ArticlePDF AvailableLiterature Review

Abstract and Figures

Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10–20%) should be consumed with a target weight gain of ~0.25–0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6–2.2 g/kg/day) should be consumed with optimal amounts 0.40–0.55 g/kg per meal and distributed evenly throughout the day (3–6 meals) including within 1–2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5–1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3–5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3–5 g/day), caffeine (5–6 mg/kg), beta-alanine (3–5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Content may be subject to copyright.
sports
Review
Nutrition Recommendations for Bodybuilders in the
O-Season: A Narrative Review
Juma Iraki 1, *, Peter Fitschen 2, Sergio Espinar 1and Eric Helms 3
1Iraki Nutrition AS, 2008 Fjerdingby, Norway
2Fitbody and Physique LLC, Stevens Point, WI 54481, USA
3
Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of
Technology, Auckland 0632, New Zealand
*Correspondence: juma@irakinutrition.com; Tel.: +47-47-44-36-44
Received: 20 May 2019; Accepted: 24 June 2019; Published: 26 June 2019


Abstract:
Many nutrition practices often used by bodybuilders lack scientific support and can be
detrimental to health. Recommendations during the dieting phase are provided in the scientific
literature, but little attention has been devoted to bodybuilders during the o-season phase. During
the o-season phase, the goal is to increase muscle mass without adding unnecessary body fat.
This review evaluated the scientific literature and provides nutrition and dietary supplement
recommendations for natural bodybuilders during the o-season phase. A hyper-energetic diet
(~10–20%) should be consumed with a target weight gain of ~0.25–0.5% of bodyweight/week for
novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the
caloric surplus and weekly weight gain. Sucient protein (1.6–2.2 g/kg/day) should be consumed
with optimal amounts 0.40–0.55 g/kg per meal and distributed evenly throughout the day (3–6 meals)
including within 1–2 hours pre- and post-training. Fat should be consumed in moderate amounts
(0.5–1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming
sucient amounts (
3–5 g/kg/day) to support energy demands from resistance exercise. Creatine
monohydrate (
3–5 g/day
), caeine (5–6 mg/kg), beta-alanine (3–5 g/day) and citrulline malate (8 g/day)
might yield ergogenic eects that can be beneficial for bodybuilders.
Keywords: Bodybuilding; nutrition; muscle hypertrophy
1. Introduction
Bodybuilding is more than a sport; it is an art and culture. It dierentiates itself from performance
sports as the athletes are judged on appearance rather than athletic ability on competition day.
Bodybuilders pose onstage where they are judged on muscularity, definition, and symmetry. During a
season, bodybuilders go through three dierent phases: muscle-gaining phase (o-season), dieting
for competition (contest preparation) and the competition itself. Most of the literature surrounds the
dieting phase [1].
However, the scientific literature on dietary recommendations for bodybuilders in the o-season
is lacking. This is an important gap, as most of a bodybuilder’s career is spent in this phase where
the goal is to increase muscle mass while minimizing excess increases in fat mass. Bodybuilders
are known for having rigid attitudes toward food selection, meal frequency, nutrition timing and
supplementation [
2
]. Historically, information about nutrition and supplementation has been passed
on by bodybuilding magazines and successful competitors, but recently more information has emerged
via the internet and forums [
3
,
4
]. As such, many of the dietary strategies used by bodybuilders do not
have sound scientific support and there is evidence in the scientific literature that a number of these
strategies, including the heavy use of dietary supplements, can be detrimental to health [57].
Sports 2019,7, 154; doi:10.3390/sports7070154 www.mdpi.com/journal/sports
Sports 2019,7, 154 2 of 19
Since bodybuilders spend most of their time in the o-season, there is a clear need for safe and
evidence-based nutrition and dietary supplement recommendations for this population. There is also
evidence that some bodybuilders, especially high-level competitors in natural bodybuilding, may be
interested in evidence-based information [
8
]. The purpose of this review is to evaluate the scientific
literature on topics related to nutrition and dietary supplementation relevant for bodybuilders in the
o-season and provide practical recommendations for energy intake, macronutrients, meal frequency,
nutrient timing and dietary supplements.
2. Energy
During the o-season, the main goal of a bodybuilder is to increase muscle mass while minimizing
increases in fat mass through the use of resistance training and maintaining a positive energy balance.
In order to accurately assess energy requirements for bodybuilders during the o-season, training
volume, frequency and intensity must be considered. During the o-season phase, it has been reported
that bodybuilders resistance train 5–6 times a week, exercising each muscle group 1–2 times weekly [
9
].
It was also reported that they follow a high-volume training routine with 4–5 exercises per muscle
group, performing 3–6 sets per exercise, 7–12 repetition maximum (RM) for each set with 1–2 min rest
between sets. Training session duration was reported as ~40–90 min. However, training plans can
dier greatly from athlete to athlete. The average calorie intake of bodybuilders must also be evaluated.
In the o-season, energy intake is usually substantially higher compared to the dieting phase with
dietary intakes among male bodybuilders being reported at an average intake of ~3800 kcal/day during
the o-season and ~2400 kcal/day during the dieting phase [
2
]. Due to the limited information available
on nutritional strategies during the o-season phase, this review will discuss optimizing strategies
during this phase. However, readers are encouraged to read the review by Helms and colleagues
on the dieting phase which also covers recommendations for macronutrients, meal frequency and
nutrient timing as well as dietary supplements [1].
Positive Energy Balance
Positive energy balance has been shown to have an important anabolic eect, even in the absence
of resistance training [
10
]. However, combining a positive energy balance with resistance training
provides the most eective method to ensure the anabolic eects are directed toward increasing
skeletal muscle mass [
11
,
12
]. The ideal size of the energy surplus to gain lean mass while limiting
the accumulation of adipose tissue may dier based upon training status. In untrained subjects,
a substantial energy surplus of ~2000 kcal combined with resistance training has been shown to
provide robust weight gain where the contribution from lean body mass (LBM) can be as high as
100% [
12
]. However, in trained subjects, substantial energy surpluses might not be necessary or
beneficial. One study conducted on elite athletes looked at the eect of dietary guidance on body
composition changes among elite athletes when resistance training was combined with dierent energy
surplus magnitudes. One group with an average bodyweight of 75 kg, consumed energy ad libitum
(2964 kcal) to reach a very small surplus, while a second group with an average body weight of 71 kg
received dietary counseling and consumed ~600 kcal more than the ad libitum group [13].
Both groups followed the same 4-days per week resistance training program over a period of
8–12 weeks. The researchers hypothesized that the hyper-energetic group would have greater gains
in body weight and LBM. Although the hyper-energetic group achieved greater increases in LBM
compared to those eating ad libitum, this failed to reach statistical significance (1.7 kg vs. 1.2 kg,
respectively). Further, compared to the ad libitum group they had significantly larger increases in fat
mass (1.1 kg vs. 0.2 kg, respectively). The researchers concluded that a 200–300 kcal per day surplus in
highly trained athletes might be more appropriate than 500 kcal to minimize the risk of unnecessary
increases in body fat. Untrained subjects, further from their genetic ceiling of muscle mass, may be
able to gain muscle at a faster rate compared to trained individuals.
Sports 2019,7, 154 3 of 19
Rates of muscle growth may slow as an individual becomes more advanced [
14
]. Thus,
larger energy surpluses may be more beneficial for novice bodybuilders, while advanced bodybuilders
might benefit more from conservative hyper-energetic diets to limit unnecessary increases in body fat.
Previous studies have recommended bodybuilders to consume a slightly hyper-energetic diet with a
~15% increase in energy intake above maintenance in the o-season [
15
]. However, this does not take
into consideration the training history and experience level of the individual bodybuilder. Because
the ability to gain muscle mass is limited, an aggressive surplus can result in an unnecessary gain
of body fat, which would increase the duration or the severity of subsequent contest prep periods,
consequentially increasing the duration or severity of low energy availability. Thus, the number of
calories a bodybuilder consumes above maintenance may need to be set based on experience level,
then adjusted based on rate of weight gain and changes in body composition. Given that bodybuilders
often experience rapid weight gain after a competition, it might be beneficial to have a target for weight
gain per week and adjust accordingly [16,17].
However, initially post competition, a faster weight gain to help restore a competitor to a healthy
status both psychologically and physiologically might be beneficial before the rate of weight gain
is slowed to limit excessive accumulation of adipose tissue. In the scientific literature, it has been
recommended to aim for a target weight gain of ~0.25–0.5 kg per week when trying to increase LBM
and minimize gains in fat mass [
14
,
18
]. For the advanced bodybuilder, a potential 2 kg increase in
body weight on a monthly basis might be too excessive and result in unnecessary accrual of body fat;
thus, this rate should be considered with caution. Based on the current evidence, it may be appropriate
to recommend bodybuilders to consume a slightly hyper-energetic diet (~10–20% above maintenance
calories) in the o-season and recommend advanced bodybuilders to aim for the lower end of this
recommendation, or even be more conservative if substantial increases in fat mass are experienced.
Given that bodybuilders on average consume 45 kcal/kg during the o-season, the recommended
surplus would equate to approximately 42–48 kcal/kg [
2
]. Aiming for a target weight gain of ~0.25–0.5%
of bodyweight per week might be useful, while also adjusting energy intake based on changes in body
composition. In addition, it may be more appropriate to look at average weekly weight changes based
on daily (or multiple times per week) weigh ins to limit the errors of daily fluctuations of weight that
may occur during the week. Once caloric surplus is determined, the next step would be to distribute
the calories between protein, fats and carbohydrates.
3. Protein
Skeletal muscle protein turnover is the relationship between muscle protein synthesis (MPS) and
muscle protein breakdown (MPB). Skeletal muscle hypertrophy requires a net balance where MPS
exceeds MPB. Resistance exercise provides the initiating tension stimulus that drives hypertrophy
resulting from cumulative increases in MPS after chronic resistance exercise [
19
]; however, increases in
fat free mass (FFM) can be limited if an insucient daily protein intake is consumed [
20
]. In addition
to the total amount consumed per day, researchers have speculated that the quality of protein may
augment resistance training-induced muscle gain [
21
]. Thus, both of these topics will be discussed in
the following sections.
3.1. Daily Intake
While the current RDA for protein in healthy individuals is 0.8 g/kg, twice this amount was
observed to maximize resistance training-induced hypertrophy in a 2018 meta-analysis by Morton and
colleagues [
22
]. Furthermore, the authors noted “it may be prudent to recommend ~2.2 g protein/kg/d
for those seeking to maximize resistance training-induced gains in FFM”, as 2.2 g/kg was the upper
end of the confidence limit [
22
] and individual dierences dictate that some athletes will have higher
protein needs than others [
23
]. Additionally, a “better safe than sorry” recommendation is likely safe
given the lack of apparent harm over 1–2 year trials among lifters consuming protein intakes of at
least 2.2 g/kg [
24
,
25
]. Finally, the mean and upper 95% confidence limit for protein requirements using
Sports 2019,7, 154 4 of 19
the indicator amino acid oxidation technique among male bodybuilders on non-training days, were
reported as 1.7 and 2.2 g/kg [
26
], respectively—which is similar to the requirement among women
when normalized to FFM [27].
However, bodybuilders have been reported to consume up to 4.3 g/kg of protein per day
among males, and 2.8 g/kg among females which far exceeds these recommendations [
2
]. Guidelines
previously given for bodybuilders in the o-season, were to consume 25–30% of their energy intake from
protein [
15
]. It might be reasonable to argue against giving recommendations based on percentages of
total energy intake, due to the fact that a light individual with high energy requirements might end up
consuming protein which far exceeds what is necessary and required. Further, this can also lead to
insucient intakes of carbohydrates and fats if an athlete is targeting a specific caloric intake. Thus,
recommending protein requirements based on body weight might be more appropriate. Therefore,
bodybuilders should consume a minimum of 1.6 g/kg of protein in the oseason, although targeting
closer to 2.2 g/kg may ensure a more consistently optimized response across a greater proportion
of athletes.
Finally, among bodybuilders who struggle with oseason hunger and subsequently consume
energy intakes that lead to faster rates of weight gain and excess fat accumulation, a higher protein
intake may be useful (if not contraindicated for clinical reasons). In a study by Antonio and colleagues,
resistance trained participants consuming more protein (4.4 g/kg per day) and more calories gained
a similar amount of FFM, but did not gain additional body fat compared to a lower protein group
consuming fewer calories [
28
]. Likewise, in a follow up study, a group consuming 3.4 g/kg of protein
daily gained a similar amount of FFM, but lost a greater proportion of body fat compared to a lower
protein group, once again, despite a higher energy intake [
29
]. The authors of these “free living” studies
speculated their findings were due to increases in dietary induced thermogenesis via the very high
protein diets. However, this is at odds with a more tightly controlled 2012 metabolic ward study by
Bray and colleagues in which the protein content of the diet influenced the proportion of FFM gained,
while total body mass was dictated by the diet’s energy content alone [30].
Thus, while dietary induced thermogenesis may indeed be meaningfully higher with protein
intakes in the 3 g/kg or higher range, the fat loss or lack of weight gain observed by Antonio and
colleagues, despite a reported higher energy intake, might also reflect the satiating eect of very high
protein intakes decreasing actual energy intake, rather than an increase in thermogenesis alone.
3.2. Protein Quality
Essential amino acids (EAA) are the only amino acids required to stimulate the process of MPS [
31
].
While all amino acids provide the necessary “building blocks” for the synthesis of new tissue, the amino
acid leucine in particular appears to be especially important as a “metabolic trigger” of MPS [
32
].
A sucient concentration of leucine has been suggested to be necessary to reach a “leucine threshold”
which is required to maximally stimulate MPS [
33
]. In short, from a muscle building perspective,
protein sources that both trigger a robust MPS response (sucient leucine quantity) and provide
the essential building blocks for the construction of new muscle tissue (contain the full spectrum of
essential amino acids in abundance) can be seen as “higher quality”.
