Article

Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Analysis of human pathology led Braak to postulate that α-synuclein (α-syn) pathology could spread from the gut to brain via the vagus nerve. Here, we test this postulate by assessing α-synucleinopathy in the brain in a novel gut-to-brain α-syn transmission mouse model, where pathological α-syn preformed fibrils were injected into the duodenal and pyloric muscularis layer. Spread of pathologic α-syn in brain, as assessed by phosphorylation of serine 129 of α-syn, was observed first in the dorsal motor nucleus, then in caudal portions of the hindbrain, including the locus coeruleus, and much later in basolateral amygdala, dorsal raphe nucleus, and the substantia nigra pars compacta. Moreover, loss of dopaminergic neurons and motor and non-motor symptoms were observed in a similar temporal manner. Truncal vagotomy and α-syn deficiency prevented the gut-to-brain spread of α-synucleinopathy and associated neurodegeneration and behavioral deficits. This study supports the Braak hypothesis in the etiology of idiopathic Parkinson's disease (PD).

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The impact of aSyn expression on aSyn propagation should be further examined. Another study reported that inoculation of aSyn PFF into the gastric wall leads to extensive aSyn propagation to the substantia nigra pars compacta and olfactory bulb, resulting in locomotor disturbance and hyposmia, respectively [37]. As described above, the level of aSyn propagation varies significantly according to the individual reports. ...
... Despite these inconsistencies in the results, the propagation of aSyn from the gut to the DMV has been reported in all reports cited in this review, strongly suggesting the gut-brain route via the vagus nerve. In contrast, aSyn propagation from the gut to the substantia nigra pars compacta has not been demonstrated, except for a single report [37]. ...
Article
Full-text available
The cytopathological hallmark of Parkinson’s disease (PD) is a neuronal cytoplasmic inclusion called Lewy body (LB). Lewy bodies are composed of alpha-synuclein (aSyn), a 140 aa protein that is predominantly expressed in the presynaptic terminal and which is implicated in neurotransmitter release. Recently, aSyn was found to propagate from neuron to neuron in a trans-synaptic manner. Although the precise molecular mechanisms are unclear, the propagation of aSyn is believed to play a major role in the progression of Lewy pathology in PD. Neuropathologically, the initial Lewy pathology has been shown to be formed in the dorsal motor nucleus of the vagus (DMV) or olfactory bulb by neuropathological studies. Since the DMV innervates the enteric nervous system (ENS) and LBs are formed in the gut nerve plexuses, it is conceivable that LBs propagate from the gut to the DMV and then to other regions of the brain. In this article, clinical, neuropathological, and experimental evidence supporting or negating the idea that aSyn propagation from the ENS to the brain leads to PD is reviewed. Moreover, the propagation of aSyn seeds through systemic circulation or multifocal generation of aSyn seeds is discussed as a potential alternative scenario for aSyn spreading
... Inoculation of α-synuclein in the duodenal wall is adequate to seed and perpetuate its accumulation at many places in the central nervous system. Vagotomy stopping the prion spread of α-synuclein indicates this notion (Kim et al. 2019). Oxidative nitration of α-synuclein releases the antigenic epitopes. ...
Article
Full-text available
Several endogenous and exogenous mediators and pathogenic agents trigger inflammation. Despite the brain being less vulnerable to inflammation, many studies have underlined the contribution of inflammatory molecules in the pathogenesis of Parkinson’s disease (PD). The onset of the features of PD is the result of an interaction of multiple contributors. These factors include inflammatory mediators, α-synuclein accumulation, oxidative stress, mitochondrial dysfunction, and neuronal cell death. Due to multifaceted interaction and cross-talk amongst a bunch of proteins and pathways, deciphering the aetiology of PD has been quite complex and challenging. It is ambiguous whether inflammatory mediators lead to microglial activation and α-synuclein accumulation or vice versa. It is also unclear how inflammatory mediators cross the peripheral nervous system to the brain and trigger dopaminergic cell death. The present review provides an update on the involvement of inflammatory mediators and non-neuronal cells in dopaminergic cell death, which leads to sporadic PD in humans and PD-like features in rodents. The article emphasises the contribution of inflammatory molecules released from the peripheral nervous system in the selective, progressive, and slow demise of nigrostriatal dopaminergic neuronal cells of the midbrain. The article also narrates the challenges and future perspectives.
... Dopaminergic neuron loss is associated with the abnormal accumulation and aggregation of α-Syn and formation of Lewy bodies (LB), suggesting thatα-Syn plays a key role in the neurodegenerative process of PD; however, the true mechanism of α-Syn aggregation remains debated and several lines of existing evidence have pointed out the crucial role of α-Syn: (1) the transcription factor NURR1 involved in the differentiation and maintenance of dopaminergic phenotypes is down-regulated by α-Syn [7]; (2) α-Syn aggregation activates tyrosine kinase c-Abl, which in turn promotes α-Syn aggregation, a feed-forward interaction [8,9]; (3) the disruption of dopaminergic signaling has been documented in α-Syn overexpression models showing the abnormal firing of dopaminergic neurons, leading to PD symptoms [10]; and (4) α-Syn at or near the surface membrane enhances the interaction with the DA transporter, consequently altering the conductance of the DA transporter, excitability of dopaminergic neurons, and thus DA neurotransmission [11]. Existing evidence has also shown that α-Syn could diffuse to the brain by injecting pathological α-Syn fibers into the duodenum and pyloric muscle layer of mice, leading to dopaminergic neuronal degeneration [12][13][14]. Clinical data have demonstrated that abnormal α-Syn aggregation could be detected in the enteric nervous system of PD patients [13,15]. Also, vagotomy and appendectomy could reduce the risk of PD [16]. ...
Article
Full-text available
Background/Objectives: Increasing evidence reveals the likely peripheral etiology of Parkinson’s disease; however, the mechanistic insight into α-Synuclein aggregation in the periphery remains unclear. This study aimed to explore the effect of abnormal expression of renalase on dopamine metabolism, toxic DOPAL generation, and subsequently, α-Synuclein aggregation. Methods: Blood pressure (BP) was monitored while changing the body position of rats; the serum level of renalase was detected by ELISA; the mRNA/protein of renalase and α-Synuclein were determined by qRT-PCR/Western blot; DOPAL was measured using HPLC; renalase distribution was explored by immunostaining; cell viability and ultrastructure were examined by TUNEL and electron microscopy, respectively. Results: The results showed that, in PD model rats, the serum level of renalase was increased time-dependently with up-regulated renalase gene/protein expression in the nodose ganglia, nucleus tractus solitarius, and heart; a reduced dopamine content was also detected by the renalase overexpression in PC12 cells. Strikingly, up-regulated renalase and orthostatic BP changes were observed before the behavioral changes in the model rats. Meanwhile, the levels of DOPAL and α-Synuclein were increased time-dependently. Intriguingly, the low molecular weight of α-Synuclein declined coordinately with the increase in the higher molecular weight of α-Synuclein. Clear ultrastructure damage at the cellular level supported the notion of molecular findings. Notably, the α-Synuclein aggregation-induced impairment of the axonal transport function predates neuronal degeneration mediated by renalase overexpression. Conclusions: Our results demonstrate that abnormal peripheral dopamine metabolism mediated by overexpressed renalase promotes the DOPAL-induced α-Synuclein and leads to baroreflex afferent neuronal degeneration and early autonomic failure.
... Numerous studies have indicated that alpha-synuclein aggregates initially manifest inside the gastrointestinal tract's enteric nervous system (ENS) and spread to the brain through the vagus nerve. This observation implies a potential gut-origin theory for PD (Kim et al., 2019). SCFAs are also known to have a substantial impact on PD. ...
Article
Full-text available
The complex interrelation of gut microbiota with human health underlines the profound influence this microbial ecosystem has on mechanisms of disease and wellness. The gut microbiome profoundly impacts various human diseases, encompassing gastrointestinal disorders, metabolic disorders, neurological disorders, and immune-related diseases. Gastrointestinal disorders are closely linked to microbial imbalances in the gut. Metabolic disorders, including obesity and type 2 diabetes, are influenced by the gut microbiota’s role in energy regulation and glucose metabolism. Furthermore, the gut-brain axis highlights the correlation between gut microbiota and neurological conditions such as Alzheimer’s and Parkinson’s. Moreover, the gut microbiome assumes a pivotal function in regulating the immune system, whereby dysbiosis is implicated in developing immunological-related ailments, including allergies and autoimmune disorders. Predisposing factors, including diet, medicines, lifestyle, and environmental influences, are described as having an important role in the composition of the gut microbiome. By understanding these factors, we can get valuable insights into how to intervene to reduce the chances of a disease. Current interventions, including probiotics, prebiotics, fecal microbiota transplants, and lifestyle modification, show promise, but there are still challenges and unanswered questions in this evolving field that may lead to improvements. This review interrelates the complicated gut microbiome with various human diseases, mechanisms, predisposing factors, and potential interventions.
... For this investigation, we utilized short segments of α-synuclein fibrils known as α-syn PFFs as a pathological seed, chosen for their well-established neurotoxicity and ability to drive α-synuclein pathology in PD 21,[67][68][69][70] . Previous studies typically employed α-syn PFFs prepared without cellular components in buffers to explore their pathological effects in PD 67,71 . ...
Preprint
Parkinson's Disease (PD) is primarily characterized by α-synuclein pathology, which manifests as intraneuronal inclusions, neuroinflammation, and neurodegeneration. However, emerging evidence also points to significant vascular impairments as a critical aspect of PD pathology, which remains largely underexplored due to the inability of traditional in vitro models to recapitulate such vascular changes. To address this unmet need, here we combine the human organ-on-a-chip technology with the principle of vasculogenic self-assembly to engineer the capillary interface of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. In our proof-of-concept demonstration, we successfully recreated critical neuronal pathology in PD, including α-synuclein aggregation, inflammatory responses, and progressive neuronal degeneration, by exposing our model to specially generated PD-associated α-synuclein preformed fibrils. Importantly, this engineering approach also enables the investigation of progressive vascular changes characteristic of PD, such as endothelial dysfunction, barrier disruption, and vascular regression. Our sophisticated PD model establishes a novel platform for exploring the multifaceted nature of the disease and understanding the complex interplay between neurodegeneration and vascular pathology, offering a unique tool for developing innovative therapeutic strategies that address both the neuronal and vascular components of PD pathology.
... Prospective studies have reported that individuals with chronic constipation have a 6-to 19-fold increased risk of developing PD within 10 years [4,5]. In 2003, Braak [6] first proposed the gut-brain axis hypothesis, which was later corroborated by Sangjune Kim et al. [7] in 2019 through animal studies, highlighting the role of a healthy intestinal environment in maintaining metabolite homeostasis and intestinal barrier integrity. Our previous clinical research identified that there were significant differences in intestinal microbes between PD patients and healthy spouses (HS), and these differences were correlated with clinical characteristics [8][9][10]. ...
Article
Full-text available
Objective Metabolomics technology has been widely utilized to uncover the action mechanisms of Parkinson's Disease (PD) and to identify PD‐related biomarkers. In this study, we compared plasma and fecal metabolite levels between PD patients and their healthy spouses (HS), aiming to identify the associations of differential metabolites with intestinal inflammation, intestinal barrier function, and clinical characteristics of PD. Methods Untargeted metabolomics techniques were used to characterize plasma and fecal metabolite profiles. We identified metabolites with elevated plasma levels in PD patients, while no significant differences were observed in fecal samples. Partial correlation analysis was employed to investigate the associations between these metabolites, markers of intestinal inflammation (calprotectin and lactoferrin), markers of intestinal permeability (α‐1‐antitrypsin and zonulin), and clinical characteristics of PD patients. Results The study identified ten metabolites that were significantly elevated in the plasma of PD patients compared to HS (p < 0.05), while their fecal concentrations did not differ significantly. Correlation analysis revealed that elevated levels of differential metabolites in the plasma of PD patients were associated with increased intestinal permeability and inflammation. Furthermore, five metabolites, including 3,4‐Dihydroxyphenylglycol O‐sulfate and Propyl gallate, were linked to PD symptoms. Receiver Operating Characteristic (ROC) curves demonstrated that these metabolites could effectively distinguish between PD patients and HS, with an area under the curve (AUC) of 0.94, indicating excellent predictive performance. Conclusions This study identified significant metabolite alterations in PD patients and revealed their associations with intestinal barrier dysfunction and clinical characteristics of the disease.
