Conference PaperPDF Available

Exergo-Technological Explicit Selection Methodology for Vapor Cycle Systems Optimization for Series Hybrid Electric Vehicles

Authors:

Abstract and Figures

Significant research efforts are considered in the automotive industry on the use of low carbon alternative fuels in order to reduce the carbon dioxide emissions and to improve the fuel economy of future vehicles. Some of these fuels, such as the solid fuels for example, are only compatible with external combustion machines. These machines are only suitable for electrified powertrains relying on electric propulsion, in particular series hybrid electric vehicles (SHEV) where fuel consumption strongly relies on the energy converter performance in terms of efficiency and power density, as well as on the deployed energy management strategy. This paper investigates the potential of fuel savings of a SHEV using a vapor cycle machine (VCM) system as energy converter substitute to the conventional internal combustion engine (ICE). An exergo-technological explicit analysis is conducted to identify the best VCM-system configuration. A Regenerative Reheat Steam Rankine Cycle with condenser reheat and turbine reheat (RReCRTRe-SRC) system is prioritized, offering high efficiency, high power density and low vehicle integration constraints among the investigated systems. A plug-in SHEV model is developed and energy consumption simulations are performed on a worldwide-harmonized light vehicles test cycle (WLTC). Dynamic programing is used as global optimal energy management strategy. A sensitivity analysis is also carried out in order to evaluate the impact of the battery size on the fuel consumption. Fuel consumption simulation results are compared to ICE on same vehicle powertrain. Results show +2% to +3.5% additional fuel consumption, on self-sustaining SHEV, with the RReCRTRe-SRC as auxiliary power unit (APU) compared to ICE. Consequently, the selected VCM-APU presents a potential for implementation on SHEVs with zero carbon alternative fuels.
Content may be subject to copyright.
PROCEEDINGS OF ECOS 2018 - THE 31
ST
INTERNATIONAL CONFERENCE ON
EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS
JUNE 17-22, 2018, GUIMARÃES, PORTUGAL
Exergo-Technological Explicit Selection
Methodology for Vapor Cycle Systems
Optimization for Series Hybrid Electric Vehicles
Wissam Bou Nader
a,c
, Charbel Mansour
b
, Clément Dumand
c
and Maroun Nemer
d
a
Ecole des Mines de Paris, Centre Efficacité Energétique des Systèmes CES, Palaiseau, France,
wissam.bou_nader@mines-paristech.fr
b
Lebanese American University, Industrial and Mechanical Engineering department, New York, United-
States, charbel.mansour@lau.edu.lb
c
Groupe PSA, Centre technique de Vélizy, Vélizy, France,
wissam.bounader@mpsa.com, clement.dumand@mpsa.com
d
Ecole des Mines de Paris, Centre Efficacité Energétique des Systèmes CES, Palaiseau, France,
maroun.nemer@mines-paristech.fr
Abstract:
Significant research efforts are considered in the automotive industry on the use of low carbon alternative fuels
in order to reduce the carbon dioxide emissions and to improve the fuel economy of future vehicles. Some of
these fuels, such as the solid fuels for example, are only compatible with external combustion machines. These
machines are only suitable for electrified powertrains relying on electric propulsion, in particular series hybrid
electric vehicles (SHEV) where fuel consumption strongly relies on the energy converter performance in terms
of efficiency and power density, as well as on the deployed energy management strategy. This paper
investigates the potential of fuel savings of a SHEV using a vapor cycle machine (VCM) system as energy
converter substitute to the conventional internal combustion engine (ICE). An exergo-technological explicit
analysis is conducted to identify the best VCM-system configuration. A Regenerative Reheat Steam Rankine
Cycle with condenser reheat and turbine reheat (RReCRTRe-SRC) system is prioritized, offering high
efficiency, high power density and low vehicle integration constraints among the investigated systems. A plug-
in SHEV model is developed and energy consumption simulations are performed on a worldwide-harmonized
light vehicles test cycle (WLTC). Dynamic programing is used as global optimal energy management strategy.
A sensitivity analysis is also carried out in order to evaluate the impact of the battery size on the fuel
consumption. Fuel consumption simulation results are compared to ICE on same vehicle powertrain. Results
show +2% to +3.5% additional fuel consumption, on self-sustaining SHEV, with the RReCRTRe-SRC as
auxiliary power unit (APU) compared to ICE. Consequently, the selected VCM-APU presents a potential for
implementation on SHEVs with zero carbon alternative fuels.
Keywords:
Exergy analysis, Rankine cycles, series hybrid electric vehicles, vapor cycle machine.
1. Introduction
Automotive manufacturers are investigating the use of alternative fuels in attempt to reduce GHG
and pollutant emissions [1, 2]. Internal combustion engines (ICE) are compatible with conventional
fuels as well as some alternative fuels such as biogas, ethanol, methanol [3, 4]. However other fuels,
such as solid fuels and some other liquid and gas fuels, require the use of external combustion
machines, where thermal heat power is generated outside the thermodynamic cycle and added
generally through a heat exchanger [5, 6].
Among these external combustion machines, which have been studied largely as waste heat recovery
(WHR) systems coupled to ICE [7-11], and/or for cogeneration applications [12-16], the VCM and
the Stirling have been largely investigated over years as main energy converter instead of
conventional internal combustion engines (ICE) in automotive applications [17-23].
2
The VCM, main focus of this study, operates according to Rankine cycle (RC), where the thermal
heat generated in an external combustion chamber, is added to the working fluid through a heat
exchanger (HEX) as illustrated in Figures 1. This thermodynamic system, compared to conventional
ICE, offers the benefits of vibration-free operation, low noise and the multi-fuel capability [17-21].
However, the investigation of VCM systems for automotive applications shows three main drawbacks
preventing their use in conventional vehicles:
High fuel consumption compared to ICE caused mainly by low cycle thermal efficiency when
operated under vehicle conditions. In fact, when water is the Rankine working fluid, a positive
condenser pressure is required to prevent air infiltration and to limit the condenser size. This will
limit the turbine expansion work, which limit consequently the efficiency. Also coupling
mechanically the turbine to the vehicle-driving load in conventional powertrain, leads to a low
efficiency operating range of the system since the optimal machine efficiency cannot be achieved
technically in all the operating range.
High amount of thermal heat rejected through the condenser at relatively low temperature from
the Rankine closed loop cycle, requiring a big condenser, a powerful condenser fan and a large
