll content index (SCCCI) was the index that best explained the variation in N uptake and plant N% between treatments. Around first cracked boll and maturity, the linear regression obtained for the relationships between the VIs and both plant N% and N uptake was statistically significant, with the highest r2 values obtained at maturity. The normalized difference red edge (NDRE) index, and SCCCI were generally the indices that best distinguished the treatments according to the N uptake and total plant N%. Treatments with the highest N rates (from 307 to 340 kg N ha−1) had lower normalized difference vegetation index (NDVI) than treatments with 0 and 130 kg N ha−1 at the first measurement day (62 DAS), suggesting that factors other than fertilization N rate affected plant growth at this early stage of the crop. This fact affected the earliest date at which the structure-sensitive indices NDVI and the visible atmospherically resistant index (VARI) enabled yield prediction (97 DAS). A statistically significant linear regression was obtained for the relationships between SCCCI and NDRE with lint yield at 83 DAS. Overall, this study shows the practicality of using an UAS to monitor the spatial and temporal variability of cotton N status in commercial farms. It also illustrates the challenges of using multi-spectral information for fertilization recommendation in cotton at early stages of the crop.
Article
Full-text available
The magnitude and variability of the terrestrial CO2 sink remain uncertain, partly due to limited global information on ecosystem nitrogen (N) and its cycle. Without N constraint in ecosystem models, the simulated benefits from CO2 fertilization and CO2-induced increases in water use efficiency (WUE) may be overestimated. In this study, satellite observations of a relative measure of chlorophyll content are used as a proxy for leaf photosynthetic N content globally for 2003–2011. Global gross primary productivity (GPP) and evapotranspiration are estimated under elevated CO2 and N-constrained model scenarios. Results suggest that the rate of global GPP increase is overestimated by 85% during 2000-2015 without N limitation. This limitation is found to occur in many tropical and boreal forests, where a negative leaf N trend indicates a reduction in photosynthetic capacity, thereby suppressing the positive vegetation response to enhanced CO2 fertilization. Based on our carbon-water coupled simulations, enhanced CO2 concentration decreased stomatal conductance and hence increased WUE by 10% globally over the 1982 to 2015 time frame. Due to increased anthropogenic N application, GPP in croplands continues to grow and offset the weak negative trend in forests due to N limitation. Our results also show that the improved WUE is unlikely to ease regional droughts in croplands because of increases in evapotranspiration, which are associated with the enhanced GPP. Although the N limitation on GPP increase is large, its associated confidence interval is still wide, suggesting an urgent need for better understanding and quantification of N limitation from satellite observations.
Article
Full-text available
To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant physiologists and plant breeders rely on destructively and tediously harvested biomass samples. A fast and non-destructive method for obtaining information about different plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping platform PhenoTrac 4 was used to compare the measurements from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation indices (VI), partial least square regression (PLSR) models and contour map analysis were compared to assess these traits. Contour maps are matrices consisting of coefficients of determination for all of the binary combinations of wavelengths and the biomass parameters. The PLSR models of leaves, leaf sheaths and culms showed strong correlations (R² = 0.61–0.76). Published vegetation indices depicted similar coefficients of determination; however, their RMSEs were higher. No wavelength combination could be found by the contour map analysis to improve the results of the PLSR or published VIs. The best results were obtained for the dry weight and N uptake of leaves and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis (R² = 0.69), whereas only a low performance for all of sensors and methods was observed at dough ripeness. No relationships with ears were observed. Active and passive sensors performed comparably, with slight advantages observed for the passive spectrometer. The results indicate that tractor-based proximal sensing in combination with optimized spectral indices or PLSR models may represent a suitable tool for plant breeders to assess relevant morphological traits, allowing for a better understanding of plant architecture, which is closely linked to the physiological performance. Further validation of PLSR models is required in independent studies. Organ specific phenotyping represents a first step toward breeding by design.
Article
Full-text available
Ground-based active sensors have been used in the past with success in detecting nitrogen (N) variability within maize production systems. The use of unmanned aerial vehicles (UAVs) presents an opportunity to evaluate N variability with unique advantages compared to ground-based systems. The objectives of this study were to: determine if a UAV was a suitable platform for use with an active crop canopy sensor to monitor in-season N status of maize, if UAV’s were a suitable platform, is the UAV and active sensor platform a suitable substitute for current handheld methods, and is there a height effect that may be confounding measurements of N status over crop canopies? In a 2013 study comparing aerial and ground-based sensor platforms, there was no difference in the ability of aerial and ground-based active sensors to detect N rate effects on a maize crop canopy. In a 2014 study, an active sensor mounted on a UAV was able to detect differences in crop canopy N status similarly to a handheld active sensor. The UAV/active sensor system (AerialActive) platform used in this study detected N rate differences in crop canopy N status within a range of 0.5–1.5 m above a relatively uniform turfgrass canopy. The height effect for an active sensor above a crop canopy is sensor- and crop-specific, which needs to be taken into account when implementing such a system. Unmanned aerial vehicles equipped with active crop canopy sensors provide potential for automated data collection to quantify crop stress in addition to passive sensors currently in use.
Article
Full-text available
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R670 only: R2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management.
Article
Full-text available
Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.