While the mechanistic eect of leucine on MPS is beyond the scope of this publication, readers are
encouraged to read a review that covers this topic in detail [
34
]. In general, on a gram per gram basis,
animal-based protein sources typically contain more leucine and EAA, although there are notable
exceptions. Soy protein, one of the most common plant-based protein supplements, has all the EAA,
but in a lower amount per gram compared to dairy protein and thus, in one study produced a smaller
increase in MPS compared to whey after acute ingestion [
35
]. Interestingly, in this same study soy
produced a larger increase in MPS than casein, also a “high quality” dairy protein, presumably due to
the slower digestion speed of casein [
35
]. Meaning, while the leucine and EAA content of a protein
source certainly should be considered, the acute MPS response is not the only variable linked to long
term hypertrophy. Indeed, a high-quality but “slow” protein like casein produces a smaller amplitude
Sports 2019,7, 154 5 of 19
MPS response initially. However, casein (and other slowly digested proteins) may produce a similar or
larger MPS area under the curve when viewed longitudinally compared to a “fast” protein source like
whey, which results in a larger initial increase and then a steep reduction [36].
More importantly, the acute MPS response to a given type of protein should not be viewed from a
reductionist perspective. In the real world, multiple servings of various protein sources are consumed
daily, likely making some of these distinctions in amino acid profile and digestion kinetics moot.
Indeed, in a meta-analysis comparing longitudinal body composition changes with dierent types of
protein supplements, there were no significant dierences among participants consuming soy when
compared to whey, other dairy proteins, or beef protein isolate [37].
As demonstrated in a study comparing groups consuming post-training protein (on top of a diet
already consisting of 25% protein), whether 48 g of whey (containing 5.5 g of leucine) was provided,
or 48 g of rice protein (containing 3.8 g of leucine) was provided, no impact was observed on body
composition changes between groups after eight weeks [
38
]. Therefore, when consumed in sucient
quantities (especially considering total daily protein intake) the protein quality of an individual meal
is of less concern. Even so, if one was to consume a diet dominated by plant-based protein sources,
there are alternatives to soy and rice. For example, pea protein isolate is rich in both EAA and
leucine. In a 12-week study, a group consuming 50 g of pea protein isolate daily had greater increases
in resistance-training induced muscle thickness compared to placebo, which were not significantly
dierent from a group consuming 50 g of whey [39].
Therefore, in the context of the recommendations in this article, protein quality may only be a
concern if using the low-end range of the protein guidelines (1.6 g/kg), or if consuming a largely plant
based diet. In either case, it might prove beneficial to supplement with leucine and EAA rich sources of
protein—as appropriate based on dietary preference (e.g., dairy proteins or pea protein if vegan)—to
ensure the expected MPS response to one’s protein intake occurs.
4. Fats
Fat is an essential nutrient vital for many functions in the body. However, less is known about the
eect of dietary fat in regard to skeletal muscle hypertrophy. Intakes of dietary fat among bodybuilders
have been reported to range from 8–33% of total calories [
2
]. Although intramuscular triglycerides can
act as a fuel source during resistance training, they are not a limiting factor since substrates are derived
primarily from anaerobic processes [
40
]. Of interest to the bodybuilder, there is evidence in endurance
athletes [
41
] and hockey players [
42
] that low carbohydrate diets (30–45% of energy or lower) may
aect the free testosterone to cortisol (fTC) ratio, which could have a negative impact on recovery.
On the other hand, reducing dietary fat in isocaloric diets from ~30–40% to ~15–25% has resulted in
significant but modest reductions in testosterone levels [4346].
However, it is not clear that testosterone changes within normal ranges aect muscle gain
significantly [
47
]. Despite the possibility that testosterone levels may be higher when consuming a
greater proportion of energy from dietary fat, actual changes in muscle mass during longitudinal
studies of resistance trained individuals following high fat, ‘ketogenic’ diets have consistently been
inferior to moderate or lower fat approaches with ample carbohydrate [
48
51
]. Whether this is due to
changes in exercise capacity, or alterations in fTC ratio, or some other mechanism related to the high
fat or low carbohydrate component of the diet is yet to be elucidated.
However, this indicates that perhaps a more moderate proportion of dietary fat should be
consumed, rather than a low or high intake. In the literature, recommendations of 15–20% and 20–30%
of calories from dietary fat have been proposed [
15
,
52
]. However, further research is needed to establish
the eect and optimal amount of dietary fat for aiding muscle hypertrophy.
Based on current evidence, it may be prudent to recommend that dietary fats should account
for 20–35% of calories—conforming to The American College of Sports Medicine recommendations
for athletes [
53
]—which under most circumstances would equate to approximately 0.5–1.5 g/kg/day.
Sports 2019,7, 154 6 of 19
Further, it should be noted that sucient intakes of dietary protein and carbohydrates should not be
compromised by a high dietary fat intake.
Fat quality such as omega 3 and omega 6 might also be of importance for bodybuilders. Provided
sucient intake from a high-quality diet containing good sources of these fatty acids, they do not need
to be supplemented. However, it might be challenging for some to consume the optimal amounts.
Thus, this will be discussed in further detail in the dietary supplements section.
5. Carbohydrates
Unlike proteins and fats, carbohydrates are considered non-essential for the human diet because
the body has the ability to produce glucose needed by tissues through gluconeogenesis [
54
]. However,
carbohydrate intake has an important role in the bodybuilder’s diet as a regulator of thyroid hormones
and as a contributor to micronutrient needs [
55
,
56
]. Further, a very low carb diet could limit regeneration
of adenosine triphosphate (ATP) and limit the muscles’ ability to contract with high force [
57
,
58
].
During high intensity exercise, muscle-glycogen is the major contributor of substrate and it has been
shown that glycolysis provides ~80% of ATP demand from one set of elbow flexion when taken to
muscular failure [
59
]. In spite of this, part of the glycogen used during this type of exercise can be
resynthesized from lactate, which could reduce the carbohydrate requirement. Resistance training has
also been shown to reduce muscle-glycogen by 24–40% in a single session [59,60].
The depleted amount may vary based on duration, intensity and the work completed, but typical
bodybuilding training with higher repetition and moderate loads seems to cause the greatest reduction
of muscle-glycogen stores [
61
]. Further, it has been suggested that when glycogen stores are too low
(~70 mmol/kg), this may inhibit the release of calcium and hasten the onset of muscle fatigue [
62
].
Low muscle glycogen significantly reduces the number of repetitions performed when three sets of
squats at 80% 1 RM are performed [57].
However, it has been shown that consuming a diet containing 7.7 g/kg/day of carbohydrate for
48 hours before a training session has no greater eect on performance compared to 0.37 g/kg/day
when 15 sets of 15 RM lower-body exercise is performed [
63
]. Similarly, another study found that
a 70% carbohydrate diet compared to 50% carbohydrate diet had no greater eect on performance
during supramaximal exercise; however, a diet consisting of 25% carbohydrates significantly reduced
performance [64].
Further, given the observed long term negative eects on muscle mass recently observed in trials of
resistance-trained populations following ketogenic diets [
49
,
51
], it might be prudent for bodybuilders
to simply ensure a sucient intake of carbohydrates given these disparate results. Thus, while both
moderate and high carbohydrate diets are likely appropriate for bodybuilding, very low carbohydrate
diets may be detrimental to training.
In male bodybuilders, average carbohydrate intakes of 5.3 g/kg/day have been reported during the
o-season [
2
]. However, optimal amounts of carbohydrates have not been established for bodybuilders.
In the literature, recommendations for strength sports, which includes bodybuilding, intakes of
4–7 g/kg/day and 5–6 g/kg have been proposed [
15
,
65
]. Carbohydrate seems to be important for the
bodybuilder, but only moderate amounts may be required to yield benefits. Therefore, after calories
have been devoted to protein (1.6–2.2 g/kg/day) and fats (0.5–1.5 g/kg/day), the remaining calories
should be allotted to carbohydrates. However, based on current evidence, it might be reasonable to
consume sucient amounts of carbohydrates in the 3–5 g/kg/day range if possible.
Further research is warranted among bodybuilders to conclude if habitually higher or lower
carbohydrate intakes than have been observed might yield further benefits. Table 1summarizes the
recommendations for calories and macronutrients.
Sports 2019,7, 154 7 of 19
Table 1. Dietary recommendation for bodybuilders in the o-season.
Diet Component Recommendation
Novice/Intermediate Recommendation Advanced
Weekly weight gain ~0.25–0.5 (% of body weight) ~0.25 (% of body weight)
Calories +10–20% above maintenance +5–10% above maintenance
Protein 1.6–2.2 g/kg 1.6–2.2 g/kg
Fats 0.5–1.5 g/kg 0.5–1.5 g/kg
Carbohydrates
Remaining calories (
3–5 g/kg)
Remaining calories (3–5 g/kg)
6. Nutrient Distribution and Timing
Bodybuilders are reported to have a mean intake of six meals a day [
66
]; however, there are
no studies looking specifically at what might be an optimal meal frequency for this population [
65
].
This high frequency of meals is based on the belief of a greater state of anabolism and even a better use
of nutrients during the day, which could translate into an improvement in body composition.
The concept of timing protein intake to maximize hypertrophy spans a number of dosing strategies.
The first to appear in the literature was the consumption of protein in close proximity to resistance
training. Peak MPS rates are higher in this period when protein is consumed; thus, this strategy is
proposed to improve the eciency of skeletal muscle repair and remodeling [
31
]. Additionally, due to
the “muscle full eect”, whereby further provision of protein fails to increase MPS until sucient time
has passed, evenly spreading protein intake between multiple meals is another strategy designed to
maximize total daily MPS [
67
]. Finally, pre-bed consumption of slow-digesting protein (such as casein)
to prevent extended catabolic periods during sleep is the most recently proposed strategy to improve
net daily protein balance [68]. Each of these three strategies will be discussed in turn.
6.1. Protein Dosage
The post-training period permits a higher MPS peak when protein is consumed [
31
] and to reach
peak MPS, an adequate “threshold” leucine dose may be needed [
32
]. Several studies have examined
the protein dosage required to maximize MPS after training [
69
71
]. In one, 0, 5, 10, 20 or 40 g of whole
egg protein was consumed following lower-body resistance exercise with 20 g maximally stimulating
MPS [
69
]. Similar results were also seen in another study, where 20 g whey was sucient to maximally
stimulate post-absorptive rates of MPS both at rest and after unilateral leg work at 80% of 1 RM [
70
].
Further, 40 g of whey produced no additional increases of MPS in this study and lead to oxidation and
urea production.
However, a recent study found that when performing whole-body resistance exercise at 75% of
1 RM
, 40 g of whey produced a significantly higher MPS response compared to 20 g [
71
]. Therefore,
there is a relationship between the volume of muscle tissue that is damaged and stimulated, and the
appropriate intake of protein. Interestingly, authors of a 2013 meta-analysis noted that despite short
term tracer studies showing greater MPS responses when protein was consumed in the “window of
opportunity” post-training, in longitudinal training studies no significant eect on hypertrophy was
found when controlling for total daily protein intake regardless of whether protein was consumed
within the window, or outside it [72].
6.2. Nutrient Timing
Similarly, researchers in a short term tracer study investigating protein dosing over the course
of 12 hours reported a greater MPS area under the curve when four 20 g whey protein doses were
consumed every three hours compared to two 40 g doses six hours apart and eight 10 g doses every
hour and a half [
73
]. In theory, given the threshold past which additional protein consumed in a single
sitting does not further contribute to MPS [
69
], and due to the post-prandial “refractory period” during
Sports 2019,7, 154 8 of 19
which MPS cannot be maximally stimulated again [
67
], one would conclude that a bodybuilder should
reach—but not exceed—this threshold dose every few hours to maximize long term hypertrophy.
However, authors of a 2018 systematic review on protein supplements including 34 randomized
controlled trials, reported similar lean mass gains among groups using a with-meal (resulting in fewer
protein servings of a high magnitude) and between-meal (resulting in more protein servings of a
moderate magnitude) dosing schedule [74].
Intriguingly, data examining night-time protein feedings display a similar disconnect between
short term mechanistic studies and long-term training interventions. In 2012, the first research
examining the acute response to night-time casein feeding was carried out [
68
]. In it, the authors
reported 40 g of casein consumed before bed was digested, absorbed, and stimulated MPS and improved
whole-body protein balance during the overnight period to a greater degree than placebo. Additional
acute studies were published in the years following which confirmed [
75
] and also reconfirmed
these findings in an older population [
76
]. In 2015, authors of the first longitudinal study reported
enhanced strength and hypertrophy in a night-time protein-supplemented group compared to a
placebo group [77].
However, total daily protein was not matched, as the night-time protein group consumed
1.9 g/kg/day while the placebo group only consumed 1.3 g/kg. Importantly, in both of the only protein
matched longitudinal studies comparing night-time casein supplementation to earlier-supplemented
groups, no significant dierences in FFM gains were reported between groups [
78
,
79
]. Thus, the question
is the same for each distribution strategy, why are there repeated disconnects between short term
mechanistic studies of MPS and long-term research examining actual hypertrophy? The answer may
lie in the methods used in MPS studies as participants are fasted, provided only protein powder in
isolation, often given whey (which is digested very quickly) and observed for short periods. These lab
settings result in dierent digestion time courses and amino acid kinetics than occur in the “real world”.
Specifically, in these lab conditions baseline levels of amino acids in the body are lower than normal,
and digestion and subsequent delivery of amino acids to muscle is faster.
In free-living conditions, protein is consumed primarily from whole food sources, multiple times
per day, and in conjunction with other foods, all of which delays gastric emptying. For these reasons,
amino acids are titrated into the bloodstream in a slower, more consistent manner; thus, there is
almost always a readily available supply under normal conditions [
80
]. Therefore, the eectiveness
of the “anabolic window” and even protein distribution strategies might not translate to practice.
