ArticlePDF Available

Abstract

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.
Glob Change Biol. 2019;00:1–14. wileyonlinelibrary.com/journal/gcb  
|
 1
© 2019 John Wiley & Sons Ltd
Received:31October2018 
|
  Revised:13M arch2019 
|
  Accepted:31March2019
DOI : 10.1111/gcb .14659
PRIMARY RESE ARCH ARTICLE
Prolonged tropical forest degradation due to compounding
disturbances: Implications for CO2 and H2O fluxes
Paulo M. Brando1,2 | Divino Silvério2,3 | Leonardo Maracahipes‐Santos2|
Claudinei Oliveira‐Santos2,4| Shaun R. Levick5,6,7| Michael T. Coe1| Mirco Migliavacca7|
Jennifer K. Balch8| Marcia N. Macedo1,2| Daniel C. Nepstad9| Leandro Maracahipes2|
Eric Davidson10| Gregory Asner11| Olaf Kolle7| Susan Trumbore7
1WoodsHoleResearchC enter,Falmouth,
Massachusetts
2InstitutodePesquisaAmbient alda
Amazônia(IPAM),Brasília,Brazil
3EcologyDepar tment,UniversityofBrasí lia,
Brasília,Brazil
4FederalUniversityofG oiás,Goiânia,Brazil
5Charle sDarwinUniversity,Dar win,NT,
Australia
6CSIROTropicalEcosystemsRe search
Centre,Darwin,NT,Austr alia
7MaxPlanckInstituteforB iogeochemistry,
Jena,Germany
8GeographyDepartm ent,Universityof
Colorado‐Boulder,Boulder,Colorado
9EarthInnovat ionInstitute,SanFrancisco,
California
10AppalachianLabor atory,Universityof
MarylandCenterforEnvironmentalScience,
Frostburg,Mar ylan d
11CenterforGlobalDiscover yand
Conser vationScience,ArizonaState
University,Tempe,Ar izona
Correspondence
PauloM.Brando,WoodsHoleResearch
Center,149WoodsHoleRd,Falmouth,MA
02540,USA.
Email:pbrando@whrc.org
Funding information
Max‐Planck‐Gesellschaft;Conselho
NacionaldeDesenvolvimentoCie ntífico
eTecnológico,Grant /AwardNumber:
441703/2016‐0an d460494/2014‐7;
Gordona ndBettyMooreFoundation;
DivisionofEnvironmentalBiology,Grant /
AwardNumber:1146206;Nationa lScience
Foundation,Grant/AwardNumber:
1146206;Borders,Gr ant/AwardNumber :
40580 0;USA ID;DepartmentofState;
EMBRAPA;USForestSer vice
Abstract
Drought, fire,and windstormscaninteracttodegradetropicalforestsandtheeco‐
system ser vices they provide, but how these forests recover after catastrophic
disturbanceeventsremainsrelativelyunknown.Here,weanalyzemulti‐yearmeas
urementsof vegetation dynamics and function (fluxes of CO2andH2O)in forests
recoveringfrom7yearsofcontrolledburns,followedbywinddisturbance.Located
insoutheastAmazonia,theexperimentalforestconsistsofthree50‐haplotsburned
annually,triennially,ornotatallfrom2004to 2010.During thesubsequent6‐year
recoveryperiod,postfiretreesurvivorshipandbiomasssharplydeclined,withabove‐
groundCstocksdecreasingby70%–94%alongforestedges(0–200mintotheforest)
and 36%–40% inthe forest interior.Vegetation regrowth in theforestunderstory
triggere d partial can opy closure (70%–80%) fro m 2010to 2015. T he composition
andspatialdistributionofgrassesinvadingdegr adedforestevolvedrapidly,likelybe
causeofthedelayedmortality.Fouryearsaftertheexperimentalfiresended(2014),
thebur nedpl otsas si milated36%lessc arb ontha nt heControl,bu tnetCO2exchange
andevapotranspiration(ET)hadfullyrecovered7yearsaftertheexperimentalfires
ended (2017). Carbon upta ke recovery occurred largely in respo nse to increased
light‐useefficiency andreduced postfire respiration, whereas increased wateruse
associated withpostfire growthofnew recruits andremaining trees explained the
recovery in E T.Alt hough the effe cts of interac ting disturba nces (e.g., fires, fo rest
fragmentation, andblowdown events)onmortalityandbiomass persist over many
years,therapidrecoveryofcarbonandwaterfluxescanhelpstabilizelocalclimate.
KEY WORDS
disturbance,recovery,resilience,tropical,wildfires
2 
|
   BRANDO et Al .
1 | INTRODUCTION
Episodic droughts andwindthrowevents strongly shapethe struc‐
ture,dynamics, and diversity oftropicalforestsby killingtrees and
altering c ompetition for l imiting resour ces (Davidson et al. , 2012;
Zarin, Davidson, & Brondizio, 2005). As people clear, thin, and ex‐
ploit tropical forests, natural disturbances increasingly interact
with und erstory f ires, logging a ctivities , and forest fr agmentatio n
(Brandoetal., 2014; Cochrane et al., 1999;Davidsonetal., 2012).
Combinedwithclimatechange,disturbancesmayoccurtoofastfor
plantcommunitiesto adapt acrosslargeforestedareas.Despitere‐
silience tooccasionalevents, tropicalforestsmaynot recovertheir
structure,composition,andfunctionfollowingmultipleandfrequent
disturbances(Trumbore,Brando,&Hartmann,2015).
In southern Amazonia, extreme weather events and agricul
turalpracticeshavealready intensifiedforestfireregimes(Alencar,
Brando, Asner, & Putz, 2015; Morton, Page, DeFries, Collatz, &
Hurtt, 2013). Recent severe droughts have triggered forest fires
that are lar ger and more fr equent (Al encar et al., 2 015), spanning
awiderrangeofdry‐seasonmonths (Jollyet al., 2015).Evenas de‐
forestationratesdeclined,forestfireshavecontinuedtoburn large
areas, including bothhistorically fragmented landscapes(Aragão &
Shimabu kuro, 2010) and lar ge tract s of protected fo rests (Br ando
etal., 2014).In the 200 0s, forexample, more than 85,000 km2 of
forestsinsouthernAmazoniaburnedduetosynergisticinteractions
betweenhuman activities and droughts(Morton et al.,2013). The
capacity of these fire‐disturbed forests torecover remains poorly
unders tood, par tially due to t he complexi ty of process es involved
(Floresetal.,2017),whicharedeterminedbyinteractionsbetween
local site factors, landscape history and structure, regional spe‐
ciespools, andspecieslifehistories (Chazdonet al., 2007;Derroire
etal.,2016).
BurnedforestsoftheAmazoncanfollowawiderangeofrecov
erytrajectories,butthetwoextremesarefullrecoveryortransition
toanewstate(Trumboreetal.,2015).Withnofundamentalchanges
in climate, most burned forests recover biomass within decades
(Saldarriaga,West,Tharp,&Uhl,1988)andclimate‐relatedfunctions
(e.g.,CO2andH2Ofluxes)withinafewyears(Chazdonetal.,20 07).
Despite theoverall high resilience of tropical forests,catastrophic,
compounding disturbanceevents can slow or prevent recovery by
killing ad ult trees (Bar low, Peres, Lag an, & Haugaase n, 2003) and
depletingseedandresproutbanks(Kennard&Putz,2005).Although
severalstudiesreportedincreasednutrientavailabilityshortlyafter
disturbances,thereisalsoevidenceofprolongedandseveredistur
bances re ducing soil nut rient pools thr ough soil gas emis sions, as
wellashydrologicleachingor fire‐related volatilizationofnutrients
(Davidsonetal.,2004;Davidsonetal.,2007;McGrath,Smith,Gholz,
&Oliveira,20 01;Zarin et al., 2005).Inaddition,increasedpostfire
mortality ofcanopy trees creates niche opportunities forlight‐de‐
manding pasture grasses and lianas that can outcompete woody
nativespecies(D'Antonio,Hughes,&Vitousek,2001).Finally,wind‐
storm‐related tree snapping, uprooting, and canopy damage can
elevate postfire mortality rates of largetreesforseveralyearsand
delayrecovery(Barlowetal.,2003;Silvérioetal.,2019).
In the years following catastrophic disturbances, successional
dynamics likely influence ecosystem carbon and water fluxes.
Disturbancesassociatedwithblowdownsandwildfiresreducecom
petitionforlight, nutrients,and water (van derSande et al.,2017),
favoring “p ioneer” sp ecies capa ble of assimilat ing and using t hose
extra resourcesmoreefficiently (Saldarriagaet al., 1988).Although
theseshort‐livedspeciestranspiremorewatertosupporttherapid
produc tion of wood and l eaves, they may l ack the deep ro ot sys‐
tems that normally support high evapotranspiration (ET) in sea‐
sonally dry forests(e.g., dry season > months; Nepstad, Carvalho,
Davidson,&Nature,1994).Large,deep‐rootedtreessurvivingmajor
distur bances may benef it from reduced co mpetition for d eep soil
water(Nepstadetal.,2001).However,disturbance‐relateddamages
to their crow ns, stems, a nd roots co uld limit reso urce assimila tion
and use‐efficiency. Over time, competitionamong pioneer andre‐
mainingtreesislikely to increase; carbon‐ and light‐useefficiency
(LUE)arelikelytodecrease;andwateruseislikelytobecomemore
conservative (Chazdon et al., 2007). How long postdisturbance re‐
covery wi ll take remains un clear. Studies that us e remote sensing
imagery,chronosequences,vegetationmodels,andeddycovariance
(EC) techniques predict recovery of productivity and ET ranging
fromafewyearstoseveraldecades(Arroyo‐Rodríguezetal.,2017;
Chazdon et al.,20 07;Miller etal., 2011).Rates of changecanvary
considerably accordingtotheintensit y,duration, andfrequencyof
thedisturbance(Chazdonetal.,2007).
Tounderstand how compounding disturbancesinfluence forest
struc ture and funct ions (e.g., net ecosys tem exchange [NEE] and
ET),westudiedpost firedynamicsinasetofneotropicalforestplots
(50ha)thatwereexperimentallyburned(annually[B1yr],triennially
[B3yr] or un burned cont rol) from 20 04 to 2010, and imp acted by
ablowdownevent in 2012(Silvério et al., 2019; Figure S1).These
highly de graded fore st areas coul d follow diffe rent trajec tories of
recovery,leadingtoalternatestates—eitheradegraded,derived‐sa
vanna envi ronment or re covery of a close d‐canopy fo rest ecosy s‐
tem(e.g.,lowresilience).Wehypothesizedthatdelayedmortalityof
large trees would perpetuate postfire degradationand grass pres‐
enceduringthe7‐yearpostfireperiod(Barlowetal.,2003),causing
reductions in ecosystem‐level ET and net CO2 uptake (e.g.,higher
NEE). The alternative hypothesis is thatbiomass and canopy cover
would recover rapidly, driving (a) the replacement of grasses by
sha de‐tolerantspecie sand(b)r ecoveryofE Ta ndCO2uptaketolev
elssimilartotheunburnedControltreatment.
Overall , we expecte d differe nces in fores t struct ure and func‐
tioningtodecreaseovertimebetweenburnedandunburnedareas,
albeit moreslowly where fireand winddamage weremore severe
(e.g.,B3yrtreatmentandforestedges;Brandoetal.,2014).Wefirst
reviewpreviousfindingsfromtheinitialphasesoftheexperimental
firesandpresentnewresultsquantifyingpostdisturbanceforestre
coveryanditsconsequencesforclimaticecosystemservicesassoci
atedwithNEEandET.
    
|
 3
BRAN DO et Al .
2 | MATERIAL AND METHODS
2.1 | Description of area and fire experiment
The stu dy area is locate d on the Fazenda Tanguro (83, 000 ha) in
Mato Grosso state, 30 km north ofthe southern boundary ofthe
AmazonrainforestinBrazil(FigureS1).Thesiteislocatedwithinthe
driest portionof the basin (13°04′S, 52°23′Ν), a region character‐
izedbyaprolongeddryseason(4–5months),withannualprecipita
tionof1,770mm(Balchetal.,2008).
The experimental area consisted of three adjacent 50 ‐ha plots
burnedannually(B1yr),triennially(B3yr),ornotatall(Control)from
2004to2010.Inburnedplot sareas,weignitedfireswithkerosene
drip torchesalong transects spaced50mapart (details in Balchet
al., 2008). Prior to the first experimental fire (2004), aboveground
biomass (ABG) in the Control was 11.1% and 14.1% higher than
B1yrandB3yr,respectively,whereascanopygreennesswassimilar
amongthethreetreatmentplots(Figure1).Incontrast,the burned
plots ho used more tr ee species a nd had higher l itterf all along th e
forestedges.