Article
Full-text available
Hyperspectral remote sensing is used in precision agriculture to remotely and quickly acquire crop phenotype information. This paper describes the generation of a digital orthophoto map (DOM) and radiometric calibration for images taken by a miniaturized snapshot hyperspectral camera mounted on a lightweight unmanned aerial vehicle (UAV). The snapshot camera is a relatively new type of hyperspectral sensor that can acquire an image cube with one spectral and two spatial dimensions at one exposure. The images acquired by the hyperspectral snapshot camera need to be mosaicked together to produce a DOM and radiometrically calibrated before analysis. However, the spatial resolution of hyperspectral cubes is too low to mosaic the images together. Furthermore, there are no systematic radiometric calibration methods or procedures for snapshot hyperspectral images acquired from low-altitude carrier platforms. In this study, we obtained hyperspectral imagery using a snapshot hyperspectral sensor mounted on a UAV. We quantitatively evaluated the radiometric response linearity (RRL) and radiometric response variation (RRV) and proposed a method to correct the RRV effect. We then introduced a method to interpolate position and orientation system (POS) information and generate a DOM with low spatial resolution and a digital elevation model (DEM) using a 3D mesh model built from panchromatic images with high spatial resolution. The relative horizontal geometric precision of the DOM was validated by comparison with a DOM generated from a digital RGB camera. A surface crop model (CSM) was produced from the DEM, and crop height for 48 sampling plots was extracted and compared with the corresponding field-measured crop height to verify the relative precision of the DEM. Finally, we applied two absolute radiometric calibration methods to the generated DOM and verified their accuracy via comparison with spectra measured with an ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The DOM had high relative horizontal accuracy, and compared with the digital camera-derived DOM, spatial differences were below 0.05 m (RMSE = 0.035). The determination coefficient for a regression between DEM-derived and field-measured crop height was 0.680. The radiometric precision was 5% for bands between 500 and 945 nm, and the reflectance curve in the infrared spectral region did not decrease as in previous research. The pixel and data sizes for the DOM corresponding to a field area of approximately 85 m × 34 m were small (0.67 m and approximately 13.1 megabytes, respectively), which is convenient for data transmission, preprocessing and analysis. The proposed method for radiometric calibration and DOM generation from hyperspectral cubes can be used to yield hyperspectral imagery products for various applications, particularly precision agriculture.
Article
Full-text available
Accurate estimation of leafchlorophyll content (Cab) from remote sensing is of tremendous significance to mon- itor the physiological status ofvegetation or to estimate primary production. Many vegetation indices (VIs) have been developed to retrieve Cab at the canopy level from meter- to decameter-scale reflectance observations. However, most of these VIs may be affected by the possible confounding influence of canopy structure. The objective of this study is to develop methods for Cab estimation using millimeter to centimeter spatial resolution reflectance imagery acquired at the field level. Hyperspectral images were acquired over sugar beet canopies from a ground-based platform in the 400– 1000 nmrange, concurrently to Cab, green fraction (GF), green area index (GAI) ground measurements. The orig- inal image spatial resolution was successively degraded from 1 mm to 35 cm, resulting in eleven sets of hyperspectral images. Vegetation and soil pixels were discriminated, and for each spatial resolution, measured Cab values were related to various VIs computed over four sets of reflectance spectra extracted from the images (soil and vegetation pixels, only vegetation pixels, 50% darkest and brightest vegetation pixels). The selected VIs included some classical VIs from the literature as well as optimal combinations of spectral bands, including sim- ple ratio (SR), modified normalized difference (mND) and structure insensitive pigment index (SIPI). In the case ofmND and SIPI, the use ofa blue reference band instead of the classical near-infrared one was also investigated. For the eleven spatial resolutions, the four pixel selections and the five VI formats, similar band combinations are obtainedwhen optimizing VI performances: themain bands ofinterest are generally located in the blue, red, red- edge and near-infrareddomains. Overall, mNDblue[728,850] defined as (R440−R728)/(R440+R850) and computed over the brightest green pixels obtains the best correlations with Cab for spatial resolutions finer than 8.8 cmwith a root mean square error of prediction better than 2.6 μg/cm2. Conversely, mNDblue[728,850] poorly correlates with variations in GF and GAI, thus reducing the risk of deriving non-causal relationships with Cab that would actually be due to the covariance between Cab and these canopy structure variables. As mNDblue[728,850] can be calculated frommost current multispectral sensors, it is therefore a promising VI to retrieve Cab frommillime- ter- to centimeter-scale reflectance imagery.
Article
Full-text available
Four chemometric techniques for estimating LNC in winter wheat were compared by spectral features. The predictive power and impact of sample size were evaluated. Key results include: (1) partial least squares regression (PLSR) and support vector machines regression (SVR) performed better than the other two methods, with coefficient of determination (r 2) values in the calibration set of 0.82 and 0.81 and the normalized root mean square error (NRMSE) values in the validation set of 5.48 and 5.94%, respectively; (2) the lowest accuracy was achieved using stepwise multiple linear regression (SMLR), with r 2 and NRMSE values of 0.78 and 6.52%, respectively; (3) the predictive power of the back propagation neural network (BPN) was enhanced as sample size increased. Sample size less than 80 is not recommended when using BPN. These results suggest that PLSR and SVR are preferred choices to estimate LNC in winter wheat, and BPN is recommended when a sufficient sample size is available.