... Cell-to-cell propagation of α-Syn aggregates has been demonstrated in vitro in multiple cell lines as well as in neurons grafted into PD patients' brains [8,9,[11][12][13][14]23,25]. Similarly, intra-cerebral or peripheral injection of α-Syn inclusions into mice induced propagation of α-Syn aggregates [17,19,20,23,[26][27][28][29][30][31][32][33][34][35]. ...
Article
Full-text available
Lewy Body Disease (LBD) and Multiple System Atrophy (MSA) are synucleinopathies with distinct prognoses and neuropathologies, however, with overlapping clinical symptoms. Different disease characteristics are proposed to be determined by distinct conformations of alpha-synuclein (α-Syn) aggregates, which can self-propagate and spread between cells via a prion-like mechanism. The goal of this study is to investigate whether α-syn aggregates amplified from brain and CSF samples of LBD and MSA patients using the Seed Amplification Assay (SAA) maintain α-Syn seeding properties similar to those of α-syn aggregates derived from patients’ brains. To address this, SAA-amplified and un-amplified α-Syn aggregates from LBD and MSA patients’ brains, as well as SAA-amplified α-Syn aggregates from LBD and MSA patients’ CSF samples, were used to treat synuclein biosensor cells, and induced intracellular α-Syn inclusions were analyzed by confocal microscopy. Our data indicate that induced α-Syn aggregates from LBD and MSA patients’ brains have similar seeding properties and morphological characteristics in the α-Syn biosensor cells as those amplified from LBD and MSA patients’ brains, as well as those amplified from LBD and MSA patients’ CSF samples. In this study, we demonstrated that, regardless of the source of aggregates, the seeds from LBD and MSA produce cellular accumulation of α-Syn with distinct morphologies, confirming the presence of different conformational strains of α-Syn in LBD and MSA and allowing us to differentiate synucleinopathies based on the morphology of aggregates and seeding properties.
... This has led to the speculation that PD may originate from the gut. The simultaneous occurrence of increased gut inflammation and epithelial permeability suggests a fundamental role for immune cells and microbiota in the gut-related progression of PD (153)(154)(155). Intriguingly, there is evidence suggesting that PD can also initially develop in the brain (156)(157)(158). ...
Article
Full-text available
Intestinal macrophages are crucial for maintaining gastrointestinal (GI) homeostasis and also contribute to various inflammatory disorders within the gut. As the most abundant immune cells in the GI tract, intestinal macrophages perform multifaceted functions. These include balancing immune responses to either innocuous antigens or harmful stimuli, supporting mucosal barrier integrity, and affecting gut secretion and motility through interactions with the enteric nervous system (ENS) and other nerves. A complex communication system, known as the “gut-brain axis” (GBA), exists between the intestine and the central nervous system (CNS). It integrates multilevel signals and modulates the functions of these two organs. A myriad of studies have revealed that alterations in the enteric microbiota are linked to various CNS disorders, such as Alzheimer’s disease, Parkinson’s disease, brain malignancies, multiple sclerosis, stroke, stress, anxiety, depression, autism, and schizophrenia. The mechanisms underlying the impact of gut dysbiosis on neuroinflammatory and neuropsychiatric diseases involve microbial metabolites and products, neurotransmitters and neuropeptides, immune regulation (including cytokines and chemokines), and neuroendocrine pathways. Notably, the functional status of intestinal macrophages is highly sensitive to the composition of the microbiota and thus can regulate the progression of CNS diseases via the GBA. Intestinal macrophages are found throughout the GI tract and may communicate with the brain through the nervous, circulatory, and immune systems. Thus far, there are relatively few studies that have explored the cellular and molecular mechanisms by which intestinal macrophages regulate CNS homeostasis and pathological conditions. The heterogeneity and niche-specific phenotypes of intestinal macrophages may have hindered a complete understanding of their specific roles in the context of homeostasis and disease. Here, we describe the progress made in understanding the distinct populations of intestinal macrophages and their roles in the GBA, providing an overview of their contributions to CNS homeostasis and dysfunction.
... Previous studies on amyloid PET imaging outside the brain were focused on describing the tracer's biodistribution, lacking to define the colon as a region of interest [49], or to compare with a control group [50]. The colon is closely interconnected with the brain through the vagus nerve [51] and recent clinical and pathological findings [52][53][54][55][56] led to the idea of a gut-brain route of alpha-synuclein pathology in PD. Similarly, AD animal studies suggested that Aβ deposits could propagate along the gut-brain axis following a prion-like mechanism the intestinal-blood barrier found in several central disorders, including AD [81], could facilitate cell immune activation by intestinal bacteria that move from the lumen to the epithelium thus promoting local amyloid production [82]. ...
Article
Full-text available
Purpose Some Alzheimer’s disease (AD) patients report gastro-intestinal symptoms and present alterations in the gut microbiota (GM) composition. Elevated colonic amyloid immunoreactivity has been shown in patients and animal models. We evaluated the colonic uptake of the amyloid positron emission tomography (PET) imaging agent [18F]flutemetamol (FMM) in a memory clinic population and investigated its association with brain amyloidosis and GM composition. Methods Forty-five participants underwent (i) abdominal and cerebral FMM PET, acquired at 40 (early phase) and 120 min (late phase) after tracer injection, (ii) abdominal computed tomography, and (iii) cerebral T1-weighted MRI. Colonic standardized uptake value ratio (SUVr) was determined through manual tracing and automatic segmentation (TotalSegmentator), using the aortic blood signal as a reference region. Fecal GM composition was assessed using 16 S rRNA sequencing. Amyloid positive (A+) and negative (A-) participants, based on cortical FMM quantification (PetSurfer), were compared in terms of SUVr and GM features. Results Increased colonic early SUVr was reported in A+ than A- (manual, p =.008; automated, p =.035). Altered GM composition was found in A + as shown by lower Pielou’s evenness (p =.023), lower abundance of Eubacterium hallii group, and higher abundance of several genera. High UC5-1-2E3 abundance positively correlated with high colonic early SUVr (whole group: manual, p =.012, automated, p =.082; A+: manual, p =.074; automated, p =.016). Conclusion This exploratory study showed that subjects with cerebral amyloidosis have greater colonic FMM uptake than subjects with normal cerebral amyloid load, correlating with altered GM composition. Further analysis is needed to determine if these changes denote amyloid-related changes or other phenomena.
... Braak's theory was tested in mice injected with preformed pathological α-syn fibrils in the duodenal and pyloric muscle layers, and subsequent dissemination of α-syn to brain regions including the substantia nigra and the dorsal motor nucleus of the vagus nerve. In turn, truncal vagotomy and α-syn deficiency prevented the spread of α-synucleinopathy as well as the associated neurodegeneration and behavioral deficits (Kim et al. 2019). Furthermore, another study showed that vagotomy also prevented depressive-like behavior in animals with intestinal dysbiosis (Yang et al. 2023). ...
Article
Full-text available
Over the past two decades, a growing number of studies have been conducted on the role of bidirectional communication through the gut–brain axis in the development of neurodegenerative diseases. These studies were driven by the curious fact that all of these diseases present varying degrees of intestinal involvement included in their wide range of symptoms. A population of cells belonging to the ENS, called enteric glial cells (EGCs), appears to actively participate in this communication between the intestine and the brain, but acting in a dualistic manner, sometimes in reactive gliosis releasing inflammatory mediators, sometimes promoting homeostasis and resilience in the face of inflammatory injuries. To date, the intracellular mechanisms that define the transcriptional profile expressed in EGCs in each situation have not yet been elucidated. This review proposes a discussion on: (1) the complex role of distinct phenotypes of enteric glial cells involved in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and multiple sclerosis (MS); and (2) innovative strategies such as IDO/TDO inhibitors, Brazil nuts, caffeic acid, polyphenols, among others, that act on EGCs and have the potential to treat neurodegenerative diseases. image
... For example, after a peripheral nerve injury, chemokines and perhaps misfolded channels might travel up the neuraxis. In a rodent model of PD, misfolded α-synuclein injected into gut or muscle can propagate to the brain and also to the spinal cord dorsal horn [176]. If α-synuclein or tau pathology is present in a person, intense nociceptive activity could hypothetically facilitate its spread into pain circuits due to activity-dependent release or exosomal transfer. ...
Article
Full-text available
Chronic pain, defined by persistent pain beyond normal healing time, is a pervasive and debilitating condition affecting up to 30–50% of adults globally. In parallel, neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by progressive neuronal loss and cognitive or motor decline, often underpinned by pathological protein misfolding and aggregation. Emerging evidence suggests a potential mechanistic link between chronic pain and NDs, with persistent pain contributing to neuroinflammatory states and protein homeostasis disturbances that mirror processes in neurodegeneration. This review explores the hypothesis that protein misfolding and aggregation serve as a mechanistic bridge between chronic pain and neurodegeneration. We systematically examine molecular pathways of protein misfolding, proteostasis dysfunction in chronic pain, and shared neuroimmune mechanisms, highlighting prion-like propagation of misfolded proteins, chronic neuroinflammation, and oxidative stress as common denominators. We further discuss evidence from experimental models and clinical studies linking chronic pain to accelerated neurodegenerative pathology—including tau accumulation, amyloid dysregulation, and microglial activation—and consider how these insights open avenues for novel therapeutics. Targeting protein aggregation, enhancing chaperone function, modulating the unfolded protein response (UPR), and attenuating glial activation are explored as potential strategies to mitigate chronic pain and possibly slow neurodegeneration. Understanding this intersection not only elucidates chronic pain’s role in cognitive decline but also suggests that interventions addressing proteostasis and inflammation could yield dual benefits in pain management and neurodegenerative disease modification.
... The appendix, as an immune organ, is also one of the reservoirs for misfolded α-synuclein proteins [6,7]. Recent research has indicated that pathological α-synuclein originating in the gastrointestinal tract may serve as a key contributing factor in the development of Parkinson's disease (PD) [8]. Consequently, appendectomy has been proposed as a possible intervention to reduce PD risk, although this conclusion remains controversial. ...
Article
Full-text available
Appendectomy, a common procedure in general surgery, has traditionally been regarded as a safe treatment for acute appendicitis. In recent years, with the advancement of research on the microbiota-gut-brain axis (MGBA), increasing attention has been given to the potential impact of appendectomy on mental health, as the appendix plays a crucial role in intestinal immunity and microbiota regulation. This review seeks to examine recent advancements in research on the relationship between appendectomy and mental disorders, providing new insights into the clinical decision-making process for the treatment of appendicitis.
... The major human amyloidoses, Alzheimer's disease, Parkinson's disease, and type II diabetes, each feature accumulation of amyloid that has the same in-register parallel folded β-sheet architecture (Antzutkin et al. 2000;Der-Sarkissian et al. 2003;Jayasinghe and Langen 2004;Tycko 2006;Luca et al. 2007;Tuttle et al. 2016) as the three yeast prions that have been studied (see references above) and fully infectious PrP of mouse scrapie prions (Kraus et al. 2021). Over the last 10 years, strong evidence for actual infectivity of amyloid of each of these diseases has accumulated (Jaunmuktane et al. 2015;Prusiner et al. 2015;Mukherjee et al. 2017;Kim et al. 2019;Sampson et al. 2020). Iatrogenic infectivity of an Alzheimer's disease variant characterized by perivascular deposits of Abeta amyloid has been recognized in patients who had received cadaverderived human growth hormone (Banerjee et al. 2024), and statistical evidence for transmission of Alzheimer's disease via transfusion has been reported ). ...