2.2 | Ecological measurements
Weconducted pre‐ and postfire inventoriesacross the threetreat‐
mentplots.InJuly2004,wetagged, mapped,andmeasuredheight
(m)and diameterat breastheight(dbh)oftreesand lianasindiffer‐
entstrataforeachtreatment(Balchetal.,2008).Withineach50‐ha
treatmentplot, we sampled all trees ≥40 cm dbh (~930 individuals
perplot).Wesampledtreesandlianaswith20–39.9cmdbhalongsix
transects,whichranparallelwiththeedgeoftheagriculturalfieldat
10,30,100,250,500,and750mfromtheedge(500×20m;5.5ha
sampledpertreatmentplot;~880individualsperplot).Nestedsub
samplin g was conducted w ithin these tra nsects to mea sure trees
andliana swith10–19.9cmdbh(50 0×4m;1. 2hasamp le dpert re at
mentplot;~490individualsperplot).Werepeatedtheseinventories
annuall y within each 5 0‐ha plot (det ails in Balc h et al., 200 8). We
mappedwoodyspeciesthatenteredthe10cmdbhsize‐classinour
inventoryin2008,2009,2010,2012, 2014, and 2016. During this
period,we also remeasuredtree dbh of individualsusing a diame‐
ter tape to c alculate tr ee growth . Toguar antee the sa me point of
measurementineachvisit,weuseda1.3‐mruler.Theseinventories
servedasABGcensusesofwoodyspecies(treesandlianas)≥10cm
indbh.WeusedtheallometricequationfromChaveetal.(2014)for
dry forests toestimatetree biomass fromtree dbh,wood density,
andheight. Data on ABG biomasspublished in Brandoetal. (2014)
wereextendedfrom2009to2016.
We estimated postfire leaf area index (LAI) each year of the
study(200sitesperplot;dryandwetseasons)usingtwoLiCor200 0
PlantCanopyAnalyzers(LI‐CORBiosciencesInc,Lincoln)from2005
to 2018. One in strument was p laced in an adjace nt open field to
measure incoming radiation with no canopy influence; the other
instrument wassimultaneously used to take understory measure
ments . The two instr uments were int ercalibrate d before each set
of measurementsin the open field. The light fieldof each sensor
wasreducedto90%usingopaquesensorcaps.Measurementswere
taken 1 m fro m the ground du ring diffus e light conditi ons—either
before08:0 0hoursorafter17:00hours.LAIcalculationsweremade
usingtheinnerfourquantumsensorrings.After weendedtheex
perimentalfires,wecontinuedtoconductLAImeasurementsevery
3 months. B rando et al. (2014) publis hed LAI data fr om 2005 to
2009.Here,weex tendthistimeseriestoDecember2017.
Litter fall was coll ected biwee kly from Augus t 2004 to Au gust
2018using0.5m2screentraps(N:90pertreatmentplotfrom2004
to 2012; N: 70 per treatmentplot from2013to 2018) placedsys‐
tematicallythroughouttheplots.Wesuspendedthelittertraps1m
abovetheforestfloor.Woodydebris(>1cm)wasexcludedfromour
samples(Clark et al., 2001).Litter wasoven‐dried(65ºCfor48 hr)
andweighedforcalculationsofdrymass.
Toobtainratesofgrassinvasionovertimeinourexperiment,we
mappedin2012and2015theadvanceofgrassesandareainvaded
byeachspeciesfromtheedgeintotheforestinterior.Thismapping
consistedofthepresenceofgrasseswithinsubplot s(5×5m)where
thegrasscoverwasgreaterthan50%(Silverioetal.,2013).
AirborneLiDARdatawerecollectedbytheGEOIDLtda.Company
(Belo Horizonte, MG) as par t of the SustainableLandscapes Brazil
project (https://www.paisagenslidar.cnptia.embrapa.br/webgis/).
Twosu rveys were con ducted, t he first in A pril 2012 and th e sec‐
ondinOctober2014.The studyarea was flownat an averagealti‐
tudeof850ma.s.l.andcoveredanareaofapproximately1,0 05ha.
AnOptechALTM‐3100laserscannerinstrumentwas usedin 2012
and an Opte ch ORION‐0 9SEN243 in 2014; average return d ensi‐
ties were13.7 per m2in2012and41.05perm2 in 2014.Full and
reduced‐densitydat asetswere processed to generatet hecanopy
height mod el (CHM) abovegrou nd raster layers at 1‐m reso lution.
CHM produ cts were gen erated using t he G‐LiHT algor ithm (Cook
etal.,2013)byselectingthehighestLiDARreturninevery1‐mgrid
FIGURE 1 Annualpatternsinenhancedvegetationindex(EVI;
MODIS13Q1collectionsix)from2003to2017fortheControland
burnedplots.Thesolidlinerepresentsasecond‐orderpolynomial
model;thedashedlineathresholdlinearmodel;pointstheaverage
EVIforagivenplot;andredlinesthedeviationfromtheobserved
andpredictedEVI(basedonthethresholdmodel).Negativevalues
representhighervaluesintheburnedplotsthanintheControl
15
10
5
0
5
03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
Year
Burned Control (% difference in EVI)
Drought Drought
Pre-Fire Burning period Recovery period
Blowdown
xx x x xx x xx
4 
|
   BRANDO et Al .
cell,building aTINbasedonthesepoints,andinterpolatingcanopy
heights ona1‐mrastergrid(moredetailsinLongoetal.,2016).We
alsoestimatedleafareadensity(LAD)acrosstheforestprofileusing
theLADfunctioninthe R packagelidR, usingmethodsinBouvier,
Durrieu,Fournier,andRenaud(2013).
2.3 | Eddy covariance flux
Tomeasure how forestrecoveryinfluencedcarbon,water,anden
ergy fluxes, we established two36‐m EC towersinlate 2014, one
inthe Control (Figure S1 and Figure 2) andanotheron the border
betweenthetwo burnedplots (FigureS1).Bothtowersuse identi‐
calinstrumentsetups consistingofa3D‐sonicanemometer(USA1;
METEK, Elmshorn, GER) and an infrared gas analyzer (LI7200;
LI‐COR Biosciences), measuring the three‐dimensional wind com
ponents (u, v,w), sonic temperature (Ts),a nd mixing rat ios of CO2
andH2O.Thesamplingfrequencywas20Hzandthemeasurement
height36mabovegroundand17maboveaveragecanopyheight,re‐
spectively.Half‐hourlyfluxes werecomputedusingEddyPro(6.2.0,
LI‐COR Biosciences).Raw data were despiked ( Vickers & Oceanic,
1997),block averaged, and lag correctedwithinadefined window
oftime,subjecttoadoublerotationprocedure.Qualitycontrolfol‐
lowedpreviouslypublishedmethods(Foken& Wichura,1996).We
discardedalldatawithlowfric tionvelocity(u*<0.14m/s).Weeval
uatedtheenergybalanceclosure(Foken,Aubinet,&Leuning,2011)
byregressingtheavailableenergy(Rnet)fromoutgoingandincoming
short‐andlong‐waveradiationagainsttheRnetfromlatentandsen
sibleheatfluxes(FigureS2).
Themarginaldistribution sampling methodwas used to gap‐fill
half‐hourly fluxes(Reichsteinetal.,2005)withseveralmeteorolog‐
icalvariablescollectedbyourECsystems, includingphotosyntheti‐
cally activeradiation(PAR), vaporpressure deficit,global radiation,
air temperature, and relative humidity. The nighttime partition
ing method implemented in the REddyProc R Package (Wutzler,
Lucas‐Moffat, Migliavacc a, & Knauer, 2018) was applie d to com‐
pute ecos ystem respirat ion (Reco) and gross ecos ystem produc tiv‐
ity(GEP).Wealso calculated GEP and Recousingdaytimedataonly
(Lasslopetal.,2009),whichyieldedsimilarresults,sowereportonly
thenighttimemethod here.LUE wasestimatedastheratioofGEP
and the fr action of ab sorbed PAR, w hich was esti mated from L AI
andPARfollowingWuetal.(2016).
Two‐dimensional(2D) flux footprints were calculated for each
halfhourusing the footprintmodel ofHsieh, Katul,andChi(2000)
withthelateral dispersionterm accordingto Detto,Katul,Mancini,
Montaldo,and Albertson (2008) and then rotatedinto the respec‐
tive mean w ind direction . 2D footprints wer e calculated only f or
half‐hourly data whenfriction velocitywashigherthan0.14m/sto
ensurethatameaningfulturbulenttransportwaspresent.Foreach
half‐hourfrom08:00hoursto18:00hours,we computedthefoot‐
printprobabilitydensityfunction(PDF).Foragivenx and ylocation,
wecomputedthefootprintclimatologyasthemeanoftheindividual
footprintPDFsforthemeasurement period.The resulting 2DPDF
isthefootprintclimatology,providinginformationontheportionof
theecosystemsampledinthemeasurementperiod.Duringtheday
(Rg > 50 W/m),th e burned and C ontrol plot s contribut ed most of
thefluxessampledbytheeddyfluxtowers.Giventheprevalenceof
northwinds, the eddy flux towerlocated intheburnedplots sam‐
pled mostly the vegetation growing close to the edge, amore de
graded environment;thetowerlocatedinthe Controlplotsampled
amorepristinearea.LAIaroundthetowerlocatedintheburnedplot
was subst antially lower t han in the Contr ol (Figure S3). Howeve r,
duringcalmnights,weobservedsomeoverlapbetweentheburned
andControlplots(Figure3).
2.4 | Soil moisture
Soilmoisturewasmeasuredmonthlyindeep(0.5–8m)soilpitsfrom
2010to2018,usingtimedomainreflectometry(TDR;Jipp,Nepstad,
Cassel,&ReisDeCarvalho,1998).Thenumberofsoilpitspertreat
mentvariedovertime.Initially,weinstalledTDRsystemsintwosoil
pits, onein B1yrand one in theControl. Weadded t wo more pits
per treatment inthe following year (2011), but one of them failed
in 2015 and was r eplaced in 2016. We us ed soil moist ure data to
estimatetranspirationduringrainlessperiods(10ormoreconsecu
tivedays with no precipitation), including most dry‐seasonmonths
(June–October). Weassumedthatthechangeinsoilmoisturefrom
one day to the next(summed from 0.1 to 8 mdepth) represented
theETratesduring dryperiod. Because soil evaporation and base
flowaccountforasmallfractionofthetotalchangeinsoilmoisture
during th e dry season (Dav idson et al., 2011; Markewi tz, Devine,
Davidson,Brando,& Nepstad, 2010), thisestimateof ET probably
representsmostlyplanttranspiration.
2.5 | Statistical analysis
We used linear mixed models (Bates, Mächler, Bolker, & Walker,
2014) to test for dif ferences a mong treat ments. Th ese model s in‐
clu de dt heresponsev ar iableofinter es t(e.g.,treegrowth,L AI ,l it te r
fall)andpredictorssuchas“treatment”andyear.Weusedindividual
trees as o ur sample unit s for tree wood incre ment and mort ality
FIGURE 2 Viewoftheeddycovarianceopen‐closedsystem
locatedinsouthernAmazonia
    
|
 5
BRAN DO et Al .
models.Treegrowthmodelsincludedrandomeffectofspeciesand
subplot s to minimize unwante d sources of varia bility. Toev aluate
theprobabilityoftreemortality,weusedageneralizedlinearmixed
model (family: binomial) that included tree mortality/survivorship
astheresponsevariable; treesize,wooddensity,and treatment as
predictors;andrandomeffectsof speciesandsubplot. Toestimate
confidenceintervalsonthepredictedvariables,wegeneratedanew
datasetinwhichallvariableswerefixedtotheiraveragevalues.We
thenbootstrappedthemodelpredictions using the func tion “boot‐
Mer”(Batesetal.,2014).Previousstudiesconductedatthissite(e.g.,
Brandoetal.,2014)showedthattheforestinteriorandedgesofthe
burnedplotsdifferedintreemortalityrates,canopycover,andgrass
invasion rates. We therefore included a categoricalvariable repre‐
sentingforestinteriorandedgeinmostofourmodels.Allerrorbars
representbootstrappedconfidenceintervals.
3 | RESULTS
3.1 | Experimental fires
Our previ ous studies cond ucted in the regio n during nondrou ght
yearsshowedthatthefirstprescribedfiresreleasedsmallamounts
ofenergy and caused modestchanges in foreststructure (Balchet
al.,20 08;Brandoetal.,2014).Incontrast,theprescribedfirescon‐
ducted during the 20 07droughtweremore intense (Brandoet al.,
2014),killed a higher proportion of woodyindividuals, andcaused
sharpdeclinesinLAI(B1yr:50%;B3yr:49.4%),litterfall(B1yr:19.8%;
B3yr: 3 6.3%), and ABG ( B1yr:12 .8%; B3yr : 17.7%) d uring the fol‐
lowing year ( 2008), par ticularly alo ng the forest edg es (Figure 4).