Article
Full-text available
Through its association with proteins and plant pigments, leaf nitrogen (N) plays an important regulatory role in photosynthesis, leaf respiration, and net primary production. However, the traditional methods of measurement leaf N are rooted in sample-based spectroscopy in laboratory. There is a big challenge of deriving leaf N from the nondestructive field-measured leaf spectra. In this study, the original PROSPECT model was extended by replacing the absorption coefficient of chlorophyll in the original PROSPECT model with an equivalent N absorption coefficient to develop a nitrogen-based PROSPECT model (N-PROSPECT). N-PROSPECT was evaluated by comparing the model-simulated reflectance values with the measured leaf reflectance values. The validated results show that the correlation coefficient (R) was 0.98 for the wavelengths of 400 to 2500 nm. Finally, N-PROSPECT was used to simulate leaf reflectance using different combinations of input parameters, and partial least squares regression (PLSR) was used to establish the relationship between the N-PROSPECT simulated reflectance and the corresponding leaf nitrogen density (LND). The inverse of the PLSR-based N-PROSPECT model was used to retrieve LND from the measured reflectance with a relatively high accuracy (R2=0.77, RMSE=22.15 μg cm-2). This result demonstrates that the N-PROSPECT model established in this study can accurately simulate nitrogen spectral contributions and retrieve LND.
Article
Full-text available
The combination of remote sensing and crop growth models has become an effective tool for yield estimation and a potential method for grain quality estimation. In this study, two assimilation variables (derived from a hyperspectral sensor), called leaf area index (LAI) and canopy nitrogen accumulation (CNA), were jointly used to calibrate the sensitive parameters and initial states of the DSSAT-CERES crop model, to improve simulated output of the grain yield and protein content of winter wheat. The results show that the modified simple ratio (MSR) and normalized difference red edge (NDRE) better estimated LAI and CNA, respectively, compared with the other possible vegetation indices. The integration of both LAI and CNA resulted in a more robust DSSAT-CERES models with than each one alone. The R2 and RMSE values, respectively, of the regression between the simulated (using the two assimilation variables method) and measured LAI were 0.828 and 0.494, and for CNA were 0.808 and 20.26 kg N ha-1. These two assimilation variables resulted in grain yield and protein content estimates of winter wheat with a high precision and R2 and RMSE values of 0.698 and 0.726 ton ha-1, and 0.758 and 1.16%, respectively. This study provides a more robust method for estimating the grain yield and protein content of winter wheat based on the integration of the DSSAT-CERES crop model and remote sensing data.
Article
Full-text available
The use of spectral response curves for estimating nitrogen (N) leaf concentrations generally has been found to be a challenging task for a variety of plant species. In this investigation, leaf N concentration and corresponding laboratory hyperspectral data were examined for two species of mangrove (Avicennia germinans, Rhizophora mangle) representing a variety of conditions (healthy, poor condition, dwarf) of a degraded mangrove forest located in the Mexican Pacific. This is the first time leaf nitrogen content has been examined using close range hyperspectral remote sensing of a degraded mangrove forest. Simple comparisons between individual wavebands and N concentrations were examined, as well as two models employed to predict N concentrations based on multiple wavebands. For one model, an Artificial Neural Network (ANN) was developed based on known N absorption bands. For comparative purposes, a second model, based on the well-known Stepwise Multiple Linear Regression (SMLR) approach, was employed using the entire dataset. For both models, the input data included continuum removed reflectance, band depth at the centre of the absorption feature (BNC), and log (1/BNC). Weak to moderate correlations were found between N concentration and single band spectral responses. The results also indicate that ANNs were more predictive for N concentration than was SMLR, and had consistently higher r(2) values. The highest r(2) value (0.91) was observed in the prediction of black mangrove (A. germinans) leaf N concentration using the BNC transformation. It is thus suggested that artificial neural networks could be used in a complementary manner with other techniques to assess mangrove health, thereby improving environmental monitoring in coastal wetlands, which is of prime importance to local communities. In addition, it is recommended that the BNC transformation be used on the input for such N concentration prediction models.
Article
Full-text available
Sentinel-2 is planned for launch in 2014 by the European Space Agency and it is equipped with the Multi Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region, which can be used to derive vegetation indices using red-edge bands in their formulation. These are particularly suitable for estimating canopy chlorophyll and nitrogen (N) content. This band setting is important for vegetation studies and is very similar to the ones of the Ocean and Land Colour Instrument (OLCI) on the planned Sentinel-3 satellite and the Medium Resolution Imaging Spectrometer (MERIS) on Envisat, which operated from 2002 to early 2012. This paper focuses on the potential of Sentinel-2 and Sentinel-3 in estimating total crop and grass chlorophyll and N content by studying in situ crop variables and spectroradiometer measurements obtained for four different test sites. In particular, the red-edge chlorophyll index (CIred-edge), the green chlorophyll index (CIgreen) and the MERIS terrestrial chlorophyll index (MTCI) were found to be accurate and linear estimators of canopy chlorophyll and N content and the Sentinel-2 and -3 bands are well positioned for deriving these indices. Results confirm the importance of the red-edge bands on particularly Sentinel-2 for agricultural applications, because of the combination with its high spatial resolution of 20 m.