Article
Full-text available
PSI+] is a prion (infectious protein) of Sup35p, a subunit of the translation termination factor, and [URE3] is a prion of Ure2p, a mediator of nitrogen catabolite repression. Here, we trace the history of these prions and describe the array of anti‐prion systems in S. cerevisiae. These systems work together to block prion infection, prion generation, prion propagation, prion segregation, and the lethal (and near‐lethal) effects of most variants of these prions. Each system lowers the appearance of prions 2‐ to 15‐fold, but together, ribosome‐associated chaperones, the Hsp104 disaggregase, and the Sup35p‐binding Upf proteins lower the frequency of [PSI+] appearance by ~5000‐fold. [PSI+] variants can be categorized by their sensitivity to the various anti‐prion systems, with the majority of prion isolates sensitive to all three of the above‐mentioned systems. Yeast prions have been used to screen for human anti‐prion proteins, and five of the Bag protein family members each have such activity. We suggest that manipulation of human anti‐prion systems may be useful in preventing or treating some of the many human amyloidoses currently found to be prions with the same amyloid architecture as the yeast prions. image
... This test evaluates bradykinesia (slowness of movement) and impaired motor coordination, which are hallmarks of PD, by assessing the time required for rodents to descend from the top of a vertical pole to the floor. 26 Mice were placed head-up on a wooden rod (75 cm long and 9 mm in diameter, with gauze wrapped around its surface for better grip and its base securely attached to a board). The time taken for the mice to turn head-down and descend completely to the base was recorded. ...
... This supports the idea that PD pathology may originate in the gut and later spread to the CNS. Studies involving vagotomy in α -synuclein models have shown that severing this communication pathway reduces the spread of α -synuclein from the gut to the brain, further implicating the gut microbiota in the initiation of PD pathology [45,46]. ...
Preprint
Parkinson's Disease (PD) is the fastest growing neurodegenerative disease and manifests as a synucleinopathy with progressive motor and non-motor symptoms. In this study, we investigated the gut-microbial alterations associated with PD in an alpha-synuclein transgenic mouse model (hα-Syn) at both early and late stages of the disease. We utilised high-resolution functional metagenomics with ultra-deep sequencing to ensure the identification of low-abundance and novel taxa. The microbial community and metabolic pathways were profiled using Microba community and pathway profiler, respectively. While the microbial alpha-diversity remained unchanged between the hα-Syn and WT group across different disease stages, distinct shifts in microbial composition were observed. The hα-Syn group form two separate clusters corresponding to early and late stages of the disease, indicating progressive dysbiosis. Gut dysbiosis in the early stages of PD was characterised with an increase in Staphylococcus species and a decrease of Duncaniella and Muribaculum species. A reduction in lactobacillus genera was also observed in PD. Furthermore, microbes associated with SCFA production declined whereas and opportunistic pathogens increased in abundance. These findings provide evidence supporting the hypothesis that microbiota alterations may contribute to the onset and progression of PD, highlighting potential microbial targets for future therapeutic interventions.
... There is an increasing body of publications demonstrating that air pollutants can change the gut mucosa, which is thought to promote α-syn pathology (Murata et al., 2022). In animal studies, α-syn preformed fibrils injected into the duodenum induce α-syn spread into brainstem nuclei and then to the SN (Kim et al., 2019). Although PET imaging approach has not been applied yet to investigate the α-syn accumulation in correlative studies of air pollution and PD onset, the DaTscan PET imaging technique is sensitive enough to detect presynaptic dopamine neuronal dysfunction and could be considered as one of useful in vivo diagnostic tools for the early detection of degenerative Parkinsonism (Bega et al., 2021). ...
Article
Full-text available
Particulate matter exposure is linked to numerous health issues, including respiratory, cardiovascular, and neurodegenerative diseases. This review focuses on the biological mechanisms through which air pollution influences the lung-brain axis, highlighting the role of miRNAs in regulating gene pathways affected by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular processes, including inflammation, epithelial-to-mesenchymal transition (EMT), and blood-brain barrier integrity. Using mice models to study these effects allows for controlled experimentation on the systemic distribution of PM across biological barriers. Among the imaging technologies, Positron Emission Tomography is the best approach to monitor the distribution and effects of PM in vivo. The research underscores the importance of miRNA profiles as potential markers for the health effects of PM exposure, suggesting that specific miRNAs could serve as early indicators of damage to the lung-brain axis.
... As aSyn pathology spreads to different regions of the CNS, so do PD symptoms. Human data and animal studies also indicate that the gut-brain connection facilitates the spread of pathological aSyn from the periphery to the CNS via the vagal nerve; in fact, severing this connection can even reduce risk of PD, as shown after truncal vagotomy [12][13][14][15] . ...
Preprint
Full-text available
Background: Parkinson's disease is a progressive neurodegenerative disorder characterized by the presence of pathological aggregation of the protein alpha-synuclein and the loss of dopaminergic neurons in the substantia nigra. There is evidence that misfolding and propagation of alpha-synuclein aggregates through networks of interconnected neurons is responsible for the pathological spread and progress neuron loss. However, in vivo models demonstrating such pathological progression remain elusive. Results: This study utilizes a zebrafish model in order to interrogate the mechanisms of alpha- synuclein toxicity and spread. We describe the development of a zebrafish model of endogenous neuronal human alpha-synuclein expression that causes, in young fish, behavioral and neuronal changes as well as microglia activation. In aged fish, alpha-synuclein expression induces a slow but progressive pathological phenotype manifesting in neuron loss within the gut and the CNS. This model is further utilized to seed gut pathology by incorporating a novel method of feeding human alpha-synuclein preformed fibrils in order to initiate protein misfolding at an early age. The combination of endogenous neuronal expression of alpha-synuclein and the exogenous addition of misfolded protein facilitates the development of brain pathology and subsequent neuron loss in the CNS. In addition to the pathological alterations induced with the fibril feeding model, genetic changes were identified by single cell RNA sequencing. These gene changes resulted in pathway alteration that implicate neurodegenerative disease processes. Conclusion: This model of alpha-synuclein pathology is useful for understanding mechanisms underlying disease initiation and can replicate the progressive development of pathological synuclein accumulation. It has the potential to induce neuron to neuron spread and also offers a way to explore what interventions may prevent such pathological progression.
Article
Full-text available
The influence of functional gastrointestinal disorders (FGIDs) on the onset of Parkinson’s disease (PD) remains unclear. Therefore, in this study, we examined the effect of FGIDs and their subtypes on the PD onset. In Cox proportional hazards model, FGIDs significantly increased the risk of PD incidence [hazard ratio (HR) = 1.74, 95% confidence interval (CI) = 1.30–2.33]. Similar results were also observed for functional dyspepsia (HR = 1.71, 95% CI = 1.17–2.52) and other functional intestinal disorders (other FIDs) (HR = 1.67, 95% CI = 1.00–2.78). Mediation analyses revealed that mental health scores mediated 10.00% and 8.32% of the association between FGIDs and functional dyspepsia and PD development. This cohort study discovered that FGIDs increase the risk of developing PD. Similar effects can also be observed in functional dyspepsia and other FIDs and mental health mediates part of the effect of FGIDs and functional dyspepsia on PD.
Article
Full-text available
In recent years, the intricate relationship between the immune system and neurological disorders has garnered significant attention. While the central nervous system had long been perceived as immunologically privileged, emerging research has revealed complex interactions among immune cells, inflammatory mediators, and neural components that collectively influence the pathogenesis and progression of various neurological disorders. This comprehensive review explores the crucial role of the cytokine interleukin-17(IL-17) in neurological diseases. It examines the complex contributions of IL-17 to both neurodevelopmental and neurodegenerative disorders, highlighting its diverse mechanisms and its impact on neuro-immune crosstalk. Moreover, we assess the evidence supporting the potential therapeutic role of modulating IL-17, considering its beneficial and detrimental effects. Through a comprehensive analysis of current research, we aim to provide insights into the modulatory role of IL-17 in neurological disorders.
Chapter
The gut microbiota, consisting of trillions of microorganisms, plays a critical role in regulating host physiology, including metabolism, immune responses, and brain function. This chapter examines the microbiota-gut-brain axis, a multifaceted bidirectional communication system connecting gut microbial activity with central nervous system processes through immune pathways, metabolic byproducts, and neural circuits like the vagus nerve. The evolution of the gut microbiota throughout an individual’s life—from early developmental influences like birth mode and antibiotic use to changes associated with aging and neurodegenerative conditions—highlights its dynamic nature. The chapter reviews experimental approaches and microbiome-based interventions to demonstrate the influence of gut microbiota on neurological conditions such as autism spectrum disorder, anxiety, and Alzheimer’s disease. Finally, it emphasises the importance of advancing microbiome-targeted therapies, integrating emerging technologies, and clinical trials to develop personalised strategies for enhancing brain health through gut microbiome modulation.
Article
Full-text available
Alzheimer’s disease (AD) is increasingly recognized as a systemic disorder with a substantial metabolic disorder component, where the liver significantly impacts the brain via the liver-brain axis. Key mechanisms include the liver’s role in clearing peripheral β-amyloid (Aβ), the influence of hepatic enzymes and metabolites on cognitive decline, and the systemic effects of metabolic disorders on AD progression. Hepatokines, liver-secreted proteins including fibroblast growth factor (FGF)-21, selenoprotein P (SELENOP), Fetuin-A, Midbrain astrocyte-derived neurotrophic factor (MANF), apolipoprotein J (ApoJ), sex hormone-binding globulin (SHBG), Adropin and Angiopoietin-like protein 3 (ANGPTL3), could regulate insulin sensitivity, lipid metabolism, oxidative stress, immune responses, and neurotrophic support. These pathways are closely linked to core AD pathologies, including Aβ aggregation, tau hyperphosphorylation, neuroinflammation, oxidative stress and mitochondrial dysfunction. Lifestyle interventions, including exercise and dietary modifications, that regulate hepatokines expression may offer novel preventive and therapeutic strategies for AD. This review synthesizes current knowledge on the liver-brain crosstalk in AD, emphasizing the mechanistic role of liver in bridging metabolic dysfunction with neurodegeneration and underscores the diagnostic and therapeutic potential of hepatokines in addressing AD’s complex pathology.
Article
The gut is exposed to a wide range of proteins, including ingested proteins and those produced by the resident microbiota. While ingested prion-like proteins can propagate across species, their implications for disease development remain largely unknown. Here, we apply a multidisciplinary approach to examine the relationship between the biophysical properties of exogenous prion-like proteins and the phenotypic consequences of ingesting them. Through computational analysis of gut bacterial proteins, we identified an enrichment of prion-like sequences in Helicobacter pylori . Based on these findings, we rationally designed a set of synthetic prion-like sequences that form amyloid fibrils, interfere with amyloid-beta-peptide aggregation, and trigger prion propagation when introduced in the yeast Sup35 model. When C. elegans were fed bacteria expressing these prion-like proteins, they lost associative memory and exhibited increased lipid oxidation. These data suggest a link between memory impairment, the conformational state of aggregates, and oxidative stress. Overall, this work supports gut microbiota as a reservoir of exogenous prion-like sequences, especially H. pylori , and the gut as an entry point for molecules capable of triggering cognitive dysfunction.