Silvérioetal.(2013)foundthat,ascanopycoverdeclinedandmore
lightreached the forestunderstoryafter thesefires,grassesbegan
invadingtheburnedforestedges,creatingaflammableenvironment
even during nondrought years (e.g., 2009). In 2010, the southeast
Amazon regionexperienced anothersevere drought(Brandoetal.,
2014).Weshowthatfire‐inducedtreemortalityabruptlyincreased
inthe yearfollowingthis drought,especiallyalongtheforestedges
andinB3yr(Figure4;TableS1).ThesefiresfurtherreducedLAI,lit
terfall,and AGB biomass(Figure 4). Combined withthe availability
ofpropagules,fire‐relatedchangesinforeststructurefacilitatedthe
invasion of gr asses along m uch of the fores t edges of the bu rned
plots(Silvérioetal.,2013).
3.2 | Forest recovery period
With the e nd of the prescribe d fires in 2010, the experiment al
forest s entered a recove ry phase c haracter ized by two contr ast
ingpat terns.First,postfiremortalit yoflargetreescontinuedtobe
substantiallyhigherthanintheControl(Figure4;TableS1).Awind
storm th at impacted th ee xperiment al plots in 2012 pun ctuated
thispattern.Fire‐damagedtreeshadtrunksthatweremorevulner
abletowindbre akageandcrow nst hatweremoreexposedtowind
andassociateduprooting(moredetailsin Silvério et al., 2019).As
largetreesdied,AGBbiomasscontinuedtodropacrosstheburned
plots, reaching their lowestlevels by the endoftherecover ype
riod.T hesepatter nsweremorepron ouncedalongthefores tedges
oftheburnedplots,particularlyofB3yr(Figure4;TableS1).
The second pattern we observed duringthe recovery period
was vigorou s vegetation g rowth. Bet ween 2011 and 2016, 63%
ofthe species common to all three treatment grewfasterin the
burned plotsthanin the Control(Figures S4 and S5),andgrowth
ratesincreasedwithtreesizeintheburnedplots(FigureS6;Table
S2).Thisresultedinhigheroverallgrowthandpostfirecarbonac
cumulationperindividualtreeintheburnedplots(Figure5;Table
S3),althoughgrowthandcarbonaccumulationweresimilarduring
someperiods (e.g.,between2012 and2014).Newrecruit senter
ing our inventory during the recovery period also grew faster in
theburnedplots,mainlyduetofourrapid‐growthspecies(Mabea
fistulifera, Tachigali vulgaris, Cordia bicolor, Casearia grandiflora;
Figure 6). In co ntrast, new r ecruits sa mpled bet ween 2004 a nd
20 0 8(i .e .,b urn ing per iod )we recom pri sed ofamo rediversegr oup
ofslow‐growthspeciesinallthreetreatmentplots,especiallyin
theControl(Figure6).
Theoverall increasedpostfire growthcaused ashift in the tra
jectoryofcanopydynamics,asrepresentedbyincreasesinLAI(late
2014), litter fall (mid‐2013), and EVI (e arly 2012; Figu res 1 and 4).
Althoughlitt er fallandEV Ir ec overedtov al ue ssimilartot heCo nt ro l
FIGURE 3 Estimatedfootprint
probabilitiesforourtwoeddycovariance
towers,representingdaytime(bet ween
07:00hoursand17:00hours;leftpanel)
andnighttime(between18:00hours
and06:0 0hours;rightpanel)fluxes
measuredbetweenearly2014andlate
2017.Two‐dimensionalfootprintswere
calculatedonlyforhalf‐hourlydatawhen
frictionvelocitywashigherthan0.14m/s
toensurethatameaningfulturbulent
transportwaspresent
0.00 0.05 0.10 0.15 0.20
Forest
Daytime Nighttime
ControlB3yrB1yr ControlB3yrB1yr
Probability
6 
|
   BRANDO et Al .
by2016 (Figures1and4),L AI remainedlower inthe burnedplots
than in th e Control alon g both forest ed ges (Control: 4.1 m2 m‐2 ;
B3yr :2.3m2 m‐2 ;B1yr:1.1m2 m‐2 )an di nteriors(Control:4. 6m2 m‐2,
B3yr:3.4m2 m‐2;B1yr:2.0m2 m‐2 ),withsharpdeclinesinlate2016.
Comparison of repeated LiDAR measurements in 2012 and
2014capturedcontrastingpatternsinvegetationstructureduring
awindowoftherecoveryperiod.First,lossofunderstoryvegeta
tion(height<3m)wasobservedas adecreasein height between
2012 and 2014, as rep resented by change s in frequency d istri
butions of L iDAR returns f rom the vegetat ion canopy (F igure 7;
Figure S7 ). This occurre d across 4.9% (B1yr) and 7.9%( B3yr) of
the experimentally burned plot s, but only 1.5% of the Control
plot.Second,vegetationregrowth—detectedasanincreaseinthe
forest understory height—wasobserved across 19.5%(B1yr) and
17.5%(B3yr)ofthe burnedplotarea,comparedwith2.5%of the
Control.Onaverage,lossesinforestheightoccurredat18m,and
postfiregrowthbetween2 and3 m. In general, our estimates of
LADderivedfromLiDARsuggestthatby2014,canopycoverwas
70%loweri ntheburnedpl ot sthanint heContr ol,mo st lybecause
LADwaslowerb et ween3a nd20mintheburnedplot s(F igure8).
Therecoveryofcanopycoverintheburnedplotswasexpected
toreducegrass cover afterthefires ended,butourrepeatedmap‐
ping of grasses in 2015 indicated that grasses covered roughly
thesame area as in 2012: 43% (B1yr)and 49%(B3yr) of the forest
edgearea(Figure 9;FigureS8), comparedwith <1%in the Control.
FIGURE 4 Temporalpatternsof
environmentalvariablesmeasuredalong
theforestedge(lef tpanels)andinthe
forestinterior(rightpanels)ofthethree
experimentalplots(Control, B3yr,and
B1yr).(a)Abovegroundlivebiomass
(N=6).(b)Leafareaindex(N = 70;
LAI).(c)Litterfall(N=70).(d)predicted
mortalityfortreeswithdiameter
atbreastheight(dbh)of20cm(see
MaterialandMethodsfordetails).Red
xswithintheplottingsymbolsindicate
theyearswhentheexperimentalfires
wereconducted(Augustofeachyear),
endingin2010.Theblowdownevent
occurredinOctober2012(represented
by*inthex‐axis).Thecoloredbands
representbootstrappedconfidence
intervals
Edge Forest
2004 2008 2012 2016 2004 20082012 2016
0
50
100
150
1
2
3
4
5
1
2
3
4
5
0.0
0.2
0.4
0.6
Ye ar
AGL biomass
(Mg/ha)
LAI
(m2 m–2)
Litterfall
(Mg ha–1 year–1)
(a)
(c)
(b)
(d)
Predicted
mortality
Treat
B1yr
B3yr
Control
**
FIGURE 5 Stembiomassaccumulationofindividualsinthe
threetreatmentplots(Control,B3yr,andB1yr),accordingtoour
linearmixedmodel.Theannualstembiomassincrementusedinthe
modelwascalculatedasthedifferenceintreebiomassmeasured
betweentwosamplingintervals(Julyofeachyear).Formore
details,seetheMaterialandMethodssection
08-04 10-08 11-10 12-11 14-12 16-14
Biomass increment
(kg ind–1 year –1)
ControlB3yrB1yr
0
5
10
15
20
Period between sampling intervals
    
|
 7
BRAN DO et Al .
Withthepostfiremortality oflargetreesandvegetationregrowth,
grassesshiftedspatially,withonly46%(B3yr)and36%(B1yr)ofthe
areacoveredbygrassesin2012remainingsoin2015,implyingthat
grassescolonizednewareasoftheburnedplotsduringthistimepe
riod.ThedominantgrassspeciesalsoshiftedfromA. longifolia(aC3
nativeCerradospecies)toA. gayanus (a C4 African species)andamix
ofgrasses.Reductionsincanopytreeheightwereanimportantpre
dictorofgrassinvasionsuchthatfor a10‐mreduction inoverstor y
height(e.g.,from15to5m)therewasanincreaseof12%–20%inthe
probabilityofgrassinvasionintheburned plots,butonly4%in the
Control (Figure S9).Incontrast, grasses in the Control coveredless
than1%oftheforestedgein2012and2015.
3.3 | CO2 and water fluxes
Overall,ETderivedfromourECsystemsinburnedandControlplots
werestrikingly similar.Averaged across the entire period,postfire
ETwasonly1.1%higherthanin theunburnedControl, which aver‐
aged 0.45 mm/hr during daytime (i.e., global radiation ≥50 W/m2).
Thenotableexceptionwasin2015, when ETwas 7% lower in the
burned plot sthanintheControl (Figure10).Theoverallhighpost‐
fire water fluxesapparently resultedfrom increased ET perunitof
leafarea.In2014,forexample,ETnormalizedbyLAIwas2.4times
higherintheburnedplotsthanintheControlduringrainlessperiods
(sixormoredayswithprecipitation<1mm;FigureS10),whentran‐
spirationprobablydominatedthewaterfluxes(Knaueretal.,2018).
While postfire ET normalized per LAIdeclinedduring the recover y
period,bytheendof2017,plantsintheburnedplotsstilltranspired
75%moretha ntheControlperunitofL AI.Ourestimatesofecosys
tem ET from soilmoisture measurements also point tovegetation
intheburnedplotsusinglargeamountsofsoilwatertogrow,given
thatET was higherinthe burnedplotscompared withthe Control
(FigureS11).However,theECsystemrepresentedamuchlargerarea
thanthesoilpitsusedtocalculateETduringdr yperiods.
NEEfluxes indicate that theburned plots assimilated 36%less C
th a nthe C o ntro l did i n20 14, 3ye a r saf te rth e e xper i m e ntal f i rese n d ed
(Figure10).Thislowercapacitytotakeupc arbonwasassociatedwith
a26%increaseinpostfireecosystemrespiration(Reco)anda10%drop
FIGURE 6 Averagetreegrowthfor
eachspecies,asafunctionofaverage
numberofnewrecruitsreachingthe
minimumsizetoentertheinventory
(10cmdbh).Theleftandrightpanels
representtheburning(2004–2011)
andrecover yperiods(2012–2016),
respectively
T
. vulgaris
g
ar
T
I. hete
I. hete
t
r
r
ophylla
l
ophylla
r
r
r
r
P
. pilosissimum
p
m
P
P
C. bicolor
o
C. bicolor
i
r
T
. vulgaris
u
T
A. guianensis
n
.
A. guianensis
g
g
s
A. guianensis
n
.
V
V
. vismiifolia
m
i iif li
V
V
V
T
. guianensis
n
T
S. sinemariensis
S
a
S
ema
C. schomburkianus
m
C
u
mburk
Unknown
o
Unknown
A. guianensis
a
X. amazonica
i
a
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
0
1
2
3
Treat
B1yr
B3yr
Control
Burning period Recovery period
Number of new recruits (ha/year)
Tree growth (mm/year)
FIGURE 7 LiDAR‐basedmapsshowingforestheightchangesbetween2012and2014fortheunderstoryvegetation(<3m)and
overstor yvegetation(>3m)acrossthethreeexperimentaltreatmentplot s(Control,B3yr,andB1yr)
0250125
Meters
2012– 2014 dynamics
Removed
Unchanged
Growth (<3 m)
Growth (>3 m)
8 
|
   BRANDO et Al .
inpostfireGEP(NEE–Re co)compared with theControl. After2014,
differences in NEE between burned andControl plots averaged less
than1%,poi nt ingtoa rapidrecoveryof CO2fluxesdespitedifferences
inLAIandABG.TosustainacomparableGEPtotheControl,theveg
etationintheburnedplotapparentlyusedmoreoftheabsorbedPAR
tofixcarbon.In2014,forexample,LUEwas65%higherintheburned
plots th an in the Cont rol. As L AI increas ed, however, diffe rences in
LUEbetweentreatmentsplotsdecreasedto13%in2017(Figure10).
4 | DISCUSSION
The intensification of disturbances in Amazonia could push for‐
ests tonewstates, with potentialreductionsinecosystem ser vices
regulatingtheregion'sclimate(e.g.,ET,CO2uptake,andcarbonstor
age;Davidsonetal.,2012;Nobreetal.,2016).Theforestsmostsus‐
ceptibletoapotentialshiftintoapermanentlydegradedstategrow
alongthedriestsouthernandeasternmarginsoftheAmazon,where
drought, fires, and fragmentation already interact synergistically
(Alencar et al.,2015;Mortonetal., 2013). However,theresilience
oftheseforeststomultiple,severedisturbancesremainunclear,es
peciallythetimescalesforrecoveryofdifferentecosystemservices
(Chazdonetal.,2007).