Article
Full-text available
Leaf nitrogen content (LNC) and leaf mass per unit area (LMA) were assessed by near-infrared spectroscopy (NIRS) on fresh and dried plants of durum wheat (Triticum turgidum ssp). Individual leaves were scanned with a portable spectrometer and reference analyses of LNC and LMA were then carried out. Partial least squares (PLS) regression was used for calibration and cross-validation. LNC was accurately predicted for both fresh and dry leaves whatever the phenologic stage (correlation coefficient of calibration R2cal ranging from 0.932 to 0.958, standard error of cross-validation SECV ranging from 0.215 to 0.320% (dry matter)). LMA was predicted with R2cal = 0.942 and SECV = 4.84 g m−2. The combination of these two calibrations made it possible to predict leaf nitrogen per unit area (R2cross-validation = 0.94, SECV = 0.248 gN m−2) and provides a relevant and non-destructive tool for following the dynamics of three major leaf parameters.
Article
Full-text available
Remote sensing is a promising tool that provides quantitative and timely information for crop stress detection over large areas. Nitrogen (N) is one of the important nutrient elements influencing grain yield and quality of winter wheat (Triticum aestivum L.). In this study, canopy spectral parameters were evaluated for N status assessment in winter wheat. A winter wheat field experiment with 25 different cultivars was conducted at the China National Experimental Station for Precision Agriculture, Beijing, China. Wheat canopy spectral reflectance over 350–2500 nm at different stages was measured with an ASD FieldSpec Pro 2500 spectrometer (Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view (FOV) fibre optic adaptor. Thirteen narrow-band spectral indices, three spectral features parameters associated with the absorption bands centred at 670 and 980 nm and another three related to reflectance maximum values located at 560, 920, 1690 and 2230 nm were calculated and correlated with leaf N concentration (LNC) and canopy N density (CND). The results showed that CND was a more sensitive parameter than LNC in response to the variation of canopy-level spectral parameters. The correlation coefficient values between LNC and CND, on the one hand, and narrow-band spectral indices and spectral features parameters, on the other hand, varied with the growth stages of winter wheat, with no predominance of a single spectral parameter as the best variable. The differences in correlation results for the relationships of CND and LNC with narrow-band spectral indices and spectral features parameters decreased with wheat plant developing from Feekes 4.0 to Feekes 11.1. The red edge position (REP) was demonstrated to be a good indicator for winter wheat LNC estimation. The absorption band depth (ABD) normalized to the area of absorption feature (NBD) at 670 nm (NBD670) was the most reliable indicator for winter wheat canopy N status assessment.
Article
Full-text available
Various remote sensing indices have been used to infer crop nitrogen (N) status for field-scale nutrient management. However, such indices may indicate erroneous N status if there is a decrease in crop canopy density influenced by other factors, such as water stress. The Canopy Chlorophyll Content Index (CCCI) is a two-dimensional remote sensing index that has been proposed for inferring cotton N status. The CCCI uses reflectances in the near-infrared (NIR) and red spectral regions to account for seasonal changes in canopy density, while reflectances in the NIR and far-red regions are used to detect relative changes in canopy chlorophyll, a surrogate for N content. The primary objective of this study was to evaluate the CCCI and several other remote sensing indices for detecting the N status for cotton during the growing season. A secondary objective was to evaluate the ability of the indices to appropriately detect N in the presence of variable water status. Remote sensing data were collected during the 1998 (day of year [DOY] 114 to 310) and 1999 (DOY 106 to 316) cotton seasons in Arizona, in which treatments of optimal and low levels of N and water were imposed. In the 1998 season, water treatments were not imposed until late in the season (DOY 261), well after full cover. Following an early season N application in 1998 for the optimal (DOY 154) but not the low N treatment, the CCCI detected significant differences in crop N status between the N treatments starting on DOY 173, when canopy cover was about 30%. A common vegetation index, the ratio of NIR to red (RVI), also detected significant separation between N treatments, but RVI detection occurred 16 days after the CCCI response. After an equal amount of N was applied to both optimal and low N treatments on DOY 190 in 1998, the CCCI indicated comparable N status for the N treatments on DOY 198, a trend not detected by RVI. In the 1999 season, both N and water treatments were imposed early and frequently during the season. The N status was poorly described by both the CCCI and RVI under partial canopy conditions when water status differed among treatments. However, once full canopy was obtained in 1999, the CCCI provided reliable N status information regardless of water status. At full cotton cover, the CCCI was significantly correlated with measured parameters of N status, including petiole NO 3 -N (r = 0.74), SPAD chlorophyll (r = 0.65), and total leaf N contents (r = 0.86). For well-watered cotton, the CCCI shows promise as a useful indicator of cotton N status after the canopy reaches about 30% cover. However, further study is needed to develop the CCCI as a robust N detection tool independent of water stress.
