ArticlePDF AvailableLiterature Review

Risk Riding Behaviors of Urban E-Bikes: A Literature Review

MDPI
International Journal of Environmental Research and Public Health (IJERPH)
Authors:
  • Ningbo University of Technology, China, Ningbo

Abstract and Figures

In order to clearly understand the risky riding behaviors of electric bicycles (e-bikes) and analyze the riding characteristics, we review the research results of the e-bike risky riding behavior from three aspects: the characteristics and causes of e-bike accidents, the characteristics of users' traffic behavior, and the prevention and intervention of traffic accidents. The analysis results show that the existing research methods on risky riding behavior of e-bikes mainly involve questionnaire survey methods, structural equation models, and binary probability models. The illegal occupation of motor vehicle lanes, over-speed cycling, red-light running, and illegal manned and reverse cycling are the main risky riding behaviors seen with e-bikes. Due to the difference in physiological and psychological characteristics such as gender, age, audiovisual ability, responsiveness, patience when waiting for a red light, congregation, etc., there are differences in risky cycling behaviors of different users. Accident prevention measures, such as uniform registration of licenses, the implementation of quasi-drive systems, improvements of the riding environment, enhancements of safety awareness and training, are considered effective measures for preventing e-bike accidents and protecting the traffic safety of users. Finally, in view of the shortcomings of the current research, the authors point out three research directions that can be further explored in the future. The strong association rules between risky riding behavior and traffic accidents should be explored using big data analysis. The relationships between risk awareness, risky cycling, and traffic accidents should be studied using the scales of risk perception, risk attitude, and risk tolerance. In a variety of complex mixed scenes, the risk degree, coupling characteristics, interventions, and the coupling effects of various combination intervention measures of e-bike riding behaviors should be researched using coupling theory in the future.
Content may be subject to copyright.
Int.J.Environ.Res.PublicHealth2019,16,2308;doi:10.3390/ijerph16132308www.mdpi.com/journal/ijerph
Review
RiskRidingBehaviorsofUrbanEBikes:
ALiteratureReview
ChangxiMa1,*,DongYang1,JibiaoZhou2,*,ZhongxiangFeng3andQuanYuan4
1SchoolofTrafficandTransportation,LanzhouJiaotongUniversity,Lanzhou730070,China;
dongyang26@126.com
2SchoolofCivilandTransportationEngineering,NingboUniversityofTechnology,Ningbo315211,China
3SchoolofAutomotiveandTrafficEngineering,HefeiUniversityofTechnology,Hefei230009,China;
fzx@hfut.edu.cn
4StateKeyLaboratoryofAutomotiveSafetyandEnergy,TsinghuaUniversity,Beijing100084,China;
yuanq@tsinghua.edu.cn
*Correspondence:machangxi@mail.lzjtu.cn(C.M.);zhoujb2014@nbut.edu.cn(J.Z.);
Tel.:+8613109429716(C.M.);Tel:+8618815276878(J.Z.)
Received:12May2019;Accepted:26June2019;Published:28June2019
Abstract:Inordertoclearlyunderstandtheriskyridingbehaviorsofelectricbicycles(ebikes)and
analyzetheridingcharacteristics,wereviewtheresearchresultsoftheebikeriskyridingbehavior
fromthreeaspects:thecharacteristicsandcausesofebikeaccidents,thecharacteristicsofusers’
trafficbehavior,andthepreventionandinterventionoftrafficaccidents.Theanalysisresultsshow
thattheexistingresearchmethodsonriskyridingbehaviorofebikesmainlyinvolvequestionnaire
surveymethods,structuralequationmodels,andbinaryprobabilitymodels.Theillegaloccupation
ofmotorvehiclelanes,overspeedcycling,redlightrunning,andillegalmannedandreverse
cyclingarethemainriskyridingbehaviorsseenwithebikes.Duetothedifferenceinphysiological
andpsychologicalcharacteristicssuchasgender,age,audiovisualability,responsiveness,patience
whenwaitingforaredlight,congregation,etc.,therearedifferencesinriskycyclingbehaviorsof
differentusers.Accidentpreventionmeasures,suchasuniformregistrationoflicenses,the
implementationofquasidrivesystems,improvementsoftheridingenvironment,enhancementsof
safetyawarenessandtraining,areconsideredeffectivemeasuresforpreventingebikeaccidents
andprotectingthetrafficsafetyofusers.Finally,inviewoftheshortcomingsofthecurrent
research,theauthorspointoutthreeresearchdirectionsthatcanbefurtherexploredinthefuture.
Thestrongassociationrulesbetweenriskyridingbehaviorandtrafficaccidentsshouldbe
exploredusingbigdataanalysis.Therelationshipsbetweenriskawareness,riskycycling,and
trafficaccidentsshouldbestudiedusingthescalesofriskperception,riskattitude,andrisk
tolerance.Inavarietyofcomplexmixedscenes,theriskdegree,couplingcharacteristics,
interventions,andthecouplingeffectsofvariouscombinationinterventionmeasuresofebike
ridingbehaviorsshouldberesearchedusingcouplingtheoryinthefuture.
Keywords:trafficengineering;ebikes;riskyridingbehavior;trafficaccidents;interventions
1.Introduction
Inrecentyears,electricbicycles(ebikes)becamethebestchoicefordailytravelofsome
residentsinlargeandmediumsizedcitiesinChinaduetotheirlowprice,convenience,and
flexibility.UnlikeinNorthAmericaandEurope,ebikesarethemaintrafficmodeinmanyof
China’smajorcitiesandareusedprimarilyforcommutingratherthansimplyforleisure.According
tothestatisticsoftheChinesecyclingassociation[1],in2017,thetotalnumberofebikesinChina
was250million,theoutputofebikeswas30.97million,andtheexportwas7.301million,withan
Int.J.Environ.Res.PublicHealth2019,16,23082of18
exportvalueof$1.44billion.InNanning,Haikou,Kunming,Guilin,andothercities,ebikesfar
outnumberbicycles;Nanninghasmorethan1.8millionebikes[2],whichisknownas“thecityof
electricbicycles”,duetoithavingthelargestnumberofebikesinthecountry.Therefore,ebikesare
currentlyoneofthemostimportantmeansofcommutertransportation[3].
Despitetheobviousadvantages,therapidgrowthofebikesalsocausesaseriesofsafety
problems.Liketraditionalbicyclesandpedestrians,ebikesalsobelongtothecategoryofvulnerable
groupsontheroad.Duetotheirfastspeed,ebikeshavemoreseriousaccidentrisks.Accordingto
thestatisticalannualreportofChina’sroadtrafficaccidentsin2015,thenumberofebikeaccidents
was8.2timeslargerthanthatofbicycleaccidentsand5.4timeslargerthanthatofpedestrian
accidents[4].FromJanuarytoJune2016,thenumberofebikeaccidentsaccountedfornearly70%of
thetotalnumberofaccidentsinJiangsuProvince[5].Thehospitaldataarenotoptimisticeither.The
hospitalizationrecordsofebikeusersinHefeifrom2009to2011showthatonethirdofebikeusers
wereseriouslyinjured[6].AccordingtothehospitalizationrecordsofSuzhoufromOctober2010to
April2011,thenumberofinjuredebikeusersaccountedfor57.2%oftherateofroadtraffic
hospitalization[7].Inadditiontotheseverityofaccidents,thenumberofebikeaccidentsalsoshows
atrendofcontinuousgrowth.Accordingtothestatisticaldata[8],thenumbersofebiketraffic
accidentsin2011and2016were10,347and17,747,respectively,andthenumberofdeathsincreased
by71.52%inthefiveyears.Thenumbersofebikeinjurieswere11,381and19,678,respectively,
increasingby72.90%.Basedonthecasesofinjuriesorcasualtiesoftwowheeledvehiclesinfive
citiesinChinafromJuly2011–June2016,electricbicycleaccidentswereacommontypeof
twowheeledvehicleaccidentsinChina,accountingfor34.79%ofthetotalnumber.Amongthese
accidentsinvolvingelectricbicycles,thosecausingminorinjuriestotheridersaccountedfor70.0%,
whiletheproportionofseriousinjurieswas12.6%,andtheproportionofdeathswas10.6%[9].Due
tothefrequentoccurrenceandseverityofebikeaccidents,citieslikeGuangzhou,Shenzhen,
Wenzhou,andFuzhoubannedorrestrictedtheuseofebikes[6].Atthesametime,intermsof
nationallawsandregulations,relevantprovisionswerealsoformulatedtorestrainillegalbehaviors.
