DataPDF Available

Electronic_Supplementary_Material_Global dataset shows geography and life form predict modern plant extinction and rediscovery

Authors:
Brief CommuniCation
https://doi.org/10.1038/s41559-019-0906-2
Global dataset shows geography and life form
predict modern plant extinction and rediscovery
Aelys M. Humphreys 1,2*, Rafaël Govaerts 3*, Sarah Z. Ficinski1, Eimear Nic Lughadha4 and
Maria S. Vorontsova 1
1Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, UK. 2Department of Ecology, Environment and Plant Sciences, Stockholm
University, Stockholm, Sweden. 3Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens, Kew, Richmond, UK. 4Conservation Science,
Royal Botanic Gardens, Kew, Richmond, UK. *e-mail: aelys.humphreys@su.se; r.govaerts@kew.org
SUPPLEMENTARY INFORMATION
In the format provided by the authors and unedited.
NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol
!
!
Global&dataset&shows&geography&and&life&form&predict&modern&plant&
extinction&and&rediscovery&
!
Aelys!M.!Humphreys,!Rafaël!Govaerts,!Sarah!Z.!Ficinski,!Eimear!Nic!Lughadha!&!
Maria!S.!Vorontsova!
&
&
Supplementary&Information&
!
!
Contents:&
!
Supplementary&Text&
Comparison!with!the!IUCN!Red!List!data!on!modern!extinction!in!seed!plants!
Distribution!of!extinct!species!among!families!
Phylogenetic!signal!of!modern!extinction!in!seed!plants!
Rediscovery!of!species!misreported!as!extinct!
!
Supplementary&References&
!
Supplementary&Figures&
Supplementary!Fig.!1:!Distribution!of!extinct!and!rediscovered!species!among!families!
!
Supplementary&Tables&
Supplementary!Table!1:!Extinction!risk!of!rediscovered!species!
&
Supplementary&Data!
Supplementary!Dataset!1:!The!database!of!modern!extinction!in!seed!plants!
Supplementary!Dataset!2:!The!IUCN!Red!List!of!extinct!seed!plant!species&!
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
II!
Supplementary&Text&
&
Comparison&with&the&IUCN&Red&List&data&on&modern&extinction&in&seed&plants&
!
The!nature!of!Red!List!data!compared!to!our!continuously!updated!database!
Our!first!step!was!to!compare!our!species!list!with!the!130!seed!plant!species!listed!by!the!
International!Union!for!the!Conservation!of!Nature!(IUCN)!Red!List!!of!Threatened!Species!as!
globally!extinct!(EX)!or!extinct!in!the!wild!(EW)1!(Supplementary!Data!2).!We!focused!our!
analysis!on!the!species!level!because!species!are!the!most!widely!understood!and!used!unit!
for!measuring!biodiversity2!and!also!adopted!internationally!for!conservation!policy!and!
environmental!legislation3.!The!Red!List!is!the!global!authority!on!the!extinction!risk!of!
species!but!its!data!do!not!reflect!the!high!rates!of!current!extinction!known!for!some!
organismal!groups4-6!(see!also!Table!1!in!Vellend!et!al.7).!It!paints!an!accurate!picture!for!
birds!and!mammals!as,!indeed,!it!was!developed!to!do8!but!coverage!remains!highly!
incomplete!for!other!groups!of!organisms,!despite!the!provision!of!increasingly!detailed!
guidelines!on!the!application!of!the!criteria!to!relatively!poorly!known!groups9.!For!example,!
a!previous,!detailed!analysis!of!snails!led!to!a!doubling!of!the!number!of!presumed!extinct!
species!of!molluscs!and!suggested!that!an!estimated!7%!of!species!may!be!extinct,!
compared!to!the!0.04%!suggested!by!the!Red!List!data!alone6,10.!
!!!!!Discrepancies!of!this!sort,!and!those!detailed!below,!are!almost!inevitable!since!botanical!
and!taxonomic!research!is!ongoing!while!a!formal!Red!List!extinction!risk!assessment!
presents!a!snapshot!of!the!state!of!knowledge!at!a!particular!time.!Publication!of!new!
records!or!updates!to!existing!ones!take!time!due,!in!part,!to!the!necessary!process!of!data!
compilation!and!peer!review.!For!our!study!as!a!whole,!taxonomic!change!accounts!for!
removal!of!18%!of!the!species!on!our!original!extinction!list,!while!rediscoveries!outnumber!
them!by!2:1.!These!proportions!are!comparable!to!the!corrections!to!extinction!lists!of!the!