Article
Full-text available
The combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also referred to as PROSAIL, has been used for about sixteen years to study plant canopy spectral and directional reflectance in the solar domain. PROSAIL has also been used to develop new methods for retrieval of vegetation biophysical properties. It links the spectral variation of canopy reflectance, which is mainly related to leaf biochemical contents, with its directional variation, which is primarily related to canopy architecture and soil/vegetation contrast. This link is key to simultaneous estimation of canopy biophysical/structural variables for applications in agriculture, plant physiology, or ecology, at different scales. PROSAIL has become one of the most popular radiative transfer tools due to its ease of use, general robustness, and consistent validation by lab/field/space experiments over the years. However, PROSPECT and SAIL are still evolving: they have undergone recent improvements both at the leaf and the plant levels. This paper provides an extensive review of the PROSAIL developments in the context of canopy biophysics and radiative transfer modeling
Article
Timely and accurate estimation of crop yield before harvest to allow crop yields management decision-making at a regional scale is crucial for national food policy and security assessments. Modeling dynamic change of crop growth is of great help because it allows researchers to determine crop management strategies for maximizing crop yield. Remote sensing is often used to provide information about important canopy state variables for crop models of large regions. Crop models and remote sensing techniques have been combined and applied in crop yield estimation on a regional scale or worldwide based on the simultaneous development of crop models and remote sensing. Many studies have proposed models for estimating canopy state variables and soil properties based on remote sensing data and assimilating these estimated canopy state variables into crop models. This paper, firstly, summarizes recent developments of crop models, remote sensing technology, and data assimilation methods. Secondly, it compares the advantages and disadvantages of different data assimilation methods (ca-libration method, forcing method, and updating method) for assimilating remote sensing data into crop models and analyzes the impacts of different error sources on the different parts of the data assimilation chain in detail. Finally, it provides some methods that can be used to reduce the different errors of data assimilation and presents further opportunities and development direction of data assimilation for future studies. This paper presents a detailed overview of the comparative introduction, latest developments and applications of crop models, remote sensing techniques, and data assimilation methods in the growth status monitoring and yield estimation of crops. In particular, it discusses the impacts of different error sources on the different portions of the data assimilation chain in detail and analyzes how to reduce the different errors of data assimilation chain. The literature shows that many new satellite sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. Additionally, new proposed or modified crop models have been reported for improving the simulated canopy state variables and soil properties of crop models. In short, the data assimilation of remote sensing and crop models have the potential to improve the estimation accuracy of canopy state variables, soil properties and yield based on these new technologies and methods in the future.
Article
The nondestructive and rapid acquisition of rice field phenotyping information is very important for the precision management of the rice growth process. In this research, the phenotyping information LAI (leaf area index), leaf chlorophyll content (Cab), canopy water content (Cw), and dry matter content (Cdm) of rice was inversed based on the hyperspectral remote sensing technology of an unmanned aerial vehicle (UAV). The improved Sobol global sensitivity analysis (GSA) method was used to analyze the input parameters of the PROSAIL model in the spectral band range of 400-1100 nm, which was obtained by hyperspectral remote sensing by the UAV. The results show that Cab mainly affects the spectrum on 400-780 nm band, Cdm on 760-1000 nm band, Cw on 900-1100 nm band, and LAI on the entire band. The hyperspectral data of the 400-1100 nm band of the rice canopy were acquired by using the M600 UAV remote sensing platform, and the radiance calibration was converted to the canopy emission rate. In combination with the PROSAIL model, the particle swarm optimization algorithm was used to retrieve rice phenotyping information by constructing the cost function. The results showed the following: (1) an accuracy of R²=0.833 and RMSE=0.0969, where RMSE denotes root-mean-square error, was obtained for Cab retrieval; R²=0.816 and RMSE=0.1012 for LAI inversion; R²=0.793 and RMSE=0.1084 for Cdm; and R²=0.665 and RMSE=0.1325 for Cw. The Cw inversion accuracy was not particularly high. (2) The same band will be affected by multiple parameters at the same time. (3) This study adopted the rice phenotyping information inversion method to expand the rice hyperspectral information acquisition field of a UAV based on the phenotypic information retrieval accuracy using a high level of field spectral radiometric accuracy. The inversion method featured a good mechanism, high universality, and easy implementation, which can provide a reference for nondestructive and rapid inversion of rice biochemical parameters using UAV hyperspectral remote sensing. © 2017, Chinese Society of Agricultural Engineering. All rights reserved.
Article
Plant density is useful variable that determines the fate of the wheat crop. The most commonly used method for plant density quantification is based on visual counting from ground level. The objective of this study is to develop and evaluate a method for estimating wheat plant density at the emergence stage based on high resolution imagery taken from UAV at very low altitude with application to high throughput phenotyping in field conditions. A Sony ILCE α5100L RGB camera with 24 Mpixels and equipped with a 60 mm focal length lens was flying aboard an hexacopter at 3 to 7 m altitude at about 1 m/s speed. This allows getting ground resolution between 0.20 mm to 0.45 mm, while providing 59–77% overlap between images. The camera was looking with 45° zenith angle in a compass direction perpendicular to the row direction to maximize the cross section viewed of the plants and minimize the effect of the wind created by the rotors. Agisoft photoscan software was then used to derive the position of the cameras for each image. Images were then projected on the ground surface to finally extract subsamples used to estimate the plant density. The extracted images were first classified to separate the green pixels from the background and the rows were then identified and extracted. Finally, image object (group of connected green pixels) was identified on each row and the number of plants they contain was estimated using a Support Vector Machine whose training was optimized using a Particle Swarm Optimization.