Additionally, lab-specific limitations extend to night-time feeding studies as well. Consider for example,
that 26 g of protein from lean steak results in a sustained elevation in MPS lasting at least six hours (the
entire time period studied) [81].
Furthermore, 26 g is only ~37% the protein dose contained on average in an American dinner [
82
],
which would take longer to digest due to the larger serving of protein, and the addition of fiber,
lipids and other nutrients which would further delay digestion [80]. Therefore, the typical final meal
may already fulfil the intended purpose of a casein shake. With that said, despite these disconnects
between MPS and body composition outcomes, there is certainly no harm from attempting these
strategies, especially if implemented in a pragmatic manner that doesn’t introduce additional logistical
strain on one’s daily schedule.
Therefore, it might be prudent to recommend bodybuilders to divide their daily intake of
1.6–2.2 g/kg
of protein per day into multiple meals each containing ~0.40–0.55 g/kg [
80
] and ensure
that one of these meals occurs within 1–2 hours before or after training, and one feeding consisting of
a non-whey protein source is consumed 1–2 hours prior to sleep. For example, a 90 kg bodybuilder
might consume 40–50 g of protein at 8–9 am for breakfast, train at 11 am, have 40–50 g of protein at
12–1 pm for lunch/post-training, 40–50 g of protein at dinner between 5–6 pm, and then a final meal of
40–50 g of non-whey protein at 9–10 pm before heading to bed by 11 pm.
Carbohydrates consumed peri-workout is often a strategy utilized by athletes to improve
performance in high intensity exercises. Complete glycogen resynthesis can be achieved within 24 hours
Sports 2019,7, 154 9 of 19
following a glycogen depleting training bout if sucient amounts of carbohydrate are consumed [
83
].
However, only 24–40% of muscle glycogen is depleted following resistance exercise [
59
,
60
]. Therefore,
an amount of
3–5 g/kg carbohydrates per day would most likely be enough for glycogen resynthesis.
This high daily carbohydrate intake likely also reduces the impact of pre-workout carbohydrate timing
on exercise performance.
Consuming carbohydrates with protein post-workout is often claimed to have a an anabolic
eect due to the secretion of insulin. Although insulin has been shown to have anabolic eects [
84
],
at physiological levels its release has little impact on post-exercise anabolism [
85
]. Further, several
studies have shown no further eects on muscle protein synthesis post-exercise when carbohydrates
are combined with amino acids [86,87].
In addition to bodybuilders lacking the need to emphasize glycogen replenishment, protein
enhances post workout MPS to maximal levels even without the addition of carbohydrate [
86
,
87
].
While there is certainly no harm in post-workout carbohydrate consumption, doing so is unlikely
to enhance long term hypertrophy as discussed in prior reviews [
1
,
88
]. Therefore, it may be best to
focus on consumption of adequate daily carbohydrate and base carbohydrate distribution around the
workout on personal preference.
7. Dietary Supplements
In a recent survey among bodybuilders, it was reported that all of the participants were taking
dietary supplements [
9
]. The most common dietary supplements were: protein supplements (86%),
creatine (68%), branched chain amino acids (67%), glutamine (42%), vitamins (40%), fish oil (37%) and
caeine/ephedrine containing products (24%).
Although protein supplements are popular among bodybuilders, they are predominantly used in
the same way as whole foods to reach protein targets. Therefore, they will not be discussed in further
detail. Readers are encouraged to read the ISSN position stance on this topic [
89
]. Further, covering all
supplements commonly used by bodybuilders is beyond the scope of this review. Rather, the focus
will be on dietary supplements that might potentially yield an ergogenic eect and supplements that
can insure sucient intake of micronutrients and essential fatty acids.
7.1. Creatine Monohydrate
Creatine phosphate is found in high concentrations in skeletal and cardiac muscle where it acts as
an energy source [
90
]. Creatine can also be obtained through the diet in individuals who consume
meat; however, creatine concentrations in meat are reduced with cooking [91].
Numerous studies have observed increases in muscle mass and strength following creatine loading
phases typically of 20 g daily for around 1 week oftentimes followed by maintenance phases of
2–3 g
creatine daily [
92
]. However, the loading phase may not be necessary. Muscle creatine saturation
following 3 g creatine monohydrate supplementation for 28 days was shown to be similar to creatine
monohydrate consumption following the typical loading phase [93].
Most individuals do not reach 3 g daily through the diet and supplementation may be necessary.
There are numerous forms of creatine in supplements on the market of which creatine monohydrate is
the most studied. Newer versions of creatine such as kre-alkalyn [
94
] and creatine ethyl-ester [
95
] have
not been shown to be superior to creatine monohydrate despite typically having a higher price point.
Therefore, we recommend consumption of 3 g creatine monohydrate daily. Timing of creatine does
not seem to matter as saturation of creatine phosphate stores takes approximately 28 days to reach
maximum concentrations when 3 g/day is consumed and does not have an acute eect [93].
7.2. Caeine
One of the most used dietary supplements among bodybuilders are stimulants, in particular
caeine [
9
]. In addition to increasing arousal [
96
], caeine can reduce pain and perceived exertion
during exercise [
97
] and improves calcium handling which may increase power output [
98
]. Studies on
Sports 2019,7, 154 10 of 19
resistance exercise have found that caeine reduces fatigue and increases strength [
99
,
100
]. However,
not all studies have shown an ergogenic eect on resistance exercise [
101
]. Studies that have shown an
ergogenic eect have used high dosages of caeine (5–6 mg/kg) which is at the upper limit of what is
considered a safe dosage [
99
,
100
]. However, it may be advisable to consume the minimum eective
dosage for an individual as tolerance can arise from regular intake [
102
]. Due to the acute eect
of caeine, it is advisable to consume caeine approximately 1 hour before exercise [
99
]. However,
the half-life of caeine is roughly 3–9 hours; therefore, it may be advisable to consume caeine earlier
in the day to support healthy sleep patterns if exercise is performed later in the day [
103
]. Further
research is warranted for a consensus on the use of caeine regarding resistance exercise but based
upon the current evidence a dosage of 5–6 mg/kg consumed pre-exercise might yield an ergogenic
eect on resistance exercise performance.
7.3. Beta-Alanine
Ingestion of 4–6 g beta-alanine has been shown to elevate muscle carnosine levels [
104
]. Carnosine
acts as a pH buer in skeletal muscle and may delay the onset of muscle fatigue during high-intensity
exercise [
105
]. A meta-analysis concluded that beta-alanine might yield ergogenic eects during
high-intensity exercise lasting 60–240 seconds [
104
]. Further, there were no beneficial eects in exercise
lasting <60 seconds. Most of the studies included in the meta-analysis looked at endurance exercise.
However, there is evidence that beta-alanine supplementation may improve muscular endurance
in resistance-trained athletes [
105
] and may improve body composition [
106
]. Further studies are
warranted to examine the ergogenic eect of beta-alanine on body composition and performance.
However, given that bodybuilders often train with more than 10 repetitions per set and often times
include intensity techniques such as drop sets, rest pauses, myo reps and others, beta alanine might
yield a benefit in the endurance of these sets [9].
Thus, it might be reasonable for a bodybuilder to consume 3–5 g beta alanine daily during high
repetition training phases or training phases where they are incorporating several intensity techniques
that prolong the duration of a set. Similar to creatine monohydrate, beta-alanine does not have an
acute eect as muscle carnosine concentrations takes approximately 4 weeks to reach concentrations
that would yield an ergogenic eect, provided that sucient amounts are consumed daily [104].
7.4. Citrulline Malate
Recently, citrulline malate has gained popularity among bodybuilders. The potential ergogenic
eect is thought to be increased ATP production and citrulline malate’s potential ability to act as a
buering agent [107]. Consumption of 8 g citrulline malate has been shown to increase repetitions to
failure by as much as 50 percent [
107
110
], decrease muscle soreness by 40 percent [
107
] and improve
maximal strength and anaerobic power [111].
However, not all studies have observed ergogenic eects of citrulline malate consumption.
Two recent
studies failed to show improvement in performance, augment the muscle swelling response
to training, alleviate fatigue or increase focus and energy following citrulline malate supplement in
recreational resistance trained men [112,113].
A recent meta-analysis by Trexler et al. analyzed 12 studies on CM for strength and power
performance [
114
]. Although they only found a small eect size (0.20), they concluded that this might
be relevant for high level athletes where competition outcomes are decided on small margins, such as
high level competitive bodybuilders. It is advised to consume citrulline malate approximately 60 min
before exercise to allow for sucient absorption.
Further research is warranted to determine the ecacy of citrulline malate for resistance exercise.
At this stage, the data indicates either a beneficial or neutral eect on performance. Thus, based on
current evidence, 8 g/day of citrulline malate consumed pre-exercise might have some benefits that are
of interest to bodybuilders.
Sports 2019,7, 154 11 of 19
7.5. Multivitamin/Mineral
Historically, bodybuilders have utilized restrictive diets that eliminate foods or entire food
groups. As a result, numerous vitamin and mineral deficiencies are common. In dieting bodybuilders,
deficiencies including calcium, vitamin D, zinc, iron and others have been observed [
115
117
]. However,
a majority of literature on dietary practices of bodybuilders is from the 1980’s and 1990’s; therefore,
more recent data is needed [2].
More recently, dieting practices in bodybuilders who use a traditional restrictive diet were
compared to competitors using a macronutrient-based dieting approach where no food or food group
was olimits [
118
]. Not surprisingly, competitors using a more flexible dieting approach were found
to have fewer micronutrient deficiencies. Specifically, vitamin E, vitamin K, and protein were found
to be significantly lower in women utilizing strict dietary approaches compared to those using more
flexible approaches. In the current review, we recommend using a flexible dieting approach where no
food or group is eliminated from the diet.
Thereby, micronutrient deficiencies are less likely to occur, especially considering that competitors
in the oseason have a greater caloric allotment than those dieting for a show which should allow
them to incorporate a greater variety of foods.
Nevertheless, it may be advisable to recommend a low dose multivitamin/mineral supplement
(
100% RDA) as a failsafe to prevent any major micronutrient deficiencies while also emphasizing
consumption of a variety of foods daily to meet micronutrient needs.
7.6. Omega 3
Polyunsaturated fatty acids with a double bond three atoms away from their terminal methyl group
are known as
ω
-3 or omega-3 fatty acids (O3). Low intakes of O3 in western diets in relation to other
sources of dietary fat (such as omega-6 fatty acids) are associated with poorer multi-spectrum health in
epidemiological studies [
119
]. Thus, specific focus on dietary changes to supply eicosapentaenoic and
docosahexaenoic acids (EPA and DHA)—the dietary shortfall most common in the western world—is
of interest; but it is worth noting the measurement, interaction, and eect of O3 and omega-6 fatty
acids in relation to health is unclear and beyond the scope of this article. Readers are referred to [
120
]
for a review.
In addition to health, there is interest regarding the potential anabolic eects of EPA and DHA
supplements [
121
] which are typically supplied via fish oil or in some cases algae oil. However,
there are mixed data on fish oil’s ability to augment the muscle protein synthesis response to protein
ingestion. While a 2014 review paper highlighted a number of studies which found fish oil can enhance
the response [
122
], a recent study found no eect on the MPS response to a resistance training session
and post-workout protein ingestion [
123
]. More importantly, data on longitudinal hypertrophy are
few [
124
] and studies on resistance training performance are mixed [
125
] and largely not applicable
or dicult to appraise due to the use of untrained participants or non-standardized, ecologically
unrealistic training relative to bodybuilding.
In a recent review specifically addressing the question of whether or not O3 supplements might
enhance hypertrophy [
126
], the authors concluded there is not currently sucient evidence to make
such a claim. While additional research is needed before O3 supplementation (or diet alterations for that
matter) can be recommended for muscle-building purposes, the health benefits of O3 supplementation
are worth noting. For example, recent meta-analyses have reported fish oil supplementation reduces
symptoms of depression [
127
], decreases risk of cardiac death [
128
], decreases blood pressure [
129
],
and decreases waist circumference [
130
]. Therefore, physique athletes may consider fish (or algae) oil
supplementation daily (2–3 g EPA/DHA) for general, multi spectrum health, but future study is needed
to make recommendations regarding bodybuilding performance. Table 2summarizes recommendation
for dietary supplements.
Sports 2019,7, 154 12 of 19
Table 2. Recommendations for dietary supplements and dosage for bodybuilders.
Dietary Supplement Recommended Dosage
Creatine monohydrate 3 g/day
Beta-alanine 3–5 g/day
Citrulline malate 8 g/day
Caeine 5–6 mg/kg
Multivitamin/mineral Low dose micronutrient supplement (100% RDA)
Omega 3 2–3 g EPA/DHA
8. Summary
Bodybuilders in the o-season should focus on consuming a slightly hyper-energetic diet (~10–20%
above maintenance calories) with the aim of gaining ~0.25–0.5% of bodyweight per week. Advanced
bodybuilders are advised to be more conservative with the caloric surplus and the rate of weekly
weight gain. Dietary protein intake is recommended to be 1.6–2.2 g/kg/day with a focus on sucient
protein at each meal (0.40–0.55 g/kg/meal) and an even distribution throughout the day (3–6 meals).
Dietary fats should be consumed at moderate levels, neither too low nor high (0.5–1.5 g/kg/day),
to prevent an unfavorable fTC ratio and to prevent reductions in testosterone levels. After calories
has been devoted to protein and fat, the remaining calories should come from carbohydrates while
ensuring sucient amounts are consumed (
3–5 g/kg/day). Minor benefits can be gained by consuming
protein (0.40–0.55 g/kg/meal) in close proximity to training sessions (1–2 hours pre-exercise and within
1–2 hours post-exercise). CM (3–5 g/day), and caeine (5–6 mg/kg) should be considered as they can
yield ergogenic eects for bodybuilders. Further, BA (3–5 g/day) and CITM (8 g/day) are dietary
supplements that can be considered as they may potentially be of benefit for bodybuilders, depending
on individual training regimens. Bodybuilders who are unable to consume a sucient intake of
micronutrients and essential fatty acids in their diets should consider supplementing these nutrients
to avoid deficiencies. The primary limitation of this review is the lack of large-scale and long-term
studies on bodybuilders in the o-season. Further research is warranted in this population to optimize
nutrition and dietary supplement recommendations.