Forexample,Article70oftheregulationsfortheimplementationoftheroadtrafficsafetylawofthe
People’sRepublicofChinastipulatesthat“whenridingabicycle,anelectricbicycle,oratricycleand
crossingamotorvehiclelaneonaroad,theridershouldgetoffthevehicleandcarryit.Ifthereisno
crosswalkorpedestriancrossingfacilities,orifitisinconvenienttousethem,theridershouldgo
straightthroughafterconfirmingsafety.”
Figure1.Keywordcooccurrencenetworkofelectricbicycle(ebike)safetystudies.
Int.J.Environ.Res.PublicHealth2019,16,23083of18
Numerousstudiesshowedthathumanfactors,especiallythebehaviorofebikeusers(Figure
1),areimportantinmosttrafficaccidents,asisthecasewithebikes.Figure1showsthekeyword
cooccurrencenetworkofebikesafetystudies,inwhichwefoundthatpreviousstudiesmainly
focusedonbehavior,safety,risk,crashes,choice,andsoon.Ebiketrafficviolationsmainlyinvolvea
violationoftrafficsignals,aviolationofregulationsonmannedvehicles,afailuretodrivein
nonmotorizedlanes,adversedriving,etc.[10].Forexample,Zhangetal.[11]foundthatthe
violationoftrafficsignalsbyebikesisoneofthemaincausesofroadtrafficaccidents,accounting
for54.18%ofthetotalaccidentdata.CherryandDuetal.[12,13]analyzedtheviolationsofebike
usersandfoundthatredlightrunning,overspeeding,andoverloadingwerethemaincausesof
roadtrafficaccidents.Demographicvariables,socialcognition,andotherfactorsofebikeusersare
alsocloselyrelatedtotheoccurrenceoftrafficaccidents.Huetal.[6]analyzedtheinfluencingfactors
ofebikeaccidentsandfoundthatage,gender,andvehicletypehadasignificantimpact.Yaoand
Wu[14]establishedtherelationshipbetweensafetyattitude,riskperception,andviolationsofebike
users,andtheresultsshowedthatbothgenderanddrivingexperiencehadasignificantimpacton
ebikeaccidents.Papoutsietal.[15]analyzedtheage,gender,accidenttime,andaccidentcauseof
ebikeusersusingtheaccidentdataofahospitalinSwitzerland.Guoetal.[16]foundthatebikesare
morelikelytobeinvolvedinredlightrunningthanordinarybikes.Zhouetal.[17]empirically
analyzedthesignificantfactorsaffectingaccidentsinvolvingebikesandtheuseoflicenseplates,
andfoundthattheuseoflicenseplatesonebikesreducedthepossibilityofaccidents.Guoetal.[18]
foundfromamodelcomparisonanalysisthatthecyclist’sgender,cyclingbehavior,typeofebike,
speedlimit,andotherfactorshadasignificantimpactontheseverityofebikecollisions.Basedon
thepreviousstudies,thevisualizationofriskyridingbehaviorsofebikescanbefoundthrough
collaborationnetworkanalysis,asshowninFigure2.InFigure2,eachnoderepresentsanauthoror
anorganization,andthenodesizesindicatethenumberofpublishedpapers.Thelinksbetween
nodesrepresentthecollaborations,wherebythegreaterwidthofalinkrepresentsacloser
collaboration.Specifically,thecitationnetworkamongproductiveauthorsisshowninFigure2a,the
coauthorshipnetworkamongproductiveauthorsisshowninFigure2b,andthecollaboration
networkamongresearchinstitutionsisshowninFigure2c.
(a)
Int.J.Environ.Res.PublicHealth2019,16,23084of18
(b)
(c)
Figure2.Visualizationofriskyridingbehaviorsinebikestudies:(a)thecitationnetworkamong
productiveauthors;(b)thecoauthorshipnetworkamongproductiveauthors;(c)thecollaboration
networkamongresearchinstitutions.
Withtheincreasingattentionpaidtotheproblemsdiscussedabove,itisurgenttobetter
understandtheriskyridingbehaviorofebikesandthephysiologicalandpsychological
characteristicsofebikeusers,soastoreducetheaccidentrateandimprovethesafetyawarenessof
ebikeusers.Atthesametime,onthebasisofstudiesontheriskyridingbehaviorofebikes,itisof
greatsignificancetoimproveroadtrafficsafetyandreducetrafficaccidentsbyfurtheranalyzingthe
trafficaccidentcharacteristicsandtrafficaccidentcausesofebikes.
2.AnalysisofRiskyRidingBehaviorCharacteristicsandInfluencingFactorsofEBikes
2.1.DataAcquisitionandAnalysisMethods
1. Intermsofdatacollectionofriskyridingbehaviorofebikes,questionnairesurveymethods
[19–25]andvideocollectionmethods[26–28]aremainlyadopted.Thequestionnaireinthe
questionnairesurveymethodwasdesignedbasedonpreviousstudiesonthedrivingbehavior
ofmopeds,motorcycleusers,andautomobiledrivers.Mostoftheuseditemswereselectedfrom
themopeduserbehaviorquestionnairedesignedbyStegetal.[19],themotorcycledriver
behaviorquestionnairedesignedbyElliottetal.[20],andtheChinesecyclingbehavior
questionnairedesignedbyXieandParker[21].Inthequestionnairedesign,theitemswhich
appliedtoebikeusersorwhichcouldbemodifiedwereretained,whiletherestwerediscarded,
andnewfeaturesofebikeridingwereadded.Respondentswereaskedtoratethefrequencyof
eachridebehavioronafivepointLikertscale,rangingfrom“never”(1)to“almostalways”(5).
Severaltypicalebikeuserswerepretested,andthequestionnairewasrevisedaccordingto
theirfeedbacktoimprovetheclarityandreadability.
Thequestionnairesurveyapproachiswidelyusedintrafficsafetyresearchtogather
informationsuchasdrivingbehavior,safetyattitude,andriskperception[17,19–24].Forexample,
YaoandWu[14]studiedtheriskfactorsaffectingtheparticipationofebikeusersinaccidentsbased
onthequestionnairesurveymethod,anddeterminedtherelationshipbetweensafetyattitude,risk
perception,andabnormalridingbehavior.Thesurveyincluded603ebikeusersinBeijingand
Hangzhou.Theresultsshowedthatgenderanddrivingexperienceweresignificantlyrelatedto
trafficaccidents.Menweremorelikelytohaveaccidentsthanwomen,andcyclistswithadriver’s
licensewerelesslikelytohaveaccidentsthanthosewithoutone.Thestudyalsofoundthattwo
typesofabnormalcyclingbehaviors,errorsandaggressivebehavior,wereimportantfactorsin
predictingtrafficaccidents.Inordertostudythemechanismandcauseofelectricbicyclecollisions,
Int.J.Environ.Res.PublicHealth2019,16,23085of18
Hertachetal.[29]usedlogisticregressionmodeltoanalyzethequestionnairedataof3659Swiss
ebikeriders.Itwasfoundthatabout17%ofelectricbikeridershadtrafficaccidents.Thetypesof
accidentsmostlyinvolvedslipping,fallingwhencrossingthethreshold,andslippingwhen
enteringatram/railway.Thecausesofaccidentsincludedtheroadbeingtooslippery,theriding
speedbeingtoofast,alossofbalancewhileriding,etc.Inordertounderstandtheawareness,
cyclingbehavior,andlegislativeattitudeofebikeridersandnonebikeroadcyclistsinTianjin,
Wangetal.[30]conductedcomparativeanalysisandresearchonthetwotypesofcycliststhrougha
largenumberofquestionnairesurveysandinterviews.Theresultsshowedthat74.2%ofebike
ridersthoughtitwasnecessarytowearhelmets,and54.7%ofebikeridersthoughtwindshield
installationwaswrong,whichwashigherthanotherroadusers(49.1%and48.4%,respectively).
However,infieldsurveys,ebikeriderawarenessofvariousviolationslaggedfarbehindwhatis
right.Guoetal.[31]investigatedandinterviewed884ebikeridersinNanjingtostudythe
influencingfactorsofebikeregistrationinChina.Theresultsshowedthatregistrationwas
influencedbygender,age,education,drivinglicense,familycarownership,familyincome,and
electricbicycletravelfrequency.
Reasonetal.[25]proposedalogicalframeworktoevaluateabnormaldrivingbehavior,and
designedthedrivingbehaviorquestionnaire(DBQ)todistinguishthreetypesofbehavior:error
behavior(plannedactionfailedtoachieveexpectedresult),failurebehavior(actionintention
deviation),andirregularitybehavior(deliberatelydeviatingfromthenormalsafetybehaviorora
sociallyacceptedcodeofconductforviolations).AmodifiedversionofDBQwasalsousedtostudy
theunusualbehavioroftwowheeledvehiclesusers,suchasmotorcycleusersandmopedusers.