Article
Non-destructive monitoring of wheat nitrogen (N) status is essential for precision N management during wheat production. In this study, the quantitative correlation between leaf N concentration (LNC) and ground-based canopy hyperspectral reflectance in winter wheat was investigated. Field experiments were conducted for four years at different locations (Xinyang, Zhengzhou, and Shangshui) in China. Different N application rates, planting density, growth stages, and wheat cultivars were used. We developed a novel index (water resistance N index [WRNI]) that integrated the advantages of an index that minimizes water effects and an index sensitive to LNC. Data showed that the proposed combined index (WRNI), the ratio of the normalized difference red-edge index (NDRE) and floating-position water band index (FWBI) was both sensitive to LNC and resistant to variations in leaf water. Then, we optimized the bands of NDRE/FWBI to create an integrated narrow-band vegetable index to trace the dynamic changes in LNC in winter wheat. Our novel index and 15 selected common indices were tested for stability across growth stages, locations, years, treatments, cultivars, and plant types in estimating LNC in winter wheat. Six of the 16 previously determined indices performed well, and R705/(R717 + R491) and mND705 both showed the highest coefficients of determination (R² = 0.832 and 0.818, respectively) and the lowest root mean square error (RMSE = 0.401 and 0.417, respectively). When compared with the optimized common indices, the novel index WRNI was most closely correlated with LNC, and the corresponding linear equation yielded R² = 0.843 and RMSE = 0.382 across the whole 16 datasets; this further indicated a superior trace for LNC changes under heterogeneous field conditions. These models can accurately estimate LNC in winter wheat, and the novel index WRNI is promising for detecting LNC on a regional scale in heterogeneous fields under variable climatic conditions.
Article
This paper describes a novel method to derive 3D hyperspectral information from lightweight snapshot cameras for unmanned aerial vehicles for vegetation monitoring. Snapshot cameras record an image cube with one spectral and two spatial dimensions with every exposure. First, we describe and apply methods to radiometrically characterize and calibrate these cameras. Then, we introduce our processing chain to derive 3D hyperspectral information from the calibrated image cubes based on structure from motion. The approach includes a novel way for quality assurance of the data which is used to assess the quality of the hyperspectral data for every single pixel in the final data product. The result is a hyperspectral digital surface model as a representation of the surface in 3D space linked with the hyperspectral information emitted and reflected by the objects covered by the surface. In this study we use the hyperspectral camera Cubert UHD 185-Firefly, which collects 125 bands from 450 to 950 nm. The obtained data product has a spatial resolution of approximately 1 cm for the spatial and 21 cm for the hyperspectral information. The radiometric calibration yields good results with less than 1% offset in reflectance compared to an ASD FieldSpec 3 for most of the spectral range. The quality assurance information shows that the radiometric precision is better than 0.13% for the derived data product. We apply the approach to data from a flight campaign in a barley experiment with different varieties during the growth stage heading (BBCH 52 – 59) to demonstrate the feasibility for vegetation monitoring in the context of precision agriculture. The plant parameters retrieved from the data product correspond to in-field measurements of a single date field campaign for plant height (R 2 = 0.7), chlorophyll (BGI2, R 2 = 0.52), LAI (RDVI, R 2 = 0.32) and biomass (RDVI, R 2 = 0.29). Our approach can also be applied for other image-frame cameras as long as the individual bands of the image cube are spatially co-registered beforehand.
Article
Leaf area index (LAI) and leaf chlorophyll content (LCC) are major considerations in management decisions, agricultural planning and policy making. When a radiative transfer model (RTM) was used to retrieve these biophysical variables from remote sensing data, the ill-posed problem was unavoidable. In this study, we focused on the use of agronomic prior knowledge (APK), constructing the relationship between LAI and LCC, to restrict and mitigate the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (no agronomic prior knowledge, NAPK) and those linked with APK were compared. The results showed that LAI inversion had high accuracy. The validation results of the root mean square error (RMSE) between measured and estimated LAI were 0.74 and 0.69 for NAPK and APK, respectively. Compared with NAPK, APK improved LCC estimation; the corresponding RMSE values of NAPK and APK were 13.36 µg cm-2 and 9.35 µg cm-2, respectively. Our analysis confirms the operational potential of PROSAIL model inversion for retrieval of biophysical variables by integrating agronomic prior knowledge.
Article
Leaf nitrogen concentration (LNC), a good indicator of nitrogen (N) status in crops, is of special significance to diagnose nutrient stress and guide N fertilization in fields. Due to non-destructive and quick detectability, hyperspectral remote sensing plays a unique role in detecting LNC in crops. Barley, especially malting barley, is very demanding for N nutrition and requires timely monitoring and accurate estimation of N concentration in barley leaves. Hyperspectral techniques can help make effective diagnosis and facilitate dynamic regulation of plant N status. In this study, canopy reflectance spectra (between 350 and 1 050 nm) from 38 typical barley fields were measured as well as the corresponding LNC in Hailar Nongken, China’s Inner Mongolia Autonomous Region in July, 2010. Existing spectral indices that are considered to be good indicators for assessing N status in crops were selected to estimate LNC in barley. In addition, the optimal combination (OC) method was tested to extract the sensitive indices and first-order spectral derivative wavebands that are responsible for variation of leaf N in barley, and expected to develop some combination models for improving the accuracy of LNC estimates. The results showed that most of the selected indices (such as NPCI, PRI and DCNI) could adequately describe the dynamic changes of LNC in barley. The combined models based on OC performed better in comparison with the individual models using either spectral indices or first-order derivatives and the other methods (such as PCA). A combined model that integrated the first-order derivatives from five wavebands with OC performed well with R 2 of 0.82 and RMSE of 0.50 for LNC in barley. This good correlation with ground measurements indicates that hyperspectral reflectance and the OC method have good potential for assessing N status in barley.