Preprint
Full-text available
We investigated the role of inflammation in the pathogenesis of prodromal Parkinson’s Disease (PD), performing single-cell RNAseq analysis of cerebrospinal fluid (CSF) and blood from 111 individuals, comparing control subjects with early prodromal PD and later PD to patients with multiple sclerosis (MS). Surprisingly, we identified a pleocytosis in the CSF, most pronounced in patients with early PD. Single-cell RNAseq revealed increases in CSF-specific microglia-like macrophages expressing JAK-STAT and TNFα signaling signatures in prodromal PD, with a lack of T cell activation in the CSF. The CSF macrophages exhibited similar transcriptional profiles to dural macrophages from human α-synuclein-expressing PD model mice. These findings uncover a myeloid-mediated TNFα inflammatory process in the CNS of patients with prodromal PD, suggesting a novel pathological mechanism in disease etiology.
Article
Full-text available
Parkinson’s disease (PD) is characterized by a drastic loss of dopaminergic neurons already at diagnosis. As this loss of neurons starts decades before diagnosis, understanding the prodromal stages of the disease might offer novel strategies to curb its progression. While the precise pathogenic mechanisms underlying PD remain incompletely understood, growing evidence suggests that neuroinflammation and immune dysregulation play a central role in the development and progression of the disease. Here, we delve into the emerging roles of microglia, the resident immune cells of the central nervous system, in the pathogenesis of prodromal and early-stage PD. We emphasize that microglia contribute to neuroinflammation, protein aggregation and neurodegeneration, although the underlying mechanisms are not yet known. Neuroimaging studies have provided valuable insights into the patterns of microglial activation detected in individuals with prodromal PD and at the time of clinical diagnosis. Furthermore, we highlight the complex interplay between immune dysregulation and neurodegeneration along PD development, including alterations in the peripheral immune system, brain-gut interactions and brain-immune interfaces. Lastly, we outline existing models for investigating microglial involvement in prodromal PD, along with the impact of anti-inflammatory therapies and strategies to modify risk factors. In conclusion, targeting microglial activation and immune dysfunctions in individuals at risk of PD could represent a promising preventive measure and may offer novel therapeutic strategies for early intervention and disease modification.
Article
Full-text available
Parkinson’s disease is the second most common neurodegenerative disorder and fastest growing neurological condition worldwide, yet its etiology and progression remain poorly understood. This disorder is characterized pathologically by the prion-like spread of misfolded neuronal alpha-synuclein proteins in specific brain regions leading to Lewy body formation, neurodegeneration, and progressive neurological impairment. It is unclear what triggers Parkinson’s and where α-synuclein protein aggregation begins, although proposed induction sites include the olfactory bulb and dorsal motor nucleus of the vagus nerve. Within the last 20 years, there has been increasing evidence that Parkinson’s could be triggered by early microbiome changes and α-synuclein accumulation in the gastrointestinal system. Gut microbiota dysbiosis that alters gastrointestinal motility, permeability, and inflammation could enable prion-like spread of α-synuclein from the gut-to-brain via the enteric nervous system. Individuals with isolated rapid eye movement sleep behavior disorder have a high likelihood of developing Parkinson’s and might represent a prodromal ‘gut-first’ subtype of the condition. The gut-first model of Parkinson’s offers novel gut-based therapeutic avenues, such as anti-, pre-, and pro-biotic preparations and fecal microbiota transplants. Crucially, gut-based interventions offer an avenue to treat Parkinson’s at early prodromal stages with the aim of mitigating evolution to clinically recognizable Parkinson’s disease characterized by motor impairment.
Article
Alzheimer's disease (AD) is mainly manifested by cognitive dysfunction, accompanied by excessive β-amyloid (Aβ) deposition and neuroinflammation. The regulation of vagus nerve (VN) signal transmission is crucial for influencing the...
Article
Full-text available
Glutamate excitotoxicity is intricately linked to the pathogenesis of neurodegenerative diseases, exerting a profound influence on cognitive functions such as learning and memory in mammals. Glutamate, while crucial for these processes, can lead to neuronal damage and death when present in excessive amounts. Our previous review delved into the cascade of excitotoxic injury events and the underlying mechanisms of excitotoxicity. Building on that foundation, this update summarizes the latest research on the role of excitotoxicity in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis, as well as new cutting-edge techniques applied in the study of excitotoxicity. We also explore the mechanisms of action of various excitotoxicity inhibitors and their clinical development status. This comprehensive analysis aims to enhance our understanding of the nexus between excitotoxicity and neurodegenerative diseases, offering valuable insights for therapeutic strategies in these conditions.
Article
Full-text available
This review synthesizes the emerging understanding of the roles of glial cells and non-coding RNAs (ncRNAs) in the pathogenesis and progression of Alzheimer’s disease and related dementias (ADRDs). ADRDs encompass a spectrum of neurodegenerative disorders characterized by cognitive decline, memory impairment, and functional deterioration. The interplay between the most common types of glial cells—astrocytes, microglia, and oligodendrocytes—and ncRNAs is emerging as a critical factor in the development of ADRDs. Glial cells are essential for maintaining homeostasis within the central nervous system (CNS); however, their dysregulation can lead to neuroinflammation and neuronal dysfunction, exacerbating neurodegeneration. Reactive astrocytes and activated microglia can create neurotoxic environments that further impair neuronal health. Concurrently, ncRNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have emerged as significant regulators of glial gene expression, influencing inflammatory responses and glial cell function. Understanding the complex interactions between glial cells and ncRNAs is crucial for developing targeted therapeutic strategies. By elucidating the mechanisms underlying their interactions, this review aims to highlight the critical importance of glial cells and ncRNAs in the context of neurodegenerative diseases, paving the way for innovative approaches to prevent and treat ADRDs. Ultimately, enhancing our understanding of these processes may lead to novel therapies and improved outcomes for individuals affected by these debilitating conditions.
Article
Full-text available
Parkinson’s disease (PD) is a neurodegenerative disorder affecting over 10 million people. A key pathological feature of PD is the accumulation of misfolded α-synuclein (aSyn) protein in the substantia nigra pars compacta (SNpc). Aggregation of aSyn can form Lewy Bodies that contribute to dopaminergic neuron degeneration and motor symptoms such as tremor, rigidity, and bradykinesia. Beyond the central nervous system (CNS), aSyn aggregates have been detected in the gastrointestinal (GI) tract, suggesting a link between peripheral aSyn and non-motor PD symptoms. GI symptoms, often preceding motor symptoms by up to 20 years, highlight the bidirectional communication between the central nervous system and the enteric nervous system (gut-brain axis) in PD. Although microbiome alterations and intestinal inflammation have been associated with PD, functional impacts on gut-brain signaling or aSyn aggregation remain unclear. Intestinal neuropeptides are key modulators of gut-brain communication, alter immune response to pathogens and environmental toxins, and may contribute to function of the luminal gut barrier. Dysregulation of gut neuropeptide signaling including vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), calcitonin gene related peptide (CGRP), ghrelin, cholecystokinin (CCK), glucagon like peptide 1 (GLP-1) and substance P (SP) have been associated pathologic effects of PD in animal models. Despite their potential role in pathogenesis and disease modulation, gut neuropeptide roles in PD are under explored. This manuscript reviews current knowledge surrounding microbial metabolite and immune influences on gut neuropeptide signaling, aSyn aggregation in the enteric nervous system, and downstream neuroimmune pathway alterations within the context of PD and its mouse models.
Article
Full-text available
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer’s disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson’s disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD’s mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD’s etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD’s unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Article
Full-text available
Understanding the progression of α‐synuclein pathology in neurodegenerative diseases such as Parkinson's disease (PD) is a longstanding challenge. Here, a novel midbrain–hindbrain‐assembloid model that recapitulates the spread of α‐synuclein pathology observed in PD patients, akin to Braak's hypothesis, is presented. Initially, the presence α‐synuclein pathology is demonstrated in the hindbrain organoids. Subsequently, sophisticated tissue engineering methods are employed to create midbrain–hindbrain assembloids. These assembloids allow investigation and description of the spreading of α‐synuclein pathology, as it progresses from the hindbrain components to the midbrain regions within the integrated structure. It is observed that an increase in α‐synuclein in the hindbrain can induce transfer of the pathology into the healthy midbrain, as well as cause changes at the synapse level. The presented model constitutes a robust in vitro platform for investigating the mechanisms underlying α‐synuclein spreading and disease progression, and holding potential for the screening of prospective therapeutics targeting the pathological propagation in PD and related synucleinopathies.
Article
Microbiome dysbiosis—an imbalance in gut microbial communities—has emerged as a critical factor in the pathogenesis of neurological disorders, particularly Alzheimer’s and Parkinson’s diseases. This review examines the role of gut microbiota in neurodegeneration, emphasizing how dysbiosis disrupts gut–brain communication through mechanisms such as impaired gut permeability, systemic inflammation, and neuroinflammation. The gastrointestinal and central nervous systems interact bidirectionally, with microbial metabolites like short-chain fatty acids playing a pivotal role in maintaining gut and brain health. Dysbiotic shifts in microbial composition can compromise the blood–brain barrier, enabling inflammatory molecules to alter brain biochemistry and potentially accelerate neurodegenerative processes. Additionally, this review explores therapeutic strategies—including probiotics, prebiotics, and dietary modifications—designed to restore microbial balance, reduce neuroinflammation, and slow disease progression. Further research is essential to refine microbiome-targeted therapies and fully elucidate their potential in managing neurodegenerative diseases.
Article
Full-text available
Worldwide aging has contributed to the growth of prevalence of neurodegenerative diseases (NDDs), including Parkinson’s disease among the elderlies. The advanced destruction of dopaminergic neurons in the substantia nigra, due to many accelerator factors in the brain is the main mechanism of Parkinson’s disease. The pathological aggregated alpha-synuclein (α-syn), a protein implicated in multiple neurodegenerative disorders, is one of the critical factors in this neurodegenerative disease and other similar disorders. The misfolding and aggregation of α-syn may interrupt critical processes, including functions of synaptic vesicles and can lead to neuronal death. This protein is encoded by Alpha-Synuclein Gene (SNCA) and mutation in this gene can lead to dysfunctions of the protein structure. Since, therapeutic policies that aim α-syn are promising approaches. Advances in immunotherapies, molecular chaperones, gene therapy targeting SNCA, and DNA aptamers are some examples of this strategy. This review aims to comprehensively assess the current knowledge and evidence on α-syn pathology, genetic determinants, and novel therapeutic methods in Parkinson,’s disease and other synucleinopathies. Continued investigation to discover interventions in this system could result in finding of effective and safe treatments for NDDs.
Article
Full-text available
With its capacity to modulate motor control and motivational as well as cognitive functions dopamine is implicated in numerous neuropsychiatric diseases. The present study investigated whether an imbalance in dopamine homeostasis as evident in the dopamine overexpressing rat model (DAT-tg), results in learning and memory deficits associated with changes in adult hippocampal neurogenesis. Adult DAT-tg and control rats were subjected to the Morris water maze, the radial arm maze and a discrimination reversal paradigm and newly generated neurons in hippocampal circuitry were investigated post mortem. DAT-tg rats were found to exhibit a striking inability to acquire information and deploy spatial search strategies. At the same time, reduced integration of adult-born neurons in hippocampal circuitry was observed, which together with changes in striatal dopamine signalling might explain behavioural deficits.