Elliottetal.[20]developedamotorbikedriverbehaviorquestionnaireandfounddifferencesin
trafficerrors,controlerrors,speedviolations,stunts,andtheuseofmotorcyclesafetyequipmentin
theUnitedKingdom(UK).StegandBrussel[19]developedaquestionnaireonthebehaviorof
mopedusersandverifiedthedifferencebetweenerrors,faults,andviolationsofmopedusersinthe
Netherlands.
Thevideocollectionmethodinvolvestheuseofelectronicmonitoringequipmentontheroadto
observeandcollectstatisticsontheridingbehaviorandusercharacteristicsofebikeusers,resulting
inarelativelyrichamountofdatacollection.Zhouetal.[10]usedthe“globaleye”networkvideo
monitoringtechnologyofChinatelecomtoobtainrealtimevideodataofebikesinNingbo,
analyzedthemainfactorsaffectingtheendurancetimeofebikes,andconcludedthattheweather,
crossroad,andthepresenceoftrafficpolicehadthelargestinfluence.Du[13]observed18,000ebike
usersattheintersectionofSuzhouandsummarizedriskyridingbehaviors.Konstantina[26]
observed90,000ebikeusersatsixmonitoringpointsinIowa,andstudiedtheinfluenceofroad
conditions,geographicallocation,weatherconditions,andotherfactorsontheuseofhelmets.
Truing[27]observed26,000usersofmotorcyclesandebikes,andobtainedacorrelationbetweenthe
useofmobilephoneswhileridingandfactorssuchasvehicletypeandage.Huanetal.[28]used
videomonitoringdataofintersectionstobuildamodeltoanalyzetheinfluencefactorsofwaiting
timeofebikeusersandredlightrunningbehavioratintersections,andfoundthatalowernumber
ofebikeusersorahighernumberofmotorvehiclesatanintersectionresultedinalesserlikelihood
ofusersexhibitingredlightrunningbehavior.
2. Structuralequationmodels(SEMs)andbivariateprobit(BP)modelsaremainlyadoptedinthe
analysisofriskyridingbehaviordataofebikes.BeforetheconstructionofanSEMorBPmodel,
thedatafromquestionnairesurveysshouldbetested.
Theprocessofdatainspectionwascomposedofthreeparts.Firstly,exploratoryand
confirmatoryfactoranalysiswasperformedtoexaminethebasicdimensionsandstructuresusedto
detectabnormalcyclingbehaviorinthequestionnairedesign.Severalfittingindexesareusually
used,includingapproximaterootmeansquareerror(RMSEA),goodnessoffitindex(GFI),
adjustedgoodnessoffitindex(AGFI),andcomparativefittingindex(CFI).Whenthefittingdegree
ofthemodelischecked,itisrequiredthattheRMSEAislowerthan0.08andtheGFIisgreaterthan
0.90,whiletheAGFIandCFIshouldindicateagoodmatchbetweenthemodelanddata[32].
Cronbach’salphaisaconsistencycoefficientusedtomeasurethehomogeneityofitemsinasingle
Int.J.Environ.Res.PublicHealth2019,16,23086of18
dimension,thatis,toevaluatethereliabilityandinternalconsistencyofscalesdescribingabnormal
cyclingbehavior,safetyattitude,andriskperception.AccordingtoNunnally’sstandard[33],avalue
ofequaltoorgreaterthan0.7indicatesacceptablereliability.
Secondly,correlationsanddifferenceswereanalyzed.Acyclingbehaviorscalewasestablished
tocheckwhethertherespondentsinvolvedintrafficaccidentsinthereportweresignificantly
differentbasedondemographicvariables,riskperception,safetyattitude,andabnormalcycling
behavior.Forunivariateanalysis,thechisquaretestwasusedforclassificationvariables,and
univariateanalysisofvariancewasusedforcontinuousvariables.Formultivariateanalysis,abinary
logisticregressionmodelwasusedtoidentifyfactorssignificantlyassociatedwithparticipantsinvolved
intheaccident.
Thirdly,theSEMmodelwasbuilttoexplorethecausalrelationshipbetweensafetyattitude,
riskperception,andabnormalcyclingbehaviorusingAMOS17.0software(SPSSInc,Chicago,IL,
U.S.A.).ThetwostepprogramfortheSEMmodelwasrecommendedbyAndersonandGerbing
[34].Firstly,aconfirmatoryfactoranalysiswasusedtoevaluatetheSEMmodelandthe
measurementmodelsofsafetyattitude,riskperception,andabnormalridingbehaviorsubscales,as
wellastheirfittingdegreewiththeirrespectivepotentialstructures.Secondly,thestatistical
acceptabilityoftheSEMmodelwastested,andthemaximumlikelihoodfunctionestimationmodel
wasadopted.Thecommonlyusedfittingindexesforinspection[12]ofRMSEA,GFI,AGFI,andCFI
wereusedforthefittingofthemeasurementmodel.
Severalresultsemergedintheliteraturebasedontheaboveoperationsteps.Forexample,based
ontheSEMmodel,YaoandWu[14]foundthatbothsafetyattitudeandriskperceptionsignificantly
affectedabnormalridingbehaviorsofebikes.Guoetal.[35]designedabivariateprobability(BP)
modeltochecktheimportantfactorsrelatedtothecollisionofebikesandthelicenseplatesof
ebikes,andconsideredthecorrelationbetweenthem.Themarginaleffectofcontributionfactors
wascalculatedtoquantifytheireffectontheresults.Theresultsshowedthatgender,age,education
level,drivinglicense,familycar,experienceofusingebikes,compliancewithlaw,andactive
drivingbehaviorofebikeusershadasignificantinfluenceonebikeaccidentsandlicenseplateuse.
Inaddition,thetypeofebike,frequencyofebikeuse,impulsivebehavior,degreeofriding
experience,andriskperceptionscalewerefoundtoberelatedtocollisionsinvolvingebikes.This
furtherconfirmsthepreviousresearchconclusionofYaoandWu[14]thattheprobabilityoftraffic
accidentsofebikeuserswithahighriskperceptionisrelativelylow.
2.2.CharacteristicsofRiskyRidingBehavior
Ebikeridingisaffectedbyvariousriskfactors,whichincludeusers,vehicles,roadsandthe
environment,management,andotheraspects[36],asshowninTable1.
Table1.Influencingfactorsofelectricbicycle(ebike)riskyridingbehavior.
InfluencingFactorFactorsSet
RiderfactorsAge,gender,educationlevel,healthstatus,personalitycharacteristics,traffic
safetyawareness,cyclingbehavior,cyclingtechnology,decisionmakingability
VehiclefactorsBrakingperformance,steeringperformance,comfort
Roadand
environmental
factors
Trafficflowvolume,speed,widthofnonmotorizedlane,formofroadsection,
conditionofroadsurface,conflictinterferencetype,weatherconditions,
artificialenvironment
ManagementfactorsRiskmanagement,organization,riskperception,communication
Otherfactors[37]Alcohol,drugs,socialnorms,confidence
Ebikeusershavemanyriskyridingbehaviorsintheprocessofriding.Forexample,Brianetal.
[38]studiedtheridingbehaviorofebikesandfoundthattheviolationrateofebikeswasrelatively
high,andtheriskycyclingbehaviorsthatcausedtheviolationmainlyincludednotridinginthe
rightdirection,overspeeding,trafficconflictswithotherroadparticipants,andwaitingforthe
signallightattheintersection.ZhaoMingetal.[39]conductedafourdaytrafficsurveyinJinhuato
Int.J.Environ.Res.PublicHealth2019,16,23087of18
studytheriskyridingbehaviorsofebikeusers.Theresultsshowedthatoverspeeding,manned
riding,redlightrunning,anddrivinginreversewerethemainriskyridingbehaviorsofebike
users.Duetal.[13]researchedelectricbicycleridingbehaviorandfoundthatthereweresomerisky
ridingbehaviorssuchascarryingpassengersduringtheriding,takinguplanes,drivingthrougha
redlight,reversecycling,andmakingphonecalls.Theyalsofoundthatthenumberofmaleusers
wasproportionaltotheuseofhelmetsandtakingupmotorvehiclelanes,whiletheebikehavinga
platewascloselyrelatedtothebehaviorofcarryingapersonorcargo.Miaoetal.[40]studied
nonmotorvehicleusers’riskybehaviorandfoundthatnonmotorvehicleusersmainlyhad
behaviorssuchasoccupyingthelanes[41],ridingsidebysideinnonmotorvehiclelanes,being
closetolargevehiclesridingontherightside,forcinginfrontoflargevehicleswhenturningright,
weaving,drunkriding,overspeeding,andridinginaclosedroad.Inaddition,nonmotorvehicles
alsogenerateaseriesofriskyridingbehaviorsduetothe“exceedingstandard”ofnonmotor
vehiclesandthewetandslipperyroadsurfacethroughintersectionsorhighwayexitsonrainyand
snowydays.Wang[42],Jia[43],andJiangandLi[44]foundthroughinvestigationthatcyclists’risky
ridingbehaviorsintheprocessofcyclingincludedspeeding,illegalturning,reversedriving,
encroachingonmotorvehiclelanesandsidewalks,runningredlights,forcedovertaking,sudden
parkingorturning,andnoncompliancewithregulations.