Australian!flora!over!a!20-year!period:!of!228!species!listed!as!extinct!40!were!removed!for!
taxonomic!reasons!while!89!were!removed!following!rediscovery11.!
!
Extinct!seed!plant!species!listed!by!the!Red!List!and!in!our!database!
Two-thirds!of!the!130!species!in!the!Red!List!(96!species)!are!also!found!in!our!database!
(Supplementary!Data!2).!Of!these,!two!are!listed!under!different!names,!and!updating!these!
names!does!not!affect!their!presumed!extinct!status.!Twelve!species!have!been!rediscovered!
and!four!have!been!synonymised!with!living!species.!These!species!should!therefore!no!
longer!be!listed!as!extinct.!A!further!ten!species!are!known!to!persist!in!cultivation!and!
should!have!their!status!changed!to!extinct!in!the!wild!(EW)!instead!of!extinct!(EX).!This!
highlights!26!species!in!the!Red!List!whose!extinction!status!is!out!of!date.!!
!
Extinct!seed!plant!species!listed!only!by!the!Red!List!
Almost!a!third!of!the!species!in!the!Red!List!(34!species)!are!not!in!our!database!at!all!
(Supplementary!Data!2).!Some!of!these!were!published!by!the!Red!List!as!endangered!(EN)!
in!1998!and!are!now!listed!as!extinct!(EX),!without!any!associated!explanation!for!their!
change!in!status.!Others!have!been!published!as!extinct!in!the!past!decade,!and!these!
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
III!
entries!are!generally!accompanied!by!full!references!and!extensive!explanatory!notes.!Some!
of!these!were!added!to!our!database!(e.g.!Nymphaea!thermarum;!see!below).!And!finally,!
some!species,!e.g.!several!Brugmansia!species,!are!thought!to!be!cultivars!that!have!become!
naturalised!and!remain!widespread!in!the!wild.!The!extinct!status!of!these!species!is!
therefore!doubtful.!
!!!!!Of!the!34!species!on!the!global!Red!List!but!missing!from!our!list,!careful!vetting!resulted!
in!10!being!added!to!our!database.!These!species!(representing!1.8%!of!our!data!on!plant!
extinction)!had!been!overlooked!during!our!data!compilation!because!they!were!published!
as!extinct!only!recently,!because!their!status!was!updated!without!an!accompanying!
literature!reference!or!because!recent!taxonomic!changes!have!resulted!in!persisting!plants!
being!recognised!as!distinct!species.!!
!!!!!The!remaining!24!species!on!the!Red!List!but!not!added!to!our!list!are!known!to!be!
critically!endangered!(CR,!1!species),!endangered!(EN,!1!species),!synonyms!of!species!that!
are!not!extinct!(4!species)!or!simply!not!extinct!but!with!no!known!extinction!risk!(either!
rediscovered!or!should!not!have!been!classified!as!extinct!at!all;!18!species).!In!summary,!we!
suggest!that!50!species!assessments!in!the!Red!List!need!revision.!The!Red!List!Unit!has!been!
notified.!
!
Final!tally!of!extinct!seed!plant!species!in!our!database!
Our!database!includes!a!list!of!491!presumed!extinct!species!not!on!the!Red!List!at!all!
(Supplementary!Data!1).!Our!database!is!therefore!the!most!complete!list!of!recently!extinct!
seed!plants!published!to!date!and!includes!571!species!that!are!presumed!to!be!globally!
extinct!(EX)!or!extinct!in!the!wild!(EW).!This!is!more!than!4!times!those!listed!by!the!Red!List!
and!suggests!that!0.2%!of!standing!seed!plant!diversity!has!become!extinct!in!modern!times,!
while!the!Red!List!figure!is!0.04%.!
!
Distribution&of&extinct&species&among&families&
!