Article
Full-text available
Background: Intraneuronal α-synuclein (α-Syn) aggregates known as Lewy bodies (LBs) and the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the pathological hallmarks of Parkinson's disease (PD). Braak's hypothesis based on autopsy studies suggests that Lewy pathology initially occurs in the enteric nervous system (ENS) and then travels retrogradely to the dorsal motor nucleus of the vagus nerve (dmX), proceeding from there in a caudo-rostral direction. Recent evidence that α-Syn aggregates propagate between interconnected neurons supports this hypothesis. However, there is no direct evidence demonstrating this transmission from the ENS to the dmX and then to the SNpc. Methods: We inoculated α-Syn preformed fibrils (PFFs) or phosphate-buffered saline (PBS) into the mouse gastric wall and analyzed the progression of the pathology. Results: The mice inoculated with α-Syn PFFs, but not with PBS, developed phosphorylated α-Syn (p-α-Syn)-positive LB-like aggregates in the dmX at 45 days postinoculation. This aggregate formation was completely abolished when vagotomy was performed prior to inoculation of α-Syn PFFs, suggesting that the aggregates in the dmX were retrogradely induced via the vagus nerve. Unexpectedly, the number of neurons containing p-α-Syn-positive aggregates in the dmX decreased over time, and no further caudo-rostral propagation beyond the dmX was observed up to 12 months postinoculation. P-α-Syn-positive aggregates were also present in the myenteric plexus at 12 months postinoculation. However, unlike in patients with PD, there was no cell-type specificity in neurons containing those aggregates in this model. Conclusions: These results indicate that α-Syn PFF inoculation into the mouse gastrointestinal tract can induce α-Syn pathology resembling that of very early PD, but other factors are apparently required if further progression of PD pathology is to be replicated in this animal model.
Article
Full-text available
Accumulating evidence suggests that certain gut microbiota have antidepressant-like behavioural effects and that the microbiota can regulate neurogenesis and the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. The precise mechanisms underlying these effects are not yet clear. However, the vagus nerve is one of the primary bidirectional routes of communication between the gut and the brain and thus may represent a candidate mechanism. Yet, relatively little is known about the direct influence of vagus nerve activity on hippocampal function and plasticity. Thus, the aim of the present study was to determine whether constitutive vagus nerve activity contributes to the regulation of neurogenesis and BDNF mRNA expression in the hippocampus. To this end, we examined the impact of subdiaphragmatic vagotomy in adult mice on these parameters. We found that vagotomy decreased BDNF mRNA in all areas of the hippocampus. Vagotomy also reduced the proliferation and survival of newly born cells and decreased the number of immature neurons, particularly those with a more complex dendritic morphology. Taken together, these findings suggest that vagal nerve activity influences neurogenesis and BDNF mRNA expression in the adult hippocampus.
Article
Full-text available
Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1–6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.
Article
Full-text available
Background: Gastrointestinal symptoms are early events in Parkinson's disease (PD). The gastrointestinal hormone ghrelin was neuroprotective in the nigrostriatal dopamine system. The objective of this study was to assess ghrelin levels in the early stages of PD. Methods: Plasma was collected in the fasting state in 291 PD patients in stages 1-3 and 303 age- and sex-matched healthy controls. Additional samples were taken in the glucose response test to assess nutrition-related ghrelin levels in 20 PD patients and 20 healthy controls. The enzyme-linked immunosorbent assay was used to measure total and active plasma ghrelin levels. Results: We reported that total and active plasma ghrelin levels were decreased in PD, although there was no difference across progressive PD stages. Postprandial ghrelin suppression and preprandial peak responses were both attenuated in PD. Conclusions: Plasma ghrelin levels were decreased in PD; however, this event might be irrelevant to PD progression. Ghrelin responses to meals were also impaired in PD. © 2017 International Parkinson and Movement Disorder Society.
Article
Full-text available
Objective: To examine whether vagotomy decreases the risk of Parkinson disease (PD). Methods: Using data from nationwide Swedish registers, we conducted a matched-cohort study of 9,430 vagotomized patients (3,445 truncal and 5,978 selective) identified between 1970 and 2010 and 377,200 reference individuals from the general population individually matched to vagotomized patients by sex and year of birth with a 40:1 ratio. Participants were followed up from the date of vagotomy until PD diagnosis, death, emigration out of Sweden, or December 31, 2010, whichever occurred first. Vagotomy and PD were identified from the Swedish Patient Register. We estimated hazard ratios (HRs) with 95% confidence intervals (CIs) using Cox models stratified by matching variables, adjusting for country of birth, chronic obstructive pulmonary disease, diabetes mellitus, vascular diseases, rheumatologic disease, osteoarthritis, and comorbidity index. Results: A total of 4,930 cases of incident PD were identified during 7.3 million person-years of follow-up. PD incidence (per 100,000 person-years) was 61.8 among vagotomized patients (80.4 for truncal and 55.1 for selective) and 67.5 among reference individuals. Overall, vagotomy was not associated with PD risk (HR 0.96, 95% CI 0.78-1.17). However, there was a suggestion of lower risk among patients with truncal vagotomy (HR 0.78, 95% CI 0.55-1.09), which may be driven by truncal vagotomy at least 5 years before PD diagnosis (HR 0.59, 95% CI 0.37-0.93). Selective vagotomy was not related to PD risk in any analyses. Conclusions: Although overall vagotomy was not associated the risk of PD, we found suggestive evidence for a potential protective effect of truncal, but not selective, vagotomy against PD development.
Article
Full-text available
Filamentous tau aggregates are hallmark lesions in numerous neurodegenerative diseases, including Alzheimer's disease (AD). Cell culture and animal studies showed that tau fibrils can undergo cell-to-cell transmission and seed aggregation of soluble tau, but this phenomenon was only robustly demonstrated in models overexpressing tau. In this study, we found that intracerebral inoculation of tau fibrils purified from AD brains (AD-tau), but not synthetic tau fibrils, resulted in the formation of abundant tau inclusions in anatomically connected brain regions in nontransgenic mice. Recombinant human tau seeded by AD-tau revealed unique conformational features that are distinct from synthetic tau fibrils, which could underlie the differential potency in seeding physiological levels of tau to aggregate. Therefore, our study establishes a mouse model of sporadic tauopathies and points to important differences between tau fibrils that are generated artificially and authentic ones that develop in AD brains.
Article
Full-text available
INTRODUCTION Parkinson’s disease (PD) is the second most common neurodegenerative disorder and leads to slowness of movement, tremor, rigidity, and, in the later stages of PD, cognitive impairment. Pathologically, PD is characterized by the accumulation of α-synuclein in Lewy bodies and neurites. There is degeneration of neurons throughout the nervous system, with the degeneration of dopamine neurons in the substantia nigra pars compacta leading to the major symptoms of PD. RATIONALE In the brains of PD patients, pathologic α-synuclein seems to spread from cell to cell via self-amplification, propagation, and transmission in a stereotypical and topographical pattern among neighboring cells and/or anatomically connected brain regions. The spread or transmission of pathologic α-synuclein is emerging as a potentially important driver of PD pathogenesis. The underlying mechanisms and molecular entities responsible for the transmission of pathologic α-synuclein from cell to cell are not known, but the entry of pathologic α-synuclein into neurons is thought to occur, in part, through an active clathrin-dependent endocytic process. RESULTS Using recombinant α-synuclein preformed fibrils (PFF) as a model system with which to study the transmission of misfolded α-synuclein from neuron to neuron, we screened a library encoding transmembrane proteins for α-synuclein-biotin PFF–binding candidates via detection with streptavidin-AP (alkaline phosphatase) staining. Three positive clones were identified that bind α-synuclein PFF and include lymphocyte-activation gene 3 (LAG3), neurexin 1β, and amyloid β precursor-like protein 1 (APLP1). Of these three transmembrane proteins, LAG3 demonstrated the highest ratio of selectivity for α-synuclein PFF over the α-synuclein monomer. α-Synuclein PFF bind to LAG3 in a saturable manner (dissociation constant = 77 nM), whereas the α-synuclein monomer does not bind to LAG3. Co-immunoprecipitation also suggests that pathological α-synuclein PFF specifically bind to LAG3. Tau PFF, β-amyloid oligomer, and β-amyloid PFF do not bind to LAG3, indicating that LAG3 is specific for α-synuclein PFF. The internalization of α-synuclein PFF involves LAG3 because deletion of LAG3 reduces the endocytosis of α-synuclein PFF. LAG3 colocalizes with the endosomal guanosine triphosphatases Rab5 and Rab7 and coendocytoses with pathologic α-synuclein. Neuron-to-neuron transmission of pathologic α-synuclein and the accompanying pathology and neurotoxicity is substantially attenuated by deletion of LAG3 or by antibodies to LAG3. The lack of LAG3 also substantially delayed α-synuclein PFF–induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. CONCLUSION We discovered that pathologic α-synuclein transmission and toxicity is initiated by binding to LAG3 and that neuron-to-neuron transmission of pathological α-synuclein involves the endocytosis of exogenous α-synuclein PFF by the engagement of LAG3 on neurons. Depletion of LAG3 or antibodies to LAG3 substantially reduces the pathology set in motion by the transmission of pathologic α-synuclein. The identification of LAG3 as an α-synuclein PFF–binding protein provides a new target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies. LAG3 deletion or antibodies to LAG3 delay α-synuclein PFF transmission Compared with wild-type neurons, binding and endocytosis of α-synuclein PFF is dramatically reduced with antibodies to LAG3 or when LAG3 is deleted, resulting in delayed pathologic α-synuclein transmission and toxicity. Illustration credit: I-Hsun Wu
Article
Full-text available
Parkinson's disease (PD) is characterized by the progressive appearance of intraneuronal Lewy aggregates, which are primarily composed of misfolded α-synuclein (α-syn). The aggregates are believed to propagate via neural pathways following a stereotypical pattern, starting in the olfactory bulb (OB) and gut. We hypothesized that injection of fibrillar α-syn into the OB of wild-type mice would recreate the sequential progression of Lewy-like pathology, while triggering olfactory deficits. We demonstrate that injected α-syn fibrils recruit endogenous α-syn into pathological aggregates that spread transneuronally over several months, initially in the olfactory network and later in distant brain regions. The seeded inclusions contain posttranslationally modified α-syn that is Thioflavin S positive, indicative of amyloid fibrils. The spreading α-syn pathology induces progressive and specific olfactory deficits. Thus, we demonstrate that propagating α-syn pathology triggered in the OB is functionally detrimental. Collectively, we have created a mouse model of prodromal PD.
Article
Full-text available
Aggregates of abnormal proteins are widely observed in neuronal and glial cells of patients with various neurodegenerative diseases, and it has been proposed that prion-like behavior of these proteins can account for not only the onset, but also the progression of these diseases. However, it is not yet clear which abnormal protein structures function most efficiently as seeds for prion-like propagation. In this study, we aimed to identify the most pathogenic species of α-synuclein (α-syn), the main component of the Lewy bodies and Lewy neurites that are observed in α-synucleinopathies. We prepared various forms of α-syn protein and examined their seeding properties in vitro, in cells and in mouse experimental models. We also characterized these α-syn species by means of electron microscopy and thioflavin fluorescence assays, and found that fragmented beta-sheet-rich fibrous structures of α-syn with a length of 50 nm or less are the most efficient promoters of accumulation of phosphorylated α-syn, which is the hallmark of α-synucleinopathies. These results indicate that fragmented amyloid-like aggregates of short α-syn fibrils are the key pathogenic seeds that trigger prion-like conversion.