Onthebasisofstatisticalanalysisofaccidentdataandcauses,Ren[37]gave12kindsofrisky
ridingbehaviors,andthescoreofunsafebehaviorsisshowninFigure3.AscanbeseenfromFigure
3,alowerscoreofunsafebehaviorsofcyclistsiscorrelatedwithahigherfrequencyofthose
behaviors,indicatingthatthetrafficaccidentsandsafetyhazardsofsuchbehaviorsaregreater.It
canbefoundfromFigure1thatthetwounsafecyclingbehaviors,mannedridingandillegal
occupationofmotorvehiclelanes,havethehighestprobabilityoftrafficaccidents.
Figure3.Evaluationofunsafebehaviorofebikes.
Thereisaconflictbetweenebikesandotherroadparticipantsatintersections.Manyscholars
studiedthewaitingbehaviorofcyclistsatintersections.Guoetal.[15]analyzedtheredlightriding
behaviorofnonmotorvehiclesatsignalizedintersectionsandfoundthatebikeusersweremore
likelytoruntheredlightthanordinarybikes.Xuetal.[45],instudyingthecharacteristicsofthe
illegalbehaviorsofmopedsatintersections,pointedoutthattheillegalbehaviorsincludedredlight
running,drivingintheoppositedirection,occupyingthemotorcyclelane,illegalwaiting,andillegal
manningorobjects.Liu[46],Zhao[47],andHuanMeietal.[48,49]concludedfrompreviousstudies
thatrunningaredlightwasthemostseriousriskycyclingbehavioratsignalizedintersections.Yang
etal.[50]studiedthetrafficlightwaitingbehavioroftraditionalbicycleusersandelectricbicycle
usersatintersections,andfoundthattheprobabilityofcyclistsrunningaredlightwasproportional
Int.J.Environ.Res.PublicHealth2019,16,23088of18
tothewaitingtime,thatis,whentheredlighttimewaslessthan49seconds,about50%ofcyclists
rantheredlight,while,whenthetimeoftheredlightwaslessthan97seconds,about75%ofusers
rantheredlight.Theyalsofoundthatebikeusersweremoresensitivetochangesintheexternal
environment.Brianetal.[38],Huanetal.[49],andLiuandYang[51]foundthatthelongeracyclist
waitedatanintersection,thehighertheviolationratewas,whichwascloselyrelatedtoherd
mentality.Intheirsample,morethan50%ofuserscouldnottolerate49secondsorlonger,while25%
ofcyclistscouldtolerate97secondsorlonger.Zhouetal.[10]studiedtheinfluencingfactorsof
endurancetimeatintersectionsonebikesbyobtaining57,213samplesofendurancetimeofebike
crossingsinNingbo.Statisticsshowedthattherewerethreesignificantvariablesaffectingthe
endurancetime:weather,crosswalklength,andthepresenceoftrafficpolicetoenforcethelaw.
Dongetal.[52]analyzedthesafetyinfluencemechanismofgreenflashinglightsonthestopping
decisionmakingbehaviorofebikeusers,andfoundthatgreenflashinglightscouldpromptusersto
stop,whileitwaseasytogenerateaggressivepassingbehavior.Ifthegreenflashinglightisset
properly,itcaneffectivelyimprovethesafeoperationofebikesatintersections.
Comparedwithpreviousstudies,wealsofoundthatsomefactorssuchastheweather,
temperature,androadinfrastructurewerealsocloselyrelatedtoebikeridingbehavior.For
example,Konstantina[26]studiedthefactorsaffectinghelmetswornbyebikeusers,andfoundthat
theproportionofhelmetswornbycyclistsonmainroadsandsecondaryroadswaslower.Duetal.
[13]foundthat,comparedwithsunnyandcloudydays,cyclistsworemorehelmetsinrainydays.In
recentyears,duetothehotsummerweather,theultravioletintensityisgreater,andthe
phenomenonofredlightrunningismoreserious.Inviewofthecurrentsituationofweatherand
temperature,themanagementdepartmentsetupsunshadesaturbanintersectionsandachieved
goodresults.Zhangetal.[53]studiedthecyclingbehaviorsofcyclistsatsunshadeintersections,and
theresultsshowedthatthebehaviorofrunningredlightsatsunshadeintersectionsonsunnydays
wassignificantlylowerthanthatoncloudydays.Cyclistsatintersectionswithoutawningswere
significantlymorelikelytocrossredlights.Therefore,thesafetyofcyclistsatintersectionscanbe
improvedbysettingshadeawningsatintersections.Forexample,Zhangetal.[54]exploredthe
violationbehaviorofnonmotorvehiclesoccupyingthemotorway,andabinarylogisticregression
modelwasadoptedtofindtheinternalreasonofsuchviolationbehavior.Theresultsshowedthat
thetrafficviolationrateofmalecyclistswashigherthanthatoffemalecyclists,andtheviolationrate
ofrainydayswashigherthanthatofsunnyandcloudydays.Secondly,theviolationrateinthe
morningpeakwashigherthanthatintheeveningpeakandoffpeakhours.Thetrafficdensityof
motorvehiclesandnonmotorvehicleshadastronginfluenceontheillegaltrafficbehaviorof
nonmotorvehicles.Thirdly,thedataanalysisshowedthattheaverageillegaltrafficrateof
nonmotorvehicleswas36.1%,indicatingthatmorethanonethirdofnonmotorvehicleshadtraffic
violations.Wangetal.[55]usedtheaccidentdataofelectricbicycleandmotorvehiclecollisionsas
theresearchobjecttostudythefactorsaffectingthedegreeofinjuryofelectricbicycleriders.Itwas
foundthatthefactorsassociatedwithelectricbikeridercollisionswereviolationofsignalcontrols,
notaccordingtostipulationstogiveway,agegreaterthan60yearsold,andmale.Amongthese
factors,theratiosofaccidentsthatinvolvedaviolationofsignalcontrolsandnotaccordingto
stipulationstogivewaywere2.201and1.495,respectively,indicatingthattheriskofdeathor
seriousinjuryofelectricbicycleriderswasgreaterduetoaccidentsbetweenelectricbicycleriders
andmotorvehicles.Theaccidentoccurrenceratiosofriderswithagesgreaterthan60yearsand
maleriderswere1.383and1.317,indicatingthat,iftheageofanelectricbikeriderwasgreaterthan
60years,theriskofdeathorseriousinjurywashigherthanthatofyoungerdriversintheeventof
anaccident.Thiswasrelatedtotheweakerabilityoftheolderridertorespondtotheoutsideworld,
inadditiontotheirpoorphysicalconditionandtheexistenceofluck.Tangetal.[56]proposedto
useacellularautomatonmodeltostudythestraight,lanechange,andretrogradebehaviorof
ebikeridersatsignalizedintersections.Theresultsshowedthatthelanechangeandretrograde
behaviorshadthemostsignificantinfluenceontheridingtrajectoryofebikeriders.Thesimulation
resultscouldbetterexplainthecomplicatedtrafficphenomenoncausedbyebicyclesatsignalized
intersections.Thebasisfortheintroductionofebikecontrolmeasureswasprovided.Yuetal.[57]
Int.J.Environ.Res.PublicHealth2019,16,23089of18
studiedthereactionofebikeriderstopedestriancountdownsignaldevices(PCSDs),andfound
thatPCSDscouldeffectivelyreducethenumberofredlightviolationsbycyclists,effectively
preventingtherunningofredlights,butincreasingthepossibilityofearlybehavior.Fishmanand
Cherry[58]gavealiteraturereviewofthemajortrendsinthedevelopmentofglobalelectricbicycle
trafficfrom2006to2015.Theresultsshowedthat,intermsofroadsafetyissues,theviolationsof
Chineseelectricbicycleridersatintersectionsweremorecommon,whereastheriskofelectric
bicycleaccidentswashigherthanthatoftraditionalbicycles.