vehicle frontal surface.
The use of a heat exchanger (HEX) evaporator in the VCM adds a thermal inertia upstream of the
turbine, which has a negative impact on vehicle acceleration, and makes the VCM system non-
compatible for fast response power delivery to follow the variable load applied in conventional
power trains.
Nonetheless, VCM revealed interests in specific applications, where the machine operates at quasi-
stable load. For instance, in electric energy production, these machines, coupled to gas turbine
systems in combined cycle power plants, drive an electric generator at constant speed and deliver a
quasi-constant load [24, 25]. In automotive applications, these VCM-systems regained importance
today as engine WHR systems where a great deal of attention is focused on methods to reduce air
pollution [26-32]. All these works, confirm the virtue of VCM in quasi-stable operation applications.
Moreover, the review of the literature showed also interesting insights on emissions reductions of
external combustion machines with continuous combustion systems [33-35].
Therefore, based on the aforementioned findings, VCM-systems present a forthcoming potential for
improving emissions of passenger car vehicles, with the benefit of multi fuel-use flexibility;
particularly, in series hybrid electric vehicles (SHEV) presented in figure 1. This powertrain combines
a thermal and an electric powertrain in a series energy-flow arrangement [36]. The thermal powertrain
in this study comprises a VCM-system and an electric generator, and both constituted the Auxiliary
Power Unit (APU). The APU operating speed is kinematically decoupled from the vehicle velocity;
therefore, the VCM operation is controlled to meet its best efficiency when used to recharge depleted
battery. On the other side, the electric powertrain provides the necessary traction power to overcome
the driving load and serves to recover the braking energy.
On the other hand, several VCM thermodynamic configurations could be considered for integration
in SHEV, combining a simple VCM, to regenerative VCM, to regenerative reheat VCM and others.
Plenty of studies have been published over the past decade in the academic literature treating VCM-
system configurations and performance analyses [37-39]. The survey of these studies confirms that
most VCM-systems are designed based on efficiency optimization. However, there are no recent
studies on VCM-systems suitable for automotive applications as main energy converter instead of
ICE, due to the lack of competitiveness of VCM compared to ICE in conventional powertrains.
Hence, the following main gaps and limitations in the recent literature are underlined:
3
There are no studies assessing VCM-systems performance based on a Rankine
thermodynamic cycle for automotive applications.
No specific methodology on selecting the best-suited VCM-systems for automotive
application is adopted.
The overall vehicle consumption under driving conditions is not benchmarked against
conventional vehicles and hybrid electric vehicles relying on ICE.
Fig. 1. Configuration of the modelled SHEV with a simple VCM APU.
Therefore, based on the above synthesis of the insights and gaps in the literature for adopting VCM
in automotive applications, this study proposes a comprehensive methodology, to identify the
potential VCM-system options and to select the optimal system for an SHEV application. An exergo-
technological explicit selection (ETES) methodology for the identification and assessment of the
different VCM-system options applicable to SHEV and to select the best suited energy converters is
carried out in section 2, based on exergy analysis and automotive technological constraints. Observed
results are then used for the prioritization and the selection of the optimal VCM-system configuration.
The selection criterion are optimizing the system efficiency and increasing the net specific work as
well as respecting vehicle constraints, such the thermal power rejected. Thereafter, an SHEV vehicle
model is developed in section 3, and powertrain components are designed to ensure vehicle
performance requirements. The identified VCM-system is integrated in the developed vehicle model
and a comparison between SHEV models with different APU technologies is presented: (1) a VCM-
APU and (2) a reference ICE-APU. Energy consumption simulations of these models are compared
on the WLTC and a sensitivity analysis illustrating the battery size impact on energy consumption is
presented. Note that Dynamic Programing (DP) is adopted as Energy Management Strategy (EMS)
in order to provide the global optimal strategy to power ON and OFF the APU.
2. Methodology for the selection of the optimal VCM-system
This section presents the methodology adopted to evaluate the potential of VCM-systems in an SHEV
with a series hybrid electric powertrain configuration. The same methodology has been proposed by
the authors in [36], for the selection of the optimal gas-turbine systems for SHEV. This approach has
been reconsidered in this study and adapted to the VCM-systems.
The methodology consists of two-steps assessment plan. In the first assessment step, energy and
exergy analysis are applied to the simple VCM system, and the overall efficiency, specific work, and
exergy are calculated. Based on the resulting exergy losses, the simple VCM is modified, and several
4
system options are derived, while considering several measures to reduce exergy losses, such as
bottoming WHR cycles, regenerative cycles and reheat cycles among others. Accordingly, the list of
potential VCM-system configurations is identified.
The energy and exergy calculations are then carried out in the second assessment step on all identified
configurations where components technological constraints and automotive design constraints are
considered. The optimal-realistic VCM-system configuration for SHEV application is therefore
selected based on efficiency, power density as well as on vehicle constraints, among them the thermal
heat rejected from condenser located in the front of the vehicle.
2.1. Energy and exergy analysis of the simple VCM
This section presents the modeling of the simple VCM-system. The system presents two loops: (1) a
Rankine cycle loop (RC) and a combustion chamber loop (CC), as illustrated in figure 1. The RC-
loop consists of a pump, a heat exchanger (HEX) evaporator, a turbine and a condenser, whereas the
CC-loop includes a combustion chamber blower (CCB) and a combustion chamber. Both loops
exchange heat in the common HEX evaporator component, which serves at the same time as heater,
boiler and super-heater.
As all thermodynamic energy converters, VCM-systems are more efficient when operating at high
source temperature and water is among best-suited and compatible Rankine working fluids for high
temperature [40, 41]. Therefore, the simple VCM-system is referred as Steam Rankine Cycle (SRC).
Note that air is considered as the working fluid in the CC loop.
First law of thermodynamics is applied in order to deduce the cycle thermal efficiency and power
density. The system efficiency is computed according to equation (1).