The!571!extinct!species!belong!to!102!out!of!the!428!currently!recognised!seed!plant!
families.!Most!records!are!in!globally!large!and!widespread!families,!for!example,!55!species!
in!the!coffee!family!(Rubiaceae),!39!species!in!the!daisy!family!(Asteraceae)!and!30!species!in!
the!legume!family!(Fabaceae;!Supplementary!Fig.!1).!Having!a!lot!of!species!does!not!
necessary!confer!a!high!number!of!extinct!species!however.!There!are!more!orchids!than!
any!other!type!of!seed!plant,!and!orchids!are!considered!among!the!world’s!most!
threatened!plants12,!but!there!are!relatively!few!documented!extinctions!of!orchids!(22!out!
ca.!28,000!species).!
!!!!!The!top!families!based!on!proportions!are!small!and!less!well!known,!with!at!least!an!
order!of!magnitude!fewer!species,!for!example,!4!species!of!cycads!(Zamiaceae;!
Supplementary!Fig.!1).!There!is!a!clear!mismatch!between!the!families!that!score!high!based!
on!species!numbers!and!those!that!score!high!based!on!proportions.!Only!the!bluebells!
(Campanulaceae)!score!high!on!both!measures.!!
&
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
IV!
Phylogenetic&signal&of&modern&extinction&in&seed&plants!
!
Using!a!phylogenetic!tree!with!family-level!resolution13!(Fig.!2,!main!article)!including!371!
seed!plant!families,!we!employed!three!commonly!used!measures!for!analysing!the!
phylogenetic!distribution!of!traits,!to!test!whether!there!is!phylogenetic!signal!to!modern!
extinction!in!plants!at!the!family!level:!Pagel’s!λ!and!Blomberg’s!K!for!proportion!extinct!
species!per!family!and!the!D-statistic!for!treating!extinction!as!a!binary!variable!
(presence/absence!of!extinct!species!within!a!family)14-17.!We!used!both!λ!and!K!because,!
although!they!both!test!for!phylogenetic!signal,!they!treat!data!(e.g.!tip!branches)!slightly!
differently,!and!their!performance!is!known!to!differ!under!some!circumstances18.!The!D!
statistic!is!a!similar!test!but!for!discrete!data,!rather!than!continuous.!The!subjective!nature!
of!taxonomic!categories!makes!summarising!extinction!and!rediscovery!by!family!somewhat!
artificial;!therefore,!the!data!were!analysed!both!as!proportions!and!numbers.!Pagel’s!λ!was!
calculated!using!the!‘transformPhylo.ML’!function!in!the!R19!package!motmot20,!Blomberg’s!
K!using!‘phylosig’!in!phytools21!and!the!D-statistic!using!‘phylo.d’!in!caper22.!
!!!!!All!tests!provided!strong!support!for!the!phylogenetic!independence!of!extinction:!λ!=!0!
(ΔAICc!=!31.1!compared!to!Brownian!motion,!which!is!equivalent!to!λ!=!1,!where!differences!
among!the!families!are!proportional!to!the!phylogenetic!distances!among!them);!K!=!0.43!(P!
=!0.07!compared!to!a!phylogenetically!random!distribution);!and!D!=!0.96!(P!=!0!compared!to!
the!distribution!generated!by!a!process!that!approximates!Brownian!motion,!equivalent!to!D!
=!0,!and!P!=!0.40!compared!to!a!random!distribution,!equivalent!to!D!=!1).!Thus,!phylogeny!is!
not!predictive!of!which!families!contain!species!documented!to!have!become!extinct!in!
recent!centuries.!
!
Rediscovery&of&species&misreported&as&extinct!
!
Distribution!of!rediscovered!species!among!families!
The!rediscovered!species!belong!to!82!families!(Supplementary!Figure!1).!For!some!plant!
groups,!e.g.!orchids,!over!half!of!the!species!declared!extinct!have!been!rediscovered!(30!of!
52!species),!compared!to!none!for!the!coffee!relative!Psychotria!(0!of!23!species,!most!of!
which!inhabited!islands;!Supplementary!Data!1).!All!but!one!of!the!families!with!the!most!
extinct!species!also!had!the!most!rediscovered!species.!As!for!extinction,!there!is!no!overlap!
between!families!that!have!a!high!number!of!rediscovered!species!and!those!that!have!high!
proportions!of!rediscovered!species.!
!!!!!Only!three!families!have!high!proportions!of!both!extinct!and!rediscovered!species!