Inaddition,therearesomeotherridingbehaviorswhichcanalsobecomesafetyhazardsin
trafficaccidents.Forexample,Stellingetal.[59]studiedtheauditoryperceptionduringcollisions
andaccidentsofcyclistswhentheylistenedtomusicormadephonecalls[41].Theresultsshowed
thatlisteningtomusicandtalkingonthephonehadnegativeeffectsoncyclists’hearingand
attention,andtherewasagreaterriskoftrafficaccidents.Theyalsofoundthattherewasno
relationshipbetweenthefrequencyoflisteningtomusicandmakingphonecallsandthefrequency
oftrafficaccidents.Truongetal.[27]investigatedandanalyzedthemobilephoneuseofebike
users,andfoundthat8.4%ofthemusedmobilephonesduringriding,andtheuseofmobilephones
duringridingwasrelatedtoridingweather,thenumberoflanes,differentlanes,thedurationofred
lights,andthepresenceofpolice.Inaddition,wearingsafetyhelmetsandsomeriskyriding
behaviorsattheexitofrain/snowexpresswaysorhighwayswerecloselyrelatedtotheoccurrence
andseverityofebikeaccidents.
3.AnalysisofCharacteristicsofEBikeUsers
3.1.VisionandHearing
Visionandhearingarefundamentaltoridinganebike,andtheyaredirectlyrelatedtothe
perceptionoftheexternalenvironment.Thelevelofperceptionhasasignificantimpactonthesafety
oftheroad.Drunkcycling[25]reducesthevisualandothersensoryfunctionsofcyclists,andthe
acquisitionandjudgmentofexternalinformationarepronetoerrors.Inaddition,themoodofthe
drunkuserisveryunstable,andriskyridingbehaviorssuchasoverspeedingorrunningaredlight
areeasilygenerated.
Ebikeusershavedifferinglevelsofdynamicandstaticvision[41],basedonfactorssuchasage
andphysicalfeature.Theuser’sdynamicobservationvariesaccordingtothespeedofcycling,
wherebyafasterspeedresultsinanarrowerdynamicfieldofvision,whileillusionscanalsooccur
duetodifferencesbetweensenses,whichareimportantfactorsincausingtrafficaccidents.Duetoits
smallsizeandlowdrivingnoiseontheroad,ebikesarenoteasilyheardorperceivedbyotherroad
participants[12];thus,therearemanyunsafeanduncertainfactorswhenconsideringnonmotor
vehiclelanesandotherparticipants.Zhao[60]studiedthevisualbehaviorofebikeusers.Their
resultsshowedthat,indifferentcyclingenvironments,thedistributionofeyemovementtimewas
uneven.Alargerproportionofscanningtimeledtoashorterdurationofeachfixationpoint,whilea
morecomplexenvironmentnarrowedtheuser’sgaze.Intheprocessofcycling,thefollowinga
vehiclecanbeconsideredahazardoussituationaselectricbikesovertakemorefrequently.
3.2.DifferentAgeGroups
Theprobabilityoftrafficaccidentscausedbycyclistsofdifferentagesvariesduetotheir
widerangingphysicalfunctions.Wuetal.[61]studieduserridingbehaviorandtherelationship
withageusingsurveydata,andfoundthatyoungandmiddleagedpeopleweremorelikelytoride
througharedlightthanolderpeople.Theyalsofoundthatsmallgroupsofridersorindividual
ridersweremorelikelytorunredlights,whereasmiddleagedandolderridersweremorefearfulof
trafficaccidentswhileriding,leadingtomorecautiousbehavior[62].Accordingtothesurveydata
ofTruongetal.[27],theaverageageofebikeusersis23yearsold,whilethatofmotorcycledrivers
is30yearsold.
Int.J.Environ.Res.PublicHealth2019,16,230810of18
3.3.GenderDifference
Usersofdifferentgendershavedifferentphysicalskillsandpsychologicalstates;thus,gender
differencealsohasanimpactonthebehaviorofcyclists.Wuetal.[61]studiedtheridingbehaviors
ofmaleandfemalecycliststhroughsurveydata,andfoundthattheprobabilityofmaleusers
runningaredlightwashigherthanthatoffemaleusers,especiallywhenthemopedsofmaleusers
hadgreaterdynamicperformance[41,62,63].AccordingtothequestionnairesurveyresultsofYao
andWu[13],itwasfoundthatgenderwassignificantlyrelatedtotrafficaccidents,wherebymen
weremorelikelytohavetrafficaccidentsthanwomen.Truongetal.[27]alsopointedoutthatthe
incidenceofmobilephoneuseincyclingwaslowerinwomenthaninmen.
3.4.ReactionAbility
Aslowresponsetimeandtheaccuracyoftheresponsearedirectlyrelatedtotheoccurrenceof
trafficaccidents.Wang[42]summarizedthereactionprocessesofusersasfollows:external
stimulus–consciousacknowledgement–response.Inotherwords,theinformationobtainedthrough
thesensorysystemisfedbacktotheebike,followedbyacertainbehavioraloperationafterthe
centralnervoussystemmakesadecision.Theresponsivenessisrelatedtothecyclingspeedofthe
vehicleandthecomplexityofthedrivingenvironment.Forexample,thedrivingspeedofanelectric
bicycleisfasterthanthatofanordinarybicycle;thus,therequirementforitsresponsivenessis
higherthanthatofabicycleuser.Ifthecomplexityofthedrivingenvironmentexceedsthe
processingabilityofthecyclistswithintheallowedrange,theirreactionabilitywillnotkeepupwith
thechangesoftheenvironment,andunsaferidingscenesareeasilygenerated.Fu[64]foundthat,
duetofatigue,drugs,pathology,andotherphysiologicalcharacteristics,cyclists’consciousnesslevel
woulddecline,theirreactionwouldberelativelyslow,andtheywouldbepronetodrowsinessand
othersymptoms.Theabovesymptomsweremainlymanifestedincyclingbehaviorwithwrong
ridingandpoorjudgment.
Insummary,differentuserridingbehaviorsoccurduetoseveralfactors,suchasgender,age,
andtheabilitytohearandrespondtooutsidestimuli.Incasesofdrinking,fatigue,illness,anddrug
use,thebrain’snervoussystemisinastateofdottiness,whichslowsreactiontimeandincreases
erraticbehaviorsuchasrunningredlights,seriouslyaffectingtheuserandotherparticipantsinterms
ofroadsafety.
3.5.PsychologicalFactors
Duetothedifferencesincyclistpsychology,thecharacteristicsofeachuserareunique.
Therefore,onthebasisofunderstandingthegeneralpsychologyofcyclists,specialpromotionand
educationshouldbecarriedouttoachievethepurposeofsafety.Wang[42]pointedoutthata
normalpsychologicalenvironmentisrequiredforsafecycling.Intheprocessofcycling,peopleare
pronetofear,transcendence,dispersion,conformity,habit,frustration,competitiveness,and
distraction,whicharehiddendangersleadingtotrafficaccidents.Fu[64]pointedoutthat,because
thespeedofebikesisfasterthanthatofbicycles,cycliststendtoshowexhibitbehaviorssuchas
competitiveness,transcendence,conformity,independence,anddispersion,leavingthemproneto
unsaferidingbehaviors(suchasspeeding,following,runningredlights,etc.).
3.6.RelationshipbetweenDifferentFactorsandRidingBehaviors
Itcanbeseenfromtheaboveresearchthatebikeridershavedifferentpersonalattributes,and
theroadtrafficinfrastructureselectedbytheriderswhenridingisdifferent,whichwillgenerate
differentriskyridingbehaviors.Thedifferentvariablesusedandthecorrelationsdiscussedin
previousstudiesareshowninTable2.
Int.J.Environ.Res.PublicHealth2019,16,230811of18
Table2.Independentanddependentvariablesusedinpreviousstudies.