(1)
With

: Overall efficiency of the SRC

: Turbine work in the RC loop (kJ/kg)

: Compressor work in the RC loop (kJ/kg)

: Combustion chamber blower work in the CC loop (kJ/kg)

: Heat added in the combustion chamber
Exergy analysis is then carried out as expressed in equation (2) in order to trace the work losses in
the system and their quantities, informing on the possible options to reduce the inefficiencies.







(2)
With

: Exergy of the entering flow

: Exergy of the leaving flow



: Net Work output

: Exergy of the heat rejected

: Exergy of the heat added
: Exergy destruction in the system
Exergy destruction results of the investigated simple VCM-system are illustrated in figure 2. This
figure points out the three highest shares of exergy losses, occurring in the combustion chamber
(52%), in the HEV evaporator (23%) and in the heat rejected from the condenser (17%).
5
Fig. 2. Distribution of exergy destruction in the SRC system with maximum combustion chamber
temperature of 1250°C and maximum cycle pressure of 10 MPa.
The exergy destruction in the combustion chamber decreases as the average temperature increases
[42-44]. Accordingly, three ways can be considered to decrease these exergy losses in this
component: (1) increasing the combustion chamber outlet temperature while respecting metallurgic
constraints. (2) Increasing the average combustion temperature using a regenerator which recovers
waste heat downstream the HEX and increases the temperature upstream the combustion chamber.
(3) Performing a combustion chamber reheat cycle where a second combustion took place in the
exhaust gas at the outlet of the first HEX and a second identical RC is performed, where heat is added
through a second HEX downstream the second combustion chamber.
Exergy destruction in the HEX evaporator, can be reduced by reducing the temperature difference
and the pinch between hot and cold stream inside this component. However small pinch implies larger
heat exchange surface and bigger HEX. Another option can be envisaged to reduce exergy destruction
in the HEX, consists of performing a supercritical Rankine thermodynamic cycle, where water is
pumped to a pressure higher than its critical point [45, 46]. However, this option was not considered
for technological constraints reasons.
As for the third major source of exergy destruction, losses from the steam condenser to the ambient
air, these exergy losses can be reduced in three ways: (1) The first option relies on the adoption of
external waste heat recovery systems or bottoming cycles, among them, Organic Rankine Cycle
(ORC) recovering heat at low temperature is considered. (2) The second option considers an internal
heat exchanger to serve as an internal regenerator that recover heat at the steam turbine outlet to heat
the water at pump outlet [47]. This configuration, discussed in more details later, has the benefit of
reducing the amount of heat rejected through the condenser, limiting therefore, the condenser surface.
(3) The third option consists of recovering condenser thermal losses through an external heat
exchanger to serve as regenerator that heat the air at the combustion chamber inlet. In this study, only
the first option is considered for the following reasons: (1) The additional ORC system add
complexity and cost and (2) it was proven by calculations, that heat rejected at the outlet of the HEX
remains at higher temperature than the condenser inlet temperature. Therefore, it is more
advantageous to recover this heat since it allows reducing more the exergy destruction in the CC.
Regarding the exergy losses at HEX outlet to the ambient air, it can be recovered in two ways: (1)
internally using a regenerator upstream the combustion chamber and (2) through a bottoming ORC
cycle which was not considered in this study, for the same reasons discussed before.
Steam Turbine
5,0%
Water Pump
0,1%
Evaporator
22,7%
CCB
0,3%
Condenser
16,7%
CC Outlet
3,7%
Combustion
chamber
51,6%
6
The exergy destruction shares of the combustion chamber blower, the pump and the turbine are
negligible compared to the rest. They can be further reduced by improving the efficiency of these
components. Note also that turbine reheat systems were also considered. These systems known in the
literature [40, 48], allow increasing Rankine cycle efficiency by approaching isothermal expansion
through multi-stages turbine expansions with reheat.
Based on these findings, the different VCM-system options showing a significant potential for exergy
loss reduction compared to the simple VCM system are listed below. These systems are classified
according to the combination of the suggested techniques for exergy loss reduction such as the use of
regenerators upstream the combustion chamber, turbine reheat cycle, condenser re-heater as well as
post combustion cycles. These systems, are considered in the rest of the study for further assessment
in order to determine the most suitable VCM-system configuration for an SHEV application:
1- SRC: Simple Steam Rankine Cycle
2- R-SRC: Regenerative Steam Rankine Cycle
3- CR-SRC: Condenser Reheat Steam Rankine Cycle
4- RCR-SRC: Regenerative Condenser Reheat Steam Rankine Cycle
5- Re-SRC: Reheat Steam Rankine Cycle
6- RRe-SRC: Regenerative Reheat Steam Rankine Cycle
7- RReCR-SRC: Regenerative Reheat and Condenser Reheat Steam Rankine Cycle
8- TRe-SRC: Turbine Reheat Steam Rankine Cycle
9- RTRe-SRC: Regenerative Turbine Reheat Steam Rankine Cycle
10- RReTRe-SRC: Regenerative Reheat and Turbine Reheat Steam Rankine Cycle
11- RReCRTRe-SRC: Regenerative Reheat Condenser Reheat and Turbine Reheat Steam
Rankine Cycle
2.1. Energy and exergy analysis of the identified VCM-system
The identified VCM-system options are assessed now in order to prioritize these options based on
their respective efficiency and net specific work, and to select the most suitable configurations. The
assessment methodology for each option was presented in [36]. Systems are modelled using both
Dymola software and Refprop software, using the set of physical parameters such as combustion
chamber maximum temperature, machines efficiency, steam maximum pressure, pinches, among
others; as summarized in table 1. These parameters correspond to the state-of-the-art specifications
and limitations of VCM component technologies and to automotive design constraints.
The energy and exergy calculations are made as function of parametric design criteria: the steam
maximum pressure (
 !"#
), the steam maximum temperature ($
 !"#
), the reheat steam
maximum temperature ($
 !%#&"#
) and the HP steam turbine expansion ratio (β
HP-SRC
). Therefore,
the second calculation step uses the multi-objective non-dominated sorting genetic algorithm
(NSGA), to determine the Pareto optimal efficiency and net specific work solutions for the optimal
(
 !"#
), ($
 !"#
), ($
 !%#&"#
) and (β
HP-SRC
) [49]. It is worth to note that NSGA optimizations
were performed with a set of constraints such as a minimal vapor quality of 0.92 at turbine outlet, and
a minimum exhaust gases temperature of 85°C at the outlet of the CC loop. These technological
constraints were set to avoid turbine blades corrosion caused by low vapor quality releasing from