In our experimental forest, we expected biomass loss to begin
recoveryafterthecessationofexperimentalfires.Instead,increased
mortalityoflargetreesandrelatedlossesinABGandcanopycover
charac terized the 7‐year post fire period. T hus, in contrast to o ur
original hypothesis,forestdegradationcontinuedformultipleyears
after the experimental manipulation ended. Par ticularly along the
forest edges, where introduced grasses persisted throughout the
recovery period, a potential consequence of legacies bet ween
high‐intens ity fire and a wind throw event. Despi te these striki ng
differences betweenburnedandunburned areas,their CO2 uptake
andETwere unexpectedlysimilar 5years aftertheend ofhigh‐in‐
tensityfires,likelyreflectingoptimizedresourceusebypostfirein
coming(includinggrasses)andfire‐survivingvegetation(Berenguer
etal.,2018;Brando,Oliveria‐Santos,Rocha,Cur y,&Coe,2016).Yet,
becaus e gross CO2 exchange w as equivale nt between t he burned
andControlplots, thenet recover y ofcarbonstocksfollowing the
observed disturbanceswill probably beslow, as observed inother
burnedAmazonforests(Silvaetal.,2018).
4.1 | Ecosystem structure and diversity
Surfacetropicalfiresareexpectedtokillmostlysmall‐andmedium‐
sizedtrees,becausethelarger,thickerbarkedindividualscanavoid
heat‐related da mage to cambium cells d uring fires (Br ando et al.,
2012).Althoughdelayed postfiremortalityoflarge treeshasbeen
obser ved across the tro pics, the mech anisms driving t his process
remain unclear (Ba rlow et al., 2003). In our stud y, the persistent
postfiremortalityoflargetreesmayhavebeenassociatedwiththeir
FIGURE 8 Leafareadensity(L AD)
profileestimatedfromairborneLiDAR
measurementsfortheunburnedControl
andtheplotsburnedtriennially(B3yr)
andannually(B1yr)from2004to2010
(withtheexceptionof20 08).TheLiDAR
overflightswereconductedinOctober
2014.(a)LADperforestheightclass,
showingthatLADwasgreatlyreduced
intheburnedplots.(b)CumulativeLAD
throughouttheforestprofile,showing
thatLADintheControlwas~70%higher
thanintheburnedplots
0.0 0.2 0.4 0.6
012345
0
10
20
30
Leaf area density (m
2
m
2
)
Forest height (m)
(a) (b)
Control
B3yr
B1yr
FIGURE 9 Mapsofgrassinvasionsfor2012(upperpanel)and
2015(lowerpanel)intreatmentplotssubjectedtoannual(B1yr)or
triennialburns(B3yr)andintheunburnedControlbetween2004
and2010.Differentcolorsrepresentdif ferentgrassspeciesor
absenceofgrasses(i.e.,forests,showninblack)
B1yr B3yr Control
    
|
 9
BRAN DO et Al .
increasedvulnerability to windstorms.Specifically,thefires weak
enedtrunksandincreasedcrownexposure oflarge treesto strong
winds thatimpacted the experimental forest (Silvério et al., 2019).
Thispostfiredisturbancecausedgreaterlossesincanopycoverand
biomass inareasimpactedbyour experimentalfires. Theobser ved
rapidgrowthofresproutsandsaplingswasexpectedtopartiallyre‐
store forest structure (Chazdon et al., 2007), but ABG reached its
lowest le ve ls7y ear saftert he exper ime nt alf ir eshaden ded ,p art icu
larlyalongtheforestedges.Ourresultssuggestthatfragmentation
of tropical forests—and the associated increase in forest edges—
could dra matically i ncrease the n egative impa cts of fir es and lead
topersistentlossesofbiomass(Silvaetal.,2018).Thisisparticularly
true whe re fires co‐ occur with ex treme dro ughts that c an furt her
increasefire intensity andfire‐related tree mortality by triggering
accumulationanddesiccationoffuels(Aragãoetal.,20 08).
Apermanent transition toa new,derived‐savanna state in this
ecotone would requirepersistenceofgrasscoveranda moreopen
canopy. While grasses couldpersist along the forest edges due to
delayed po stfire tre e mortalit y (Higgins, Bo nd, & Trollope, 200 0),
we instead observed widespread postfire resprouting of woody
vegetation—includinginareasthathadbeenpreviouslycoveredby
grasse s. However, the total area o ccupied by grasse s did not de‐
crease,becausegrassesinvadednewareasbetween2012and2015.
Furthermore,wefoundnomajorreplacementofC4 by C3 species,
aprocessexpectedtooccuraslightintheunderstoryoftheburned
plots be came scarce. I nstead, light‐deman ding African C4 g rasses
became more abundant,particularly wherefires in previous years
hadbeenmoreintenseandsevere,andwheretheblowdownevent
had topkilled more trees (e.g., B3yr). The delayed tree mortalit y
drove much of this processby increasing lightand probably water
availability as canopy cover decreased. Another likely driver was
the greatercapacity of African grasses to produce, germinate, and
disperseseeds compared withthe Cerrado native grasses (Higgins
etal.,2000).Theseresultsraisethequestionofwhethertheedgeof
FIGURE 10 Eddycovariance‐based
measurementsofseveralproperties
andprecipitationmeasuredinsoutheast
Amazonia.Thepanelsshowtemporal
variationofweeklyevapotranspiration
(ET;a),netecosystemexchange(NEE;
b),ecosystemrespiration(Reco;c),gross
primar yproductivity(GEP;d),andlight‐
useefficiency(LUE;e).Thebottompanel
representsmonthlyprecipitation(PPT;
f).Thesolidlinesrepresentgeneralized
additivemodels(GAM)foreachoneof
thevariablesfortheburned(orange)
andcontrol(green)plots.Thedashed
linerepresentsalinearmodel.Thered
semitransparentredbarsrepresentdry
seasonmonths(June–September)
0.2
0.3
0.4
0.5
0.6
2
0
2
4
0
3
6
9
5
10
15
0.01
0.02
0.03
0.04
0.05
Treat
Burned
Control
2014 2015 2016 2017 2018
ET
(mm/hr)
NEE
(gC m–2 day–1)
LUE
(CO2/photons)
GEP
(gC m–2 day–1)
PPT
(mm/month)
Reco
(gC m–2 day–1)
0
100
200
300
400
500
(a)
(b)
(c)
(d)
(e)
(f)
Date
10 
|
   BRANDO et Al .
theexperimentalareaisundergoinga permanent shift toalow‐di‐
versity,grass‐dominatedvegetationenvironment.Wespeculatethat
overthenextfewyearsordecades,woodyvegetationwillprobably
replacegrasses,butonlyiftherearenorecurrentfires,fundamental
changes in c limate, and/or deple tion of nutrie nts, which h as been
shown to slow d own recovery in othe r tropical fores ts (Chazdon
etal.,2007).Ourexperimentalsitereceives over1,700mmof pre‐
cipitation,whichissufficientto supportdense forestsacross much
ofthetropics(Staver,Archibald,&Levin,2011).
4.2 | Ecosystem functions
Large tracts of Amazon forests burn during droughts (Mor ton
et al., 2013) or ar e affected by epi sodic blowdown eve nts (Rifai
et al., 2016), but the magnitude of the associated changes in
water cycl ing is poorly q uantified . Degrade d Amazon fores ts are
expec ted to transpir e substantia lly less beca use of the potenti al
red uc tionsinL AIan droot in gdepth(Silvérioe tal.,2015).However,
ETinourstudy was similarbetweentreatment sthroughoutmost
ofthestudyperiod,evenwhenpostdisturbanceLAIwashalfofthe
Control . There are at le ast four likel y ecologica l explanati ons for
thisfinding.First,early‐successional,fast‐growingspeciescoloniz
ing the bur ned areas (e.g ., M. fistulifera,T. vulgaris, C. grandiflora,
and C. bicolor)probablyusedmorewater per unitof LAIthan the
late‐successional ones they replace(Chiariello, Field, & Mooney,
1987),apattern commonlyobservedinslashand burnagriculture
(Sommer e t al., 2002). O ur LiDAR measure ments showe d annual
height growth reaching 2 m, a process probably requiring large
amounts of water. Second, transpiration of large fire‐surviving
treesmayhaveincreasedaspostfirecompetitiondecreased,given
thatgrow th wa sdis pr oportionallyhigh er fo rl ar ge ri ndividu al s(e.g.,
Figure S6).Also, recentstudies haveshown that afewlargetrees
can accountforalarge proportionof ecosystem‐level ET (Kunert
et al., 2017), be cause of thei r large canop ies, large ste m storage
capacity,and ability to take up deepsoil water throughout much
of the year (Ne pstad et al ., 1994).Th ird, fire‐ind uced reduc tions
inLAIhighinthecanopylikelyallowedmoremixingwithairaloft,
decreased overall relative humidity,an dprob ably caused associ
atedincreasesinevaporativedemand(Kunert,Aparecido,Higuchi,
Santos, &Trumbore, 2015).Fourth,grassesmay havecontributed
tothehighETduringthewetseason,whengrasseshavemoreac
cess to soil moisture. However,grasses coveredless than20% of
theove ra lltowerfootprintandlessth an3%ofth emostlikel yfoot
print are a (i.e., sampling p robability > 0.1).Fur thermore , had this
been the case,we wouldhaveexpectedhigher‐than‐observed ET
during th e wet season in t he burned p lots. Over all, we conclu de
thatacombinationof theseprocesseslikely allowedplants in the
burned plots to maximize water use andto maintain high E T and
cycled60%–75%oftotalrainfallforthisregion.
Postdisturbance CO2uptakeoftropicalforestscaneitherin
creaseas vegetationrecovers,decreaseas necromass decomposes,
or remain unchanged as emissions and uptake cancel each other
out(Malhi,2011).Althoughnetcarbonuptakeintheexperimentally
burned forestsinitially was lowerthan in the Control, it apparently
recovered toControl levels withina few years afterthe prescribed
fire s.T hi sr ecoverywaspa r ti all ya ss ociat ed witht heve ge t at ioninth e
burned plot sinvestingmoreof the absorbed PARtofixcarbon.For
example,postfireLUE(0.021 mol CO2/mol photons)between2014
and 2017 was much h igher than the u nburned Co ntrol (0.015 mol
CO2/mol photons), but comparable to an east‐central Amazonian
moistforest(0.019molCO2/molphotons;Wuetal.,2016).Although
carbonfluxes between treatmentplots weresimilar after 2014, we
observed important seasonal differences between our treatment
plots. Fo r instance , the burned p lots exceede d GEP in the Cont rol
duringthewet‐seasonmonthsof2015,aresultpotentiallyrelatedto
higherthroughfallinthemoreopenburnedplots,increasingsoilwater
availabil ity and allowing p lants to photosynt hesize longer into th e
dry‐season(Honda & Durigan, 2016)andtogrowfaster (Berenguer
etal.,2018;Brandoetal., 2016).Inadditiontorecovering GEP,the
vegetatio n growing in the burn ed plots also incr eased net carbo n
uptake due to a sharp reduction in Recostartingin2015,mostlyin
thedry season.Althoughthehighrespirationintheburned plot sin
2014 could be a resu lt of necromass d ecompositi on from the fi res
andtheblowdown,fast‐growingspeciescolonizingtheareaprobably
contributedtothisprocessaswell.Wespeculatethatfrom2014and
2015,Recodecreasedascompetitionforresourcesincreasedbutalso
inresponse to lower necromass decomposition. Rochaet al. (2014)
andMetcalfeetal.(2018),forinstance,observedfastpostfirerecov
ery of eco system‐level c arbon flu xes across the ex perimenta l area
due to reduced Reco, which wasderivedfrom bottom‐up field mea
surement s(Ma lh ie tal. ,2009) .O ve ra ll,o urre sultspo in ttorapidpost
fire restoration of carbon cycling, albeit not large enough to offset
thebiomasslossesassociatedwithincreasedmort alityoflargetrees,
aprocessthatmaytakeseveraldecadestooccur(Silvaetal.,2018).
Our results suggest that the vegetation in the burned plots
rapidly recovered fluxes of CO2andH2O.However,legacy fire‐ef
fectsmayhave occurred withinthe first 3.5 years of the recovery
period,whenno eddyfluxtowerswereinplace.Someofourmea‐
surement ssuggestthattheburnedplots appeartohave recovered
CO2fluxestoControllevelbylate2014orearly2015.Forexample,
our10–12yearsofmeasurementsofLAI‐litterfall also support this
view.PostfireLAIaroundtheeddyfluxtowerrecoveredslowly,but
litterfall becamemoresimilar bet ween treatmentsstartingin2013
and 2014. This sug gests that by inc reasing leaf turn over (primar‐
ily) and lea f area (second arily), plant s growing in the b urned plot s
rapidly recovered postfire canopy productivity and water fluxesto
theControllevels,aninterpretationsupportedbyMODIS‐EVImea
surement s.Rochaet al.(2014)alsofoundarapidrecoveryinforest
productivity along atransect of the experimental area, largely be‐
causeofincreasedcarbon‐useefficiencyintheburnedplots.Similar
patterns in soil moisture dynamics between the two experimental
plots re inforce the not ion that ET ra pidly recover ed following t he
experimental fires.However,wecannotdiscardthepossibility that
differencesinNEEandETexistedbeforetheexperimentalburns.