IndependentVariablesDependentVariables
VisionMannedbybike
HearingChattingwhileriding
DifferentagegroupsListeningtomusicwhileriding
GenderdifferenceCallingwhileriding
ReactionabilityRidingsidebyside
Psychologicalfactors
FearOverthespeedlimit
TranscendenceRunningaredlight
DispersionReversedriving
ConformityJaywalking
HabitExcessiveturningspeed
FrustrationDrinkinganddriving
CompetitivenessMotorwayoccupancy
DistractionNotadheringtostipulationstogiveway
AircraftnonisolationbeltForcedovertaking
RedlightdurationSuddenstoppingorturning
TrafficsignmarkingFatigueriding
Accordingtothelistofindependentvariablesanddependentvariablesusedinprevious
studies[10,12,13,25,27,36–59,60–64],wefoundthatthecharacteristicsofebikeusers,suchasvision,
hearing,agegroup,reactionability,andpsychologicalfactors,arethemainreasonsaffectingthe
riskyridingbehaviorofcyclists,aswellasredlightdurationandtrafficsignmarking.Forexample,
Duetal.[13],Wang[42],andZhangetal.[53]foundthatindependentvariables,suchasgroup
psychologyandwaitingtoolongfortheredlight,werethemainriskyridingbehaviorsrelatedto
runningaredlight.Fu[64]alsofoundthatpsychologicalfactors,suchastranscendence,habit,and
distraction,werealsothemainriskyridingbehaviorsrelatedtooverspeed,aswellasgenderand
age.Whatismore,whencyclistsrideonroadswithinorganicnonisolationzones,theytendto
illegallyoccupymotorvehiclelanes[55,56].
Itcanbeseenfromtheabovereviewthattheriskyridingbehaviorsofebikesarerelatedtothe
psychologicalcharacteristicsofusers.Thepsychologicalcharacteristicsrelatedtosafetyrisksareall
causedbytheweaksubjectivesafetyawarenessofcyclists.Therefore,itisexpectedthat,toprevent
theoccurrenceofsuchriskycyclingbehaviors,itisnecessarytocarryouttargetedpsychological
intervention.Tosumup,cyclists’riskyridingbehaviorsarethemainfactorscausingtraffic
accidents.Thesebehaviorsincludeillegallyoccupyingmotorvehiclelanes,runningredlights,and
illegallycarryingpeopleorobjects.Ingeneral,theseriskyridingbehaviorsaretheresultofalackof
knowledgeaboutthesafetyfeaturesofebikesandtheweakawarenessofroadtrafficsafety.
Therefore,itisnecessarytostrengthensafetyawarenessandeducationtoimprovepsychological
preparedness.Furthermore,itisnecessarytoincreasecyclingskilltrainingtoimprovecoping
ability,andtoformulaterelevantlawsandregulationstoregulatecyclingbehavior.
4.PreventionandInterventionofEBikeTrafficAccidents
Inviewofthepreventionandinterventionofebiketrafficaccidents,previousresearchput
forwardrelevantmeasuresbasedmainlyonfouraspects:strengtheningtrafficmanagement,
improvinglawsandregulations,improvingthecyclingenvironmentofebikes,andstrengthening
thesafetyeducationandtrainingofusers.
1. Intermsofstrengtheningtrafficmanagement,Ma[65]proposedgivingprioritytothe
developmentofpublictransportationtolimittheincreaseofthenumberofebikes,followinga
studyofcollisionexperimentsbetweenebikesandmotorvehiclesandananalysisofthesafety
degreeofebikes.Othersuggestedmeasuresincludelimitingthemaximumdesignspeedof
ebikestorealizesourcecontrol,carryingoutcyclingskilltrainingandassessment,
implementingannualinspection,andensuringthesafetyofvehicles.Dong[41]proposedthat,
Int.J.Environ.Res.PublicHealth2019,16,230812of18
inordertomoreclearlyidentifyebikeridingontheroad,reverselasertechnologycanbe
adoptedonthebodyandlicenseplateoftheebiketopreventtheoccurrenceofcollision
accidents.JiangandLi[44]proposedtoregulatetheebikeindustry,strengthenthe
managementofusersandebikes,strengthentrafficmanagement,improveroadconditions,set
upebikecitymanagementdepartments,andintroducerelevantlawsandregulationsonthe
basisofanalyzingthepotentialsafetyrisksofebikes.LiuandYang[51]putforward
correspondingpermitmanagementandcompulsoryspeedlimitsystemsforebikeusers’
redlightrunningbehavior,including(i)training,assessment,andlicensingbeforeebikeriding,
and(ii)penaltiesforillegalridingofebikes.Similarly,Shi[66,67]andChen[68]proposed
unifiedregistrationandlistingforebikes,astandardizedproductionofebikes,the
implementationofapermitsystem,andebikeuserspayingforinsurance.Xuetal.[45]
emphasizedstrengtheningproductionmanagement,regulatingmopeds,andpreventing
vehiclesfrom“exceedingthestandard”.Wuetal.[69]investigatedthestatusquooflicenseplate
registrationofebikes,andfoundthat30.58%ofrespondentsregisteredtheirlicenseplates,but
therewerestill69.42%ofuserswhohadunregisteredlicenseplates.Carole[70],onthebasisofa
comprehensivedefinitionofriskyridingbehavior,suggestedthattherapidgrowthinvolumeof
electricbicycleswasconsistentwiththehighelectricbicycleaccidentrateinChina,andpointed
outthatrelevantdepartmentsshouldfirstestablishguidingprinciplesforthepreventionof
trafficaccidentsthroughaforwardlookingguidancestrategy.
2. Intermsofimprovingrelevantlawsandregulations,Ma[65]advocatedthatlawsshouldbe
passedtoexplicitlyprohibitminorsfromridingebikes.Chen[68]andWuetal.[69]proposed
thatusersmustwearhardhatstoridesoastonotbefined.Shietal.[66]andJangandLi[44]
proposedrevisingandincreasingthetrafficlawsandregulationsforebikes,forcingcycliststo
changetheirriskyridingbehaviorsthroughlegalmeans.Truongetal.[27],throughan
investigationandanalysisofmobilephoneuseofebikeusers,proposedcombiningexisting
legislationwithextensiveeducationandpublicitytoreducepotentialdeathandinjurycaused
bymobilephoneuseduringcycling.
3. Intermsofimprovingthecyclingenvironmentofebikes,Dong[71]andDong[41]putforward
thattheseparationbetweenmachinesandnonmachinesshouldbeensured.Gu[43]foundthat
speedisthekeytocontrollingusercyclingsafetyfactors;thus,measuressuchasvertical
migration(speedhumps,decelerationmachines,pavementtextures,raisedcrossings,vibrating
belts),horizontaldeflections(turns),roadnarrowing,andothers(closedroadwidth,central
islands,coatingsurfaces,controlofvehiclespeed,anddecelerationgraphics)weresuggested
aimedatslowingdowntraffictoreducehazardsfacedbyelectricbicycleusersandotherroad
members.Xuetal.[45]proposedimprovingthetransportationinfrastructureforebikes.Zhao
[47]usedthetime–spaceisolationmethodtoisolatemachinesdrivingdirectlyandturningleftat
intersections,andsetanodrivingareaofnonmotorvehiclesatintersections.Theysuggested
settingleftandrightturninglanesatintersections,alongwithspecialsignallightsat
intersectionswithalargenumberofebikes.Atsmallintersections,nonmotorvehicleswould
berequiredtocrosssidewalks,wherebyanonmotorvehiclebypassareawouldbesetupatthe
intersection.
4. Intermsofstrengtheningusersafetyeducationandtraining,Wu[72],Xuetal.[45],Zhao[47],
andChen[68]proposedstrengtheningsafetyawarenessandeducation,emphasizingthe
importanceofroadsafetytoconsciouslyimprovesafetyawareness,therebyavoidingrisky
ridingbehavior.Inaddition,Chen[68]pointedoutthatthequasidrivingmodeofmotor
vehiclesshouldbeimitated,andtheskillsofcyclistsshouldbetrainedtoimprovetheirability
andexperience.
Inaddition,Wangetal.[73]foundthroughinvestigationthatthecurrentphenomenonof
childrenbeingcarriedonebikesisquitecommon,andpointedoutthatthesafetyguaranteeof
existingelectronicbicycleseatsislimited.Thus,thedesignstrengthandstructureoftheseatsshould
bereasonablystrengthenedtoensurethepersonalsafetyofchildrenwhenriding.Yuanetal.[74]
Int.J.Environ.Res.PublicHealth2019,16,230813of18
analyzed150trafficaccidentsofebikesinBeijing,andfoundanincreaseatintersectionsandin
motorvehiclelanesinthesuburbswheretheoccurrenceofebikeswashigh.Safetyeducationand
trainingshouldbecarriedoutforusersinthesuburbs,andthedesignoftrafficsafetyfacilitiesin
theseareasshouldbestrengthenedatthesametime.Yuanetal.[75],usingstatisticalanalysisof
vulnerableroadusersinBeijingcollisions,comparedpedestrian,bicycle,andelectricbicycle
accidentfrequency,severity,andinfluencingfactors.Itwasconcludedthatelectricbicycleaccidents
weredependentoncollisionspeedandpositionofthevictim,withsimilaritiesanddifferences
comparedtotheothergroups.Suggestionsweregivenforaccidentintervention.