turbine [50] and to avoid HEX corrosion due to water condensing in the exhaust gases [51].
The Pareto curves of figure 3 illustrated the net specific work versus the efficiency for the investigated
VCM-systems. The VCM-systems using the combustion chamber regenerator, the combustion
chamber reheat, the condenser reheat and the turbine reheat systems have higher efficiency than basic
configurations. Also, the combustion chamber reheat systems present higher net specific work
compared to non-combustion chamber reheat cycles. This can be explained by the post combustion
7
that occurs in the same air flow, downstream the first combustion chamber, which approximately,
doubles the power for the same mass flow. This is very benefic for vehicle applications, because it
offers the possibility of reducing the components size, mainly the HEXs, for the same pressure drop.
Table 1. Simulation parameters based on state-of-the-art component specifications and automotive
design constraints.
Parameter Unit Value Parameter Unit Value
Reference temperature °C 25 Steam max pressure MPa 10
Reference pressure MPa 0.1 Steam max temperature °C 650
CC blower efficiency % 75 Steam reheat max temperature °C 650
Combustion chambers max T° °C 1250 Regenerator efficiency % 85
Combustion chambers pressure drop hPa 50 Condenser Re-heater efficiency % 60
Turbine isentropic efficiency % 85 HEX pinches K 100
Pump isentropic efficiency % 65 HEXs pressure drop hPa 50
Steam Condensing temperature °C 100 Steam quality at turbine outlet - > 0.92
Steam condenser sub-cooling K 3 Exhaust gas outlet °C > 85
Fig. 3. Pareto optimal efficiencies and net specific work solutions of the different VCM-systems.
Among no complex realistic systems, the RReCRTRe-SRC presents the highest efficiency (35%) and
high net specific work, followed by the RReTRe-SRC with a maximum efficiency of 31%, the
RReCR-SRC with maximum efficiency of 30% and the RRe-SRC with maximum efficiency of
around 28%. As seen, the common points of these configurations are the combustion chamber reheat
configuration and the combustion chamber regenerator. It is worthy to mention, that for all studied
configurations, the optimal efficiency and net specific work were achieved for a maximum pressure
of 10 Mpa and maximum temperature of 650°C. For turbine reheat cycles, the optimal high pressure
(HP) turbine expansion ratio are presented in figure 4. Where the HP turbine optimal expansion ratio
is close to 4 for TRe-SRC, RTRe-SRC and RReTRe-SRC, when adding a condenser re-heater, the
optimal HP expansion ratio increases to 15. This is explained by the fact that optimal efficiency occurs
for a lower low pressure (LP) turbine expansion, enabling higher LP turbine outlet temperature, which
is more beneficial for recovering turbine outlet thermal heat through the condenser re-heater.
Finally, the potential high net specific work VCM-systems are compared regarding one of the main
vehicle constraints: the thermal power rejected from the condenser to the ambient air. Figure 5
presents the steam condenser thermal power function of net mechanical power for the different pre-
selected VCM-machines. Two main conclusions can be drawn from this figure:
1- Steam condenser thermal power increases as the VCM-system net power increases.
260
360
460
560
660
760
860
25 27 29 31 33 35
Net specific work (kJ/kg of air)
Efficiency (%)
SRC
R-SRC
CR-SRC
RCR-SRC
Re-SRC
RRe-SRC
RReCR-SRC
TRe-SRC
RTRe-SRC
RReTRe-SRC
RReCRTRe-SRC
8
2- Adding an internal regenerator recovering heat from the turbine outlet, upstream the
condenser, reduce the thermal power rejected from the vehicle condenser.
The RReCRTRe-SRC rejects the smallest amount of heat among the other selected VCM-systems,
since the condenser heater recover a valuable fraction of thermal power from the steam turbine outlet
before entering the steam condenser. Also the RReCR-SRC rejects low amount of heat compared to
RRe-SRC and RTRe-SRC, the internal condenser heater isn’t efficient since the steam turbine outlet
temperature is low.
Fig. 4. High pressure turbine optimal expansion ratio for the different turbine reheat systems.
Fig. 5. Steam condenser thermal power function of net mechanical power for the different
selected VCM-machines.
These results yield to conclude that the most suited cycle for vehicle applications is the RReCRTRe-
SRC, since it represents the lowest constraints in term of vehicle frontal area, a high efficiency and a
high net specific power. Therefore, this VCM-system will be selected for the rest of this study and
will be implemented in SHEV where fuel consumption will be compared with ICE-SHEV
configuration.
3. Powertrain setup and energy management strategy
In order to evaluate the benefit of the selected VCM-system in terms of fuel savings compared to
ICE, a medium-class SHEV with series hybrid powertrain, consisting of a VCM-APU and an electric
traction system (as illustrated in figure 1) is modelled and presented in this section.
Series hybrid powertrain configuration presents the advantage of tackling two of the main deficiencies
of VCM systems in automotive applications as discussed in the literature: the poor efficiency, and the
acceleration lag. On one hand, the VCM operates in this SHEV at steady power corresponding to the
optimum efficiency. On the other hand, the vehicle is propelled by an electric motor powered by a
battery and/or the APU, and properly sized to ensure the vehicle performance without deficiency.
The vehicle parameters considered in this study are summarized in table 2 below. The series hybrid
powertrain model was developed in details in paper [36]. Four different battery capacities (2, 5, 10
4,3 4,3 4,1
15,0
0
5
10
15
20
TRe-SRC
RTRe-SRC
RReTRe-SRC
RReCRTRe-SRC
HP turbine optimal
expansion ratio
24,5 23,1 24,3
17,2
36,7 34,7 36,5
25,7
48,9 46,2 48,7
34,3
61,1 57,8 60,8
42,9
73,4 69,4 73,0
51,5
0
20
40
60
80
RRe-SRC RReCR-SRC RReTRe-SRC RReCRTRe-SRC
Steam Condenser Thermal
power (kW)
10kW net power 15kW net power 20kW net power 25kW net power 30kW net power
9
and 20 kWh) are considered in order to assess the impact of the battery size on improving fuel
consumption. The additional mass of the increased battery capacity is also taken into account [36].
An energy converter based on RReCRTRe-SRC, with net power of 20 kW is selected. It presents a
good compromise between the thermal heat rejected through the condenser according to figure 5, the
traveling distance and the battery recharging time. The selected powertrains will be simulated with
different battery capacities and results will be compared to ICE-SHEV powertrains in terms of energy
consumption. Note that it was proven by simulations not presented in this work, that 23kW is required
to propel the vehicle at a constant speed of 130 km/h, emulating highway driving. Therefore, a
powertrain with 20kW net power VCM and 20 kWh battery allows travelling a distance of about 160
km at 130km/h while maintaining a final battery state of charge (SOC) of 30%.
Table 2: Vehicle and components specifications.
Vehicle specifications Symbol Unit Value
Vehicle mass M
v
kg 1210
Frontal area S 2.17
Drag coefficient C
x