Overall,our results support the hypothesisthatevenhighly dis
turbedforestscanrapidlyrecoverfluxesofwaterandcarbondueto
    
|
 11
BRAN DO et Al .
canopyclosureasearlysuccessional,fastgrowingspeciesbecomethe
dominanttrees. Asvegetationrecovers in the nearfuture,competi
tionforlight, water,and nutrients maychangehowplantsoptimize
resources(Everham&Brokaw,1996).Inparticular,theburnedforest
is expected to become light‐saturatedas LAI increases, causing as
sociated reductions in ecosystem‐levelLUE (Li, Bian, Lei, & Huang,
2012). Similarly, as competitionfor water increases and throughfall
decreases,plantsgrowingintheburnedplotsprobablywilltranspire
less waterper unit of LAI. Our results suggest that these two pro
cesses maybe already occurring. We also expect slow‐growthtree
speciestobemorecommonamongnewrecruits,asobservedinthe
Control.
4.3 | Broader implications
One of the mostimportant questionsinAmazon conservation is
whetherthe impactsofsevere,repeateddisturbances occurring
in the region could surpass the ecosystem'scapacity to recover.
Althou gh several stu dies have shown th at much of the Amazo n
forest is resilient to moderate disturbance, we found that this
resilien ce, in terms of car bon stocks a nd forest cover, has be en
temporarilyimpededbyrecurrentfiresinteractingwithdroughts,
forest fragmentation, and blowdown events. The observed de
layed postfire mortality of large trees reduced forest carbon
stocksandcreatedopportunitiesfortheestablishmentofinvasive
grasses,pushingthissystemtoanewenvironment.However,we
cannotdetermineyetwhetheratippingpointwasreached,lead
ingthissystemtoanewstable,moresavanna‐likestate.Previous
studies have shown that even severely disturbed forests may
mostlyrecoverpredisturbancebiomassandfluxeswithindecades
(Chazdon et al.,2016).Yet,we speculate thatin the nearfuture,
the continued or even increased vulnerability of large surviving
tr e e scan incr e a set h eris k sof n ewd i stur b a nce s impa c t i ngt h eare a
before recover yoccurs.For example, climate changeis expected
to increas e the freque ncy and intens ity of distur bances such as
windsto rms and droug hts (Duf fy, Brando, A sner, & Field, 2015).
Evenif higherlevels of atmospheric CO2 leadtoincreasedrates
ofbiomassrecovery,morefrequentdisturbanceswouldresultin
chronicimpoverishmentofbiomassandbiodiversity,especiallyin
landscapesbecomingmorefragmentedbydeforestation.
However,amajorfinding here isthatclimateservicessuchas
evaporation are recovered even in highly degraded, low biomass
forests.Intropicalregions,landcoverchangehasdramaticallyal
teredsurfaceenergyandwaterbalanceatregionalscales(Silvério
et al., 2015). These changes, especially reductions in recycling
ofevaporated water as a source of precipitation, havebeen hy
pothesizedtoexacerbatedroughtintheAmazonandneighboring
regions (Nobreet al., 2016).Thesimilarityweobservedbetween
ET in a highly degraded forest and an undisturbed one agrees
with other recent studies of fluxes in agroforests and natural
forests (Sabajoet al., 2017).Relativelyrapid recovery of climate
serv ices indicate s that, even th ough highly dis turbed for ests, in
our case s with stru cture simila r to a derived sav anna, they may
playanimportant climateservicesrole bymaintaining ET fluxes.
Yet,widespread disturbance eventsoccurringoverthousandsof
hectares(e.g.,Witheyetal.,2018)mayconstrainETbyincreasing
regionallandsurfacetemperatures,andperhapsinfluencingpre
cipitationpatterns.
As regionalclimate changes, forest resilience is expected to
d e cr e a s e (S c h w a l me t a l . ,2 0 1 7 ), w h e r e as t h e f r eq u e n c y a n di n t e n
sityofdisturbancesareexpectedtoincrease (De Faria, Brando,
& Environme ntal, 2017). Transitional fo rests growing be tween
tropicalfor es tsandsavannasarelikelytob ethemostvulnera ble
to a potentia l intensificat ion in disturb ance regimes c aused by
wildfires,blowdowns,andfragmentation.Somestudiessuggest
ashiftin stablestatestowardanecosystemwithlower biomass
and more gr ass dominance, es pecially when pre cipitation fall s
below1,500mm(Staveretal.,2011).Forthetransitionforestof
thepresents tudy,we fo un devide nc eforresilienceofthecarb on
fluxan dE Tp rocesse s,butst il ld el ayed re co ve ryofcar bonstocks
and forestcover and delayed decline in grasscover.Hence, we
cannotdetermine yetwhetheratippingpointwasreached that
willpermitmorefireandwindthrowdisturbance,fur therexacer
bated bymajor droughts, whichwould lead to derived savanna,
orwhetherforestcoverwilleventuallyrecoverandreducethose
risks.
ACKNOWLEDGEMENTS
We thank the cr ew from IPAM for thei r help with dat a collectio n
andanalysis,A.Maggiforprovidingaccesstothefieldsite,andTara
Massad and Martin Hertel helping toinstall theeddy flux towers.
The manuscript was improved by comments of R. Houghton, G.
Durigan,F.Putz,L.Paolucci,L.Rattis,andT.El‐Madany.Weappre‐
ciate the fi nancial suppor t from the Nation al Science Foundat ion
(#1146206),Max PlanckInstituteforBiogeochemistry,theGordon
and Betty Moore Foundation, and the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq‐Brazil) through
aProductivity Grant forP.Brando, PELD‐Tang (#441703/2016‐0),
through a P VE‐Science without Bo rders funding for S . Trumbore
andD.Silvério(#405800/2013‐4), and through a postdoctoral fel‐
lowshipforL.Maracahipes.LiDARdatawereacquiredwithsuppor t
from USAID, the USDepar tmentof State,EMBRAPA, and the US
ForestServiceOfficeofInternationalPrograms.
CONFLICT OF INTEREST
Theauthorshavenoconflictofinteresttodeclare.
ORCID
Paulo M. Brando https://orcid.org/0000‐0001‐8952‐7025
Divino Silvério https://orcid.org/0000‐00031642‐9496
Leonardo Maracahipes‐Santos https://orcid.
org/0000‐0002‐8402‐1399
12 
|
   BRANDO et Al .
REFERENCES
Alencar,A.A.,Brando,P.M.,Asner,G.P.,&Putz,F.E.(2015).Landscape
fragmentation, severe drought , and the new Amazon forest
fire regime. Ecological Applications, 25, 1493–1505. https://doi.
org /10.1890/14 ‐1528.1
Aragão, L. E. O. C ., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y.,
Anderson,L.,&Saatchi,S.(2008).Interactionsbetweenrainfall,de
forest ation and fires duringrecent yearsintheBrazilianAmazonia.
Philosophical Transac tions of the Royal Society of Londo n. Serie s
B, Biological Sciences, 363, 1779–1785. htt ps://doi.o rg /10.10 98/
rstb.2007.0026
Aragão,L.E.O.C., &Shimabukuro,Y.E.(2010).Theincidenceoff irein
AmazonianforestswithimplicationsforREDD.Science,328, 1275–
1278.https://doi.org/10.1126/science.1186925
Arroyo‐R odríguez, V., Mel o, F. P.L ., Martí nez‐Ramos, M ., Bongers, F.,
Chazdon , R. L., Meave , J. A., … Tabarelli, M . (2017). Multipl e suc‐
cessional pathways in human‐modified tropical landscapes: New
insightsfrom forestsuccession,forestfragmentationandlandscape
ecology research. Biological Reviews, 92 (1), 326–340. ht tps://doi.
org /10.1111/b rv.122 31
Balch, J. K., Nepstad, D. C., Brando, P. M., Curr an, L. M., Portela,
O., de Car valho, J. O., & Lefebvre, P. (2008). Negative fire
feedback in a transitional forest of southeastern Amazonia.
Global Change Biology, 14(10), 2276–2287. https://doi.
org /10.1111/j .136 5‐2486.200 8. 01655.x
Barlow, J., Peres, C. A., Lagan, B . O., & Haugaasen, T. (2003).
Large tree mor talit y and the decline of forest biomass follow‐
ing Amazonian wildfires. Ecology Letters, 6(1), 6–8. https://doi.
org/10.1046/j.1461‐0248.2003.00394.x
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear
mixed‐ef fectsmodelsusinglme4.arXiv. org.
Berenguer,E.,Malhi,Y.,Brando,P.,C ardosoNunesCordeiro,A.,Ferreira,
J.,França,F.,…Barlow, J.(2018).Treegrowth and stemc arbonac‐
cumulationinhuman‐modifiedAmazonianforestsfollowingdrought
and fire. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences,373, 20170308–20170318. https://doi.
org /10.1098/r st b. 2017.030 8
Bouvier, M., Durrieu, S., Fournier, R. A ., & Renaud, J.‐P. (2013).
Generalizing predictive models of forest inventory attributes using
anarea‐basedapproachwithairborneLiDARdata.Remote Sensing of
Environment,156,1–13.
Brando,P.M.,Balch,J.K.,Nepst ad,D.C.,Morton,D.C.,Putz,F.E.,Coe,
M. T., … Soares‐F ilho, B. S. ( 2014). Abrupt in creases in A mazonian
tree mor tality due to drought‐fire interac tions. Proceedi ngs of the
National Academy of Sciences of the United States of America, 111,
6347–6352 .h tt ps ://doi.or g/10 .1073/pnas.1305499111
Brando,P.M.,Nepstad, D.C ., Balch,J. K.,Bolker,B.,Christman, M. C.,
Coe, M.,&Putz,F.E. (2012). Fire‐inducedtree mortality inaneo‐
tropical forest: The roles of bark trait s, tree size, wood density
and fire b ehavior. Global Change Biology,18 , 630–6 41. https://doi.
org /10.1111/j .136 5‐2486.2011. 02533 .x
Brando,P.M.,Oliveria‐Santos,C.,Rocha,W.,Cury,R.,&Coe,M.T.(2016).
Effectsofexperimentalfueladditionsonfireintensityandseverity:
Unexpectedcarbonresilienceofaneotropicalforest.Global Change
Biology,22(7),2516–2525.https://doi.org/10.1111/gcb.13172
Chave,J.,Réjou‐Méchain,M.,Búrquez,A .,Chidumayo,E.,Colgan,M.S.,
Delit ti,W.B.C .,…V ieilled en t, G.(2014).Im prove dallo me tr icmodels
toestimatetheabovegroundbiomassoftropicaltrees.Global Change
Biology,20,3177–3190.https://doi.org/10.1111/gcb.12629
Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A ., Bongers, F.,
Zambr ano, A. M. A ., Aide, T. M., … Poo rter, L. (2016). Ca rbon se‐
quest ration poten tial of second‐g rowth fore st regenerat ion in the
LatinAmerican tropics. Science Advances, 2, e1501639.https://doi.
org /10.1126/scia dv.1501639
Chazdon, R. L., Letcher, S. G., van Br eugel, M., Martínez‐Ra mos, M.,
Bongers, F.,& Finegan, B.(2007). Rates ofchange intree commu‐
nities of secondary Neotropical forests following major distur
bances. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences,362, 2 73–2 89.  ht tp s: //doi .o rg /10 .10 98 /
rstb.2006.1990
Chiariello, N. R ., Field, C. B., & Mooney, H. A . (1987). Midday wilt‐
ing in a trop ical pioneer t ree. Functional Ecology, 1, 3. http s://doi.
org/10.2307/2389351
Clark,D.A., Brown,S .,Kicklighter,D. W.,Chambers,J.Q., Thomlinson,
J.R., & Ni, J. (2001). Measuring net primary production in forest s:
Concepts and field methods.Ecological Applications, 11, 356–370.
https://doi.org/10.1890/1051‐0761(2001)011[0356:MNPPI
F]2.0.CO;2
Cochrane,M.,Alencar,A.,Schulze,M.,Souza,C.,Nepstad,D.,Lefebvre,
P.,& Davidson, E. (1999). Positivefeedbacks in thefire dynamic of
closedcanopytropicalforests.Science,284,1832–1835.https://doi.
org/10.1126/science.284.5421.1832
Cook,B.,Corp,L.,Nelson,R.,Middleton,E.,Morton,D.,McCorkel,J.,…
Montes ano, P.(2013). N ASA Godd ard’s LiDAR, H yperspe ctral and
Therma l (G‐LiHT) a irborne ima ger.Remote Sensing, 5, 4045– 4066.
https://doi.org/10.3390/rs5084 045
D'Ant o n io, C . M .,H u g h es,R . F. ,&V i t o use k , P.M.( 2 0 01) . Fa c t o r si n f l uenc
ingdynamicsof twoinvasive C4grassesin seasonally dryHawaiian
woodlands.Ecology,82,82.ht tps://doi.org/10.2307/2680088
Davidson,E.A.,deAraújo, A. C.,Artaxo,P.,Balch,J.K .,Brown, I. F.,C.