Author Contributions:
Conceptualization, J.I.; methodology, J.I. and E.R.H.; investigation, analysis,
draft preparation, writing and editing, J.I., P.F., S.E. and E.H.
Funding: This research received no external funding.
Acknowledgments: We want to thank Alan Aragon for valuable opinions and feedback.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
Helms, E.R.; Aragon, A.A.; Fitschen, P.J. Evidence-based recommendations for natural bodybuilding contest
preparation: Nutrition and supplementation. J. Int. Soc. Sports Nutr. 2014,11, 20. [CrossRef] [PubMed]
2.
Spendlove, J.; Mitchell, L.; Giord, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary Intake of
Competitive Bodybuilders. Sports Med. 2015,45, 1041–1063. [CrossRef] [PubMed]
3.
Cho, S.; Lee, H.; Kim, K. Physical Characteristics and Dietary Patterns of Strength Athletes; Bodybuilders,
Weight Lifters. Korean J. Community Nutr.
2007
,12, 864–872. Available online: https://www.komci.org/
GSResult.php?RID=0106KJCN%2F2007.12.6.864&DT=6(accessed on 25 March 2019).
4.
Philen, R.M.; Ortiz, D.I.; Auerbach, S.B.; Falk, H. Survey of Advertising for Nutritional Supplements in
Health and Bodybuilding Magazines. JAMA 1992,268, 1008. [CrossRef] [PubMed]
5.
Giampreti, A.; Lonati, D.; Locatelli, C.; Rocchi, L.; Campailla, M.T. Acute neurotoxicity after yohimbine
ingestion by a bodybuilder. Clin. Toxicol.
2009
,47, 827–829. Available online: https://www.ncbi.nlm.nih.gov/
pubmed/19640235 (accessed on 25 March 2019). [CrossRef] [PubMed]
Sports 2019,7, 154 13 of 19
6.
Grunewald, K.K.; Bailey, R.S. Commercially Marketed Supplements for Bodybuilding Athletes. Sports Med.
1993,15, 90–103. [CrossRef]
7.
Della Guardia, L.; Cavallaro, M.; Cena, H. The risks of self-made diets: The case of an amateur bodybuilder.
J. Int. Soc. Sports Nutr. 2015,12, 5. [CrossRef]
8.
Mitchell, L.; Hackett, D.; Giord, J.; Estermann, F.; O’Connor, H. Do Bodybuilders Use Evidence-Based
Nutrition Strategies to Manipulate Physique? Sports
2017
,5, 76. Available online: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5969027/(accessed on 25 March 2019). [CrossRef]
9.
Hackett, D.A.; Johnson, N.A.; Chow, C.-M. Training Practices and Ergogenic Aids Used by Male Bodybuilders.
J. Strength Cond. Res. 2013,27, 1609–1617. [CrossRef]
10.
Forbes, G.B.; Brown, M.R.; Welle, S.L.; Lipinski, B.A. Deliberate overfeeding in women and men: Energy cost
and composition of the weight gain. Br. J. Nutr. 1986,56, 1–9. [CrossRef]
11.
Kreider, R.B.; Klesges, R.; Harmon, K.; Ramsey, L.; Bullen, D.; Wood, L.; Almada, A.; Grindsta, P.; Li, Y.
Eects of Ingesting Supplements Designed to Promote Lean Tissue Accretion on Body Composition during
Resistance Training. Int. J. Sport Nutr. 1996,6, 234–246. [CrossRef] [PubMed]
12.
Rozenek, R.; Ward, P.; Long, S.; Garhammer, J. Eects of high-calorie supplements on body composition and
muscular strength following resistance training. J. Sports Med. Phys. Fit. 2002,42, 340–347.
13.
Garthe, I.; Raastad, T.; Refsnes, P.E.; Sundgot-Borgen, J. Eect of nutritional intervention on body composition
and performance in elite athletes. Eur. J. Sport Sci. 2013,13, 295–303. [CrossRef] [PubMed]
14.
American College og Sports Medicine. American College of Sports Medicine position stand. Progression
models in resistance training for healthy adults. Med. Sci. Sport. Exerc.
2009
,41, 687–708. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/19204579 (accessed on 25 March 2019). [CrossRef] [PubMed]
15.
Lambert, C.P.; Frank, L.L.; Evans, W.J.; Lambert, D.C.P. Macronutrient Considerations for the Sport of
Bodybuilding. Sports Med. 2004,34, 317–327. [CrossRef] [PubMed]
16.
Walberg-Rankin, J.; Edmonds, C.E.; Gwazdauskas, F.C. Diet and Weight Changes of Female Bodybuilders
Before and After Competition. Int. J. Sport Nutr. 1993,3, 87–102. [CrossRef] [PubMed]
17.
Lamar-Hildebrand, N.; Saldanha, L.; Endres, J. Dietary and exercise practices of college-aged female
bodybuilders. J. Am. Diet. Assoc. 1989,89, 1308–1310. [PubMed]
18.
Houston, M.E. Gaining Weight: The Scientific Basis of Increasing Skeletal Muscle Mass. Can. J. Appl. Physiol.
1999,24, 305–316. [CrossRef]
19.
Phillips, S.M. A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Med.
2014,44, 71–77. [CrossRef] [PubMed]
20.
Campbell, B.I.; Aguilar, D.; Conlin, L.; Vargas, A.; Schoenfeld, B.J.; Corson, A.; Gai, C.; Best, S.; Galvan, E.;
Couvillion, K. Eects of High Versus Low Protein Intake on Body Composition and Maximal Strength in
Aspiring Female Physique Athletes Engaging in an 8-Week Resistance Training Program. Int. J. Sport Nutr.
Exerc. Metab. 2018,28, 580–585. [CrossRef] [PubMed]
21.
Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced
skeletal muscle hypertrophy. Front. Physiol. 2015,6, 1–9. [CrossRef] [PubMed]
22.
Morton, R.W.; Murphy, K.T.; McKellar, S.E.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.;
Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of
the eect of protein supplementation on resistance training-induced gains in muscle mass and strength in
healthy adults. Br. J. Sports Med.
2018
,52, 376–384. Available online: https://www.ncbi.nlm.nih.gov/pubmed/
28698222 (accessed on 25 March 2019). [CrossRef] [PubMed]
23.
Houltham, S.D.; Rowlands, D.S. A snapshot of nitrogen balance in endurance-trained women. Appl. Physiol.
Nutr. Metab. 2014,39, 219–225. [CrossRef] [PubMed]
24.
Antonio, J.; Ellerbroek, A. Case Reports on Well-Trained Bodybuilders: Two Years on a High Protein Diet.
JEPonline
2018
,21, 14–24. Available online: https://www.asep.org/asep/asep/JEPonlineFEBRUARY2018_
Antonio.pdf (accessed on 25 March 2019).
25.
Antonio, J.; Ellerbroek, A.; Silver, T.; Vargas, L.; Peacock, C. The eects of a high protein diet on indices of
health and body composition—A crossover trial in resistance-trained men. J. Int. Soc. Sports Nutr.
2016
,13, 8.
[CrossRef] [PubMed]
26.
Bandegan, A.; Courtney-Martin, G.; Rafii, M.; Pencharz, P.B.; Lemon, P.W. Indicator Amino Acid–Derived
Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater
than the Current Recommended Dietary Allowance. J. Nutr. 2017,147, 850–857. [CrossRef] [PubMed]
Sports 2019,7, 154 14 of 19
27.
Malowany, J.M.; West, D.W.D.; Williamson, E.; Volterman, K.A.; Sawan, S.A.; Mazzulla, M.; Moore, D.R.
Protein to Maximize Whole-Body Anabolism in Resistance-trained Females after Exercise. Med. Sci.
Sports Exerc. 2019,51, 798–804. [CrossRef]
28.
Antonio, J.; Peacock, C.A.; Ellerbroek, A.; Fromho, B.; Silver, T. The eects of consuming a high protein
diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J. Int. Soc. Sports Nutr. 2014,11, 19.
[CrossRef]
29.
Antonio, J.; Ellerbroek, A.; Silver, T.; Orris, S.; Scheiner, M.; Gonzalez, A.; Peacock, C.A. A high protein diet
(3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy
trained men and women—A follow-up investigation. J. Int. Soc. Sports Nutr. 2015,12, 39. [CrossRef]
30.
Bray, G.A.; Smith, S.R.; de Jonge, L.; Xie, H.; Rood, J.; Martin, C.K.; Most, M.; Brock, C.; Mancuso, S.;
Redman, L.M. Eect of dietary protein content on weight gain, energy expenditure, and body composition
during overeating: A randomized controlled trial. JAMA
2012
,307, 47–55. Available online: https:
//www.ncbi.nlm.nih.gov/pubmed/22215165 (accessed on 25 March 2019). [CrossRef]
31.
Tipton, K.D.; Ferrando, A.A.; Phillips, S.M.; Doyle, D.; Wolfe, R.R. Postexercise net protein synthesis in
human muscle from orally administered amino acids. Am. J. Physiol. Metab.
1999
,276, 628–634. [CrossRef]
[PubMed]
32.
Rieu, I.; Balage, M.; Sornet, C.; Giraudet, C.; Pujos, E.; Grizard, J.; Mosoni, L.; Dardevet, D. Leucine
supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia.
J. Physiol. 2006,575, 305–315. [CrossRef] [PubMed]
33.
Burd, N.A.; Tang, J.E.; Moore, D.R.; Phillips, S.M. Exercise training and protein metabolism: Influences of
contraction, protein intake, and sex-based dierences. J. Appl. Physiol.
2008
,106, 1692–1701. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/19036897 (accessed on 25 March 2019). [CrossRef] [PubMed]
34.
Drummond, M.J.; Dreyer, H.C.; Fry, C.S.; Glynn, E.L.; Rasmussen, B.B. Nutritional and contractile regulation
of human skeletal muscle protein synthesis and mTORC1 signaling. J. Appl. Physiol.
2009
,106, 1374–1384.
[CrossRef] [PubMed]
35.
Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate,
casein, or soy protein isolate: Eects on mixed muscle protein synthesis at rest and following resistance
exercise in young men. J. Appl. Physiol. 2009,107, 987–992. [CrossRef] [PubMed]
36.
Kanda, A.; Nakayama, K.; Sanbongi, C.; Nagata, M.; Ikegami, S.; Itoh, H. Eects of Whey, Caseinate, or Milk
Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients 2016,8, 339. [CrossRef]
37.
Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No Dierence Between the Eects of Supplementing
With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance
Exercise. Int. J. Sport Nutr. Exerc. Metab. 2018,28, 674–685. [CrossRef]
38.
Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Mc Wilson, S.; Kalman, D.S.; Dudeck, J.E.;
Jäger, R. The eects of 8 weeks of whey or rice protein supplementation on body composition and exercise
performance. Nutr. J. 2013,12, 86. [CrossRef]
39.
Babault, N.; Paizis, C.; Deley, G.; Gu
é
rin-Deremaux, L.; Saniez, M.-H.; Lefranc-Millot, C.; Allaert, F.A.
Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A
double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. J. Int. Soc. Sports Nutr.
2015,12, 1692. [CrossRef]
40.
Tesch, P.A. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men
performing heavy-resistance exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1990,61, 5–10.
41.
Lane, A.R.; Duke, J.W.; Hackney, A.C. Influence of dietary carbohydrate intake on the free testosterone:
Cortisol ratio responses to short-term intensive exercise training. Eur. J. Appl. Physiol.
2010
,108, 1125–1131.
Available online: https://www.ncbi.nlm.nih.gov/pubmed/20091182 (accessed on 25 March 2019). [CrossRef]
[PubMed]
42.
Tegelman, R.; Aberg, T.; Pousette, A.; Carlström, K. Eects of a diet regimen on pituitary and steroid
hormones in male ice hockey players. Int. J. Sports Med.
1992
,13, 420–430. Available online: https:
//www.ncbi.nlm.nih.gov/pubmed/1387870 (accessed on 25 March 2019). [CrossRef] [PubMed]
43.
Dorgan, J.F.; Judd, J.T.; Longcope, C.; Brown, C.; Schatzkin, A.; Clevidence, B.A.; Campbell, W.S.; Nair, P.P.;
Franz, C.; Kahle, L.; et al. Eects of dietary fat and fiber on plasma and urine androgens and estrogens in
men: A controlled feeding study. Am. J. Clin. Nutr. 1996,64, 850–855. [CrossRef] [PubMed]
Sports 2019,7, 154 15 of 19
44.
Hämäläinen, E.; Adlercreutz, H.; Puska, P.; Pietinen, P. Decrease of serum total and free testosterone during a
low-fat high-fibre diet. J. Steroid Biochem. 1983,18, 369–370. [CrossRef]
45.
Hämäläinen, E.; Adlercreutz, H.; Puska, P.; Pietinen, P. Diet and serum sex hormones in healthy men. J. Steroid
Biochem. 1984,20, 459–464. [CrossRef]
46.
Wang, C.; Catlin, D.H.; Starcevic, B.; Heber, D.; Ambler, C.; Berman, N.; Lucas, G.; Leung, A.; Schramm, K.;
Lee, P.W.N.; et al. Low-Fat High-Fiber Diet Decreased Serum and Urine Androgens in Men. J. Clin.
Endocrinol. Metab. 2005,90, 3550–3559. [CrossRef] [PubMed]
47.
Morton, R.W.; Sato, K.; Gallaugher, M.P.B.; Oikawa, S.Y.; McNicholas, P.D.; Fujita, S.; Phillips, S.M. Muscle
Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced
Skeletal Muscle Hypertrophy in Healthy, Young Men. Front. Physiol. 2018,9, 9. [CrossRef] [PubMed]
48.