- 0.29
Wheel friction coefficient f
r
- 0.0106
Wheel radius R
w
m 0.307
Auxiliaries consumption P
aux
W 750
Battery max power P
b max
kW 80
VCM-system power P
VCM
kW 20
VCM-system efficiency η
VCM
% 35
Generator max power P
g
kW 25
Generator max efficiency η
g
% 95
Motor max power P
m
kW 80
Motor max efficiency η
m
% 93
Transmission ratio i - 5.4
Transmission efficiency
% 97
Vehicle total mass M
t
kg M
v
+ M
b
Fuel heating value H
v
MJ/kg 42.5
Note that dynamic programming (DP) is considered in this study in order to provide the global
optimal strategy to control the APU operations [52-54]. It decides on the optimal strategy for the
scheduled route at each instant ' while minimizing the fuel consumption. Consequently, DP computes
backward in time from the final desired battery state of charge ()*
+
to the initial state ()*
the
optimal fuel mass flow rate,in the discretized state time space. Note also that the resulting optimal
APU on/off strategy must not cause the components to violate their relevant physical boundary
constraints included in the DP model in terms of speed, power or battery state of charge, in order to
ensure their proper functioning within the normal operation range. It is also noteworthy to mention
that DP excludes the impact on the consumption of rule-based energy management strategies
currently used on hybrid vehicles and the obtained fuel consumption results are only dependant on
the investigated energy converter and its efficiency.
4. Results and discussion
Two different SHEV configurations are compared in this section:
1- A VCM-APU with the RReCRTRe-SRC as energy converter delivering 20 kW of mechanical
power and operating at it optimal efficiency point of 35%.
2- An ICE-APU with a reference 1.2 liters spark ignition engine, with 97kW of maximum power
and achieving a thermal efficiency of 36%. During APU operation, the ICE is allowed to
operate at any point of its torque-speed map. For both models, gasoline is the fuel used.
10
The simulations conducted emulate the behaviour of self-sustaining hybrids with a zero use of electric
energy from the battery at the end of the cycle. Thus, the initial and final battery SOCs are set at 60%.
Simulations are performed on a one to ten WLTP driving cycle, covering a total distance around 230
km. APU operation and battery SOC results for three repeated WLTC are illustrated in figure 6. Note
that for this study, the mass of the selected VCM powertrain is considered equal to the mass of the
ICE powertrain and its accessories.
Fig. 6. Results emulating SHEV with 5 kWh battery on 3 WLTC (
-./
0
=
-./
1
= 60%).
Comparing the fuel consumption results between the VCM-APU and the ICE-APU in figure 7. Two
conclusions can be drawn out from this figure:
1- An additional consumption of 2 to 3.5% is observed with VCM-APU under the sets of
simulations. These extra consumptions are explained by the higher operating efficiency of the
ICE. Note that unlike the VCM-APU which was constrained to operate at one operating point,
results showed that the ICE operation was at the optimal operating line (OOL) where the
efficiency remains close to 36%.
2- Comparing the fuel consumption of the two considered models for the four battery capacities
investigated, shows that 8% more fuel is consumed as battery capacity increased from 2 kWh
to 20 kWh. The additional consumption is explained by the unnecessary additional carried
weight of the 20 kWh battery.
Note that in self-sustaining SHEV, battery is used as energy buffers. Therefore, the fuel consumption
is the same on one to ten repeated WLTC and depends only on the APU efficiency. It is worthy to
mention that the VCM-APU operates around 50% of time compared to around 32% for the ICE-APU.
This has an advantage when considering vehicle thermal energetic needs. For instance, the VCM-
system can offer the thermal heat power required for cabin heating from the condenser, for longer
period compared to ICE. This reduces the additional energy consumption on hybrid electric vehicles
(HEV) where cabin thermal need relies on electric resistances when the ICE is off.
0
50
100
150
Vehicle speed
(km/h)
Vehicle speed On/Off VCM-APU
0
50
100
150
Vehicle speed
(km/h)
Vehicle speed On/Off ICE-APU
50%
55%
60%
65%
70%
Battery SOC (%)
SOC VCM-APU SOC ICE-APU
11
Fig. 7. Fuel consumption of VCM-APU and ICE-APU for the different battery capacities
5. Conclusions and perspectives
An exergo-technological explicit selection (ETES) method considering both component and
automotive technological constraints is applied in this study to identify the most suitable VCM-
system for series hybrid electric vehicles (SHEV). The Regenerative Reheat Steam Rankine Cycle
with condenser reheat and turbine reheat (RReCRTRe-SRC), offering high efficiency and power
density, was selected among several VCM system configurations. It represents also low vehicle
constraints since it requires smaller vehicle condenser, compared to other investigated VCM-systems.
An SHEV with a series hybrid powertrain is modelled and the RReCRTRe-SRC and ICE auxiliary
power units (APU) are simulated and compared in terms of fuel consumption using the dynamic
programming optimal control as APU management strategy. A parametric study was also conducted
in order to evaluate the impact of battery capacity on fuel consumption.
Simulation results showed that the RReCRTRe-SRC-system increases by 2% to 3.5% the fuel
consumption compared to similar ICE on self-sustaining SHEV.
Results also highlighted the interest of considering small battery capacities for maximizing fuel
savings on self-sustaining SHEV. Up to 8% of fuel savings were observed on one to ten-repeated
WLTC respectively between 2 kWh and 20 kWh battery models.
The methodology presented in this study will be further elaborated in order to evaluate the fuel
consumption saving for VCM-systems on different vehicle applications ranging from small to large
and SUV extended range electric vehicles. Simulations will include Real Driving Cycles (RDE) and
other vehicle energetic criteria such as the cabin thermal needs.
References
[1] Cracknell R., Kramer G., Vos E., Designing Fuels Compatible with Reformers and Internal Combustion
Engines. SAE Technical Paper 2004-01-1926, 2004.
[2] Murr F., Winklhofer E., Friedl H., Reducing Emissions and Improving Fuel Economy by Optimized
Combustion of Alternative Fuels. SAE Technical Paper 2011-28-0050, 2011.
[3] Ashton, P., McCurdy, G., and Osier, C., "Methanol as an Alternative Automotive Fuel: CMC's Approach
and Experience," SAE Technical Paper 831176, 1983.
[4] Jonas Holmborn, “Alternative fuels for internal combustion engines”, Institutionen för
Maskinkonstruktion, March 2015.
[5] Heywood J. B., Automotive engines and fuels: A review of future options. Progress in Energy and
Combustion Science, 1981.
5,50 5,62 5,73
5,90
5,32 5,46 5,57 5,72
4
4,5
5
5,5
6
6,5
2 kWh 5 kWh 10 kWh 20 kWh
Fuel consumption (L/100 km)
VCM-APU ICE-APU
12
[6] Grandin A., Ernst W., Alternative Fuel Capabilities of the Mod II Stirling Vehicle. SAE Technical Paper
880543, 1988, https://doi.org/10.4271/880543.
[7] Saxena S., Ahmed M., Automobile Exhaust Gas Heat Energy Recovery Using Stirling Engine:
Thermodynamic Model. SAE Technical Paper 2017-26-0029, 2017.
[8] Domingues A., Santos H., Costaa M., Analysis of vehicle exhaust waste heat recovery potential using a
Rankine cycle. Energy, 2013.
[9] Sahoo, D., Kotrba, A., Steiner, T., and Swift, G., "Waste Heat Recovery for Light-Duty Truck
Application Using ThermoAcoustic Converter Technology," SAE Int. J. Engines 10(2):196-202, 2017,
https://doi.org/10.4271/2017-01-0153.
[10] Orr B., Akbarzadeh A., Mochizuki M., Singh R., A review of car waste heat recovery systems utilizing
thermoelectric generators and heat pipes. Applied Thermal Engineering, 2015.
[11] Song B., Zhuge W., Zhao R., Zheng X., Zhang Y., Yin Y., Zhao Y., An investigation on the
performance of a Brayton cycle waste heat recovery system for turbocharged diesel engines. Journal of
Mechanical Science and Technology, June 2013.
[12] Eidensten L., Yan J., Svedberg G., Biomass Externally Fired Gas Turbine Cogeneration. J. Eng. Gas
Turbines Power 118(3), 604-609 (Jul 01, 1996), doi:10.1115/1.2816691
[13] Aliabadi A. A., Thomson M. J., Wallace J. S., Tzanetakis T., Lamont W., Di Carlo J., Efficiency and
Emissions Measurement of a Stirling-Engine-Based Residential Microcogeneration System Run on
Diesel and Biodiesel. Energy Fuels, 2009.
[14] Bonnet S., Alaphilippe M., Stouffs P., Energy, exergy and cost analysis of a micro-cogeneration system
based on an Ericsson engine. International Journal of Thermal Sciences, 2005.
[15] Qiu K., Hayden A.C.S., Integrated thermoelectric and organic Rankine cycles for micro-CHP systems.
Applied Energy, September 2012.
[16] Thiers S., Aoun B., Peuportier B., Experimental characterization, modeling and simulation of a wood
pellet micro-combined heat and power unit used as a heat source for a residential building. Energy and
Buildings, 2010.
[17] Strack C. W., Condensers and boilers for steam-powered cars: A parametric analysis of their size,
weight, and required fan power. NASA Technical note, TN D-5813, 1970
[18] Renner R., Wenstrom M., Experience with Steam Cars in California. SAE Technical Paper 750069,
1975, https://doi.org/10.4271/750069.
[19] Norton D., The Design of a Steam Powered Paratransit Vehicle. SAE Technical Paper 750736,
1975, https://doi.org/10.4271/750736.
[20] Carter J., The Carter System-A New Approach for a Steam Powered Automobile. SAE Technical Paper
750071, 1975, https://doi.org/10.4271/750071.
[21] Miner S., Developments in Automotive Steam Powerplants. SAE Technical Paper 690043,
1969, https://doi.org/10.4271/690043.
[22] Gardiner A., Automotive Steam Power – 1973. SAE Technical Paper 730617,
1973, https://doi.org/10.4271/730617.
[23] Nightingale N., Automotive Stirling Engine: Mod II Design Report. National Aeronautics and Space
Administration, Lewis Research Center, DOE/NASA/0032-28, October 1986.
[24] Xiang W., Chen Y., Performance improvement of combined cycle power plan based on the optimization
of the bottom cycle and heat recuperation. Journal of Thermal Science, 2007.
[25] HORLOCK J. H., Advanced Gas Turbine Cycles. ISBN 0-08-044273-0, Pergamon, 2003.
[26] Sprouse C., Depcik C., Review of organic Rankine cycle for internal combustion engine exhaust waste
heat recovery. Applied Thermal Engineering, vol 51, pp 711-722, 2013.
[27] Abbe Horst T., Tegethoff W., Eilts P., Koehler J., Prediction of Dynamic Rankine Cycle waste heat
recovery performance and fuel saving potential in passenger car applications considering interactions
with vehicles energy management. Energy Conversion and Management, 2014.
[28] Endo T., Kawarjiri S., Kojima Y., Takahashi K., Baba T., Ibaraki S., Takahashi T., Shinohara M., Study
on Maximizing Exergy in Automotive Engines. SAE Technical Paper 2007-01-0257
[29] Ibaraki S., Endo T., Kojima Y., Takahashi K., Baba T., Kawajiri S., Study of efficiency onboard waste
heat recovery system using Rankine cycle. Review of Automotive Engineers, 28, 307-313, 2007.
[30] Freymann R., Ringler J., Seifert M., Horst T., The second generation Turbosteamer. MTZ Worlidwide
2012;73:18-23.
[31] Freymann R., Strobl W., Obieglo A., The Turbosteamer: a system introducing the principle of
cogeneration in automotive applications. MTZ, 69, 20-27, 2008.
13
[32] Smague P., Leduc P., Integrated Waste Heat Recovery System with Rankine Cycle. 22
nd
Aachen
Colloquium Automobile and Engine Technology 2013.
[33] Schneider P., Steam Power Systems' California Clean Car Project. SAE Technical Paper 750070,
1975, https://doi.org/10.4271/750070.
[34] Ernst W., Stirling Engines for Hybrid Electric Vehicle Applications. SAE Technical Paper 929137,
1992, https://doi.org/10.4271/929137.
[35] Lienesch J., Wade W., Stirling Engine Progress Report: Smoke, Odor, Noise and Exhaust Emissions.
SAE Technical Paper 680081, 1968, https://doi.org/10.4271/680081.
[36] Bou Nader W., Mansour C., Nemer M., Guezet, O., Exergo-technological explicit methodology for gas-
turbine system optimization for series hybrid electric vehicles. Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017.
[37] Zhou L., Xu G., Zhao S., Xu C., Yang Y., Parametric analysis and process optimization of steam cycle
in double reheat ultra-supercritical power plants. Applied Thermal Engineering, 2016.
[38] Mohammadi K., McGowan G. J., Thermodynamic analysis of hybrid cycles based on a regenerative
steam Rankine cycle for cogeneration and trigeneration. Energy Conversion and Management, 2017.
[39] Jiang L., Lin R., Jin H., Cai R., Liu Z., Study on thermodynamic characteristic and optimization of
steam cycle system in IGCC. Energy Conversion and Management, 2002.
[40] Sonntag R., Borgnakke R., Fundamentals of Thermodynamics, Sixth Edition, 2003, p.411-423.
[41] Cha W., Kim K., Choi K., Optimum Working Fluid Selection for Automotive Cogeneration System.
World Academy of Science, Engineering and Technology, 2010.
[42] Datta A., Som S., Energy and exergy balance in a gas turbine combustor. J Power Energy - Proc Inst
Mech Eng, 213:23–32, 1999.
[43] Dunbar R. W., Lior N., Sources of combustion irreversibility. Combustion Science and Technology,
Volume 103, 1994 – Issue 1-6.
[44] Som K. S., Datta A., Thermodynamic irreversibilities and exergy balance in combustion processes.
Progress in Energy and Combustion Science, Volume 34, Issue 3, June 2008.
[45] Hasti S., Arronwilas A., Veawab A., Energy Analysis of Ultra Super-Critical Power Plant, Energy
Procedia, 2013.
[46] Kumar R., A critical review on energy, exergy, exergoeconomic an economic (4-E) analysis of thermal
power plant. Engineering Science and Technology, an International Journal, 2017.
[47] Deethayat T., Kiatsiririat T., Thawonngamyingsakul C., Performance analysis of an organic Rankine
cycle with internel heat exchanger having zeotropic working fluid. Case Studies in Thermal
Engineering, 2015.
[48] Zhou L., Xu G., Zhao S., Xu C., Yang Y., Parametric analysis and process optimization of steam cycle
in double reheat ultra-supercritical power plants. Applied Thermal Engineering, 2016.
[49] Deb K., Pratap A., Agarwal S., A fast and elitist multiobjective Genetic Algorithm: NSGA-II. In: IEEE
Transactions on evolutionary computation, Vol. 6, No. 2, APRIL 2002.
[50] Ganjehkaviri A., Mohd Jaafar N. M., Hosseini E. S., Optimization and the effect of steam turbine outlet