Bustam ante,M.M.,…Wofs y,S.C .(2 012).TheAmazonbasi nint ran
sition.Nature,4 81,321–328.https://doi.org /10.1038/nature10717
Davidson,E.A.,deCarvalho,C.J.R.,Figueira,A.M.,Ishida,F.Y.,Ometto,
J. P.H. B ., Nardoto, G . B., … Mar tinelli , L. A. (2 007). Rec uperati on
ofnitrogencyclinginAmazonianfores tsfollowingagriculturalaban‐
donment. Nature, 447, 995–998. https://doi.org/10.1038/natur
e059 00
Davidson,E.,Lefebvre,P.,Brando,P.M.,Ray,D.,Trumbore,S.,Solorzano,
L., … Ne pstad, D. (2 011).C arbon in puts an d water upta ke in deep
soilsofaneasternAmazonforest.Forest Science,57(1),51–58.
Davidson,E.A.,Neill,C.,Krusch,A.V.,Ballester,V.V.R.,Markewitz,
D., & Figuei redo, R. d e O. (2004). L oss of nutri ents fro m terres
trial eco systems to stre ams and the atmosp here following la nd
use changein Amazonia. In R. DeFries, G. Asner, & R. Houghton
(Eds.), Ecosystems and land use change. Geophysical Monograph
Series153( pp .147–158) .Was hi ngt on ,D.C . :A me ric anG eo physica l
Union.
De Faria, B.L., Brando, P. M., & Environmental,M. M. (2017). Current
andfuturepatternsof fire‐inducedforestdegradationinAmazonia.
Environmental Research Letters,12(9),095005.
Derroire,G.,Balvanera,P.,Castellanos‐Castro,C .,Decocq,G.,Kennard,
D. K., Leb rija‐Trejos, E., … Heal ey,J. R . (2016). Resilien ce of tropi‐
caldr yforests–Ameta‐analysisofchangesinspeciesdiversityand
composition duringsecondar ysuccession. Oikos, 125, 1386–1397.
https ://doi.or g/10.1111/oik.03229
Detto,M.,Katul,G.,Mancini,M.,Mont aldo,N.,&Albertson,J.D.(2008).
Surface heterogeneity and its signature in higher‐order scalar sim‐
ilarity relationships. Agricultural and Forest Meteorology,14 8, 902–
916.https://doi.org/10.1016/j.agrformet.2007.12.008
Duff y,P. B., Br ando, P., Asner, G. P., & Field, C . B. (2015). Pr ojectio ns
of future m eteorologi cal drought a nd wet period s in the Amazon .
Proceedi ngs of the National Academy of Sciences of the United States
of America, 112, 13172–13177. https://doi.org/10.1073/pnas.14210
10112
Everham, E. M., &Brokaw, N. V.L. (1996).Forestdamage and recover y
fromcat astrophicwind.The Botanical Review,62(2),113–185.
Flores, B. M., Holmgren, M., Xu, C., van Nes, E. H., Jakovac, C . C.,
Mesquita,R .C.G.,&Scheffer,M.(2017).FloodplainsasanAchilles'
heel of Amazonian forest resilience. Proceedings of the National
    
|
 13
BRAN DO et Al .
Academy of Sciences of the United States of America,114,4442–4446.
h t t p s : / / d o i . o r g / 1 0 . 1 0 7 3 / p n a s . 1 6 1 7 9 8 8 1 1 4 
Foken,T.,Aubinet,M.,&Leuning,R.(2011).TheEddycovariancemethod.
InM.Aubinet, T.Vesala,& D.Papale (Eds.),Eddy covariance: A prac‐
tical guide to measurement and d ata analysis(pp.1–19).Netherlands,
Dordrecht:Springer.
Foken,T.,&Wichura,B.(1996).Toolsforqualityassessmentofsurface‐
based flux measurements. Agricultural and Forest Meteorology, 78,
83–105.https://doi.org /10.1016/0168‐1923 (95) 02248‐1
Higgins, S. I., Bond, W. J., & Trollope, W. S. W. (2000). Fire, re‐
sprouting and variability: A recipe for grass–tree coexis‐
tence in savanna. Jo urnal of Eco logy, 88, 2 13 –2 29.  h t tps : //doi .
org/10.1046/j.1365‐2745.2000.00435.x
Honda, E.A., & Durigan,G. (2016). Woody encroachment andits con‐
sequencesonhydrologicalprocessesinthesavannah.Philosophical
Transactions of t he Royal Society of Lon don. Series B, B iological Scie nces,
371,20150313–20150319.https://doi.org/10.1098/rstb.2015.0313
Hsieh, C .‐I., Katul, G ., & Chi, T.‐W. ( 2000). An a pproximate ana lytical
modelforfootprintestimationofscalarfluxesinthermallys tratified
atmosphericflows.Advances in Water Resources,23,765–772.https
://doi.org/10.1016/S030 9‐1708(99)00 042‐1
Jipp, P. H., Nepst ad, D. C., C assel, D. K. , Reis De Car valho, C. (1998).
Deepsoilmoisturestorageandtranspirationinforestsandpastures
ofseasonally‐dr yAmazonia.Climatic Change,39(2–3),395–412.
Jolly,W.M.,Cochrane, M. A.,Freeborn,P.H., Holden, Z. A.,Brown, T.
J.,Williamson,G.J.,& Bowman,D.M. J. S.(2015).Climate‐induced
variations in global wildf ire danger from 1979 to 2013. Nature
Communications,6,7537.https://doi.org/10.1038/ncomms8537
Kennard, D.K ., & Putz, F. E. (2005). Differential responses of Bolivian
timber species to prescribed fire and other gap treatments. New
Forests,30,1–20.https://doi.org/10.1007/s11056‐004‐0762‐y
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A .,
Migliavacca, M., … Linderson,M.‐L. (2018). Towards physiologically
meaningful water‐use efficiency estimates from eddy covariance
data. Global Change Biology,24 , 694 –710 . htt ps://doi. org/10 .1111/
gcb.13893
Kunert,N.,Aparecido,L.M.T.,Higuchi,N.,dosSantos,J.,&Trumbore,S.
(2015).Highertreetranspirationduetoroad‐associatededgeeffects
inatropicalmoistlowlandforest.Agricultural and Forest Meteorology,
213,183–192.https://doi.org/10.1016/j.agrformet.2015.06.009
Kunert,N .,Aparecido, L. M. T.,Wolff,S.,Higuchi, N., dos Santos,J.,de
Araujo, A. C ., & Trumbore, S. (2017). A revised hydrological model
fortheCentralA mazon: The importance ofemergentcanopy trees
intheforest waterbudget.Agricultural and Forest Meteorology, 239,
47–57.https://doi.org/10.1016/j.agrformet.2017.03.002
Lasslop,G.,Reichstein,M.,Papale,D.,Richardson,A.D.,Arneth,A.,Barr,
A., … Wohlfahrt, G. (2009). Separation of net ecosystem exchange
into assimilation and respiration using a light r esponse curve a p‐
proach: Criticalissues andglobal evaluation. Global Change Biology,
16,187–208.https://doi.org/10.1111/j.1365‐2486.2009.02041.x
Li,A., Bian,J.,Lei,G., &Huang,C.(2012).Estimating the maximal light
use efficienc y for different vegetation through the CASA model
combine d with time‐ser ies remote sensi ng data and groun d mea‐
surements.Remote Sensing,4,3857–3876.https://doi.org/10.3390/
r s 4 1 2 3 8 5 7
Longo, M., Keller, M., dos‐Santos, M. N., Leitold, V., Pinagé, E . R.,
Baccini,A.,…Morton,D.C .(2016).Abovegroundbiomassvariability
across intact and degraded forestsin the Brazilian Amazon. Global
Biogeochemical Cycles, 30, 1–63. https://doi.org/10.1002/2016G
B005 465
Malhi,Y.(2011).Theproductivity,metabolismandcarboncycleoftrop
ical forest veget ation. Journal of Ecology, 100, 65–75. https://doi.
org /10.1111/j .136 5‐2745.2011. 01916 .x
Malhi,Y.,Aragao,L.E.,Metcalfe,D.B.,Paiva,R.,Quesada,C.A.,Almeida,
S., … Hutyra, L . R. (2009). Comprehensive assessment of carbon
produc tivit y, allocation and storage in three Amazonian forest s.
Global Change Biology,15(5),1255–1274.
Markewit z,D.,Devine,S.,Davidson, E.A.,Brando,P.M.,&Nepstad,D.
C. (2010). So il moisture de pletion unde r simulated dro ught in the
Amazon:Impact sondeeprootuptake.New Phytologist,187(3),592–
607.https://doi.org/10.1111/j.1469‐8137.2010.03391.x
McGra th, D. A., Sm ith, C. K ., Gholz, H. L., & Ol iveira, F. D. A. (20 01).
Effec ts of land‐u se change on s oil nutrie nt dynami cs in Amazôn ia.
Ecosys tems,4,625–645.
Metcalfe,D. B.,Rocha, W.,Balch, J.K .,Brando,P.M.,Dought y,C. E., &
Malhi,Y.(2018).Impact soffireonsourcesofsoilCO2ef fluxinadry
Amazonrainforest.Global Change Biology,24(8),3629–3641.
Miller,S.D.,Goulden,M.L.,Hutyra,L.R.,Keller,M.,Saleska,S.R.,Wofsy,
S.C.,…deCamargo,P.B.(2011).Reducedimpactloggingminimally
alterstropicalrainforestcarbonandenergyexchange.Proceedings of
the National Academy of Sciences of the United States of America,10 8,
19431–19435.ht tp s://doi.o rg/10.1073/pnas.1105068108
Morto n, D. C., Le Page, Y., DeFrie s, R., Collat z, G. J., & Hurt t, G. C.
(2013). Understorey fire frequency and the f ate of burned for‐
ests in southern Amazonia. Philosophical Transactions of the Royal
Society B: Biological Sciences,368,20120163–20120163.https://doi.
org /10.1098/rstb.2012.0163
Nepstad,D.C.,deCarvalho,C .R.,Davidson,E.A.,&Nature,P.J.(1994).
The role of deep root s in the hydrologic al and carbon c ycles of
Amazonianforestsandpastures.Nature,372(6507),666.
Nepst ad, D., Georgi a, C., Ana, C . B., Ane, A. , João, P.C ., Josh, B., …
Elaine, P. (2001). Ro ad paving, fi re regime feed backs, and t he fu
tureofAmazonforests.Forest Ecology and Management,154(3),395
–4 07.
Nobre, C . A., Sampai o, G., Borma, L . S., Castill a‐Rubio, J. C., Sil va, J.
S., & Cardoso, M. (2016). Land‐use and climate change risks in the
Amazonandtheneedofanovelsustainabledevelopmentparadigm.
Proceedi ngs of the National Academy of Sciences of the United States
of America,113 , 10759–10768. https://doi.org /10.1073/pnas.16055
16113
Reichstein,M.,Falge,E.,Baldocchi,D.,Papale,D.,Aubinet,M.,Berbigier,
P.,… Vale ntini, R. ( 2005). On th e separati on of net ecosy stem ex‐
changeintoassimilationandecosystemrespiration:Reviewandim
provedalgorithm.Global Change Biology,11,1424–1439.htt ps://doi.
org /10.1111/j .136 5‐2486.2005.00100 2. x
Rifai, S.W.,Urquiza Muñoz, J.D.,Negrón‐Juárez,R.I., RamírezArévalo,
F.R.,Tello‐Espinoza, R., Vanderwel,M. C.,… Bohlman,S.A.(2016).
Landscape‐scale consequences of differential tree mortality from
catastrophicwinddisturbanceintheAmazon.Ecological Applications,
1–39.https://doi.org/10.1002/eap.1368
Rocha, W., Metcalfe, D. B., Doughty, C. E., Brando, P., Silvério, D.,
Halladay,K., …Malhi,Y.(2014).Ecosystemproductivity and carbon
cyclinginintactandannuallyburntforestatthedrysouthernlimitof
theAmazonrainforest(MatoGrosso,Brazil).Plant Ecol ogy & Diversity,
7(1–2),25–40.