Article
Full-text available
Stem cell-based therapy is a potential treatment for neurodegenerative diseases, but its application to Alzheimer’s disease (AD) remains limited. Brain-derived neurotrophic factor (BDNF) is critical in the pathogenesis and treatment of AD. Here, we present a novel therapeutic approach for AD treatment using BDNF-overexpressing neural stem cells (BDNF-NSCs). In vitro, BDNF overexpression was neuroprotective to beta-amyloid-treated NSCs. In vivo, engrafted BDNF-NSCs-derived neurons not only displayed the Ca2+-response fluctuations, exhibited electrophysiological properties of mature neurons and integrated into local brain circuits, but recovered the cognitive deficits. Furthermore, BDNF overexpression improved the engrafted cells’ viability, neuronal fate, neurite complexity, maturation of electrical property and the synaptic density. In contrast, knockdown of the BDNF in BDNF-NSCs diminished stem cell-based therapeutic efficacy. Together, our findings indicate BDNF overexpression improves the therapeutic potential of engrafted NSCs for AD via neurogenic effects and neuronal replacement, and further support the feasibility of NSC-based ex vivo gene therapy for AD.
Article
Full-text available
The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells.
Article
Full-text available
Objective To summarize evidence on the effects of aquatic therapy on mobility in individuals with neurological diseases. Data sources MEDLINE, EMBASE, PsycInfo, CENTRAL, CINAHL, SPORTDiscus, PEDro, PsycBITE and OT Seeker were searched from inception to 15 September 2014. Hand-searching of reference lists was performed in the selected studies. Review methods The search included randomized controlled trials and quasi-experimental studies that investigated the use of aquatic therapy and its effect on mobility of adults with neurological diseases. One reviewer screened titles and abstracts of retrieved studies from the search strategy. Two reviewers independently examined the full texts and conducted the study selection, data extraction and quality assessment. A narrative synthesis of data was applied to summarize information from included studies. The Downs and Black Scale was used to assess methodological quality. Results A total of 116 articles were obtained for full text eligibility. Twenty studies met the specified inclusion criteria: four Randomized Controlled Trials (RCTs), four non-randomized studies and 12 before-and-after tests. Two RCTs (30 patients with stroke in the aquatic therapy groups), three non-randomized studies and three before-and-after studies showed “fair” evidence that aquatic therapy increases dynamic balance in participants with some neurological disorders. One RCT (seven patients with stroke in the aquatic therapy group) and two before-and-after tests (20 patients with multiple sclerosis) demonstrated “fair” evidence on improvement of gait speed after aquatic therapy. Conclusion Our synthesis showed “fair” evidence supporting the use of aquatic therapy to improve dynamic balance and gait speed in adults with certain neurological conditions.
Article
Full-text available
The cellular hallmarks of Parkinson's disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.
Article
Full-text available
This protocol describes a primary neuronal model of formation of α-synuclein (α-syn) aggregates that recapitulate features of the Lewy bodies and Lewy neurites found in Parkinson's disease brains and other synucleinopathies. This model allows investigation of aggregate formation, their impact on neuron function, and development of therapeutics. Addition of preformed fibrils (PFFs) synthesized from recombinant α-syn to neurons seeds the recruitment of endogenous α-syn into aggregates characterized by detergent insolubility and hyperphosphorylation. Aggregate formation follows a lag phase of 2-3 d, followed by formation in axons by days 4-7, spread to somatodendritic compartments by days 7-10 and neuron death ∼14 d after PFF addition. Here we provide methods and highlight the crucial steps for PFF formation, PFF addition to cultured hippocampal neurons and confirmation of aggregate formation. Neurons derived from various brain regions from nontransgenic and genetically engineered mice and rats can be used, allowing interrogation of the effect of specific genes on aggregate formation.
Article
Full-text available
The basal ganglia are subcortical nuclei controlling voluntary actions and have been implicated in Parkinson's disease (PD). The prevailing model of basal ganglia function states that two circuits, the direct and indirect pathways, originate from distinct populations of striatal medium spiny neurons (MSNs) and project to different output structures. These circuits are believed to have opposite effects on movement. Specifically, the activity of direct pathway MSNs is postulated to promote movement, whereas the activation of indirect pathway MSNs is hypothesized to inhibit it. Recent findings have revealed that this model might not fully account for the concurrent activation of both pathways during movement. Accordingly, we propose a model in which intrastriatal connections are critical and the two pathways are structurally and functionally intertwined. Thus, all MSNs might either facilitate or inhibit movement depending on the form of synaptic plasticity expressed at a certain moment. In PD, alterations of dopamine-dependent synaptic plasticity could alter this coordinated activity.
Article
Full-text available
A novel test procedure for antidepressants was designed in which a mouse is suspended by the tail from a lever, the movements of the animal being recorded. The total duration of the test (6 min) can be divided into periods of agitation and immobility. Several psychotropic drugs were studied: amphetamine, amitriptyline, atropine, desipramine, mianserin, nomifensine and viloxazine. Antidepressant drugs decrease the duration of immobility, as do psychostimulants and atropine. If coupled with measurement of locomotor activity in different conditions, the test can separate the locomotor stimulant doses from antidepressant doses. Diazepam increases the duration of immobility. The main advantages of this procedure are (1) the use of a simple, objective test situation, (2) the concordance of the results with the validated "behavioral despair" test from Porsolt and, (3) the sensitivity to a wide range of drug doses.
Article
Full-text available
c-Abl is activated in the brain of Parkinson's disease (PD) patients and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice where it inhibits parkin through tyrosine phosphorylation leading to the accumulation of parkin substrates, and neuronal cell death. In the present study, we evaluated the in vivo efficacy of nilotinib, a brain penetrant c-Abl inhibitor, in the acute MPTP-induced model of PD. Our results show that administration of nilotinib reduces c-Abl activation and the levels of the parkin substrate, PARIS, resulting in prevention of dopamine (DA) neuron loss and behavioral deficits following MPTP intoxication. On the other hand, we observe no reduction in the tyrosine phosphorylation of parkin and the parkin substrate, AIMP2 suggesting that the protective effect of nilotinib may, in part, be parkin-independent or to the pharmacodynamics properties of nilotinib. This study provides a strong rationale for testing other brain permeable c-Abl inhibitors as potential therapeutic agents for the treatment of PD.
Article
Full-text available
α-Synuclein accumulation and pathology in Parkinson's disease typically display a caudo-rostral pattern of progression, involving neuronal nuclei in the medulla oblongata at the earliest stages. In this study, selective expression and accumulation of human α-synuclein within medullary neurons was achieved via retrograde transport of adeno-associated viral vectors unilaterally injected into the vagus nerve in the rat neck. The exogenous protein progressively spread toward more rostral brain regions where it could be detected within axonal projections. Propagation to the pons, midbrain and forebrain followed a stereotypical pattern of topographical distribution. It affected areas such as the coeruleus-subcoeruleus complex, dorsal raphae, hypothalamus and amygdala ipsilateral and, to a lesser extent, contralateral to the injection side. Spreading was accompanied by evidence of neuritic pathology in the form of axonal varicosities intensely immunoreactive for human α-synuclein and containing Thioflavin-S-positive fibrils. Thus, overexpression of human α-synuclein in the lower brainstem is sufficient to induce its long-distance caudo-rostral propagation, recapitulating features of Parkinson's disease and mechanisms of disease progression.
Article
Full-text available
Pathological studies on Parkinson's disease (PD) patients suggest that PD pathology progresses from the enteric nervous system (ENS) and the olfactory bulb into the central nervous system. We have previously shown that environmental toxins acting locally on the ENS mimic this PD-like pathology progression pattern in mice. Here, we show for the first time that the resection of the autonomic nerves stops this progression. Moreover, our results show that an environmental toxin (i.e. rotenone) promotes the release of alpha-synuclein by enteric neurons and that released enteric alpha-synuclein is up-taken by presynaptic sympathetic neurites and retrogradely transported to the soma, where it accumulates. These results strongly suggest that pesticides can initiate the progression of PD pathology and that this progression is based on the transneuronal and retrograde axonal transport of alpha-synuclein. If confirmed in patients, this study would have crucial implications in the strategies used to prevent and treat PD.
Article
Full-text available
Synthetic Parkinson's Parkinson's disease (PD) and related α-synucleinopathies are defined by the accumulation of α-synuclein (α-Syn)–containing intraneuronal inclusions—Lewy bodies (LBs) and Lewy neurites (LNs)—in association with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and other brain regions. However, a cause-and-effect relationship between LB/LN formation and neurodegeneration remains unclear. Indeed, whether LB/LNs are toxic or represent a neuroprotective response has been contentious. Luk et al. (p. 949 ) injected α-Syn fibrils generated from recombinant mouse α-Syn protein into the dorsal striatum of wild-type mice and found that misfolded α-Syn caused the formation of PD-like LB/LNs and subsequent cell-to-cell transmission of pathologic α-Syn to anatomically interconnected regions, including the SNpc. Furthermore, the formation of LB/LNs and their accumulation in SNpc resulted in the progressive loss of these dopaminergic neurons, reduced dopamine innervations to the dorsal striatum, and culminated in motor deficits similar to PD. Thus, a synthetic misfolded wild-type protein (that is, α-Syn) was able to elicit and transmit disease pathology and neurodegeneration in healthy nontransgenic mice.
Article
Full-text available
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha–synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects. Trial Registration Clinicaltrials.gov NCT01155492
Article
Full-text available
Parkinson's disease (PD) is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity, and tremor at rest. These symptoms are exhibited when striatal dopamine concentration has decreased by around 70%. In addition to motor deficits, PD is also characterized by the non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD, possibly because the disease is a multi-system disorder that features a profound loss in other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA) neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyze the latest evidence for the implication of NA in the pathophysiology of PD obtained from animal models of parkinsonism and from parkinsonian patients. Recent studies have shown that NA depletion alone, or combined with DA depletion, results in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of noradrenaline alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as l-Dopa-induced dyskinesia. In this review we argue that the loss of NA neurons in PD has an impact on all PD symptoms and that the addition of NAergic agents to dopaminergic medication could be beneficial in the treatment of the disease.
Article
Full-text available
Neurodegenerative disorders such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and Creutzfeldt-Jakob disease (CJD) are characterized by progressive accumulation of protein aggregates in selected brain regions. Protein misfolding and templated assembly into aggregates might result from an imbalance between protein synthesis, aggregation and clearance. Although protein misfolding and aggregation occur in most neurodegenerative disorders, the concept of spreading and infectivity of aggregates in the CNS has, until now, been confined to prion diseases such as CJD and bovine spongiform encephalopathy. Emerging evidence, however, suggests that prion-like spreading, involving secreted proteins such as amyloid-β and cytosolic proteins such as tau, huntingtin and α-synuclein, can occur in other neurodegenerative disorders. The underlying molecular mechanisms and the therapeutic implications of the new data are discussed in this article.