Allinall,scholarsputforwardcomprehensivepreventionmeasuresforelectricbicycletraffic
accidentsonthebasisoftrafficmanagement,lawsandregulations,ridingconditions,andsafety
educationandtraining,includinguniformregistrationlicenses,aquasidrivingsystem,
improvementoftheroadandintersectiontrafficsafetyfacilities,strengtheningsafetyawarenessand
education,drivingskilltraining,andmore.Theseapproacheswouldhelpimprovethetrafficsafety
consciousnessoftheuserwhilesafeguardingthem.
5.ResearchProspect
Asafutureresearchdirectionofurbanroadtrafficsafety,itisofgreatsignificancetostudy
cyclists’riskyridingbehaviorstoreducetheoccurrenceoftrafficaccidentsinvolvingebikesandto
ensurethesafetyofthelifeandpropertyoftrafficparticipants[76–82].Althoughthecurrenttraffic
safetyproblemsofebikesattractedtheattentionofscholars,duetothedifficultiesinobtaining
trafficaccidentrelateddataandthelimitationsofresearchideas,therearestillmanydeficienciesin
thestudyofebikeriskyridingbehaviors,whichneedtobefurtherstudied.
1. Incurrentelectricbicycleriskyridingbehaviorresearch,mosthistoricaldataareobtainedfrom
trafficaccidentsorsamplingsurveyresultsforstatisticalanalysisandresearch;however,dueto
incompletetrafficaccidentdata,theanalysisresultshavecertaindeviation.Instead,studiescan
makeuseofadvancedmonitoringsystemsandvideorecognitiontechnologytoobtainmore
comprehensiveelectricbicycletrafficaccidentdata,withtheanalysisofbigdatatominerisk
cyclingassociationrulesbetweenbehaviorandtrafficaccidents,tofindastrongrelationship
betweenvariousinfluencingfactors.Usingtheseresults,stronglycorrelatedriskyriding
behaviorscanbeusedtoputforwardeffectiveinterventionmeasures,inordertoeffectively
copewithfrequentelectricbicycletrafficaccidents[83–86].Ebikeusersalsorangeinagefrom
18to80.Duetothedifferentagesofcyclists,theirphysicalfunctionandcyclingbehaviorare
different.Currently,intermsofstudiesoncyclists’behaviorsatdifferentages,theonlyrelevant
researchachievementsarebasedonthebehaviorofrunningredlights,whilenoresearchwas
carriedoutonotherriskycyclingbehaviors,whichareinurgentneedofstudy,suchasthe
implementationofanagethresholdtoensurethesafetyofebikeriding.
2. Thehighaccidentratesandcasualtyratesofebikesaremainlycausedbyriskyridingbehavior
cuetotheweaksubjectiveriskawarenessofusers,andthecurrentresearchresultsinthisregard
arenotsubstantialenough.Inviewofthis,itispossibletostrengthentheresearchoncyclists’
subjectiveriskawarenessinfuturestudies.Forexample,usingscalesofriskperception,risk
attitude,andthedegreeofrisktolerance,questionnairesurveyscanbeconductedonuserrisk
consciousness.Then,correlationanalysisandregressionanalysiscanbeusedtostudythe
relationshipbetweenelectricbicycleridingbehaviorandriskawareness,accordingtodifferent
personalitiesanddemographicvariables.Thisstudywouldbehelpfultoexplorethedifferences
inriskawarenessamongdifferentcyclists.Accordingtothesedifferences,safetyeducationand
trainingcanbecarriedoutinatargetedway,soastoultimatelyachievethegoalofpreventing
riskyridingbehavior.
3. Asacommutingtoolforsomeurbanresidents,ebikesareoftenusedinrainy,foggy,orsnowy
days.Atpresent,therearenotmanyresearchresultsonriskyridingbehaviorofebikesunder
specialweatherconditions.Inviewofthis,quantitativeresearchshouldbeundertaken,
studyingebikeridingrulesinspecialweatherconditionssuchasrain,fog,oriceandsnow.A
Int.J.Environ.Res.PublicHealth2019,16,230814of18
usersaferidingenvironmentthresholdshouldbedeterminedtoprioritizeelectricbicyclesafety,
thusavoidingriskybehaviorandreducingtrafficaccidents.Inaddition,althoughmanystudies
lookedattrafficsafetyinvolvingebikes,therearefewstudiesonthepsychologicaland
physiologicalcharacteristicsofcyclists.Ontheonehand,researchrelatedtouserpersonality,
cognition,selfassessment,andselfadjustmentislacking.Ontheotherhand,researchonuser
attention,analysisability,spatialability,emergencyability,andnervoussystemand
physiologicalcharacteristicssuchascognitiveabilityisalsomissing.
4. Inthefuture,itwillbeinterestingtocapturethedataofthecurrentresearchonebikebehavior,
aswellastherelatedtechnologiestobeapplied.Moreover,byobtainingaccuratecyclingdata,
researcherscanexplorethepotentialimpactofcyclists’personalcharacteristicsoncycling
behavior,andaddresstheseissuesthroughsafetyeducationanddrivingtraining.
6.Discussions
Ebikeridersindifferentregionshavedifferentriskyridingbehaviorsduetodifferencesin
regionalcultureandtrafficregulations.Forexample,China’sdataacquisitionforebikeriders
generallyincludes(a)ridingconflictsandillegalridingbehaviors,usuallyobservedthroughvideo
surveillanceequipmentatintersections[10,13,27,28,58],and(b)accidentdataofhospitals,violation
records,andpersonalinjuryrecords[58].Researchdataonbehaviorsofebikeriderswerealso
obtainedusingquestionnairesmethods[17,19–24,29–31].
Overall,theriskyridingbehaviorofebikeridersinChinaandEuropeissimilar.InChina,
previousstudies[58]foundthattheriskyridingbehaviorsincludeddoubleriding(orcarpooling),
chattingwhileriding,listeningtomusicwhileriding,callingwhileriding,ridinginparallel,
overspeeding,jaywalking,reverseriding,suddenlycrossingtheroad,speedingtoofastwhen
turning,illegaloccupation,failuretocomplywithregulations,forciblyovertaking,suddenly
stoppingorturning,andfatigueriding.InEurope,previousstudies[26,38]foundthattherisky
ridingbehaviorsincludedridinginthewrongdirection,overspeeding,trafficconflictswithother
ebikeriders,jumpingthelights,notwearinghelmets,listeningtomusicwhileriding,making
phonecallswhileriding,etc.Fromtheabove,theregionalissuesregardingebikebehaviorshowed
somedifferencesbetweenChinaandEurope,sincethelaws,regulations,andcharacteristicsof
ebikeusersaredifferent[58].
7.Conclusions
1. Currently,ebiketrafficaccidentsoccurfrequently,andmorethan90%ofebiketrafficaccidents
arecausedbycyclists’riskyridingbehaviors,includingillegaloccupationofmotorvehicle
lanes,overspeeding,runningredlights,andgoingagainstthetrafficflow.Itisofgreat
significancetostudytheriskyridingbehaviorofebikes,researchingaccidentcharacteristicsso
astopreventthemandensurethesafetyofpeople’slifeandproperty.
2. Substantialpreviousresearchwascarriedoutontrafficaccidentcharacteristicsandcausesof
ebikeriskybehavior,aswellastheirpreventionandintervention.However,afterreviewingthe
relevantliteratureathomeandabroad,theauthorsfoundthattheexistingrelevantresearch
resultshavethreedeficiencies,andpointedoutresearchdirectionsthatcanbefurtherexplored
inthefuture.
3. Realcyclingscenesareoftenacombinationofavarietyofsituations.Forexample,usersof
differentagesrideelectricbikesequippedwithumbrellasinrainyorsnowyweather.Inviewof
this,itisnecessarytostudythedegreeofdangerofcombinationscenariosfeaturingelectric
bicycleridingbehavior,wherebythedegreeofdangerisnotsimplyafunctionoftheriskyriding
behaviorinasinglescene.Thisresearchrequiresquantitativeanalysisusingthetheoryof
couplingcharacteristicsofvariousscenariosseeninriskyridingbehavior.Onthebasisof
effectiveinterventionsandthecouplingeffectofvariouscombinationsofinterventionsto
achieveaneliminationofaccidentrisk,onecanensuretrafficsafety.