(Bruniaceae,!Frankeniaceae!and!Portulacaceae).!There!is!thus!much!less!overlap!among!
these!smaller!families!but,!importantly,!there!is!overlap,!suggesting!that!a!high!proportion!of!
declared!extinct!species!in!certain!families!is!unlikely!to!be!due!to!a!lack!of!knowledge!about!
these!families.!Furthermore,!it!is!inevitable!that!some!of!the!species!presumed!extinct!today!
will!soon!be!rediscovered!again.!
!
!
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
V!
Phylogenetic!signal!of!rediscovery!
All!tests!showed!the!same!results!as!for!extinction:!rediscovery!has!been!phylogenetically!
random:!λ!=!0!(ΔAIC!=!27.3!compared!to!Brownian!motion);!K!=!0.36!(P!=!0.39!compared!to!a!
random!distribution);!and!D!=!0.92!(P!=!0.32!compared!to!a!phylogenetically!random!
distribution,!P!=!0.001!compared!to!Brownian!motion).!
!
Geographic!patterns!of!rediscovery!
Rediscovered!species!are!from!128!country-level!regions23,!compared!to!123!for!extinct!
species.!Western!Australia!stands!out!as!having!the!highest!number!of!rediscovered!species!
(75!species),!followed!by!Hawaii!(36!species),!California!(32!species),!India!(27!species)!and!
the!Cape!Provinces!of!South!Africa!(25!species).!About!half!of!the!regions!with!most!
presumed!extinct!species!also!have!the!most!rediscovered!species,!including!tropical!islands!
(Hawaii,!Mauritius!and!Madagascar)!and!regions!with!a!Mediterranean-like!climate!(the!
Cape!region!in!South!Africa,!India,!Western!Australia!and!California).!Overall,!however,!
rediscovery!is!much!lower!on!islands!than!on!continents!(130!and!404!species,!respectively)!
but!more!likely!for!species!that!are!geographically!more!widespread!(87%!of!rediscovered!
species!occur!in!a!single!TDWG!level!3!region,!compared!to!98%!of!extinct!species).!At!a!
continental!scale,!rediscovery!is!high!in!Australasia!and!North!America!but!low!in!South!
America!and!Africa.!Australia,!India,!California,!Hawaii!and!South!Africa!are!examples!of!
areas!that!are!home!to!long-term!professional!botanical!surveys.!Some!of!the!geographical!
differences!in!the!balance!between!extinction!and!rediscovery!might!therefore!indicate!a!
bias!in!our!knowledge!of!modern!extinction!in!plants,!driven!by!global!inequality!in!botanical!
survey!work.!!
!
Supplementary&References&
&
1.! IUCN.!The!IUCN!Red!List!of!Threatened!Species,!Version!3.1![Accessed!June,!2016].!
(2016).!
2.! Mace,!G.M.!The!role!of!taxonomy!in!species!conservation.!Philosophical!Transactions!
of!the!Royal!Society!of!London!Series!B-Biological!Sciences!359,!711-719!(2004).!
3.! Garnett,!S.T.!&!Christidis,!L.!Taxonomy!anarchy!hampers!conservation.!Nature!546,!
25-27!(2017).!
4.! Mace,!G.!Classification!of!the!threatened!species!and!its!role!in!conservation!
planning.!In!Extinction!rates!(eds.!Lawton,!J.H.!&!May,!R.M.)!pp.!197-213!(Oxford!
University!Press,!New!York,!1995).!
5.! Lamoreux,!J.!et!al.!Value!of!the!IUCN!Red!List.!Trends!in!Ecology!&!Evolution!18,!214-
215!(2003).!
6.! Regnier,!C.,!Fontaine,!B.!&!Bouchet,!P.!Not!knowing,!not!recording,!not!listing:!
Numerous!unnoticed!mollusk!extinctions.!Conservation!Biology!23,!1214-1221!
(2009).!
7.! Vellend,!M.!et!al.!Plant!biodiversity!change!across!scales!during!the!Anthropocene.!
Annual!Review!of!Plant!Biology!68,!563-586!(2017).!
8.! Mace,!G.M.!&!Lande,!R.!Assessing!extinction!threats!-!Toward!a!reevaluation!of!IUCN!
threatened!species!categories.!Conservation!Biology!5,!148-157!(1991).!