Article
Conventional farming has led to extensive use of chemicals and, in turn, to negative environmental impacts such as soil erosion, groundwater pollution and atmosphere contamination. Farming systems should be more sustainable to reach economical and social profitability as well as environmental preservation. A possible solution is to adopt precision agriculture, a win–win option for sustaining food production without degrading the environment. Precision technologies are used for gathering information about spatial and temporal differences within the field in order to match inputs to site-specific field conditions. Here we review reports on the precision N management of wheat crop. The aims are to perform an investigation both on approaches and results of site-specific N management of wheat and to analyse performance and sustainability of this agricultural practice. In this context, we analysed literature of the last 10–15 years. The major conclusions are: (a) before making N management decisions, both the measurement and understanding of soil spatial variability and the wheat N status are needed. Complementary use of different sensors has improved soil properties assessment at relatively low cost; (b) results show the usefulness of airborne images, remote and proximal sensing for predicting crop N status by responsive in-season management approaches; (c) red edge and near-infrared bands can penetrate into higher vegetation fraction of the canopy. These narrowbands better estimated grain yield, crop N and water status, with R 2 higher than 0.70. In addition, different hyperspectral vegetation indices accounted for a high variability of 40–75 % of wheat N status; (d) various diagnostic tools and procedures have been developed in order to help wheat farmers for planning variable N rates. In-season adjustments in N fertilizer management can account for the specific climatic conditions and yield potential since less than 30 % of spatial variance could show temporal stability; (e) field studies in which sensor-based N management systems were compared with common farmer practices showed high increases in the N use efficiency of up to 368 %. These systems saved N fertilizers, from 10 % to about 80 % less N, and reduced residual N in the soil by 30–50 %, without either reducing yields or influencing grain quality; (f) precision N management based on real-time sensing and fertilization had the highest profitability of about $5–60 ha−1 compared to undifferentiated applications.
Article
A Modified Simple Ratio (MSR) Is proposed for retrieving biophysical parameters of boreal forests using remote sensing data. This vegetation index is formulated based on an evaluation of several two-band vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Soil Adjusted Vegetation Indices (SAVI, SAVI1, SAVI2), Weighted Difference Vegetation Index (WDVI), Global Environment Monitoring Index (GEMI), Non-Linear Index (NLI), and Renormalized Difference Vegetation Index (RDVI). MSR is an improved version of RDVI for the purpose of linearizing their relationships with biophysical parameters. All indices were obtained from Landsat-5 TM band 3 (visible) and band 4 (near infrared) images after atmospheric corrections (except for GEMI) and were correlated with ground-based measurements made in 20 Jack Pine (Pinus banksiana) and Black Spruce (Picea mariana) stands during the BOREAS field experiment in 1994. The measurements include Leaf Area Index (LAI) and the Fraction of Photosynthetically Active Radiation (FPAR) absorbed by the forest canopies. Among these vegetation indices, SR, MSR, and NDVI were found to be best correlated with LAI and FPAR in both spring and summer. All other indices performed poorly. Both NDVI and MSR can be expressed as a function of SR. Measurement errors in remote sensing data often occur due to changes in solar zenith angle, subpixel contamination of clouds, or dissimilar surface features and the variation in the local topography and other environmental factors. These errors generally cause simultaneous increases or decreases in the red and near infrared reflectances, and their effects can be greatly reduced by taking the ratio. All other indices involving mathematical operations other than ratioing could retain the errors or even amplify them. The major problem in using the vegetation indices obtained from red and near infrared bands is the small sensitivity to the overstorey vegetation conditions. Although many of the vegetation indices such as SAVI, SAVI1, and SAVI2 are developed to minimize the effect of the background on retrieving the vegetation information, they also reduce their sensitivity to the changes in the overstorey conditions.
Article
This study assessed whether vegetation indices derived from broadband RapidEye™ data containing the red edge region (690–730 nm) equal those computed from narrow band data in predicting nitrogen (N) status of spring wheat (Triticum aestivum L.). Various single and combined indices were computed from in‐situ spectroradiometer data and simulated RapidEye™ data. A new, combined index derived from the Modified Chlorophyll Absorption Ratio Index (MCARI) and the second Modified Triangular Vegetation Index (MTVI2) in ratio obtained the best regression relationships with chlorophyll meter values (Minolta Soil Plant Analysis Development (SPAD) 502 chlorophyll meter) and flag leaf N. For SPAD, r 2 values ranged from 0.45 to 0.69 (p<0.01) for narrow bands and from 0.35 and 0.77 (p<0.01) for broad bands. For leaf N, r 2 values ranged from 0.41 to 0.68 (p<0.01) for narrow bands and 0.37 to 0.56 (p<0.01) for broad bands. These results are sufficiently promising to suggest that MCARI/MTVI2 employing broadband RapidEye™ data is useful for predicting wheat N status.
Article
During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise.