Article
Full-text available
Parkinson disease (PD) is a neurodegenerative disease with motor as well as non-motor signs in the gastrointestinal tract that include dysphagia, gastroparesis, prolonged gastrointestinal transit time, constipation and difficulty with defecation. The gastrointestinal dysfunction commonly precedes the motor symptoms by decades. Most PD is sporadic and of unknown etiology, but a fraction is familial. Among familial forms of PD, a small fraction is caused by missense (A53T, A30P and E46K) and copy number mutations in SNCA which encodes a-synuclein, a primary protein constituent of Lewy bodies, the pathognomonic protein aggregates found in neurons in PD. We set out to develop transgenic mice expressing mutant α-synuclein (either A53T or A30P) from insertions of an entire human SNCA gene as models for the familial disease. Both the A53T and A30P lines show robust abnormalities in enteric nervous system (ENS) function and synuclein-immunoreactive aggregates in ENS ganglia by 3 months of age. The A53T line also has abnormal motor behavior but neither demonstrates cardiac autonomic abnormalities, olfactory dysfunction, dopaminergic neurotransmitter deficits, Lewy body inclusions or neurodegeneration. These animals recapitulate the early gastrointestinal abnormalities seen in human PD. The animals also serve as an in vivo system in which to investigate therapies for reversing the neurological dysfunction that target α-synuclein toxicity at its earliest stages. © The Author 2010. Published by Oxford University Press. For Permissions, please email: [email protected] /* */
Article
Full-text available
In patients with Parkinson's disease (PD), the associated pathology follows a characteristic pattern involving inter alia the enteric nervous system (ENS), the dorsal motor nucleus of the vagus (DMV), the intermediolateral nucleus of the spinal cord and the substantia nigra, providing the basis for the neuropathological staging of the disease. Here we report that intragastrically administered rotenone, a commonly used pesticide that inhibits Complex I of the mitochondrial respiratory chain, is able to reproduce PD pathological staging as found in patients. Our results show that low doses of chronically and intragastrically administered rotenone induce alpha-synuclein accumulation in all the above-mentioned nervous system structures of wild-type mice. Moreover, we also observed inflammation and alpha-synuclein phosphorylation in the ENS and DMV. HPLC analysis showed no rotenone levels in the systemic blood or the central nervous system (detection limit [rotenone]<20 nM) and mitochondrial Complex I measurements showed no systemic Complex I inhibition after 1.5 months of treatment. These alterations are sequential, appearing only in synaptically connected nervous structures, treatment time-dependent and accompanied by inflammatory signs and motor dysfunctions. These results strongly suggest that the local effect of pesticides on the ENS might be sufficient to induce PD-like progression and to reproduce the neuroanatomical and neurochemical features of PD staging. It provides new insight into how environmental factors could trigger PD and suggests a transsynaptic mechanism by which PD might spread throughout the central nervous system.
Article
Cell-to-cell transmission of proteopathic alpha-synuclein (α-syn) seeds is increasingly thought to underlie the progression of neurodegenerative diseases including Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and related synucleinopathies. As such, it is important to understand the chemical and biological relationships between cells and pathological aggregates of α-syn. This brief review updates our understanding of the templated spread of α-syn pathology in neurodegenerative disease from the perspective of proteopathic α-syn seeds, including how these seeds are processed by cells as well as their effects on cellular function. Recent advances in understanding the conformations of α-syn seeds are highlighted, and the possible structural basis for the observed heterogeneity of synucleinopathies is discussed. Finally, we propose the possibility that some known risk factors for synucleinopathies may in fact potentiate the cell-to-cell transmission of α-syn pathology via imbalances in interrelated cell biological processes.
Article
Microbial endocrinology represents the union of microbiology and neurobiology and is concerned with the ability of neurochemicals to serve as an evolutionary-based language between host and microbiota in health and disease. The recognition that microorganisms produce, modify and respond to the same neurochemicals utilized in the various signaling pathways of their mammalian hosts is increasingly being recognized as a mechanism by which the host and microbiota may interact to influence the progression of infectious disease as well as influence behavior through the microbiota-gut-brain axis. While the capacity for bacteria to produce neurochemicals has been recognized for decades, the degree to which this occurs in the environment of the gastrointestinal tract is still poorly understood. By combining techniques used in analytic chemistry, food science and environmental microbiology, a novel culture-based method was developed which generates a medium utilizing animal feed which resembles the contents of the small intestine. The usage of this medium allows for the in vitro growth of bacteria native to the gastrointestinal tract in an environment that is reflective of the small-intestinal host-based milieu. We describe a detailed protocol for the preparation of this medium and the quantification of neurochemicals by microorganisms grown therein. Catecholamines including dopamine and its precursor L-3,4-dihydroxyphenalanine (L-DOPA) as well as biogenic amines including tyramine and its precursor tyrosine, serve as prototypical examples of neurochemicals that are quantifiable with the methods described herein.
Article
Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.
Article
Parkinson's disease (PD) is a progressive neurodegenerative disease with devastating clinical manifestations. In PD, neuronal death is associated with intracellular aggregates of the neuronal protein α-synuclein known as Lewy bodies. Although the cause of sporadic PD is not well understood, abundant clinical and pathological evidence show that misfolded α-synuclein is found in enteric nerves before it appears in the brain. This suggests a model in which PD pathology originates in the gut and spreads to the central nervous system via cell-to-cell prion-like propagation, such that transfer of misfolded α-synuclein initiates misfolding of native α-synuclein in recipient cells. We recently discovered that enteroendocrine cells (EECs), which are part of the gut epithelium and directly face the gut lumen, also possess many neuron-like properties and connect to enteric nerves. In this report, we demonstrate that α-synuclein is expressed in the EEC line, STC-1, and native EECs of mouse and human intestine. Furthermore, α-synuclein-containing EECs directly connect to α-synuclein-containing nerves, forming a neural circuit between the gut and the nervous system in which toxins or other environmental influences in the gut lumen could affect α-synuclein folding in the EECs, thereby beginning a process by which misfolded α-synuclein could propagate from the gut epithelium to the brain.
Article
Animals detect odorous chemicals through specialized olfactory sensory neurons (OSNs) that transduce odorants into neural electrical signals. We identified a novel and evolutionarily conserved protein, cilia- and flagella-associated protein 69 (CFAP69), in mice that regulates olfactory transduction kinetics. In the olfactory epithelium, CFAP69 is enriched in OSN cilia, where olfactory transduction occurs. Bioinformatic analysis suggests that a large portion of CFAP69 can form Armadillo-type α-helical repeats, which may mediate protein–protein interactions. OSNs lacking CFAP69, remarkably, displayed faster kinetics in both the on and off phases of electrophysiological responses at both the neuronal ensemble level as observed by electroolfactogram and the single-cell level as observed by single-cell suction pipette recordings. In single-cell analysis, OSNs lacking CFAP69 showed faster response integration and were able to fire APs more faithfully to repeated odor stimuli. Furthermore, both male and female mutant mice that specifically lack CFAP69 in OSNs exhibited attenuated performance in a buried food pellet test when a background of the same odor to the food pellet was present even though they should have better temporal resolution of coding olfactory stimulation at the peripheral. Therefore, the role of CFAP69 in the olfactory system seems to be to allow the olfactory transduction machinery to work at a precisely regulated range of response kinetics for robust olfactory behavior.
Article
Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Article
The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson’s disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
Article
The temporally dissociated passive avoidance (TDPA) paradigm is a variant of passive avoidance testing, and allows for more sensitive investigation of mild impairments in avoidance learning. Passive avoidance learning measures the latency to enter a "dark" context in which an aversive stimulus (foot shock) has been previously experienced using a light-dark box paradigm. Briefly, the animal is placed into the light side of the box and the time spent to cross into the dark side is measured. After entry into the dark chamber, the animal receives a mild (0.4-1.6 mA) footshock and is removed from the box. After a period of time, typically 24 h (note that this is entirely dependent on whether various levels of memory retention, e.g., short or long, are being measured), the animal is placed back into the box and cross-over latency is measured. Passive avoidance is learned after one trial and results in a robust increase in crossover latency. This behavior requires the association between a normally neutral environment and an aversive stimulus, and is dependent on hippocampal function (Stubley-Weatherly et al., 1996; Impey et al., 1998). TDPA extends this learning across multiple once-daily trials, producing a more graded and malleable latency score, and thus allows a more sensitive evaluation of changes in hippocampal function The task remains dependent on an intact hippocampus (Zhang et al., 2008), and subtle changes in hippocampal gene expression can result in robust alterations in TDPA latency scores (Eagle et al., 2015). We describe here a common method used to assess TDPA learning in mice.
Article
Parkinson disease (PD) follows a defined clinical pattern, and a range of nonmotor symptoms precede the motor phase. The predominant early nonmotor manifestations are olfactory impairment and constipation. The pathology that accompanies these symptoms is consistent with the Braak staging system: α-synuclein in the dorsal motor nucleus of the vagus nerve, the olfactory bulb, the enteric nervous system (ENS) and the submandibular gland, each of which is a gateway to the environment. The neuropathological process that leads to PD seems to start in the ENS or the olfactory bulb and spreads via rostrocranial transmission to the substantia nigra and further into the CNS, raising the intriguing possibility that environmental substances can trigger pathogenesis. Evidence from epidemiological studies and animal models supports this hypothesis. For example, in mice, intragastric administration of the pesticide rotenone can almost completely reproduce the typical pathological and clinical features of PD. In this Review, we present clinical and pathological evidence to support the hypothesis that PD starts in the gut and spreads via trans-synaptic cell-to-cell transfer of pathology through the sympathetic and parasympathetic nervous systems to the substantia nigra and the CNS. We also consider how environmental factors might trigger pathogenesis, and the potential for therapeutically targeting the mechanisms of these initial stages.
Article
Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R-specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory.
Article
Parkinson's disease (PD) may be caused by an enteric neurotropic pathogen entering the brain through the vagal nerve, a process that may take over 20 years. We investigated the risk of PD in patients who underwent vagotomy, and hypothesized that truncal vagotomy is associated with a protective effect, while super-selective vagotomy has a minor effect. We constructed cohorts of all patients in Denmark who underwent vagotomy during 1977-1995 and a matched general population cohort, by linking Danish registries. We used Cox regression to compute hazard ratios (HRs) for PD and corresponding 95% confidence intervals [CIs], adjusting for potential confounders. Risk of PD was decreased in patients who underwent truncal [HR = 0.85, 95% CI= 0.56-1.27; follow-up of >20 years: HR = 0.58, 95% CI: 0.28-1.20] compared to super-selective vagotomy. Risk of PD was also decreased following truncal vagotomy when compared to the general population cohort [overall adjusted HR = 0.85, 95% CI 0.63-1.14; follow-up >20 years, adjusted HR = 0.53 [95% CI: 0.28-0.99]. In patients who underwent super-selective vagotomy, risk of PD was similar to the general population [HR = 1.09, 95% CI: 0.84-1.43; follow-up of >20 years: HR = 1.16, 95% CI: 0.80-1.70]. The statistical precision of the risk estimates was limited. Results were consistent after external adjustment for unmeasured confounding by smoking. Full truncal vagotomy is associated with a decreased risk for subsequent PD, suggesting that the vagal nerve may be critically involved in the pathogenesis of PD. This article is protected by copyright. All rights reserved. © 2015 American Neurological Association.
Article
The importance context has been broadly studied in the management of phobias and in the drug addiction literature. The way in which changes to a context influence behaviour after the simple acquisition of a passive avoidance task remains unclear. The hippocampus has long been implicated in the contextual and spatial processing required for contextual fear, but its role in encoding the aversive component of a contextual fear memory is still inconclusive. Our work tries to elucidate whether a change in context, represented as differences in the load of the stimuli, is critical for learning about the context-shock association and whether this manipulation of the context could be linked to any change in metabolic brain activity requirements. For this purpose, we used an avoidance conditioning task. Animals were divided into three different experimental conditions. In one group, acquisition was performed in an enriched stimuli environment and retention was performed in a typically lit chamber (the PA-ACQ-CONTX group). In another group, acquisition was performed in the typically lit chamber and retention was undertaken in the highly enriched chamber (the PA-RET-CONTX group). Finally, for the control group, PA-CN-CONTX, acquisition and retention were performed in the enriched stimuli environment. Our results showed that the PA-ACQ-CONTX group had longer escape latencies and poorer retention than the PA-RET-CONTX and PA-CN-CONTX groups after 24 hours of acquisition under contextual changes. To study metabolic brain activity, histochemical labelling of cytochrome c-oxidase (CO) was performed. CO results suggested a neural circuit including the hippocampus, amygdala, thalamus, parahippocampal cortices and mammillary nuclei that is involved in the learning and memory processes that enable context-dependent behaviour. These results highlight how dysfunction in this network may be involved in the contextualization of fear associations that underlie several forms of psychopathology, including post-traumatic stress disorder, schizophrenia and substance abuse disorders. This article is protected by copyright. All rights reserved. © 2015 Wiley Periodicals, Inc.