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
VI!
9.! IUCN!Standards!and!Petitions!Subcommittee.!Guidelines!for!using!the!IUCN!Red!List!
categories!and!criteria.!Version!13!(2017).!
10.! Regnier,!C.!et!al.!Mass!extinction!in!poorly!known!taxa.!Proceedings!of!the!National!
Academy!of!Sciences!of!the!United!States!of!America!112,!7761-7766!(2015).!
11.! Keith,!D.A.!&!Burgman,!M.A.!The!Lazarus!effect:!can!the!dynamics!of!extinct!species!
lists!tell!us!anything!about!the!status!of!biodiversity?!Biological!Conservation!117,!41-
48!(2004).!
12.! Nic!Lughadha,!E.M.!et!al.!Extinction!risk!and!threats!to!plants.!In!Willis,!K.J.!(Ed.)!State!
of!the!World’s!Plants!2017.!Pp.!72-77!(Royal!Botanic!Gardens,!Kew,!Richmond,!2017).!
13.! Magallón,!S.,!Gomez-Acevedo,!S.,!Sanchez-Reyes,!L.L.!&!Hernandez-Hernandez,!T.!A!
metacalibrated!time-tree!documents!the!early!rise!of!flowering!plant!phylogenetic!
diversity.!New!Phytologist!207,!437-453!(2015).!
14.! Pagel,!M.!Inferring!the!historical!patterns!of!biological!evolution.!Nature!401,!877-
884!(1999).!
15.! Pagel,!M.!Inferring!evolutionary!processes!from!phylogenies.!Zoologica!Scripta!26,!
331-348!(1997).!
16.! Blomberg,!S.P.,!Garland,!T.!&!Ives,!A.R.!Testing!for!phylogenetic!signal!in!comparative!
data:!behavioural!traits!are!more!labile.!Evolution!57,!717-745!(2003).!
17.! Fritz,!S.A.!&!Purvis,!A.!Selectivity!in!mammalian!extinction!risk!and!threat!types:!A!
new!measure!of!phylogenetic!signal!strength!in!binary!traits.!Conservation!Biology!
24,!1042-1051!(2010).!
18.! Münkemüller,!T.!et!al.!How!to!measure!and!test!phylogenetic!signal.!Methods!in!
Ecology!and!Evolution!3,!743-756!(2012).!
19.! R!Development!Core!Team.!R:!A!language!and!environment!for!statistical!computing.!
(R!Foundation!for!Statistical!Computing,!Vienna,!Austria,!2014).!
20.! Thomas,!G.H.!&!Freckleton,!R.P.!MOTMOT:!models!of!trait!macroevolution!on!trees.!
Methods!in!Ecology!and!Evolution!3,!145-151!(2012).!
21.! Revell,!L.J.!Phytools:!An!R!package!for!phylogenetic!comparative!biology!(and!other!
things).!Methods!in!Ecology!and!Evolution!3,!217-223!(2012).!
22.!Orme,!C.D.L.!et!al.!Caper:!Comparable!analyses!of!phylogenetics!and!evolution!in!R.!R!
package!version!0.4!(2014).!
23.! Brummitt,!R.K.!World!Geographical!Scheme!for!Recording!Plant!Distributions.!For!
International!Working!Group!on!Taxonomic!Databases!For!Plant!Sciences!(TDWG),!
153!(Hunt!Institute!for!Botanical!Documentation!Carnegie!Mellon!University,!
Pittsburgh,!2001).& &
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
VII!
Supplementary&Figures&and&Figure&Legends&
&
&
Supplementary&Fig.&1!|!Distribution&of&extinct&and&rediscovered&species&among&seed&plant&
families.!a,!Recently!extinct!(Red!List!categories!EX!and!EW)!and!b,!rediscovered!species.!
Numbers!are!shown!in!black!and!proportions!in!pink!(extinct!species)!and!green!
(rediscovered!species).!It!is!clear!that!those!families!that!have!a!high!number!of!extinct/!
rediscovered!species!are!not!same!as!those!that!have!high!proportions!of!extinct/!
rediscovered!species.!Families!are!sorted!by!decreasing!number!of!extinct/rediscovered!
species.! !