Tinsley, G.M.; Willoughby, D.S. Fat-Free Mass Changes During Ketogenic Diets and the Potential Role of
Resistance Training. Int. J. Sport Nutr. Exerc. Metab. 2016,26, 78–92. [CrossRef] [PubMed]
49.
Vargas, S.; Romance, R.; Petro, J.L.; Bonilla, D.A.; Galancho, I.; Espinar, S.; Kreider, R.B.; Ben
í
tez-Porres, J.
Ecacy of ketogenic diet on body composition during resistance training in trained men: A randomized
controlled trial. J. Int. Soc. Sports Nutr. 2018,15, 31. [CrossRef] [PubMed]
50.
Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.;
Young, K.C.; Lowery, R.P.; Wilson, J.M.; et al. The Three-Month Eects of a Ketogenic Diet on Body
Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports
2018
,6,
1. [CrossRef] [PubMed]
51.
Greene, D.A.; Varley, B.J.; Hartwig, T.B.; Chapman, P.; Rigney, M. A Low-Carbohydrate Ketogenic Diet
Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes.
J. Strength Cond. Res.
2018
,32, 3373–3382. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30335720
(accessed on 26 March 2019). [PubMed]
52.
Bird, S. Strength Nutrition: Maximizing Your Anabolic Potential. Strength Cond. J.
2010
,32, 80–86. [CrossRef]
53.
American Dietetic Association; Dietitians of Canada; American College of Sports Medicine; Rodriguez, N.R.;
Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic
performance. Med. Sci. Sports Exerc.
2009
,41, 709–731. Available online: https://www.ncbi.nlm.nih.gov/
pubmed/19225360 (accessed on 26 March 2019). [PubMed]
54.
Chung, S.T.; Chacko, S.K.; Sunehag, A.L.; Haymond, M.W. Measurements of Gluconeogenesis and
Glycogenolysis: A Methodological Review. Diabetes 2015,64, 3996–4010. [CrossRef] [PubMed]
55.
Azizi, F. Eect of dietary composition on fasting-induced changes in serum thyroid hormones and thyrotropin.
Metabolism 1978,27, 935–942. [CrossRef]
56.
Mathieson, R.A.; Walberg,J.L.; Gwazdauskas, F.C.; Hinkle, D.E.; Gregg, J.M. The eect of varying carbohydrate
content of a very-low-caloric diet on resting metabolic rate and thyroid hormones. Metabolism
1986
,35,
394–398. [CrossRef]
57.
Leveritt, M.; Abernethy, P.J. Eects of Carbohydrate Restriction on Strength Performance. J. Strength Cond. Res.
1999,13, 52–57.
58.
Jacobs, I.; Kaiser, P.; Tesch, P. Muscle strength and fatigue after selective glycogen depletion in human skeletal
muscle fibers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1981,46, 47–53. [CrossRef]
59.
Ray, S.; Sale, D.G.; Lee, P.; Garner, S.; MacDougall, J.D.; McCartney, N. Muscle Substrate Utilization and
Lactate Production During Weightlifting. Can. J. Appl. Physiol. 1999,24, 209–215.
60.
Tesch, P.A.; Colliander, E.B.; Kaiser, P. Muscle metabolism during intense, heavy-resistance exercise.
Graefe’s Arch. Clin. Exp. Ophthalmol. 1986,55, 362–366. [CrossRef]
61.
Pascoe, D.D.; Costill, D.L.; Fink, W.J.; Robergs, R.A.; Zachwieja, J.J. Glycogen resynthesis in skeletal muscle
following resistive exercise. Med. Sci. Sports Exerc. 1993,25, 349. [CrossRef] [PubMed]
62.
Ørtenblad, N.; Westerblad, H.; Nielsen, J. Muscle glycogen stores and fatigue. J. Physiol.
2013
,591, 4405–4413.
Available online: https://www.ncbi.nlm.nih.gov/pubmed/23652590 (accessed on 26 March 2019). [CrossRef]
[PubMed]
63.
Mitchell, J.B.; DiLauro, P.C.; Pizza, F.X.; Cavender, D.L. The Eect of Preexercise Carbohydrate Status on
Resistance Exercise Performance. Int. J. Sport Nutr. 1997,7, 185–196. [CrossRef] [PubMed]
64.
Lima-Silva, A.E.; Silva-Cavalcante, M.D.; Oliveira, R.S.; Kiss, M.A.; Pires, F.O.; Bertuzzi, R.; Bishop, D. Eects
of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses
during supramaximal exercise. Appl. Physiol. Nutr. Metab. 2013,38, 928–934. [CrossRef] [PubMed]
Sports 2019,7, 154 16 of 19
65.
Vega, F.; Jackson, R. Dietary habits of bodybuilders and other regular exercisers. Nutr. Res.
1996
,16, 3–10.
[CrossRef]
66.
Chappell, A.J.; Simper, T.; Barker, M.E. Nutritional strategies of high level natural bodybuilders during
competition preparation. J. Int. Soc. Sports Nutr. 2018,15, 4. [CrossRef] [PubMed]
67.
Atherton, P.J.; Etheridge, T.; Watt, P.W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M.J. Muscle
full eect after oral protein: Time-dependent concordance and discordance between human muscle protein
synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 2010,92, 1080–1088. [CrossRef] [PubMed]
68.
Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.; Van Loon, L.J. Protein
ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc.
2012
,44, 1560–1569.
Available online: https://www.ncbi.nlm.nih.gov/pubmed/22330017 (accessed on 25 March 2019). [CrossRef]
69.
Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.;
Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance
exercise in young men. Am. J. Clin. Nutr.
2009
,89, 161–168. Available online: https://www.ncbi.nlm.nih.gov/
pubmed/19056590 (accessed on 25 March 2019). [CrossRef]
70.
Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Muscle protein synthesis rates
subsequent to a meal in response to increasing doses of whey protein at rest and after. Am. J. Clin. Nutr.
2014
,
99, 86–95. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24257722 (accessed on
25 March 2019
).
[CrossRef]
71.
Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.;
Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise
is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep.
2016
,4, e12893. [CrossRef]
[PubMed]
72.
Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The eect of protein timing on muscle strength and hypertrophy:
A meta-analysis. J. Int. Soc. Sports Nutr. 2013,10, 53. [CrossRef] [PubMed]
73.
Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.D.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.;
Stellingwer, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery
from resistance exercise alters myofibrillar protein synthesis. J. Physiol.
2013
,591, 2319–2331. [CrossRef]
[PubMed]
74.
Hudson, J.L.; Bergia, R.E.; Campbell, W.W. Eects of protein supplements consumed with meals, versus
between meals, on resistance training–induced body composition changes in adults: A systematic review.
Nutr. Rev. 2018,76, 461–468. [CrossRef] [PubMed]
75.
Trommelen, J.; Kouw, I.W.K.; Holwerda, A.M.; Snijders, T.; Halson, S.L.; Rollo, I.; Verdijk, L.B.; Van Loon, L.J.C.
Pre-sleep dietary protein-derived amino acids are incorporated in myofibrillar protein during post-exercise
overnight recovery. Am. J. Physiol. Metab.
2018
,1, 457–467. Available online: https://www.ncbi.nlm.nih.gov/
pubmed/28536184 (accessed on 25 March 2019).
76.
Kouw, I.W.; Holwerda, A.M.; Trommelen, J.; Kramer, I.F.; Bastiaanse, J.; Halson, S.L.; Wodzig, W.K.;
Verdijk, L.B.; Van Loon, L.J. Protein Ingestion before Sleep Increases Overnight Muscle Protein Synthesis
Rates in Healthy Older Men: A Randomized Controlled Trial. J. Nutr.
2017
,147, 2252–2261. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/28855419 (accessed on 25 March 2019). [CrossRef] [PubMed]
77.
Snijders, T.; Res, P.T.; Smeets, J.S.; Van Vliet, S.; Van Kranenburg, J.; Maase, K.; Kies, A.K.; Verdijk, L.B.;
Van Loon, L.J. Protein ingestion before sleep increases muscle mass and strength gains during prolonged
resistance-type exercise training in healthy young men. J. Nutr.
2015
,145, 1178–1184. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/25926415 (accessed on 25 March 2019). [CrossRef] [PubMed]
78.
Joy, J.M.; Vogel, R.M.; Broughton, K.S.; Kudla, U.; Kerr, N.Y.; Davison, J.M.; Wildman, R.E.C.; DiMarco, N.M.
Daytime and nighttime casein supplements similarly increase muscle size and strength in response to
resistance training earlier in the day: A preliminary investigation. J. Int. Soc. Sports Nutr.
2018
,15, 24.
[CrossRef]
79.
Antonio, J.; Ellerbroek, A.; Peacock, C.; Silver, T. Casein Protein Supplementation in Trained Men and Women:
Morning versus Evening. Int. J. Exerc. Sci. 2017,10, 479–486.
80.
Schoenfeld, B.J.; Aragon, A.A. How much protein can the body use in a single meal for muscle-building?
Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018,15, 10. [CrossRef]
Sports 2019,7, 154 17 of 19
81.
Pennings, B.; Groen, B.B.; Van Dijk, J.-W.; De Lange, A.; Kiskini, A.; Kuklinski, M.; Senden, J.M.; Van Loon, L.J.
Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein
retention in older men. Am. J. Clin. Nutr. 2013,98, 121–128. [CrossRef] [PubMed]
82.
Kim, I.Y.; Schutzler, S.; Schrader, A.; Spencer, H.J.; Azhar, G.; Ferrando, A.A.; Wolfe, R.R. The anabolic
response to a meal containing dierent amounts of protein is not limited by the maximal stimulation of
protein synthesis in healthy young adults. Am. J. Physiol. Metab.
2016
,310, 73–80. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/26530155 (accessed on 25 March 2019). [CrossRef] [PubMed]
83.
Jentjens, R.; Jeukendrup, A.E. Determinants of Post-Exercise Glycogen Synthesis During Short-Term Recovery.
Sports Med. 2003,33, 117–144. [CrossRef] [PubMed]
84.
Biolo, G.; Williams, B.D.; Fleming, R.Y.; Wolfe, R.R. Insulin action on muscle protein kinetics and amino acid
transport during recovery after resistance exercise. Diabetes 1999,48, 949–957. [CrossRef] [PubMed]
85.
Greenha, P.L.; Karagounis, L.G.; Peirce, N.; Simpson, E.J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.;
Atherton, P.; Selby, A.; et al. Disassociation between the eects of amino acids and insulin on signaling,
ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Metab.
2008
,295, E595–E604.
[CrossRef] [PubMed]
86.
Glynn, E.L.; Fry, C.S.; Timmerman, K.L.; Drummond, M.J.; Volpi, E.; Rasmussen, B.B.; Leroy, J.L.; Gadsden, P.;
De Coss
í
o, T.G.; Gertler, P. Addition of Carbohydrate or Alanine to an Essential Amino Acid Mixture
Does Not Enhance Human Skeletal Muscle Protein Anabolism123. J. Nutr.
2013
,143, 307–314. [CrossRef]
[PubMed]
87.
Koopman, R.; Beelen, M.; Stellingwer, T.; Pennings, B.; Saris, W.H.M.; Kies, A.K.; Kuipers, H.; Van Loon, L.J.C.
Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis.
Am. J. Physiol. Metab. 2007,293, E833–E842. [CrossRef]
88.
Aragon, A.A.; Schoenfeld, B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int.
Soc. Sports Nutr. 2013,10, 5. [CrossRef]
89.
Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.;
Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition position stand: Protein and exercise.
J. Int. Soc. Sport. Nutr.
2017
,4, 20. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28642676
(accessed on 25 March 2019). [CrossRef]
90.
Darrabie, M.D.; Arciniegas, A.J.L.; Mishra, R.; Bowles, D.E.; Jacobs, D.O.; Santacruz, L. AMPK and substrate
availability regulate creatine transport in cultured cardiomyocytes. Am. J. Physiol. Metab.
2011
,300, 870–876.
[CrossRef]
91.
Purchas, R.; Busboom, J.; Wilkinson, B. Changes in the forms of iron and in concentrations of taurine,
carnosine, coenzyme Q10, and creatine in beef longissimus muscle with cooking and simulated stomach and
duodenal digestion. Meat Sci. 2006,74, 443–449. [CrossRef]
92.
Branch, J.D. Eect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis.
Int. J. Sport Nutr. Exerc. Metab. 2003,13, 198–226. [CrossRef]
93.
Hultman, E.; Söderlund, K.; Timmons, J.A.; Cederblad, G.; Greenha, P.L. Muscle creatine loading in men.
J. Appl. Physiol. Soc.
1996
,81, 232–237. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8828669
(accessed on 25 March 2019). [CrossRef]
94.
Jagim, A.R.; Oliver, J.M.; Sanchez, A.; Galvan, E.; Fluckey, J.; Riechman, S.; Greenwood, M.; Kelly, K.;
Meininger, C.; Rasmussen, C.; et al. A buered form of creatine does not promote greater changes in
muscle creatine content, body composition, or training adaptations than creatine monohydrate. J. Int. Soc.
Sports Nutr. 2012,9, 43. [CrossRef]
95.
Spillane, M.; Schoch, R.; Cooke, M.; Harvey, T.; Greenwood, M.; Kreider, R.; Willoughby, D.S.; Cooke, M.
The eects of creatine ethyl ester supplementation combined with heavy resistance training on body
composition, muscle performance, and serum and muscle creatine levels. J. Int. Soc. Sports Nutr.
2009
,6, 6.
[CrossRef] [PubMed]
96.
Childs, E.; De Wit, H.; Wit, H. Subjective, behavioral, and physiological eects of acute caeine in light,
nondependent caeine users. Psychopharmacology 2006,185, 514–523. [CrossRef]
97.