Sabajo, C . R., le Maire, G.,June, T., Meijide, A.,Roupsard, O., & Knohl,
A. (2017). E xpansion of oil palm and othe r cash crops caus es an
increas e of the land sur face temp erature in t he Jambi provi nce in
Indonesia. Biogeosciences, 14,  4619–4 635 . ht tps: //doi.o rg/1 0.5194/
bg ‐14 4 619‐ 2017
Saldarriaga,J. G., West, D.C., Tharp,M. L.,&Uhl, C. (1988).Long‐term
chronosequence of forest succession in the upper Rio Negro of
ColombiaandVenezuela.The Journal of Ecology,76 ,938.
Schwalm,C.R .,Anderegg,W.R.L.,Michalak,A.M.,Fisher,J.B.,Biondi,
F.,Koch,G.,…Tian,H.(2017).Global patternsofdroughtrecover y.
Nature,548,202–205.https://doi.org/10.1038/nature23021
Silva, C . V.J., A ragão, L . E. O. C., B arlow, J., Espi rito‐Santo, F., Young,
P. J., Anderson , L. O., … Xaud, H. A . M. (2018). Drough t‐in duced
Amazoni an wildfires ins tigate a decad al‐scale disr uption of forest
carbon dynamics. Philosophical Transactions of the Royal Society of
14 
|
   BRANDO et Al .
London. Series B, Biological Sciences, 373, 20180043–20180112.
https://doi.org/10.1098/rstb.2018.0043
Silveri o, D. V.,Br ando, P. M., Balch , J. K., Put z, F.E ., Nepst ad, D. C.,
Oliveira‐Santos, C., & Bustamante, M. M. C . (2013). Testing
the Amazon savannization hypothesis: Fire effects on inva
sion of a neot ropical fo rest by nati ve cerrado a nd exotic pas ture
grasses. Philosophical Transactions of the Royal Society B: Biological
Sciences, 368, 20120427–20120427. https://doi.org/10.1098/
rstb.2012.0427
Silvério,D.V.,Brando, P.M., Bus tamante, M. M.C., Put z, F.E., Marra,
D. M., Levic k, S. R., & Trumb ore, S. E. (2019). Fir e, fragmen tation,
andwindstorms: Arecipe for tropical forestdegradation.Journal of
Ecology,107(2),656–667.
Silvério,D.V.,Brando,P.M.,Macedo,M. N.,Beck, P.S.A.,Bustamante,
M., & Coe, M . T. (2015). Agricultural expansion dominates cli‐
mate changes in southeastern Amazonia: The overlooked non‐
GHG forcing. Environmental Research Letters, 10, 1–8. https://doi.
org /10.1088/1748‐9326/10/10/104 015
Sommer, R., de Abreu, T.D., Vieljauer,K.,deA raújo,A .C.,… Vlek, P.L.
G.(2002).Transpirationandcanopyconductanceofsecondaryveg
etatio n in the east ern Amazon . Agricultural and Forest Meteorology,
112(2),103–121.
Staver,A . C., Archibald,S.,&Levin, S. A.(2011).Theglobal extent and
determinants of savanna and forest as alternative biome states.
Science,334,230–232.https://doi.org/10.1126/science.1210465
Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and
globalchange.Science,349,814–818.https://doi.org/10.1126/scien
ce.aac6759
vanderSande,M.T.,Poorter,L.,Kooistra,L.,Balvanera,P.,Thonicke,
K., Th ompson, J., … Peñ a‐Claros, M . (2017). Biodiver sity in spe
cies, traits, andstructure determinescarbon stocksanduptakein
tropicalforest s. Biotropica,49, 593–603. ht tp s://doi .org/10.1111/
btp.12453
Vickers, D., & Oceanic, L. M. J. O. A. A . (1997). Quality con‐
trol and flux sampling problems for tower and aircraf t data.
Atmospheric and Oceanic Technology, 14, 512–526. https://doi.
org /10.1175/1520 ‐0 426 (1997 )014<0512:Q CAFSP>2.0.CO ;2
Withey,K.,Berenguer,E.,Palmeira,A.F.,Espírito‐Santo,F.D.B.,Lennox,
G.D.,Silva, C. V.J.,…Barlow, J.(2018).Quantifyingimmediate car‐
bon emissions from El Nino‐mediated wildfires in humid tropical
forest s. Philosophica l Transactions of the Royal Society B: Biological
Sciences,373(1760),20170312.
Wu,J.,Guan,K.,Hayek,M.,Restrepo‐Coupe,N.,Wiedemann,K.T.,Xu,
X., … Sal eska, S. R . (2016). Part itioning c ontrols on A mazon fores t
photosynthesisbetweenenvironmentalandbioticfactorsathourly
to interannual timescales. Global Change Biology, 23, 1240–1257.
https ://doi.or g/10.1111/gcb.1350 9
Wutzler, T., Lucas‐Moffat, A., Migliavacca, M., & Knauer, J. (2018).
Basic and e xtensibl e post‐processi ng of eddy covar iance flux dat a
with REddyProc. Biogeosciences, 15(16), 5015–5030. https://doi.
org/10.5194/bg‐15‐5015‐2018
Zarin,D.J.,Davidson, E.A., &Brondizio,E. (2005).Legacy offireslows
carbon accumulation in Amazonian forest regrowth. Frontiers in
Ecology and the Enviro nment,3(7),365–369.
SUPPORTING INFORMATION
Additional supporting information may be found online in the
Suppor tingInformationsectionattheendofthearticle. 
How to cite this article:BrandoPM,SilvérioD,Maracahipes‐
SantosL,etal.Prolongedtropicalforestdegradationdueto
compoundingdisturbances:ImplicationsforCO2andH2O
fluxes.Glob Change Biol. 2019;00:1–14. h t t p s : / / d o i .
org /10.1111/gc b.14 659
... For example, extreme droughts, selective logging, and edge effects all make forests more susceptible to fires, due to changes in microclimatic conditions and/or fuel loads (Camargo and Kapos, 1995;Ray et al., 2005;Silva Junior et al., 2018;Uhl and Kauffman, 1990). These events can also amplify effects of subsequent degradation, as tree mortality from fire is much higher close to forest edges, or in forests that have been previously logged or burned (Brando, Silvério, et al., 2019;Gerwing, 2002) Recovery times of degraded forests are highly variable, depending on the type and intensity/severity of the disturbance (Box 1). Recovery rates are also dependent on the metric of interest; for example, logged forests can return to baseline humidity and temperature conditions within a few years, when canopy cover recovers after human-driven disturbance (Mollinari et al., 2019), and some burned forests can quickly recover their capacity to cycle water (Brando, Silvério, et al., 2019). ...
... These events can also amplify effects of subsequent degradation, as tree mortality from fire is much higher close to forest edges, or in forests that have been previously logged or burned (Brando, Silvério, et al., 2019;Gerwing, 2002) Recovery times of degraded forests are highly variable, depending on the type and intensity/severity of the disturbance (Box 1). Recovery rates are also dependent on the metric of interest; for example, logged forests can return to baseline humidity and temperature conditions within a few years, when canopy cover recovers after human-driven disturbance (Mollinari et al., 2019), and some burned forests can quickly recover their capacity to cycle water (Brando, Silvério, et al., 2019). In contrast, carbon stocks are likely to take decades to recover, and may reach an alternative lower biomass state following forest fires (Rutishauser et al., 2015;Silva et al., 2018. ...
Chapter
Full-text available
This Report provides a comprehensive, objective, open, transparent, systematic, and rigorous scientific assessment of the state of the Amazon’s ecosystems, current trends, and their implications for the long-term well-being of the region, as well as opportunities and policy relevant options for conservation and sustainable development.
... A key result of fragmentation is that the increase in canopy gaps in forests near the edge allows more sunlight to reach the forest floor, leading to higher air temperatures than in the closed-canopy forest, which in turn reduces soil moisture and relative humidity (Gascon et al. 2000;Gehlhausen et al. 2000). As a result, trees in this area are more susceptible to drought, crown damage from windthrow, and other disturbances, thus exhibiting higher mortality rates and seedling recruitment (Brando et al. 2019). Accordingly, Harper et al. (2005) and Campbell et al. (2018) also found that edge-influenced areas are less resilient and more vulnerable to invasive species and diseases, as well as microhabitat alterations and climatic stressors compared to interior (i.e., core) areas. ...
Article
Full-text available
Context In forestry, edge zones created by forest degradation and fragmentation are more susceptible to disturbances and extreme weather events. The increase in light regime near the edge can greatly alter forest microclimate and forest structure in the long term. In this context, understanding edge effects and their impact on forest structure could help to identify risks, facilitate forest management decisions or prioritise areas for conservation. Objective In this paper, we focus on the application of airborne laser scanning (ALS) data to assess the impact of edge effects on forest structural metrics in degraded rainforests in Sumatra, Indonesia. Changes in structural heterogeneity with respect to distance from an edge were also quantified. Methods We used 22 ALS structural metrics extracted from 105 plots in secondary forests adjacent to oil palm plantations and analysed the change in canopy structure across edge-to-interior transects. In addition, 91 plots taken from less disturbed areas were used as reference for comparison with the near-to-edge plots. Results Our analysis found strong evidence of degradation in the secondary forests studied, with multiple edge interactions resulting in a non-diminishing effect even at long distances from the forest edge. On average, we observed a large decrease of about 40% in all metrics of canopy height and about 25% in some metrics of canopy structure across all distances from an edge when compared to the interior forest conditions. Thus, in our forests, canopy height and structure were more susceptible to edge effects than metrics related to canopy gaps. Finally, the degraded forest in our study exhibited lower structural complexity, both at patch and landscape levels, suggesting that disturbances can greatly alter structural complexity in tropical rainforests. Conclusion Our study confirms the potential of ALS-derived vegetation metrics to study and understand the effects of forest edges and the associated changes in structural complexity over large areas in tropical rainforests. The approach followed here is transferrable to similarly fragmented landscapes in the tropics.
... Identification and isolation of slash-and-burn AF sites where forest instead of pastures may be implemented may be the key to the concomitant reestablishment of a humid ambience, the forest canopy and water cycles and to ultimately reduce the vulnerability of the AF to wildfire. Brando et al. [11] reported rapid canopy formation (70-80% closure) and full recovery of net CO 2 exchange and evapotranspiration in less than seven years of AF regrowth after an experimental fire. ...
Article
Full-text available
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis–gas chromatography–mass spectrometry to reveal molecular changes in SOM (0–10, 40–50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0–10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0–5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40–50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF.
... In southeast Amazon, forests become much more vulnerable to fire along their edges with agricultural fields, during droughts and heatwaves, and where logging removes canopy cover. Once forests burn, they tend to be more severely disturbed by windstorms than primary forests, explaining why forest carbon stocks can reduce by 90% when impacted by these disturbances (Brando et al. 2019b). ...
Chapter
This Report provides a comprehensive, objective, open, transparent, systematic, and rigorous scientific assessment of the state of the Amazon’s ecosystems, current trends, and their implications for the long-term well-being of the region, as well as opportunities and policy relevant options for conservation and sustainable development.
... Here we highlight the importance of such interactions by focusing on forest fires, which are a key component in any large-scale Amazonian dieback (chapter 24), clearly highlight the complexity associated with interactive effects, and demonstrate that solutions need to target each of the drivers independently, requiring in turn multisectoral action. Global climate change is a key driver of fire prevalence, increasing both dry season lengths and temperatures (Brando et al., 2019). Maintaining the climate change mitigation potential of the Amazon is therefore itself dependent on reducing greenhouse gas emissions across the world. ...
Chapter
This Report provides a comprehensive, objective, open, transparent, systematic, and rigorous scientific assessment of the state of the Amazon’s ecosystems, current trends, and their implications for the long-term well-being of the region, as well as opportunities and policy relevant options for conservation and sustainable development.
... Understory fires cause important long-term ecological impacts. They cause high levels of stem mortality, negatively affecting carbon stocks (Barlow et al. 2003;Berenguer et al. 2014;Brando et al. 2019), and forests take many years to recover. One study conducted across the Amazon estimated that burned forests have carbon stocks that are 25% lower than expected 30 years after fires, with growth and mortality dynamics suggesting recovery had plateaued . ...
Chapter
This Report provides a comprehensive, objective, open, transparent, systematic, and rigorous scientific assessment of the state of the Amazon’s ecosystems, current trends, and their implications for the long-term well-being of the region, as well as opportunities and policy relevant options for conservation and sustainable development.
... Studies have observed a coupling relationship between soil carbon and water which can affect key soil ecological processes (Kerr and Ochsner, 2020). After the occurrence of severe compounded forest disturbance, the carbon sequestration capacity of the forest and water evaporation dropped dramatically in the forest (Brando et al., 2019). Franzluebbers (2002) hypothesized that changes in SOC content resulting from increased porosity is crucial in regulating water infiltration and the subsequent transfer and storage of water in soil. ...