Orchidaceae
Campanulaceae
Brassicaceae
Apocynaceae
Cyperaceae
Euphorbiaceae
Proteaceae
Caryophyllaceae
Scrophulariaceae
Amaranthaceae
Boraginaceae
Amaryllidaceae
Haloragaceae
Primulaceae
Asparagaceae
Bromeliaceae
Orobanchaceae
Polygalaceae
Acanthaceae
Balsaminaceae
Crassulaceae
Dipterocarpaceae
Goodeniaceae
Loranthaceae
Rhamnaceae
Sapotaceae
Solanaceae
Stylidiaceae
Celastraceae
Elaeocarpaceae
Frankeniaceae
Geraniaceae
Gesneriaceae
Menispermaceae
Pandanaceae
Pittosporaceae
Plantaginaceae
Polygonaceae
Portulacaceae
Ranunculaceae
Restionaceae
Xanthorrhoeaceae
Anacardiaceae
Begoniaceae
Bignoniaceae
Burmanniaceae
Convolvulaceae
Cupressaceae
Gyrostemonaceae
Hydatellaceae
Loganiaceae
Onagraceae
Papaveraceae
Saxifragaceae
Symplocaceae
Tecophilaeaceae
Zingiberaceae
Distribution of rediscovered species among families
40
10
Percent of species
Campanulaceae
Orchidaceae
Brassicaceae
Euphorbiaceae
Apocynaceae
Acanthaceae
Boraginaceae
Caryophyllaceae
Begoniaceae
Eriocaulaceae
Scrophulariaceae
Bromeliaceae
Dipterocarpaceae
Amaryllidaceae
Solanaceae
Amaranthaceae
Burmanniaceae
Caprifoliaceae
Cyperaceae
Gesneriaceae
Melastomataceae
Pandanaceae
Plumbaginaceae
Santalaceae
Annonaceae
Celastraceae
Onagraceae
Primulaceae
Sapindaceae
Sapotaceae
Xanthorrhoeaceae
Anacardiaceae
Asparagaceae
Convolvulaceae
Crassulaceae
Cucurbitaceae
Loganiaceae
Loranthaceae
Passifloraceae
Phrymaceae
Polemoniaceae
Restionaceae
Rhamnaceae
Aquifoliaceae
Balsaminaceae
Capparaceae
Chrysobalanaceae
Combretaceae
Commelinaceae
Cunoniaceae
Elaeocarpaceae
Frankeniaceae
Grossulariaceae
Haloragaceae
Hernandiaceae
Marantaceae
Nyctaginaceae
Nymphaeaceae
Orobanchaceae
Pittosporaceae
Plantaginaceae
Podostemaceae
Polygalaceae
Portulacaceae
Saxifragaceae
Thymelaeaceae
Verbenaceae
Zingiberaceae
Distribution of extinct species among families
60
5
Percent of species
Humphreys!et!al.!(2019)!Supplementary!Information!!
!
VIII!
Supplementary&Tables&
&
Supplementary&Table&1&|&Extinction&risk&of&rediscovered&species&
!
Extinction&risk,&according&to&
Red&List&criteria1!
Number&of&species2!
Critically&endangered,&CR&
234&
Endangered,&EN&
69&
Vulnerable,&VU&
79&
Near!threatened,!NT!
1!
Least!concern,!LC!
11!
Data!deficient,!DD!
37!
!
1Species!in!the!top!three!extinction!risk!categories,!marked!in!bold,!are!considered!to!be!threatened!with!
extinction.!
2Overall,!88.6%!of!species!are!threatened!with!extinction!(CR,!EN!and!VU),!2.8%!are!not!considered!to!be!
threatened!(NT,!LC)!and!8.6%!are!data!deficient!(DD).!
!
&
&
&
&
&
&
&
Supplementary&Data&
&
Supplementary&Dataset&1&|&The&database&of&modern&extinction&in&seed&plants&
Available!as!a!supplementary!file!(Excel!table)!linked!to!the!online!version!of!the!paper!at!
www.nature.com/nature.!
&
Supplementary&Dataset&2&|&The&IUCN&Red&List&of&extinct&seed&plant&species&
Available!as!a!supplementary!file!(Excel!table)!linked!to!the!online!version!of!the!paper!at!
www.nature.com/nature.!