quality on the output power of a combined cycle power plant. Energy Conversion and Management,
January 2015.
[51] Trojanowski R., Butcher T., Worek M., Wei G., Polymer heat exchanger design for condensing boiler
applications. Applied Thermal Engineering, June 2016.
[52] Mansour C., Trip-based optimization methodology for a rule-based energy management strategy using a
global optimization routine: the case of the Prius plug-in hybrid electric vehicle. In: Proceedings of the
Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, Vol 230, Issue 11, pp.
1529 – 1545, 2015.
[53] Mansour C., Optimized energy management control for the Toyota Hybrid system using dynamic
programming on a predicted route with short computation time. In: International Journal of Automotive
Technology. Paper N° 220100321, vol.13, No. 2, 2012.
[54] Sundstrom O., Guzzella L., A generic dynamic programming Matlab function. 2009 IEEE Control
Applications, (CCA) & Intelligent Control, (ISIC). St. Petersburg, 2009, pp. 1625-1630. doi:
10.1109/CCA.2009.5281131
... Therefore, based on the aforementioned findings, BWHR systems present a forthcoming potential for improving fuel economy and emissions of passenger vehicles, with the benefit of reliable low complex open loop systems; particularly, in series hybrid electric vehicles (SHEV). SHEV combines a thermal and an electric powertrain in a series energy-flow arrangement [19]. The thermal powertrain is constituted of an ICE-BWHR-system and an electric generator, and is referred to as the Auxiliary Power Unit (APU). ...
... The vehicle parameters considered in this study are summarized in table 2. Powertrain backward model equations are presented in the reference [19]. Note that the additional mass of the BWHRsystem, are accounted and presented in table 3. Turbomachinery weight data are retrieved from literature [29]. ...
... The plug-in hybrid offers the advantage of long electric drive range without the need of turning ON the APU. Also, the additional battery mass with the increased capacity is taken into account and values were retrieved from commercialized battery specifications [19]. ...
Conference Paper
Full-text available
In the global attempt to increase the powertrain overall efficiency of hybrid vehicles while reducing the battery size, engine waste heat recovery (WHR) systems are nowadays promising technologies. This is in particular interesting for series hybrid electric vehicles (SHEV), as the engine operates at a relative high load and under steady conditions. Therefore, the resulting high exhaust gas temperature presents the advantage of increased WHR efficiency. Brayton cycle offers a relative reduced weight compared to other WHR systems and present low complexity for integration in vehicles since it relies on open system architecture with air as working fluid, which consequently avoid the need for a condenser compared to Rankine systems. This paper investigates the potential of fuel consumption savings of a SHEV using Brayton cycle as WHR system from the internal combustion engine (ICE) exhaust gas. An exergy analysis is conducted on simple Brayton cycle and several Brayton waste heat recovery (BWHR) systems were identified. A SHEV with the ICE-BWHR systems are modelled, where the engine waste heat recovered is converted into electricity using an electric generator, and stored in the vehicle battery. Energy consumption simulations are performed on the worldwide-harmonized light vehicles test cycle (WLTC), considering the additional weight of the BWHR systems. The intercooled Brayton cycle (IBC) architecture is identified as the most promising for automotive application as it offers the most convenient compromise between high efficiency and low integration complexity. Results show 5.5% and 7.0% improved fuel economy on plug-in and self-sustaining SHEV configurations respectively, as compared to similar vehicle configurations with ICE auxiliary power unit. In addition to the fuel economy improvements, IBC-WHR system offers other intrinsic advantages such as low noise, low vibration, high durability which makes it a potential heat recovery system for integration in SHEV.
... Therefore, based on the above synthesis of the insights and gaps in the literature for re-adopting Stirling in automotive applications, this study proposes a comprehensive methodology to identify the potential Stirling-system options and select the optimal system configuration for SPHEV applications. A methodology for identification and assessment of the different Stirling-system options applicable to SPHEV is carried out in section 2, based on exergy analysis and automotive technological constraints [26]. Observed results are then used for the prioritization and the selection of the optimal Stirling-system configuration. ...
... The additional battery mass with the increased capacity is taken into account. Values were retrieved from commercialized battery specifications [26]. Note that the model includes the torquespeed efficiency map for both MG1 and MG2 as well as the efficiency map of the battery Based on the above, table 2 summarizes the vehicle parameters needed for modelling the SPHEV. ...
... The powertrain model is provided in equations (9) to (26). ...
... The powertrain modelling, sizing and equations are presented in [10]. The electric traction motor is sized in order to ensure similar performance to a medium class hybrid vehicle, with maximum speed of 160 km/h and acceleration from 0-100 km/h in 9.6 s. ...
... As for the capacity, three different values of 5, 10 and 20 kWh are considered in the analysis in order to assess the impact of the battery size on improving fuel consumption. The additional battery mass is taken into account and values were retrieved from [10]. ...
... initial SOC: (10) final SOC: ...
... This study, however, offers for the first time, the replacement of the ICE with an external combustion TAE, to be integrated in an EREV. These powertrains combine a thermal and an electric powertrain in a series energy-flow arrangement [12]. The thermal powertrain in this study consists of an TA-system and an electric generator and is referred to as the Auxiliary Power Unit (APU). ...
... The identified TAE-system options are assessed now in order to prioritize these options based on their respective efficiency and net specific work. The assessment methodology for each option was presented in Ref. [12]. Systems are modeled using Refprop software, using a set of physical parameters such as the combustion chamber maximum temperature, the acoustic gain factor, the HEX pinches, among others; as summarized in Table 1. ...
Article