Int.J.Environ.Res.PublicHealth2019,16,230815of18
AuthorContributions:Conceptualization,C.M.;datacuration,C.M.andD.Y.;methodology,C.M.andJ.Z.;
resources,Z.F.andQ.Y.;supervision,C.M.andJ.Z.;writing—reviewandediting,C.M.andJ.Z.;funding
acquisition,C.M.andJ.Z.
ConflictsofInterest:Theauthorsdeclarenoconflictsofinterestregardingthepublicationofthispaper.
Funding:ThisresearchwasfundedbytheNationalNaturalScienceFoundationofChina(ProjectNo.
71861023),theProgramofHumanitiesandSocialScienceoftheEducationMinistryofChina(ProjectNo.
18YJC630118),theZhejiangProvincialPhilosophyandSocialScienceFundofChina(No.18NDJC107YB;
19NDJC119YB),theEducationalSciencePlanningoftheZhejiangProvincialEducationDepartment(No.
2018SCG103),theNaturalScienceFoundationofZhejiangProvince(No.LQ19E080003),theNaturalScience
FoundationofNingboMunicipality(No.2018A610127),andtheFoundationoftheHundredYouthTalents
TrainingProgramofLanzhouJiaotongUniversity.
References
1. ChinaNewsNetwork.China’sElectricBicyclesHaveaSocialHoldingCapacityof250MillionVehicles.
Availableonline:http://news.ddc.net.cn/newsview_71477.html(accessedon2September2018).
2. Sohu.com.TheNumberofElectricVehiclesinNanningHasExceeded1.8Million.Availableonline:
http://www.sohu.com/a/229498412_394146(accessedon2September2018).
3. TrafficAdministrationBureauoftheMinistryofPublicSecurity.People’sRepublicofChinaannualreportof
roadtrafficaccidents(2016);TrafficManagementBureauoftheMinistryofPublicSecurity:Beijing,China,
2017.
4. TrafficManagementBureauofMinistryofPublicSecurity.StatisticsofRoadTrafficAccidentsinPRC(2015);
Beijing:TrafficManagementBureauofMinistryofPublicSecurity,2016.
5. JSTV.com.Nearly70%ofTrafficAccidentsareRelatedtoElectricBicycles.Availableonline:
http://news.jstv.com/a/20160805/123632.shtml(accessedon2September2018).
6. Hu,F.;Lv,D.;Zhu,J.;Fang,J.RelatedriskfactorsforinjuryseverityofebikeandbicyclecrashesinHefei.
TrafficInj.Prev.2014,15,319–323.
7. Du,W.;Yang,J.;Powis,B.;Zheng,X.;OzanneSmith,J.;Bilston,L.;He,J.;Ma,T.;Wang,X.andWu,M.
Epidemiologicalprofileofhospitalisedinjuriesamongelectricbicycleridersadmittedtoaruralhospitalin
Suzhou:Acrosssectionalstudy.Inj.Prev.J.Int.Soc.ChildAdolesc.Inj.Prev.2014,20,128–33.
8. CompiledbyNationalBureauofStatisticsofChina.ChinaStatisticalYearbook[M];ChinaStatisticsPress:
Beijing,China,2017.
9. Chen,Q.;Dai,B.Characteristicsandcasualtyanalysisoftwowheeleraccidentsinchina,datasource:The
chinaindepthaccidentstudy(CIDAS).SAETech.Pap.2018,2018,e01487191.
10. Zhang,Z.Y.;Hao,X.Y.;Wang,D.;Wang,D.Researchonpedestrian’sendurancetimeatsignalized
intersectioninBeijing.J.Transp.Syst.Eng.Inf.Technol.2015,15,213–219.
11. Cherry,C.;Cerver,R.UsecharacteristicsandmodechoicebehaviorofelectricbikeusersinChina.Transp.
Policy2007,14,247–257.
12. Du,W.;Yang,J.;Powis,B.;Zheng,X.;OzanneSmith,J.;Bilston,L.;Wu,M.Understandingonroad
practicesofelectricbikeriders:anobservationalstudyinadevelopedcityofChina.Accid.Anal.Prev.2013,
59,319–326.
13. Yao,L.;Wu,C.TrafficsafetyforelectricbikeridersinChina:Attitudes,riskperception,andaberrant
ridingbehaviors.Transp.Res.Rec.J.Transp.Res.Board2012,2314,49–56.
14. Papoutsi,S.;Martinolli,L.;Braun,C.T.;Exadaktylos,A.K.Ebikeinjuries:Experiencefromanurban
emergencydepartmentaretrospectivestudyfromSwitzerland.Emerg.Med.Int.2014,2014,1–5.
15. Guo,Y.;Liu,P.;Bai,L.;Xu,C.;Chen,J.Redlightrunningbehaviorofelectricbicyclesatsignalized
intersectionsinChina.Transp.Res.Rec.J.Transp.Res.Board2014,2468,28–37.
16. Zhou,J.B.;Guo,Y.Y.;Wu,Y.;Dong,S.Assessingfactorsrelatedtoebikecrashandebikelicenseplateuse.
J.Transp.Syst.Eng.Inf.Technol.2017,17,229–234.
17. Zhou,J.B.;Wang,Q.Y.;Zhang,M.J.;Dong,S.;Zhang,S.C.Anempiricalstudyonsevenfactorsinfluencing
waitingendurancetimeofebike.J.Transp.Syst.Eng.Inf.Technol.2017,17,242–249.
18. Guo,Y.;Wu,Y.;Lu,J.;Zhou,J.ModelingtheUnobservedHeterogeneityinEbikeCollisionSeverityUsing
FullBayesianRandomParametersMultinomialLogitRegression.Sustainability2019,11,2071.
Int.J.Environ.Res.PublicHealth2019,16,230816of18
19. Steg,L.;Annemarie,V.B.Accidents,aberrantbehaviours,andspeedingofyoungmopedriders.Transp.
Res.PartFTrafficPsychol.Behav.2009,12,503–511.
20. Elliott,M.A.;Baughan,C.J.;Sexton,B.F.Errorsandviolationsinrelationtomotorcyclists’crashrisk.Accid.
Anal.Prev.2007,29,491–499.
21. Xie,C.Q.;Dianne,P.AsocialpsychologicalapproachtodrivingviolationsintwoChinesecities.Transp.
Res.PartFTrafficPsychol.Behav.2001,5,293–308.
22. Ulleberg,P.;Torbjorn,R.Personality,attitudesandriskperceptionaspredictorsofriskydriving
behaviouramongyoungdrivers.Saf.Sci.2003,41,427–443.
23. Chen,C.F.Personality,safetyattitudesandriskydrivingbehaviors—EvidencefromyoungTaiwanese
motorcyclists.Accid.Anal.Prev.2009,41,963–968.
24. Scheper,J.P.Thesafetyofelectricallyassistedbicyclescomparedtoclassicbicycles.Accid.Anal.Prev.2014,
73,174–180.
25. Reason,J.;Manstead,A.;Stradling,S.;Baxter,J.;Campbell,K.Errorsandviolationsontheroads:Areal
distinction.Ergonomics1990,33,1315–1332.
26. Konstantina,G.ModelingmotorcyclehelmetuseinIowa:Evidencefromsixroadsideobservational
surveys.Accid.Anal.Prev.2009,41,479–484.
27. Truong,L.T.;Nguyen,H.T.;De,G.C.Mobilephoneuseamongmotorcyclistsandelectricbikeriders:A
casestudyofHanoi,Vietnam.Accid.Anal.Prev.2016,91,208–215.
28. Huan,M.;Yang,X.;Jia,B.Crossingreliabilityofelectricbikeridersaturbanintersections.Math.Probl.Eng.
2013,2,831–842.
29. Hertach,P.;Uhr,A.;Niemann,S.;Cavegn,M.Characteristicsofsinglevehiclecrasheswithebikesin
Switzerland.Accid.Anal.Prev.2018,117,232–238.
30. Wang,Z.;Neitzel,R.L.;Xue,X.;Zheng,W.;Jiang,G.Awareness,ridingbehaviors,andlegislativeattitudes
towardelectricbikesamongtwotypesofroadusers:AninvestigationinTianjin,amunicipalityinChina.
TrafficInjuryPrev.2019,20,1–7.
31. Guo,Y.;Li,Z.;Wu,Y.;Xu,C.Evaluatingfactorsaffectingelectricbikeusers’registrationoflicenseplatein
ChinausingBayesianapproach.Transp.Res.PartFTrafficPsychol.Behav.2018,59,212–221.