File (1)

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Plant and fungal biodiversity support all life on earth and merit careful stewardship in an increasingly uncertain environment. However, gaps and biases in documented extinction risks to plant and fungal species impede effective management. Formal extinction risk assessments help avoid extinctions, through engagement, financial or legal mechanisms, but most plant and fungal species lack assessments. Available global assessments cover c. 30% of plant species (ThreatSearch). Red List coverage over-represents woody perennials and useful plants but underrepresents single-country endemics. Fungal assessments overrepresent well-known species and are too few to infer global status or trends. Proportions of assessed vascular plant species considered threatened vary between global assessment datasets: 34% (ThreatSearch), 44% (International Union for Conservation of Nature Red List f Threatened Species). Our predictions, correcting for several quantifiable biases, suggest that 39% of all vascular plant species are threatened with extinction. However, other biases remain unquantified, and may affect our estimate. Preliminary trend data show plants moving toward extinction. Quantitative estimates based on plant extinction risk assessments may understate likely biodiversity loss: they do not fully capture the impacts of climate change, slow-acting threats, or clustering of extinction risk which could amplify loss of evolutionary potential. The importance of extinction risk estimation to support existing and emerging conservation initiatives is likely to grow as threats to biodiversity intensify. This necessitates urgent and strategic expansion of efforts toward comprehensive and ongoing assessment of plant and fungal extinction risk.
Article
Full-text available
The classification of complex organisms is in chaos. Stephen T. Garnett and Les Christidis propose a solution.
Article
Full-text available
Plant communities have undergone dramatic changes in recent centuries, although not all such changes fit with the dominant biodiversity-crisis narrative used to describe them. At the global scale, future declines in plant species diversity are highly likely given habitat conversion in the tropics, although few extinctions have been documented for the Anthropocene to date (<0.1%). Nonnative species introductions have greatly increased plant species richness in many regions of the world at the same time that they have led to the creation of new hybrid polyploid species by bringing previously isolated congeners into close contact. At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change—e.g., climate warming, habitat fragmentation, and nitrogen deposition—have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero. These results prompt a reassessment of how conservation goals are defined and justified. 3.1
Article
Full-text available
Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.
Article
Full-text available
1. Phylogenetic signal is the tendency of related species to resemble each other more than species drawn at random from the same tree. This pattern is of considerable interest in a range of ecological and evolutionary research areas, and various indices have been proposed for quantifying it. Unfortunately, these indices often lead to contrasting results, and guidelines for choosing the most appropriate index are lacking. 2. Here, we compare the performance of four commonly used indices using simulated data. Data were generated with numerical simulations of trait evolution along phylogenetic trees under a variety of evolutionary models. We investigated the sensitivity of the approaches to the size of phylogenies, the resolution of tree structure and the availability of branch length information, examining both the response of the selected indices and the power of the associated statistical tests. 3. We found that under a Brownian motion (BM) model of trait evolution, Abouheif’s Cmean and Pagel’s λ performed well and substantially better than Moran’s I and Blomberg’s K. Pagel’s λ provided a reliable effect size measure and performed better for discriminating between more complex models of trait evolution, but was computationally more demanding than Abouheif’s Cmean. Blomberg’s K was most suitable to capture the effects of changing evolutionary rates in simulation experiments. 4. Interestingly, sample size influenced not only the uncertainty but also the expected values of most indices, while polytomies and missing branch length information had only negligible impacts. 5. We propose guidelines for choosing among indices, depending on (a) their sensitivity to true underlying patterns of phylogenetic signal, (b) whether a test or a quantitative measure is required and (c) their sensitivities to different topologies of phylogenies. 6. These guidelines aim to better assess phylogenetic signal and distinguish it from random trait distributions. They were developed under the assumption of BM, and additional simulations with more complex trait evolution models show that they are to a certain degree generalizable. They are particularly useful in comparative analyses, when requiring a proxy for niche similarity, and in conservation studies that explore phylogenetic loss associated with extinction risks of specific clades.
Article
The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time‐frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature‐based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135–130 million yr ago (Ma); Pentapetalae is 126–121 Ma; and Rosidae (123–115 Ma) preceded Asteridae (119–110 Ma). Family stem ages are continuously distributed between c . 140 and 20 Ma. This time‐frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.