Significant research efforts are considered in the automotive industry on the use of low carbon alternative fuels in order to reduce carbon emissions of future vehicles, some of which are only compatible with external combustion machines. These machines are only suitable for electrified powertrains relying on electric propulsion, particularly in range extenders, where the energy converter operates steadily at a constant power at its optimal efficiency. The fuel consumption of these powertrains strongly relies on the performance of the energy converter in terms of efficiency, as well as on the deployed energy management strategy. This paper investigates the potential of fuel savings of a Extended Range hybrid Electric Vehicle (EREV) using a Thermoacoustic Engine (TAE) system as energy converter substitute to the conventional Internal Combustion Engine (ICE). An exergo-technological explicit analysis is conducted to identify the different TAE-system thermodynamic configurations. The Regenerative Reheat two-stage thermoacoustic engine is selected among numerous identified thermodynamic configurations, offering high efficiency and net specific work compared to other configurations. An EREV model is developed and the presented RRe-n2-TAE configuration is integrated. Fuel consumption simulations are performed on the Worldwide-harmonized Light Vehicles Test Cycle (WLTC). Results are compared to the reference ICE-APU. Results show more than 20% of fuel savings with the RRe-n2-TAE as Auxiliary Power Unit (APU) compared to the basic TAE configuration and comparable fuel consumption with the ICE. Consequently, the studied RRe-n2-TEG-APU presents a potential for the implementation in EREVs with zero carbon alternative fuels.
Conference Paper
Significant research efforts are considered in the automotive industry on hybridelectrified powertrains in order to improve the fuel economy of vehicles. Powertrains electrification resulted in a wide range of hybrid architectures where the fuel consumption strongly relies on the energy converter performance in term of efficiency and power density. This study investigates the fuel savings potential of an extended range hybrid electric vehicle (EREV) using different thermodynamic energy converters. An exergo-technological explicit selection methodology is conducted to identify the potential thermodynamic configurations. The combined cycle gas turbine (CCGT) system is considered as exemple and compared to other energy converters. An EREV model is developed and energy consumption simulations are performed on the worldwideharmonized light vehicles test cycle (WLTC). Results show a potential of 10% to 25% of fuel savings when considered the CCGT and the internal combustion gas turbine machines as auxiliary-power-unit as substitute to the reference internal combustion engine.
Article
Full-text available
The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E) analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.
Article
In this study, different feasible integrated configurations were proposed and thermodynamically evaluated for cogeneration of power and fresh water/cooling, and trigeneration of power, cooling and fresh water. A steam regenerative Rankine cycle with condensation and steam extractions, driven by a concentrated solar tower, was designed to supply the thermal heat requirements of absorption cooling and multi effect distillation, or thermal vapor compression-multi effect distillation. The results showed the configurations that utilize steam extraction with a lower temperature and pressure were more efficient. For power and fresh water cogeneration, utilizing the condensation steam to integrate multi effect distillation with a power cycle was thermodynamically more efficient than the integration of thermal vapor compression-multi effect distillation using extraction steams. Integrated Rankine cycle-multi effect distillation configuration was found to be very competitive with the direct supply of electricity to reverse osmosis systems, particularly at higher fresh water productions. However, further examinations are required considering geographical, environmental and economic factors. For power and cooling cogeneration, all proposed absorption cooling configurations were more efficient than supplying electricity directly to vapor compression cooling. Moreover, despite significantly lower steam requirements of double and triple effects absorption cooling, integration of a single effect absorption cooling to the power cycle was more efficient. The most efficient trigeneration configuration was identified when multi effect distillation and single effect absorption cooling were integrated to a Rankine cycle. The results and conclusions of this study can be generalized to other coal and natural gas power plants that employ similar Rankine cycle configurations.
Article
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy. The converted electrical energy can be used to offload the alternator, supplying power for auxiliary loads as well as battery charging. In the event of excess electrical energy, it can be returned to the drivetrain through a motor connected to the front end accessory drive (FEAD). With the increasing demand for clean energy, TAC could be an attractive alternative for reducing fuel consumption and CO2 emissions. Such a technology will become more attractive as electric power loads on a vehicle increase through hybridization and the increased usage of infotainment systems, media, and connected vehicles. In this paper, the fundamental principle of TAC technology is described and the TAC waste heat recovery vehicular integration with exhaust is presented. Numerical simulations are performed on light-duty gasoline pick-up truck engine exhausts over the US certification cycles to assess the performance and potential of TAC technology. Finally, some of the technical challenges are presented as well, acknowledging technology maturity and risks.
Article
Condensing boilers achieve very high efficiency levels by recovering both sensible heat and water vapor latent heat from the flue gas. Research since the 1980's has focused on corrosion in such condensing heat exchangers related to the acidic condensate and material selection. Polymers in condensing heat exchangers have been considered to avoid the cost and corrosion concerns of metallic designs. Past efforts have shown that polymers offer the advantage of corrosion resistance and cost, however, lower thermal conductivity limited their application. More recent developments have introduced thermally conductive polymers which now offer promising conductivity values. This project focused on the evaluation of a thermally conductive polymer heat exchanger for this application. Computational fluid dynamic results indicated thermal conductivity values of stainless steel, a typical heat exchanger material, do not need to be achieved for similar heat transfer performance. An increase in thermal conductivity from about 10 times that of the base polymer can achieve an overall heat exchanger effectiveness similar to that achieved with stainless steel. A polymer composite thermal conductivity of approximately 2.5 W/m⋅K would be adequate. Thermally conductive polymer materials are now commercially available which offer values up to 20 W/m⋅K. In this work, one Nylon-12 and one thermally conductive polymer composite heat exchanger prototypes were constructed for a condensing boiler application. Tests demonstrated that good overall heat transfer performance was achieved. The lower thermal conductivity of the polymer heat exchanger will lead to higher surface temperatures and lower water condensation rates.