Article
Lewy body (LB) diseases are characterized by alpha-synuclein (AS) aggregates in the central nervous system (CNS). Involvement of the peripheral autonomic nervous system (pANS) is increasingly recognized, although less studied. The aim of this study was to systematically analyze the distribution and severity of AS pathology in the CNS and pANS. Detailed postmortem histopathological study of brain and peripheral tissues from 28 brain bank donors (10 with Parkinson's disease [PD], 5 with dementia with LB [DLB], and 13 with non-LB diseases including atypical parkinsonism and non-LB dementia). AS aggregates were found in the pANS of all 15 LB disease cases (PD, DLB) in stellate and sympathetic ganglia (100%), vagus nerve (86.7%), gastrointestinal tract (86.7%), adrenal gland and/or surrounding fat (53.3%), heart (100%), and genitourinary tract (13.3%), as well as in 1 case of incidental Lewy body disease (iLBD). A craniocaudal gradient of AS burden in sympathetic chain and gastrointestinal tract was observed. DLB cases showed higher amounts of CNS AS aggregates than PD cases, but this was not the case in the pANS. No pANS AS aggregates were detected in Alzheimer's disease (AD) cases with or without CNS AS aggregates. All pathologically confirmed LB disease cases including 1 case of iLBD had AS aggregates in the pANS with a craniocaudal gradient of pathology burden in sympathetic chain and gastrointestinal tract. AS was not detected in the pANS of any AD case. These findings may help in the search of peripheral AS aggregates in vivo for the early diagnosis of PD. © 2013 International Parkinson and Movement Disorder Society.
Article
Olfactory dysfunction is an early and common symptom in Parkinson's disease (PD). In an effort to determine whether otherwise unexplained (idiopathic) olfactory dysfunction is associated with an increased risk of developing PD, we designed a prospective study in a cohort of 361 asymptomatic relatives (parents, siblings, or children) of PD patients. A combination of olfactory detection, identification, and discrimination tasks was used to select groups of hyposmic (n = 40) and normosmic (n = 38) individuals for a 2-year clinical follow-up evaluation and sequential single-photon emission computed tomography (SPECT), using [123I]β-CIT as a dopamine transporter ligand, to assess nigrostriatal dopaminergic function at baseline and 2 years from baseline. A validated questionnaire, sensitive to the presence of parkinsonism, was used in the follow-up of the remaining 283 relatives. Two years from baseline, 10% of the individuals with idiopathic hyposmia, who also had strongly reduced [123I]β-CIT binding at baseline, had developed clinical PD as opposed to none of the other relatives in the cohort. In the remaining nonparkinsonian hyposmic relatives, the average rate of decline in dopamine transporter binding was significantly higher than in the normosmic relatives. These results indicate that idiopathic olfactory dysfunction is associated with an increased risk of developing PD of at least 10%. Ann Neurol 2004
Article
Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.
Article
Parkinson's disease (PD) is characterized by its motor impairment. However, non-motor symptoms such as psychiatric disorders, autonomic disturbances and sleep disorders frequently complicate the course of the disease. In particular, psychiatric disturbances including cognitive impairment, depression and psychosis impact these patients considerably. Approximately 31 % of PD patients suffer from cognitive impairment and dementia. Currently, two different clinical presentations are distinguished in PD patients, who present with dementia: Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), which are two different presentations of a single underlying disease process leading to the deposition of alpha-synuclein. Clinically, PDD is distinguished from DLB alone by the different temporal manifestations of extrapyramidal motor symptoms. Dementia is characterized by a subtle onset and progressive cognitive decline with a predominant dysexecutive syndrome, which can be accompanied by different behavioral symptoms such as hallucinations, depression, anxiety and sleep disorders. Dysregulation of different neurotransmitters has been associated with cognitive decline, but reduced cholinergic transmission is currently thought to be the pivotal mechanism in the development of cognitive dysfunction. Therefore, cholinesterase inhibitors are used in the treatment of dementia and accompanying behavioral symptoms in PDD and DLB. The occurrence of dementia impacts not only the patients themselves but also their care-givers and family.This article focuses on the clinical issues related to both disorders and is based on a meeting of experts which took place in April 2008 in Dresden.
Article
Neurogastroenterology is defined as neurology of the gastrointestinal tract, liver, gallbladder and pancreas and encompasses control of digestion through the enteric nervous system (ENS), the central nervous system (CNS) and integrative centers in sympathetic ganglia. This Review provides a broad overview of the field of neurogastroenterology, with a focus on the roles of the ENS in the control of the musculature of the gastrointestinal tract and transmucosal fluid movement. Digestion is controlled through the integration of multiple signals from the ENS and CNS; neural signals also pass between distinct gut regions to coordinate digestive activity. Moreover, neural and endocrine control of digestion is closely coordinated. Interestingly, the extent to which the ENS or CNS controls digestion differs considerably along the digestive tract. The importance of the ENS is emphasized by the life-threatening effects of certain ENS neuropathies, including Hirschsprung disease and Chagas disease. Other ENS disorders, such as esophageal achalasia and gastroparesis, cause varying degrees of dysfunction. The neurons in enteric reflex pathways use a wide range of chemical messengers that signal through an even wider range of receptors. These receptors provide many actual and potential targets for modifying digestive function.
Article
Inclusions composed of α-synuclein (α-syn), i.e., Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Here, we demonstrate that preformed fibrils generated from full-length and truncated recombinant α-syn enter primary neurons, probably by adsorptive-mediated endocytosis, and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild-type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and, eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions and their impact on neuronal functions, and they provide a model for discovering therapeutics targeting pathologic α-syn-mediated neurodegeneration.
Article
Parkinson’s disease (PD) is characterized by its motor impairment. However, non-motor symptoms such as psychiatric disorders, autonomic disturbances and sleep disorders frequently complicate the course of the disease. In particular, psychiatric disturbances including cognitive impairment, depression and psychosis impact these patients considerably. Approximately 31 % of PD patients suffer from cognitive impairment and dementia. Currently, two different clinical presentations are distinguished in PD patients, who present with dementia: Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB), which are two different presentations of a single underlying disease process leading to the deposition of α-synuclein. Clinically, PDD is distinguished from DLB alone by the different temporal manifestations of extrapyramidal motor symptoms. Dementia is characterized by a subtle onset and progressive cognitive decline with a predominant dysexecutive syndrome, which can be accompanied by different behavioral symptoms such as hallucinations, depression, anxiety and sleep disorders. Dysregulation of different neurotransmitters has been associated with cognitive decline, but reduced cholinergic transmission is currently thought to be the pivotal mechanism in the development of cognitive dysfunction. Therefore, cholinesterase inhibitors are used in the treatment of dementia and accompanying behavioral symptoms in PDD and DLB. The occurrence of dementia impacts not only the patients themselves but also their care-givers and family. This article focuses on the clinical issues related to both disorders and is based on a meeting of experts which took place in April 2008 in Dresden.
Article
Depression is a frequently encountered non-motor feature of Parkinson's disease (PD) and it can have a significant impact on patient's quality of life. Considering the differential pathophysiology of depression in PD, it prompts the idea that a degenerated nigrostriatal system plays a role in depressive-like behaviors, whilst animal models of PD are employed. Therefore, we addressed the question of whether dopamine (DA) depletion, promoted by the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS) and rotenone are able to induce depressive-like behaviors and neurotransmitters alterations similarly that encountered in PD. To test this rationale, we performed intranigral injections of each neurotoxin, followed by motor behavior, depressive-like behaviors, histological and neurochemical tests. After the motor recovery period, MPTP, 6-OHDA and rotenone were able to produce anhedonia and behavioral despair. These altered behavioral responses were accompanied by reductions of striatal DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) restricted to the 6-OHDA group. Additionally, decreases on the hippocampal serotonin (5-HT) content were detected for the MPTP, 6-OHDA and rotenone groups. Notably, strong correlations were detected among the groups when 5-HT and DA were correlated with swimming (r=+0.97; P=0.001) and immobility (r=-0.90; P=0.012), respectively. Our data indicate that MPTP, 6-OHDA and rotenone, but not LPS were able to produce depressive-like behaviors accompanied primarily by hippocampal 5-HT reductions. Moreover, DA and 5-HT strongly correlated with "emotional" impairments suggesting an important participation of these neurotransmitters in anhedonia and behavioral despair after nigral lesions promoted by the neurotoxins.
Article
Involvement of the peripheral nervous system (PNS) is relatively common in some neurodegenerative proteinopathies of the brain and may be pathogenetically and diagnostically important. In Parkinson's disease, neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the central nervous system (CNS), sympathetic ganglia, enteric nervous system, cardiac and pelvic plexuses, submandibular gland, adrenal medulla and skin. The pathological process may target the PNS and CNS at the same time. In multiple system atrophy, numerous glial cytoplasmic inclusions composed of filamentous alpha-synuclein are widely distributed in the CNS, while alpha-synuclein accumulation is minimal in the sympathetic ganglia and is restricted to neurons. Neurofibrillary tangles can occur in the sympathetic and spinal ganglia in tauopathy, although they appear to develop independently of cerebral Alzheimer's disease pathology. In amyotrophic lateral sclerosis, neuronal loss with TDP-43-positive neuronal cytoplasmic inclusions in the spinal ganglia is more frequent than previously thought. Peripheral ganglia and visceral organs are also involved in polyglutamine diseases. Further elucidation and characterization of PNS lesions will have implications for intravital biopsy diagnosis in neurodegenerative proteinopathy, particularly in Parkinson's disease.
Article
Transcription of Bdnf is controlled by multiple promoters, in which promoter IV contributes significantly to activity-dependent Bdnf transcription. We have generated promoter IV mutant mice [brain-derived neurotrophic factor (BDNF)-KIV] in which promoter IV-driven expression of BDNF is selectively disrupted by inserting a green fluorescent protein (GFP)-STOP cassette within the Bdnf exon IV locus. BDNF-KIV animals exhibited depression-like behavior as shown by the tail suspension test (TST), sucrose preference test (SPT) and learned helplessness test (LHT). In addition, BDNF-KIV mice showed reduced activity in the open field test (OFT) and reduced food intake in the novelty-suppressed feeding test (NSFT). The mutant mice did not display anxiety-like behavior in the light and dark box test and elevated plus maze tests. Interestingly, the mutant mice showed defective response inhibition in the passive avoidance test (PAT) even though their learning ability was intact when measured with the active avoidance test (AAT). These results suggest that promoter IV-dependent BDNF expression plays a critical role in the control of mood-related behaviors. This is the first study that directly addressed the effects of endogenous promoter-driven expression of BDNF in depression-like behavior.
Article
Parkinson's disease (PD) is a common neurodegenerative movement disorder afflicting millions of people in the United States. The advent of transgenic technologies has contributed to the development of several new mouse models, many of which recapitulate some aspects of the disease; however, no model has been demonstrated to faithfully reproduce the full constellation of symptoms seen in human PD. This may be due in part to the narrow focus on the dopamine-mediated motor deficits. As current research continues to unmask PD as a multi-system disorder, animal models should similarly evolve to include the non-motor features of the disease. This requires that typically cited behavioral test batteries be expanded. The major non-motor symptoms observed in PD patients include hyposmia, sleep disturbances, gastrointestinal dysfunction, autonomic dysfunction, anxiety, depression, and cognitive decline. Mouse behavioral tests exist for all of these symptoms and while some models have begun to be reassessed for the prevalence of this broader behavioral phenotype, the majority has not. Moreover, all behavioral paradigms should be tested for their responsiveness to L-DOPA so these data can be compared to patient response and help elucidate which symptoms are likely not dopamine-mediated. Here, we suggest an extensive, yet feasible, battery of behavioral tests for mouse models of PD aimed to better assess both non-motor and motor deficits associated with the disease.