ArticlePDF Available

Use of information uncertainty in identification tasks

Authors:
  • Ukrainian State University of Science and Technologies

Abstract

There are studied Informational methods for analyzing and managing systems under uncertainty. The expediency of the use of information uncertainty in the tasks of identification of control objects and the synthesis of regulatory systems is substantiated. For the numerical evaluation of information uncertainty, the amount of disinformation is used as negative Bongard useful information. Such information uncertainty can serve as a criterion for the adequacy of the mathematical model of the control object. This makes it possible to compare several models and select the most adequate model that contributes the least amount of disinformation, and also provides a check of the statistical hypothesis about the adequacy of a particular model. If the criterion value exceeds a certain critical value, the adequacy hypothesis must be rejected. To calculate the critical values of the information adequacy criterion, a statistical experiment was performed. Using the Monte Carlo method, the probability distribution of the information criterion was investigated. A sufficiently smooth empirical criterion distribution function was constructed. The distribution of the information criterion has a pronounced asymmetry and a small positive kurtosis. It is revealed that this distribution is best approximated by the Generalized Extreme Value Distribution law. The critical value can be defined as a quantile of the level of 0.01 or 0.05 of this distribution. Keywords: adequacy, computer modeling, distribution law, identification, information criterion, Monte Carlo method, controlled object, statistical hypothesis, uncertainty.
... ²íøèé ï³äõ³ä äî âèð³øåííÿ çàäà÷ óïðàâë³-ííÿ â óìîâàõ íåâèçíà÷åíîñò³ -³íôîðìàö³éíèé ïðîïîíóºòüñÿ ó ðîáîò³ [2]. Òóò îá´ðóíòîâóºòüñÿ äîö³ëüí³ñòü âèêîðèñòàííÿ ³íôîðìàö³éíî¿ íåâèç-íà÷åííîñò³ â çàäà÷àõ ³äåíòèô³êàö³¿ îá'ºêò³â óï-ðàâë³ííÿ. ...
Article
Many redundant and irrelevant features not only slow training and classifying, increase computational consumption heavy but also reduce the accuracy of detection classification, especially when coping with big data. The features selection is an important issue for intrusion detection, an intrusion detection model based on SVM mixed with Fisher Criterion and SFS is proposed in this paper. In this method, the weights representing the relative importance of each feature are first obtained by Fisher Criterion. The features were joined to the feature subset one at a time, the ones with higher weight first, we run the classifier. Eventually, the optimized feature subset is obtained when a steady and satisfactory test result occurs. The performance of this algorithm is verified on MATLAB2012 platform in the KDD CUP 99 data, and the experimental results indicate good feasibility of the method.
Conference Paper
The paper discusses verification, validation, and accreditation of simulation models. The different approaches to deciding model validity are presented; how model verification and validation relate to the model development process are discussed; various validation techniques are defined; conceptual model validity, model verification, operational validity, and data validity are described; ways to document results are given; a recommended procedure is presented; and accreditation is briefly discussed
Èäåíòèôèêàöèÿ îáúåêòîâ óïðàâëåíèÿ â Toolbox PID Tuner // Íîâûé óíèâåðñèòåò. Cåðèÿ: Òåõ-íè÷åñêèå íàóêè
  • Í Â Áèëüôåëüä
Áèëüôåëüä Í.Â. Èäåíòèôèêàöèÿ îáúåêòîâ óïðàâëåíèÿ â Toolbox PID Tuner // Íîâûé óíèâåðñèòåò. Cåðèÿ: Òåõ-íè÷åñêèå íàóêè. -2016. -¹ 6-7. -Ñ.52-53.
Ïîíÿòèå «íåîïðåäåëåííîñòü» â ñîâðåìåííîé íàóêå è ôèëîñîôèè // Âåñòíèê Âÿòñêîãî ãîñóäàðñòâåííîãî ãóìàíèòàðíîãî óíèâåðñèòåòà
  • À Ì Äîðîaeêèí
  • Î È Ñîêîëîâà
Äîðîaeêèí À.Ì., Ñîêîëîâà Î.È. Ïîíÿòèå «íåîïðåäåëåííîñòü» â ñîâðåìåííîé íàóêå è ôèëîñîôèè // Âåñòíèê Âÿòñêîãî ãîñóäàðñòâåííîãî ãóìàíèòàðíîãî óíèâåðñèòåòà. -2015. -C.5-12.
Concepts of Model Verification and Validation. Los Alamos: Los Alamos National Lab
  • B H Thacker
  • S W Doebling
  • F M Hemez
Thacker B.H., Doebling S.W., Hemez F.M. Concepts of Model Verification and Validation. Los Alamos: Los Alamos National Lab., 2004. 41 p.
Identifikaciya ob#ektov upravleniya v Toolbox PID Tuner
  • N V Bil
Bil'fel'd N.V. Identifikaciya ob#ektov upravleniya v Toolbox PID Tuner [Identification of control objects in Toolbox PID Tuner]. Novyj universitet: serija «Tekhnicheskie nauki» [New University: «Technical Engineering» series], 2016, no. 6-7. pp. 52-53. (in Russian).
Kriter³j adekvatnost³ yak oc³nka efektivnost³ procesu pobudovi model³ [The adequacy criteria as the process of model building efficiency assessment
  • O M Trunov
Trunov O.M. Kriter³j adekvatnost³ yak oc³nka efektivnost³ procesu pobudovi model³ [The adequacy criteria as the process of model building efficiency assessment].
Nekotorye voprosy ocenki adekvatnosti modeli
  • E P Chernogorov
Chernogorov E.P. Nekotorye voprosy ocenki adekvatnosti modeli [Some questions of the model adequacy assessment].
Êðèòåð³é àäåêâàòíîñò³ ÿê îö³íêà åôåê-òèâíîñò³ ïðîöåñó ïîáóäîâè ìîäåë³ // Âîñòî÷íî-Åâðîïåéñêèé aeóðíàë ïåðåäîâûõ òåõíîëîãèé
  • Î Ì Òðóíîâ
Òðóíîâ Î.Ì. Êðèòåð³é àäåêâàòíîñò³ ÿê îö³íêà åôåê-òèâíîñò³ ïðîöåñó ïîáóäîâè ìîäåë³ // Âîñòî÷íî-Åâðîïåéñêèé aeóðíàë ïåðåäîâûõ òåõíîëîãèé. -2015
Íåêîòîðûå âîïðîñû îöåíêè àäåêâàòíîñòè ìîäåëè // Íàóêà ÞÓðÃÓ: ìàòåðèàëû 66-é íàó÷í. êîíô. -×åëÿáèíñê: Èçäàò. öåíòð ÞÓðÃÓ
×åðíîãîðîâ Å.Ï. Íåêîòîðûå âîïðîñû îöåíêè àäåêâàòíîñòè ìîäåëè // Íàóêà ÞÓðÃÓ: ìàòåðèàëû 66-é íàó÷í. êîíô. -×åëÿáèíñê: Èçäàò. öåíòð ÞÓðÃÓ, 2014. -Ñ.162-168. ISSN 2521-6406, Computer Modeling: Analysis, Control, Optimization, 2019, No. 1, pp. 30-35