Bellar, D.; Kamimori, G.H.; Glickman, E.L. The Eects of Low-Dose Caeine on Perceived Pain During a
Grip to Exhaustion Task. J. Strength Cond. Res. 2011,25, 1225–1228. [CrossRef] [PubMed]
Sports 2019,7, 154 18 of 19
98.
Davis, J.K.; Green, J.M. Caeine and anaerobic performance: Ergogenic value and mechanisms of action.
Sport. Med.
2009
,39, 813–832. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19757860 (accessed
on 25 March 2019). [CrossRef] [PubMed]
99.
Wickwire, P.J.; McLester, J.R.; Gendle, S.; Hudson, G.; Pritchett, R.C.; Laurent, C.M.; Green, J.M. Eects of
Caeine on Repetitions to Failure and Ratings of Perceived Exertion during Resistance Training. Int. J. Sports
Physiol. Perform. 2007,2, 250–259.
100.
Duncan, M.J.; Oxford, S.W. The eect of caeine ingestion on mood state and bench press performance to
failure. J. Strength Cond. Res.
2001
,25, 178–185. Available online: https://www.ncbi.nlm.nih.gov/pubmed/
22124354 (accessed on 25 March 2019). [CrossRef]
101.
Williams, A.D.; Cribb, P.J.; Cooke, M.B.; Hayes, A. The Eect of Ephedra and Caeine on Maximal Strength
and Power in Resistance-Trained Athletes. J. Strength Cond. Res. 2008,22, 464–470. [CrossRef] [PubMed]
102.
Tarnopolsky, M.A.; Atkinson, S.A.; MacDougall, J.D.; Sale, D.G.; Sutton, J.R. Physiological responses to
caeine during endurance running in habitual caeine users. Med. Sci. Sports Exerc.
1989
,21, 418–424.
[CrossRef] [PubMed]
103.
Blanchard, J.; Sawers, S.J.A. The absolute bioavailability of caeine in man. Eur. J. Clin. Pharmacol.
1983
,24,
93–98. [CrossRef] [PubMed]
104.
Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.C.; Sale, C. Eects of
β
-alanine supplementation on exercise
performance: A meta-analysis. Amino Acids 2012,43, 25–37. [CrossRef] [PubMed]
105.
Homan, J.; Ratamess, N.A.; Ross, R.; Kang, J.; Magrelli, J.; Neese, K.; Faigenbaum, A.D.; Wise, J.A.
Beta-alanine and the hormonal response to exercise. Int. J. Sports Med.
2008
,29, 952–958. Available online:
https://www.ncbi.nlm.nih.gov/pubmed/18548362 (accessed on 25 March 2019). [CrossRef] [PubMed]
106.
Homan, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Eect of creatine and
β
-alanine
supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr.
Exerc. Metab.
2006
,16, 430–446. Available online: https://www.ncbi.nlm.nih.gov/pubmed/17136944 (accessed
on 25 March 2019). [CrossRef] [PubMed]
107. Pérez-Guisado, J.; Jakeman, P.M. Citrulline Malate Enhances Athletic Anaerobic Performance and Relieves
Muscle Soreness. J. Strength Cond. Res. 2010,24, 1215–1222. [CrossRef]
108.
Wax, B.; Kavazis, A.N.; Weldon, K.; Sperlak, J. Eects of Supplemental Citrulline Malate Ingestion During
Repeated Bouts of Lower-Body Exercise in Advanced Weightlifters. J. Strength Cond. Res.
2015
,29, 786–792.
[CrossRef]
109.
Wax, B.; Kavazis, A.N.; Luckett, W. Eects of Supplemental Citrulline-Malate Ingestion on Blood Lactate,
Cardiovascular Dynamics and Resistance Exercise Performance in Trained Males. J. Diet.
2016
,13, 269–282.
Available online: https://www.ncbi.nlm.nih.gov/pubmed/25674699 (accessed on 25 March 2019). [CrossRef]
110.
Glenn, J.M.; Gray, M.; Wethington, L.N.; Stone, M.S.; Stewart, R.W., Jr.; Moyen, N.E. Acute citrulline malate
supplementation improves upper- and lower-body submaximal weightlifting exercise performance in
resistance-trained females. Eur. J. Nutr. 2017,56, 775–784. Available online: https://www.ncbi.nlm.nih.gov/
pubmed/26658899 (accessed on 25 March 2019). [CrossRef]
111.
Glenn, J.M.; Gray, M.; Jensen, A.; Stone, M.S.; Vincenzo, J.L. Acute citrulline-malate supplementation
improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur. J. Sport Sci.
2016,16, 1–9. [CrossRef] [PubMed]
112.
Gonzalez, A.M.; Spitz, R.W.; Ghigiarelli, J.J.; Sell, K.M.; Mangine, G.T. Acute Eect of Citrulline Malate
Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men.
J. Strength Cond. Res. 2018,32, 3088–3094. [CrossRef] [PubMed]
113.
Farney, T.M.; Bliss, M.V.; Hearon, C.M.; Salazar, D.A. The Eect of Citrulline Malate Supplementation On
Muscle Fatigue Among Healthy Participants. J. Strength Cond. Res. 2017, 1. [CrossRef] [PubMed]
114.
Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute Eects of
Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and
Meta-Analysis. Sports Med. 2019,49, 707–718. [CrossRef] [PubMed]
115. Kleiner, S.M.; Bazzarre, T.L.; Litchford, M.D. Metabolic profiles, diet, and health practices of championship
male and female bodybuilders. J. Am. Diet. Assoc. 1990,90, 962–967. [PubMed]
116.
Kleiner, S.M.; Bazzarre, T.L.; Ainsworth, B.E. Nutritional Status of Nationally Ranked Elite Bodybuilders.
Int. J. Sport Nutr. 1994,4, 54–69. [CrossRef] [PubMed]
Sports 2019,7, 154 19 of 19
117.
Sandoval, W.M.; Heyward, V.H. Food Selection Patterns of Bodybuilders. Int. J. Sport Nutr.
1991
,1, 61–68.
[CrossRef]
118.
Ismaeel, A.; Weems, S.; Willoughby, D.S. A Comparison of the Nutrient Intakes of Macronutrient-Based
Dieting and Strict Dieting Bodybuilders. Int. J. Sport Nutr. Exerc. Metab. 2018,28, 502–508. [CrossRef]
119.
Nelson, J.R.; Raskin, S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular
disease. Postgrad. Med. 2019,131, 268–277. [CrossRef]
120.
Harris, W.S. The Omega-6: Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot
Essent Fatty Acids
2018
,132, 34–40. Available online: https://www.ncbi.nlm.nih.gov/m/pubmed/29599053/
(accessed on 15 June 2019). [CrossRef]
121.
Tachtsis, B.; Camera, D.; Lacham-Kaplan, O. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth
and Regeneration. Nutrients 2018,10, 309. [CrossRef] [PubMed]
122.
Di Girolamo, F.G.; Situlin, R.; Mazzucco, S.; Valentini, R.; Toigo, G.; Biolo, G. Omega-3 fatty acids and protein
metabolism: Enhancement of anabolic interventions for sarcopenia. Curr. Opin. Clin. Nutr. Metab Care.
2014
,
17, 145–150. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24500439 (accessed on 15 June 2019).
[CrossRef] [PubMed]
123.
McGlory, C.; Wardle, S.L.; Macnaughton, L.S.; Witard, O.C.; Scott, F.; Dick, J.; Bell, J.G.; Phillips, S.M.;
Galloway, S.D.R.; Hamilton, D.L.; et al. Fish oil supplementation suppresses resistance exercise and
feeding-induced increases in anabolic signaling without aecting myofibrillar protein synthesis in young
men. Physiol. Rep. 2016,4, e12715. [CrossRef] [PubMed]
124.
Crestani, D.M.; Bonin, E.F.R.; Barbieri, R.A.; Zagatto, A.M.; Higino, W.P.; Milion, F. Chronic supplementation
of omega-3 can improve body composition and maximal strength, but does not change the resistance to
neuromuscular fatigue. Sport Sci. Health
2017
,13, 259–265. Available online: https://link.springer.com/article/
10.1007/s11332-016-0322-9 (accessed on 15 June 2019). [CrossRef]
125.
Lewis, E.J.H.; Radonic, P.W.; Wolever, T.M.S.; Wells, G.D. 21 days of mammalian omega-3 fatty acid
supplementation improves aspects of neuromuscular function and performance in male athletes compared
to olive oil placebo. J. Int. Soc. Sports Nutr. 2015,12, 28. [CrossRef] [PubMed]
126.
Rossato, L.T.; Schoenfeld, B.J.; De Oliveira, E.P. Is there sucient evidence to supplement omega-3 fatty acids
to increase muscle mass and strength in young and older adults? Clin. Nutr. 2019. [CrossRef] [PubMed]
127.
Mocking, R.J.T.; Harmsen, I.; Assies, J.; Koeter, M.W.J.; Ruh
é
, H.G.; Schene, A.H. Meta-analysis and
meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.
Transl. Psychiatry 2016,6, e756. [CrossRef]
128.
Maki, K.C.; Palacios, O.M.; Bell, M.; Toth, P.P. Use of supplemental long-chain omega-3 fatty acids and
risk for cardiac death: An updated meta-analysis and review of research gaps. J. Clin. Lipidol.
2017
,11,
1152–1160.e2. [CrossRef]
129.
Miller, P.E.; Van Elswyk, M.; Alexander, D.D. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid
and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am. J.
Hypertens. 2014,27, 885–896. [CrossRef]
130.
Du, S.; Jin, J.; Fang, W.; Su, Q. Does Fish Oil Have an Anti-Obesity Eect in Overweight/Obese Adults?
A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2015,10, e0142652. [CrossRef]
©
2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
... Natural bodybuilding is an emerging sport with an ever-increasing number of participants, where athletes are judged by their body image and their physical condition [1]. More specifically, during official contests, natural bodybuilders are judged by the purity of their muscle mass, their low percentage of body fat, and their muscle symmetry [2,3]. Consequently, the main goal of the athletes is to increase their muscularity while at the same time decreasing their body fat. ...
... In the physique category, muscle mass is an important factor for success. Therefore, athletes follow long-term diets with a relatively reduced rate of fat loss to retain muscle mass [2]. Before the hypocaloric period, athletes follow a long period of energy surplus designed to increase muscle mass and minimize adipose tissue growth [5]. ...
Article
Full-text available
This case study aimed to evaluate the body composition and several biochemical markers during a 7-month pre-competition training period of a natural male bodybuilder. The athlete monitored his nutrition, training variables, and daily physical activity during the preparation phase. At the beginning (W31), in the middle (W18), and one week before the contest (W1), measurements included body composition via DEXA, testosterone and cortisol hormonal concentrations, and lipid, blood, and liver biochemical markers via an automated hematology analyzer. A gradual decrease in energy intake (−27.6%) and increased daily activity (169.0%) was found. Fat mass decreased from 17.9 kg (W31) to 13.1 kg (W18) and 4.2 kg (W1), while lean body mass decreased from 69.9 kg (W31) to 68.2 kg (W18) and 66.7 kg (W1). Bone density decreased linearly, and bone mass decreased from W31 to W1 by 1.7%. Testosterone decreased from 5.4 ng·mL⁻¹ (W31) to 5.3 ng·mL⁻¹ (W18) and 4.4 ng·mL⁻¹ (W1), while cortisol increased from 21.3 μg·dL⁻¹ (W31) to 20.3 μg·dL⁻¹ (W18) and 24.4 μg·dL⁻¹ (W1). In conclusion, a slow rate of weight loss and training with repetitions nearly to failure, combined with weekly monitoring of training and nutrition, may significantly improve body composition. However, hormone concentration and bone mass will experience mild negative effects.
... Over the 9-week off-season phase, the participant generally increased his fat-free mass and muscle size while decreasing his BF% -changes that have been previously observed, albeit in different magnitudes, in individuals receiving supraphysiological doses of testosterone while engaging in RT (15). The participant's nutritional intake reflect the practices of competitive bodybuilders previously reported in the literature (6,16), as well as evidence-based guidelines that recommend bodybuilders consume 1.6-2.2 g/kg of protein, 2-5 g/kg of carbohydrates and a minimum of 0.7 g/kg of fat daily (16). ...
... The participant's nutritional intake reflect the practices of competitive bodybuilders previously reported in the literature (6,16), as well as evidence-based guidelines that recommend bodybuilders consume 1.6-2.2 g/kg of protein, 2-5 g/kg of carbohydrates and a minimum of 0.7 g/kg of fat daily (16). The participant's training practices also align with previous studies that have characterized the training practices of bodybuilders, as well as with evidence-based RT guidelines for maximizing muscle hypertrophy (17). ...
... Bodybuilding is an art and a culture, not just a sport [2]. Unlike other sports, bodybuilding success is judged on appearances of symmetry and muscular definition rather than athletic performance [3]. Bodybuilders use resistance training plans and specific diets to increase muscle mass, sustain symmetry, and maintain low body fat levels [3]. ...
... Unlike other sports, bodybuilding success is judged on appearances of symmetry and muscular definition rather than athletic performance [3]. Bodybuilders use resistance training plans and specific diets to increase muscle mass, sustain symmetry, and maintain low body fat levels [3]. Bodybuilding's training plans attitude toward DS and their efficacy and safety issues [7,8], because very few athletes get advice or information from educated sources such as registered dietitians or medical doctors [9,10]. ...