Article
Full-text available
Soil organic carbon (SOC) is a crucial component of the soil carbon pool that regulates fundamental soil properties and water status. In the global context of restoring vegetation, the soil carbon-water coupling relationship has gained attention. In particular, the regulatory mechanism of SOC on soil moisture requires further research. In this study, three typical forests in subtropical China were chosen as restoration sequences to investigate the changes in SOC and soil moisture during subtropical forest restoration and its regulation mechanisms: broadleaf-conifer mixed forest (EF), broad-leaved forest (MF), and old-growth forest (LF). The soil water content (35.71 ± 1.52%), maximum water holding capacity (47.74 ± 1.91%), capillary water holding capacity (43.92 ± 1.43%), and field water holding capacity (41.07 ± 1.65%) in LF were significantly higher than those in EF (p < 0.01). As forest restoration progressed, the amount of litter returning to the soil increased gradually, and the SOC content (0–100 cm) increased from 9.51 ± 1.42 g/kg (EF) to 15.60 ± 2.30 g/kg (LF). The SOC storage increased from 29.49 ± 3.59 to 42.62 ± 5.78 Mg/ha. On one hand, forest restoration led to a change in SOC content, which optimizes the soil structure and enhances soil porosity (path coefficient of 0.537, p < 0.01), further leading to a change in soil water content (path coefficient of 0.940, p < 0.01). On the other hand, the increase in SOC influenced the change in soil nutrient content, i.e., total nitrogen (TN) and total phosphorus (TP) (path coefficient of 0.842, p < 0.01). Changes in SOC and soil nutrients stimulated changes in the stoichiometric ratio, i.e., C:P and N:P (path coefficients of 0.988 and –0.968, respectively, p < 0.01), and the biological activity in soil changed appropriately, which eventually led to a change in soil water content (path coefficient of –0.257, p < 0.01). These results highlight the changes in SOC and soil water content (SWC), as well as the mechanism of SOC controlling SWC as a result of vegetation restoration, which is of tremendous importance for advancing our understanding of the eco-hydrological process of subtropical forest restoration.
Preprint
Full-text available
The Brazilian Amazon has been a focus of land development with large swaths of forests converted to agriculture. Forest degradation by selective logging and fires has accompanied the advance of the frontier and has resulted in significant impacts on Amazonian ecosystems. Changes in forest structure resulting from forest disturbances have large impacts on the surface energy balance, including on land surface temperature (LST) and evapotranspiration (ET). The objective of this study is to assess the effects of forest disturbances on water fluxes and canopy structural properties in a transitional forest site located in Mato Grosso State, Southern Amazon. We used ET and LST products from MODIS and Landsat 8 as well as GEDI-derived forest structure data to address our research questions. We found that disturbances induced seasonal water stress, more pronounced and earlier in croplands and pastures than in forests, and more pronounced in second-growth and recently burned areas than in logged and intact forests. Moreover, we found that ET and LST were negatively related, with a more consistent relationship across disturbance classes in the dry season than the wet season, and that forest and cropland and pasture classes showed contrasting relationships in the dry season. Finally, we found that canopy structural properties exhibited moderate relationships with ET and LST in the most disturbed forests, but negligible correlations in the least disturbed forests. Our findings help to elucidate degraded forests functioning under a changing climate and to improve estimates of water and energy fluxes in the Amazon degraded forests.
Article
Full-text available
The Amazon biome is being pushed by unsustainable economic drivers towards an ecological tipping point where restoration to its previous state may no longer be possible. This degradation is the result of self-reinforcing interactions between deforestation, climate change and fire. We assess the economic, natural capital and ecosystem services impacts and trade-offs of scenarios representing movement towards an Amazon tipping point and strategies to avert one using the Integrated Economic-Environmental Modeling (IEEM) Platform linked with spatial land use-land cover change and ecosystem services modeling (IEEM+ESM). Our approach provides the first approximation of the economic, natural capital and ecosystem services impacts of a tipping point, and evidence to build the economic case for strategies to avert it. For the five Amazon focal countries, namely, Brazil, Peru, Colombia, Bolivia and Ecuador, we find that a tipping point would create economic losses of US$256.6 billion in cumulative Gross Domestic Product by 2050. Policies that would contribute to averting a tipping point, including strongly reducing deforestation, investing in intensifying agriculture in cleared lands, climate-adapted agriculture and improving fire management, would generate approximately US$339.3 billion in additional wealth and a return on investment of US$29.5 billion. Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent and replicable manner can support the design of regional development strategies for the Amazon biome, build the business case for action and catalyze global cooperation and financing to enable policy implementation.
Article
Full-text available
With the eddy covariance (EC) technique, net fluxes of carbon dioxide (CO2) and other trace gases as well as water and energy fluxes can be measured at the ecosystem level. These flux measurements are a main source for understanding biosphere–atmosphere interactions and feedbacks through cross-site analysis, model–data integration, and upscaling. The raw fluxes measured with the EC technique require extensive and laborious data processing. While there are standard tools1 available in an open-source environment for processing high-frequency (10 or 20 Hz) data into half-hourly quality-checked fluxes, there is a need for more usable and extensible tools for the subsequent post-processing steps. We tackled this need by developing the REddyProc package in the cross-platform language R that provides standard CO2-focused post-processing routines for reading (half-)hourly data from different formats, estimating the u* threshold, as well as gap-filling, flux-partitioning, and visualizing the results. In addition to basic processing, the functions are extensible and allow easier integration in extended analysis than current tools. New features include cross-year processing and a better treatment of uncertainties. A comparison of REddyProc routines with other state-of-the-art tools resulted in no significant differences in monthly and annual fluxes across sites. Lower uncertainty estimates of both u* and resulting gap-filled fluxes by 50 % with the presented tool were achieved by an improved treatment of seasons during the bootstrap analysis. Higher estimates of uncertainty in daytime partitioning (about twice as high) resulted from a better accounting for the uncertainty in estimates of temperature sensitivity of respiration. The provided routines can be easily installed, configured, and used. Hence, the eddy covariance community will benefit from the REddyProc package, allowing easier integration of standard post-processing with extended analysis. 1http://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing/, last access: 17 August 2018
Article
Full-text available
Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 • C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evapora-tive cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 • C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.
Article
Drought-induced wildfires have increased in frequency and extent over the tropics. Yet, the long-term (greater than 10 years) responses of Amazonian lowland forests to fire disturbance are poorly known. To understand post-fire forest biomass dynamics, and to assess the time required for fire-affected forests to recover to pre-disturbance levels, we combined 16 single with 182 multiple forest census into a unique large-scale and long-term dataset across the Brazilian Amazonia. We quantified biomass, mortality and wood productivity of burned plots along a chronosequence of up to 31 years post-fire and compared to surrounding unburned plots measured simultaneously. Stem mortality and growth were assessed among functional groups. At the plot level, we found that fire-affected forests have biomass levels 24.8 ± 6.9% below the biomass value of unburned control plots after 31 years. This lower biomass state results from the elevated levels of biomass loss through mortality, which is not sufficiently compensated for by wood productivity (incremental growth + recruitment). At the stem level, we found major changes in mortality and growth rates up to 11 years post-fire. The post-fire stem mortality rates exceeded unburned control plots by 680% (i.e. greater than 40 cm diameter at breast height (DBH); 5–8 years since last fire) and 315% (i.e. greater than 0.7 g cm ⁻³ wood density; 0.75–4 years since last fire). Our findings indicate that wildfires in humid tropical forests can significantly reduce forest biomass for decades by enhancing mortality rates of all trees, including large and high wood density trees, which store the largest amount of biomass in old-growth forests. This assessment of stem dynamics, therefore, demonstrates that wildfires slow down or stall the post-fire recovery of Amazonian forests. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.
Article
Wildfires produce substantial CO 2 emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015–2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO 2 emissions during the 2015–2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha ⁻¹ , mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha ⁻¹ ). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015–2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO 2 emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO 2 emissions. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.
Article
Human-modified forests are an ever-increasing feature across the Amazon Basin, but little is known about how stem growth is influenced by extreme climatic events and the resulting wildfires. Here we assess for the first time the impacts of human-driven disturbance in combination with El Niño–mediated droughts and fires on tree growth and carbon accumulation. We found that after 2.5 years of continuous measurements, there was no difference in stem carbon accumulation between undisturbed and human-modified forests. Furthermore, the extreme drought caused by the El Niño did not affect carbon accumulation rates in surviving trees. In recently burned forests, trees grew significantly more than in unburned ones, regardless of their history of previous human disturbance. Wood density was the only significant factor that helped explain the difference in growth between trees in burned and unburned forests, with low wood–density trees growing significantly more in burned sites. Our results suggest stem carbon accumulation is resistant to human disturbance and one-off extreme drought events, and it is stimulated immediately after wildfires. However, these results should be seen with caution—without accounting for carbon losses, recruitment and longer-term changes in species composition, we cannot fully understand the impacts of drought and fire in the carbon balance of human-modified forests. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.
Article
1.Widespread degradation of tropical forests is caused by a variety of disturbances that interact in ways that are not well understood. 2.To explore potential synergies between edge effects, fire and windstorm damage as causes of Amazonian forest degradation, we quantified vegetation responses to a 30‐minute high‐intensity windstorm that in 2012, swept through a large‐scale fire experiment that borders an agricultural field. Our pre‐ and post‐windstorm measurements include tree mortality rates and modes of death, aboveground biomass, and airborne LiDAR‐based estimates of tree heights and canopy disturbance (i.e., number and size of gaps). The experimental area in the southeastern Amazonia includes three 50‐ha plots established in 2004 that were unburned (Control), burned annually (B1yr), or burned at three‐year intervals (B3yr). 3.The windstorm caused greater damage to trees (>10 cm DBH) in the burned plots (B1yr: 13 ± 9% of 785 trees; B3yr: 17 ± 13% of 433) than in the Control plot (8 ± 4% of 2300; ± CI). It substantially reduced vegetation height by 14% in B1yr, 20% in B3yr and 12% in the Control plots, while it reduced aboveground biomass by 18% of 77.7 Mg ha−1 (B1yr), 31% of 56.6 (B3yr) and 15% of 120 (Control). Tree damage was greatest near the agricultural field edge in all three plots, especially among large trees and in B3yr. Trunk snapping (70%) and uprooting (20%) were the most common modes of tree damage and mortality, with the height of trunk failure on the burned plots often corresponding with the height of historical fire scars. Of the windstorm‐damaged trees, 80% (B1yr), 90% (B3yr), and 57% (Control) were dead four years later. Trees that had crown damage experienced the least mortality (22–60%), followed by those that were snapped (55–94%) and uprooted (88–94%). 4.Synthesis. We demonstrate the synergistic effects of three kinds of disturbance on a tropical forest. Our results show that the effects of windstorms are exacerbated by prior degradation by fire and fragmentation. We highlight that understory fires can produce long‐lasting effects on tropical forests not only by directly killing trees but also by increasing tree vulnerability to wind damage due to fire‐scars and a more‐open canopy. This article is protected by copyright. All rights reserved.
Article
Fire at the dry southern margin of the Amazon rainforest could have major consequences for regional soil carbon (C) storage and ecosystem carbon dioxide (CO2) emissions, but relatively little information exists about impacts of fire on soil C cycling within this sensitive ecotone. We measured CO2 effluxes from different soil components (ground surface litter, roots, mycorrhizae, soil organic matter) at a large‐scale burn experiment designed to simulate a severe but realistic potential future scenario for the region (Fire plot) in Mato Grosso, Brazil, over one year, and compared these measurements to replicated data from a nearby, unmodified Control plot. After four burns over five years, soil CO2 efflux (Rs) was ~ 5.5 t C ha⁻¹ yr⁻¹ lower on the Fire plot compared to the Control. Most of the Fire plot Rs reduction was specifically due to lower ground surface litter and root respiration. Mycorrhizal respiration on both plots was around ~ 20% of Rs. Soil surface temperature appeared to be more important than moisture as a driver of seasonal patterns in Rs at the site. Regular fire events decreased the seasonality of Rs at the study site, due to apparent differences in environmental sensitivities among biotic and abiotic soil components. These findings may contribute towards improved predictions of the amount and temporal pattern of C emissions across the large areas of tropical forest facing increasing fire disturbances associated with climate change and human activities. This article is protected by copyright. All rights reserved.
Article
Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1,”stomatal slope”) at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G1: 1) non-transpirational water fluxes; 2) aerodynamic conductance; 3) meteorological deviations between measurement height and canopy surface; 4) energy balance non-closure; 5) uncertainties in NEE partitioning; and 6) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived WUE is interpreted in an ecophysiological context.
Article
Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time - how long an ecosystem requires to revert to its pre-drought functional state - is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth's climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.