Article
The scattering and extinction coefficients of the SAIL canopy reflectance model are derived for the case of a fixed arbitrary leaf inclination angle and a random leaf azimuth distribution. The SAIL model includes the uniform model of G. H. Suits as a special case and its main characteristics are that canopy variables such as leaf area index and the leaf inclination distribution function are used as input parameters and that it provides more realistic angular profiles of the directional reflectance as a function of the view angle or the solar zenith angle.
Article
Remote sensing estimates of vegetation nitrogen (N) and lignin concentration are central to assess ecosystem processes such as growth and decomposition. Although remote sensing techniques have been proven useful to assess N and lignin contents in continuous green canopies, more studies are needed to address their capabilities, particularly in low and sparsely vegetated ecosystems. We investigated the possibility of estimating canopy N and lignin concentrations in chaparral vegetation using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) reflectance acquired over an area around Point Dume in the Santa Monica Mountains (Los Angeles, CA, USA). Two approaches were tested: multiple stepwise regression based on first difference reflectance (FDR) and reflectance (R) indices. Multiple stepwise regressions (of three or fewer wavelengths) accounted for a large variance in canopy biochemical concentration (r2∼0.9, P<0.01). Log transformed R indices [log (1/R)] formulated on the basis of previously known N and lignin absorption wavelengths also showed significant correlations (P<0.01) with canopy biochemical concentration (r2 ranging from 0.39 to 0.48). In addition, the contribution of structural and biochemical signals and background effects on the performance of these indices was evaluated. These indices accounted for a increased variance when adding information on canopy structural attributes (e.g., relative contribution of each species and biomass amount) to foliar biochemical concentration. The relative contributions of foliar biochemical concentration and canopy structure (biomass amount) on the spectral signal were further evaluated by analyzing the residuals from linear regressions: foliar N concentration accounted for 42% of the variance for a normalized difference index based on the 1510-nm N absorption feature, while the foliar lignin concentration accounted for 44% of the variance for a normalized difference index based on the 1754 nm lignin absorption feature. These percentages increased to 58% when stands with senescing vegetation were disregarded. We propose the two indices, Normalized Difference Nitrogen Index (NDNI=[log (1/R1510)−log (1/R1680)]/[log (1/R1510)+log (1/R1680)]) and Normalized Difference Lignin Index (NDLI=[log (1/R1754)−log (1/R1680)]/[log (1/R1754)+log (1/R1680)]) as indices to assess N and lignin in native shrub vegetation.
Article
To reduce environment pollution from cropping activities, a reliable indicator of crop N status is needed for site-specific N management in agricultural fields. Nitrogen Nutrition Index (NNI) can be a valuable candidate, but its measurement relies on tedious sampling and laboratory analysis. This study proposes a new spectral index to estimate plant nitrogen (N) concentration, which is a critical component of NNI calculation. Hyperspectral reflectance data, covering bands from 325 to 1075 nm, were collected using a ground-based spectroradiometer on corn and wheat crops at different growth stages from 2005 to 2008. Data from 2006 to 2008 was used for new index development and the comparison of the new index with some existing indices. Data from 2005 was used to validate the best index for predicting plant N concentration. Additionally, a hyperspectral image of corn field in 2005 was acquired using an airborne Compact Airborne Spectrographic Imager (CASI), and the corresponding plant N concentration was obtained by conventional laboratory methods on selected area. These data were also used for validation. A new N index, named Double-peak Canopy Nitrogen Index (DCNI), was developed and compared to the existing indices that were used for N detection. In this study, DCNI was the best spectral index for predicting plant N concentration, with R2 values of 0.72 for corn, 0.44 for wheat, and 0.64 for both species combined, respectively. The validation using an independent ground-based spectral database of corn acquired in 2005, yielded an R2 value of 0.62 and a root-mean-square-error (RMSE) of 2.7 mg N g− 1 d.m. The validation using the CASI spectral information, DCNI calculation was related to actual corn N concentration with a R2 value of 0.51 and a RMSE value of 3.1 mg N g− 1 d.m. It is concluded that DCNI, in association with indices related to biomass, has a good potential for remote assessment of NNI.
Article
Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R2 between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R2 = 0.70, NRMSE = 0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R2 = 0.59, NRMSE = 0.18). When only sample plots with up to two species were considered (n = 107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE = 0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements.
Article
Estimation of canopy biophysical variables from remote sensing data was investigated using radiative transfer model inversion. Measurement and model uncertainties make the inverse problem ill posed, inducing difficulties and inaccuracies in the search for the solution. This study focuses on the use of prior information to reduce the uncertainties associated to the estimation of canopy biophysical variables in the radiative transfer model inversion process. For this purpose, lookup table (LUT), quasi-Newton algorithm (QNT), and neural network (NNT) inversion techniques were adapted to account for prior information. Results were evaluated over simulated reflectance data sets that allow a detailed analysis of the effect of measurement and model uncertainties. Results demonstrate that the use of prior information significantly improves canopy biophysical variables estimation. LUT and QNT are sensitive to model uncertainties. Conversely, NNT techniques are generally less accurate. However, in our conditions, its accuracy is little dependent significantly on modeling or measurement error. We also observed that bias in the reflectance measurements due to miscalibration did not impact very much the accuracy of biophysical estimation.
Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes
  • J F Wang
  • P Liu
  • B Q Zhao
Wang, J.F., Liu, P., Zhao, B.Q., et al., 2011. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Scientia Agricultura Sinica 44 (4), 699-707.
Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes
  • Wang