Article
Full-text available
Background This study investigated the nutritional knowledge and prevalence of dietary supplements (DS) among Iranian bodybuilders. Method This cross-sectional research study involved sampling 648 bodybuilding clubs in Iran. A researcher distributed questionnaires among clubs in various regions and analyzed categorical variables, dietary supplements, nutritional knowledge, and sports nutrition data from 160 bodybuilders aged 18 and above in Iran. The analysis was conducted using the results obtained from a quantitative questionnaire. Results There was a significant relationship between DS use and gender (p=0.001, r= 0.330, males>females), bodybuilding history (p=0.045; r=0.158), and exercise sessions per week (p=0.050, r=0.156). Whey protein (45.6%) and branched-chain amino acid (33.7%), vitamin D (50%), caffeine (34.3%), and generally vitamin C (56.2%) were the most common DS used. The most information sources for bodybuilders regarding DS were fitness coaches (35.6%) and registered dietitians/nutritionists (34.3%). Drug stores (36.7%) and fitness coaches (19.3%) were the most prominent sources for purchasing DS. Increasing performance (54.3%), increasing the need for DS through exercise (53.6%), preventing injury, and improving recovery (36.2%) were the most important reasons to consume DS. Skin problems (21.0%), increased liver enzymes (10.8%), and hair loss (9.4%) were the most common side effects of DS use. Total nutritional knowledge (macronutrients, micronutrients, and sports nutrition) was 58.6%. Conclusion This study concluded that fitness coaches and registered dietitians/nutritionists were the most common information sources for bodybuilders. It also revealed a moderate level of nutrition knowledge among bodybuilders. The most commonly used DS were vitamins C, D, and Whey protein. Also, gender, bodybuilding history, and exercise sessions had a significant relationship with the prevalence of DS. However, the study also revealed some concerning findings; bodybuilders commonly experienced adverse side effects such as skin rashes, increased liver enzymes, and hair loss.
... The most popular among participants nutritional supplement ergogenic aids were caffeine (62%) and creatine (54%). These two substances are widely regarded the best researched and most proven nutritional ergogenic aids [20,21] with almost universal experts' recommendation for use in similar populations [22]. Ergogenic aids with some support in literature -citrulline (22%), MIPS (17%) and beta alanine (11%) are still popular but not as prevalent. ...
... Ergogenic aids with some support in literature -citrulline (22%), MIPS (17%) and beta alanine (11%) are still popular but not as prevalent. These three may be described as second rate ergogenic supplements with some, albeit not universal support in scientific literature with lower confidence and/or effect sizes [22][23][24][25]. Prevalence of these ergogenic aids seems similar to studies analyzing athletes' overall supplementation habits with most discrepancies easily explained by our targeted to ergogenic aids approach, difference in time of publication, etc. [26][27][28]. ...
Article
Full-text available
Background: The ergogenic effect is a highly practical and relevant topic in sports research, particularly in strength sports where numerous strategies have gained widespread recognition. Despite reports indicating challenges in the simultaneous use of various ergogenic strategies, our understanding of how they are practically employed is limited. This study aimed to determine and evaluate preferences in the use of nutritional and non-nutritional means of eliciting the ergogenic effect of individuals regularly participating in strength training.Materials and Methods: A total of 108 participants completed an original, online questionary shared on social media sites and created using Google Forms. Significance of differences was determined with Chi-square test.Results: A significant majority of responders declared use of nutritional (90%) and non-nutritional (62%) ergogenic aids, however only insignificant majority declared simultaneously using more than one ergogenic aid (56%). The most popular nutritional means of eliciting the ergogenic effect were caffein, coffee and creatine; non-nutritional were listening to music and dynamic stretching; the most popular combinations of two means of eliciting the ergogenic effect were caffeine with music and caffeine with creatine; and the most popular combinations of three means of eliciting the ergogenic effect were caffeine with creatine and music. Only age of participants influenced preferences in use of ergogenic means, where group 18 – 25 declared using non-nutritional means of eliciting ergogenic effect significantly more frequent.Conclusion: Results of the study indicate that the majority of polish as well as foreign strength trainees employ ergogenic aids, typically favoring well-established options supported by scientific literature.
... Bodybuilding is a sport that evaluates athletes based on their muscle mass, symmetry, and muscle definition, in contrast to conventional sports which are often based on physical ability or athletic performance. The season consists of various stages, including the muscle gain phase, commonly known as the 'off-season,' the body fat loss stage, and the week before the event, referred to as 'peak week' (Iraki et al.,2019). In the days before competition, bodybuilders undergo a caloric restriction of about 45% (de Moraes et al. 2019), which allows them to reach levels of <5% body fat (Rossow et al.,2013). ...
Article
Full-text available
Introduction: Bodybuilding is a sport that evaluates athletes based on their muscle mass, symmetry , and muscle definition, unlike conventional sports that are usually based on athletic performance in competition. Objective: The objective of the study was to determine the relationship between fat mass (FM) and skeletal muscle mass (SMM) through bioimpedance with sleep quality in Chilean natural bodybuilders on pre-competition day. Methodology: Twenty-six natural bodybuilders participated in the WNBF Chilean championship. The objective was to evaluate body composition to obtain data regarding SMM and FM. Additionally, the PSQI was applied. Results: significant relationships were obtained with SMM and PSQI (p= 0, 02, R =-0,38, R²= 0.14) and a moderate correlation between FM and PSQI (p= 0.04, R = 0.40, R²= 0.15). Sleep efficiency showed a negative correlation (p= 0.001, R =-0.55, R²= 0.31) with FM and a positive correlation (p = 0.002, R = 0.58, R²= 0.34) with SMM. Sleep duration showed a negative correlation (p = 0.024, R =-0.39, R²= 0.15) with FM and a positive correlation (p = 0.021, R = 0.45, R²= 0.20) with SMM. Discussion: A lack of sufficient sleep has been linked to adverse effects on body composition, including reduced fat loss and muscle gain. Additionally, insufficient sleep has been associated with a decline in athletic performance. Conclusions: The findings of this study indicate that poor sleep quality is associated with higher body fat and better sleep quality with a higher skeletal muscle mass, underscoring the significance of sleep for achieving optimal body composition and performance in natural bodybuilders .
... For an 80 kg athlete, gaining this amount of FFM would require a combination of resistance/strength training and hypercaloric, high-protein diet. It is established that gaining FFM during a lean phase requires a calorie surplus of approximately 200 to 500 kcal, resulting in an average weekly gain of ~0.5 kg (Iraki et al., 2019). This implies that that BIA devices would detect real BC changes after about three weeks of a consistent nutrition and training program, assuming that all weight gained is attributable to FFM. ...
Article
Full-text available
Introduction: Bioelectrical Impedance Analysis (BIA) estimates fat-free mass in athletes; however, its precision can be affected by technical errors, biological variability, and fluctuations in hydration levels. Objective: to evaluate the technical and biological measurement errors in the estimation of body composition in male Mexican soccer players using commercial BIA devices. Methodology: A quantitative, comparative, correlational longitudinal cohort study was conducted including 31 male soccer players. Participants underwent three assessments across two consecutive laboratory visits: two measurements during the first visit (technical error) and one during the second (biological error). Fat-free mass (FFM) estimated using Omron HBF-306, Tanita BC-514 and Omron HBF-545 BIA devices. To determine the technical error and biological error of measurements, the root means square error (RMSE) and least significant change (LSC). Results: HBF-514 provided the lowest FFM values across the devices. The body fat estimations from BC-545, significant differences were observed in day-to-day assessment (p<0.05). Reliability analysis revealed a RMSE values of 0.52 kg, 0.24 kg and 0.26 kg and LSC values of 2.36 kg, 1.92 kg and 1.68 kg for FFM using HBF-306, BC-545 and HBF-514 respectively. Discussion: The precision of BIA devices was lower compared to other studies conducted on general populations, suggesting that athletes’ characteristics may affect the reliability of these devices. Conclusions: The HBF-306C showed greater variability compared to the other devices while the HBF-514 demonstrates the highest day-to-day reliability, making it a valuable tool for tracking BC in soccer players.
... As PI improves muscle protein synthesis, many athletes use nutritional supplements to achieve an optimization of their performance in terms of endurance and resistance [14]. Professional athletes and bodybuilders consume around 4.3 g/ kg/day (men) and 2.8 g/kg/day (women) of protein, exceeding the recommended daily amounts [90]. Nevertheless, Morton et al., in their meta-analysis, concluded that muscle mass did not increase with any further increase in PI over 1.6 g/kg/day (twice the RDA), while negative consequences on kidney function may still ensue [91]. ...
Article
Full-text available
Several observational and experimental studies in humans have suggested that high protein intake (PI) causes intraglomerular hypertension leading to hyperfiltration. This phenomenon results in progressive loss of renal function with long-term exposure to high-protein diets (HPDs), even in healthy people. The recommended daily allowance for PI is 0.83 g/kg per day, which meets the protein requirement for approximately 98% of the population. A HPD is defined as a protein consumption > 1.5 g/kg per day. Athletes and bodybuilders are encouraged to follow HPDs to optimize muscle protein balance, increase lean body mass, and enhance performance. A series of studies in resistance-trained athletes looking at HPD has been published concluding that there are no harmful effects of HPD on renal health. However, the aim of these studies was to evaluate body composition changes and they were not designed to assess safety or kidney outcomes. Here we review the effects of HPD on kidney health in athletes and healthy individuals with normal kidney function.
... g/kg/day, which meet or exceed recommended levels (1.6 g/kg/day) for American football players [10,37,38]. These values also align with recommendations for bodybuilders [75], and larger intakes do not promote additional RET-induced gains in muscle mass and strength [76]. Dietary survey data in American football players are limited, but previous work has found that NCAA Division 1 football players exceeded dietary protein recommendations, consuming 1.8-2.3 ...
Article
Full-text available
American football players consume large quantities of animal-sourced protein in adherence with traditional recommendations to maximize muscle development and athletic performance. This contrasts with dietary guidelines, which recommend reducing meat intake and increasing consumption of plant-based foods to promote health and reduce the risk of chronic disease. The capacity of completely plant-based diets to meet the nutritional needs of American football players has not been studied. This modeling study scaled dietary data from a large cohort following completely plant-based diets to meet the energy requirements of professional American football players to determine whether protein, leucine, and micronutrient needs for physical performance and health were met. The Cunningham equation was used to estimate calorie requirements. Nutrient intakes from the Adventist Health Study 2 were then scaled to this calorie level. Protein values ranged from 1.6–2.2 g/kg/day and leucine values ranged from 3.8–4.1 g/meal at each of four daily meals, therefore meeting and exceeding levels theorized to maximize muscle mass, muscle strength, and muscle protein synthesis, respectively. Plant-based diets scaled to meet the energy needs of professional American football players satisfied protein, leucine, and micronutrient requirements for muscle development and athletic performance. These findings suggest that completely plant-based diets could bridge the gap between dietary recommendations for chronic disease prevention and athletic performance in American football players.
Article
Full-text available
Regarding skeletal muscle hypertrophy, resistance training and nutrition, the most often discussed and proposed supplements include proteins. Although, the correct amount, quality, and daily distribution of proteins is of paramount importance for skeletal muscle hypertrophy, there are many other nutritional supplements that can help and support the physiological response of skeletal muscle to resistance training in terms of muscle hypertrophy. A healthy muscle environment and a correct whole muscle metabolism response to the stress of training is a prerequisite for the increase in muscle protein synthesis and, therefore, muscle hypertrophy. In this review, we discuss the role of different nutritional supplements such as carbohydrates, vitamins, minerals, creatine, omega-3, polyphenols, and probiotics as a support and complementary factors to the main supplement i.e., protein. The different mechanisms are discussed in the light of recent evidence.
Article
Full-text available
Nutrition programs, proper guidance, and supplements (hormonal and non-hormonal supplements) that enhance muscle mass could be key factors for bodybuilders to reach their goals with a correct strategy. However, they could involve them in possible adverse health risks. The suit questionnaire form was designed to collect information about bodybuilders' total daily energy intake and supplements to strengthen and boost their muscle mass. It was used to discover whether they were on the right track regarding required energy intake. Moreover, the impact of hormonal and non-hormonal substances on their health has also been investigated. For that, thirty-one advanced bodybuilders as participants were taken (as volunteers); most of them had a long period of training experience and had a muscular body shape. The rest have at least more than four years of bodybuilding experience. Results show that the majority of them didn’t reach the required total daily calorie intake or exceeded by a great margin (3800 kcal). Surprisingly, they also had an unacceptable amount of administrated anabolic androgenic steroids (AAS), some of which are on the banned list by authorized food organizations. According to sports supplements' dose-related effects and health risks, nutrition program strategy and practicing that kind of supplement use may help them build muscle mass but in a very unhealthy way. Bodybuilders seem to be at the possible risk of practicing incorrect paths, because they may be misguided in terms of proper nutritional programs and using muscle enhancers.
Article
Full-text available
Eicosapentaenoic acid (EPA) is a key anti-inflammatory/anti-aggregatory long-chain polyunsaturated omega-3 fatty acid. Conversely, the omega-6 fatty acid, arachidonic acid (AA) is a precursor to a number of pro-inflammatory/pro-aggregatory mediators. EPA acts competitively with AA for the key cyclooxygenase and lipoxygenase enzymes to form less inflammatory products. As a result, the EPA:AA ratio may be a marker of chronic inflammation, with a lower ratio corresponding to higher levels of inflammation. It is now well established that inflammation plays an important role in cardiovascular disease. This review examines the role of the EPA:AA ratio as a marker of cardiovascular disease and the relationship between changes in the ratio (mediated by EPA intake) and changes in cardiovascular risk. Epidemiological studies have shown that a lower EPA:AA ratio is associated with an increased risk of coronary artery disease, acute coronary syndrome, myocardial infarction, stroke, chronic heart failure, peripheral artery disease, and vascular disease. Increasing the EPA:AA ratio through treatment with purified EPA has been shown in clinical studies to be effective in primary and secondary prevention of coronary artery disease and reduces the risk of cardiovascular events following percutaneous coronary intervention. The EPA:AA ratio is a valuable predictor of cardiovascular risk. Results from ongoing clinical trials will help to define thresholds for EPA treatment associated with better clinical outcomes.
Article
Full-text available
Background Citrulline is an increasingly common dietary supplement that is thought to enhance exercise performance by increasing nitric oxide production. In the last 5 years, several studies have investigated the effects of citrulline supplements on strength and power outcomes, with mixed results reported. To date, the current authors are unaware of any attempts to systematically review this emerging body of literature. Objective The current study sought to conduct a systematic review and meta-analysis of the literature describing the effects of citrulline supplementation on strength and power outcomes. Methods A comprehensive, systematic search of three prominent research databases was performed to find peer-reviewed, English language, original research studies evaluating the effects of citrulline supplementation on indices of high-intensity exercise performance in healthy men and women. Outcomes included strength and power variables from performance tests involving multiple repetitive muscle actions of large muscle groups, consisting of either resistance training sets or sprints lasting 30 s or less. Tests involving isolated actions of small muscle groups or isolated attempts of single-jump tasks were not included for analysis due to differences in metabolic requirements. Studies were excluded from consideration if they lacked a placebo condition for comparison, were carried out in clinical populations, provided a citrulline dose of less than 3 g, provided the citrulline dose less than 30 min prior to exercise testing, or combined the citrulline ingredient with creatine, caffeine, nitrate, or other ergogenic ingredients. Results Twelve studies, consisting of 13 total independent samples (n = 198 participants), met the inclusion criteria. Between-study variance, heterogeneity, and inconsistency across studies were low (Cochrane’s Q = 6.9, p = 0.86; τ² = 0.0 [0.0, 0.08], I² = 0.0 [0.0, 40.0]), and no funnel plot asymmetry was present. Results of the meta-analysis identified a significant benefit for citrulline compared to placebo treatments (p = 0.036), with a small pooled standardized mean difference (SMD; Hedges’ G) of 0.20 (95% confidence interval 0.01–0.39). Conclusion The effect size was small (0.20), and confidence intervals for each individual study crossed the line of null effect. However, the results may be relevant to high-level athletes, in which competitive outcomes are decided by small margins. Further research is encouraged to fully elucidate the effects of potential moderating study characteristics, such as the form of citrulline supplement, citrulline dose, sex, age, and strength versus power tasks.
Article
Full-text available
Introduction: Current athlete-specific protein recommendations are based almost exclusively on research in males. Purpose: Using the minimally-invasive indicator amino acid oxidation (IAAO) technique, we determined the daily protein intake that maximizes whole body protein synthesis and net protein balance after exercise in strength trained females. Methods: Eight RT females (23 ± 3.5 y, 67.0 ± 7.7 kg, 163.3 ± 3.7 cm, 24.4 ± 6.9% body fat; mean ± SD) completed a 2-d controlled diet during the luteal phase prior to performing an acute bout of whole body resistance exercise. During recovery, participants consumed eight hourly meals providing a randomized test protein intake (0.2-2.9 g⋅kg⋅d) as crystalline amino acids modelled after egg protein, with constant phenylalanine (30.5 mg⋅kg⋅d) and excess tyrosine (40.0 mg⋅kg⋅d) intakes. Steady state whole body phenylalanine rate of appearance (Ra), oxidation (Ox; the reciprocal of protein synthesis, PS) and net protein balance (NB; PS - Ra) were determined from oral [C] phenylalanine ingestion. Total protein oxidation was estimated from the urinary urea to creatinine ratio (U/Cr). Results: A mixed model bi-phase linear regression revealed a breakpoint (i.e., estimated average requirement; EAR) in Ox (r = 0.64) of 1.49 ± 0.44 g⋅kg⋅d (mean ± 95% CI) and NB (r = 0.65) of 1.53 ± 0.32 g⋅kg⋅d, indicating a saturation in whole body anabolism. U/Cr increased linearly with protein intake (r = 0.56, P < 0.01). Conclusions: Findings from this investigation indicate that the safe protein intake (upper 95% CI) to maximize anabolism and minimize protein oxidation for strength trained females during the early ~8-h post-exercise recovery period is at the upper end of ACSM recommendations for athletes (i.e., 1.2-2.0 g⋅kg⋅d).
Article
Full-text available
The factors that underpin heterogeneity in muscle hypertrophy following resistance exercise training (RET) remain largely unknown. We examined circulating hormones, intramuscular hormones, and intramuscular hormone-related variables in resistance-trained men before and after 12 weeks of RET. Backward elimination and principal component regression evaluated the statistical significance of proposed circulating anabolic hormones (e.g., testosterone, free testosterone, dehydroepiandrosterone, dihydrotestosterone, insulin-like growth factor-1, free insulin-like growth factor-1, luteinizing hormone, and growth hormone) and RET-induced changes in muscle mass (n = 49). Immunoblots and immunoassays were used to evaluate intramuscular free testosterone levels, dihydrotestosterone levels, 5α-reductase expression, and androgen receptor content in the highest- (HIR; n = 10) and lowest- (LOR; n = 10) responders to the 12 weeks of RET. No hormone measured before exercise, after exercise, pre-intervention, or post-intervention was consistently significant or consistently selected in the final model for the change in: type 1 cross sectional area (CSA), type 2 CSA, or fat- and bone-free mass (LBM). Principal component analysis did not result in large dimension reduction and principal component regression was no more effective than unadjusted regression analyses. No hormone measured in the blood or muscle was different between HIR and LOR. The steroidogenic enzyme 5α-reductase increased following RET in the HIR (P < 0.01) but not the LOR (P = 0.32). Androgen receptor content was unchanged with RET but was higher at all times in HIR. Unlike intramuscular free testosterone, dihydrotestosterone, or 5α-reductase, there was a linear relationship between androgen receptor content and change in LBM (P < 0.01), type 1 CSA (P < 0.05), and type 2 CSA (P < 0.01) both pre- and post-intervention. These results indicate that intramuscular androgen receptor content, but neither circulating nor intramuscular hormones (or the enzymes regulating their intramuscular production), influence skeletal muscle hypertrophy following RET in previously trained young men.
Article
Full-text available
Abstract Background Ketogenic diets (KD) have become a popular method of promoting weight loss. More recently, some have recommended that athletes adhere to ketogenic diets in order to optimize changes in body composition during training. This study evaluated the efficacy of an 8-week ketogenic diet (KD) during energy surplus and resistance training (RT) protocol on body composition in trained men. Methods Twenty-four healthy men (age 30 ± 4.7 years; weight 76.7 ± 8.2 kg; height 174.3 ± 19.7 cm) performed an 8-week RT program. Participants were randomly assigned to a KD group (n = 9), non-KD group (n = 10, NKD), and control group (n = 5, CG) in hyperenergetic condition. Body composition changes were measured by dual energy X-ray absorptiometry (DXA). Compliance with the ketosis state was monitored by measuring urinary ketones weekly. Data were analyzed using a univariate, multivariate and repeated measures general linear model (GLM) statistics. Results There was a significant reduction in fat mass (mean change, 95% CI; p-value; Cohen’s d effect size [ES]; − 0.8 [− 1.6, − 0.1] kg; p 0.05; ES = − 0.12, respectively) or visceral adipose tissue (− 33.8 [− 90.4, 22.8]; p > 0.5; ES = − 0.17 and 1.7 [− 133.3, 136.7]; p > 0.05; ES = 0.01, respectively). No significant increases were observed in total body weight (− 0.9 [− 2.3, 0.6]; p > 0.05; ES = [− 0.18]) and muscle mass (− 0.1 [− 1.1,1.0]; p > 0,05; ES = − 0.04) in the KD group, but the NKD group showed increases in these parameters (0.9 [0.3, 1.5] kg; p 0.05; ES = 0.26, respectively) in the CG. Conclusion Our results suggest that a KD might be an alternative dietary approach to decrease fat mass and visceral adipose tissue without decreasing lean body mass; however, it might not be useful to increase muscle mass during positive energy balance in men undergoing RT for 8 weeks.
Article
Full-text available
Background: Casein protein consumed before sleep has been suggested to offer an overnight supply of exogenous amino acids for anabolic processes. The purpose of this study was to compare supplemental casein consumed earlier in the day (DayTime, DT) versus shortly before bed (NightTime, NT) on body composition, strength, and muscle hypertrophy in response to supervised resistance training. Methods: Thirteen males participated in a 10-week exercise and dietary intervention while receiving 35 g casein daily. Isocaloric diets provided 1.8 g protein/kg body weight. Results: Both groups increased (p < 0.05) in lean soft tissue (DT Pre: 58.3 ± 10.3 kg; DT Post: 61.1 ± 11.1 kg; NT Pre: 58.3 ± 8.6 kg; NT Post: 60.3 ± 8.2 kg), cross-sectional area (CSA, DT Pre: 3.4 ± 1.5 cm2; DT Post: 4.1 ± 1.7 cm2; NT Pre: 3.3 ± 1.6 cm2; NT Post: 3.7 ± 1.6 cm2) and strength in the leg press (DT Pre: 341 ± 87.3 kg; DT Post: 421.1 ± 94.0 kg; NT Pre: 450.0 ± 180.3 kg; NT Post: 533.9 ± 155.4 kg) and bench press (DT Pre: 89.0 ± 27.0 kg; DT Post: 101.0 ± 24.0 kg; NT Pre 100.8 ± 32.4 kg; NT Post: 109.1 ± 30.4 kg) with no difference between groups in any variable (p > 0.05). Conclusions: Both NT and DT protein consumption as part of a 24-h nutrition approach are effective for increasing strength and hypertrophy. The results support the strategy of achieving specific daily protein levels versus specific timing of protein ingestion for increasing muscle mass and performance. Trial registration: ClinicalTrials.gov Identifier: NCT03352583 .
Article
Full-text available
Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis (MPS) to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in longer term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein and four compared soy protein with other proteins (beef, milk or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press Chi2 = 0.02, p=0.90; squat Chi2=0.22, p =0.64). There was no significant effect of whey or soy alone (n=5) on LBM change, and no differences between groups (Chi2=0.00, p=0.96). Strength and LBM both increased significantly in the 'other protein' and the soy groups (n=9), but there were no between group differences (bench Chi2=0.02, p=0.88; squat Chi2=0.78, p=0.38 and LBM Chi2=0.06, p=0.80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.
Article
Full-text available
Context The impact of timing the consumption of protein supplements in relation to meals on resistance training–induced changes in body composition has not been evaluated systematically. Objective The aim of this systematic review was to assess the effect of consuming protein supplements with meals, vs between meals, on resistance training–induced body composition changes in adults. Data Sources Studies published up to 2017 were identified with the PubMed, Scopus, Cochrane, and CINAHL databases. Data Extraction Two researchers independently screened 2077 abstracts for eligible randomized controlled trials of parallel design that prescribed a protein supplement and measured changes in body composition for a period of 6 weeks or more. Results In total, 34 randomized controlled trials with 59 intervention groups were included and qualitatively assessed. Of the intervention groups designated as consuming protein supplements with meals (n = 16) vs between meals (n = 43), 56% vs 72% showed an increase in body mass, 94% vs 90% showed an increase in lean mass, 87% vs 59% showed a reduction in fat mass, and 100% vs 84% showed an increase in the ratio of lean mass to fat mass over time, respectively. Conclusions Concurrently with resistance training, consuming protein supplements with meals, rather than between meals, may more effectively promote weight control and reduce fat mass without influencing improvements in lean mass.
Article
Omega-3 (ω-3) is a polyunsaturated fatty acid with anti-inflammatory properties that presents three main forms: alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Recently, studies performed in both young and older adults suggest that ω-3 may improve gains in muscle mass and/or enhance physical function. Thus, the aim of this narrative review was to evaluate the current evidence of ω-3 intake/supplementation on muscle/lean mass (LM) and physical function in young and older adults, and draw research-based conclusions as to the practical implications of findings. We first assessed whether ω-3 intake is associated with muscle mass and strength (observational studies), and then sought to determine whether evidence shows that supplementation of ω-3 increases muscle protein synthesis, LM and strength in adults and older adults (interventional studies). The search was carried out in PubMed and Scopus databases for the periods between 1997 and November 2018. The following keywords were used alone and in combination: ω-3, fish oil, muscle protein synthesis, muscle mass, lean mass, body composition, and physical function. In general, the evidence is mixed as to the effects of ω–3 supplementation on muscle mass in sedentary young and older adults; the hypertrophic effects of supplementation when combined with resistance training remain equivocal. Moreover, there is conflicting evidence as to whether supplementation confers a beneficial effect on muscle function in older adults. Importantly, this conclusion is based on limited data and more studies are needed before ω-3 supplementation can be recommended as a viable strategy for such purposes in clinical practice. © 2019 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism
Article
Greene, DA, Varley, BJ, Hartwig, TB, Chapman, P, and Rigney, M. A low-carbohydrate ketogenic diet reduces body weight without compromising performance in powerlifting and Olympic weightlifting athletes. J Strength Cond Res XX(X): 000-000, 2018-Weight class athletes use weight-making strategies to compete in specific weight categories with an optimum power-to-weight ratio. There is evidence that low carbohydrate diets might offer specific advantages for weight reduction without the negative impact on strength and power previously hypothesized to accompany carbohydrate restriction. Therefore, the purpose of this study was to determine whether a low-carbohydrate ketogenic diet (LCKD) could be used as a weight reduction strategy for athletes competing in the weight class sports of powerlifting and Olympic weightlifting. Fourteen intermediate to elite competitive lifting athletes (age 34 ± 10.5, n = 5 female) consumed an ad libitum usual diet (UD) (>250 g daily intake of carbohydrates) and an ad libitum LCKD (≤50 g or ≤10% daily intake of carbohydrates) in random order, each for 3 months in a crossover design. Lifting performance, body composition, resting metabolic rate, blood glucose, and blood electrolytes were measured at baseline, 3 months, and 6 months. The LCKD phase resulted in significantly lower body mass (-3.26 kg, p = 0.038) and lean mass (-2.26 kg, p = 0.016) compared with the UD phase. Lean mass losses were not reflected in lifting performances that were not different between dietary phases. No other differences in primary or secondary outcome measures were found between dietary phases. Weight class athletes consuming an ad libitum LCKD decreased body weight and achieved lifting performances that were comparable with their UD. Coaches and athletes should consider using an LCKD to achieve targeted weight reduction goals for weight class sports.